• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Response of a westerly-trough rainfall episode to multi-scale topographic control in southwestern China

    2022-06-07 06:24:58WeiLuoHnyueYinShuiYngYushuZhouLingkunRnBofengJioZiyngLi

    Wei Luo , Hnyue Yin , Shui Yng , , Yushu Zhou , Lingkun Rn , Bofeng Jio , Ziyng Li

    a CHN Energy Dadu River Big Data Services Co., LTD, Chengdu, China

    b Laboratory of Cloud-Precipitation Physics and Severe Storms (LACS), Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China

    Keywords:Heavy rainfall Trough Topography Numerical simulation

    ABSTRACT This study aims to quantify the response of a westerly-trough rainfall episode that occurred in summer 2020 to multi-scale topographic control in southwestern China, based on observations and numerical simulations.The multi-scale topography is composed of the Tibetan Plateau, Hengduan Cordillera (HC), and Sichuan Basin(SB).The westerly trough was characterized by southeastward deepening together with an in-phase propagating rainfall episode.By utilizing the results of numerical experiments, how the multi-scale topography impacted this westerly trough rainfall episode is explored.It is found that HC was the pivotal topographic factor affecting the southeastward extension of the trough and related rainfall, while SB accerelated the eastward movement of the westerly trough and changed the tilting direction of the trough line, thus further changing the location and orientation of precipitation.For extreme rainfall with intensity exceeding 10 mm h ? 1 , a roughly threefold rise in the cover ratio (from 1.8% to 7.2%) and fourfold increase in the areal rainfall amount per hour occurred by removing the HC barrier, due to the strongest vorticity and long-distance transport capacity to potential vorticy mass accompanying the southeast-stretching trough.Our results quantitatively reveal a strong response of westerly trough rainfall to multi-scale topographic control in southwestern China, therefore serving as an important reference for future decision making and effective model improvement.

    1.Introduction

    Under complex topographic forcing, heavy rainfall frequently occurs in mountainous southwestern China every year ( Luo et al., 2016;Fu et al., 2019 ; Romanic, 2021 ), forming one of the rainiest regions in China and causing severe flood disasters.The particular multi-scale topography of this region, composed of the Tibetan Plateau (TP), Hengduan Cordillera (HC), and Sichuan Basin (SB), brings great difficulty to making accurate predictions of heavy rainfall, or even leads to unstable numerical simulation over steep terrain transition zones.

    The thermodynamic effect and mechanical dynamic forcing of multiscale topography provide suitable environmental conditions to breed vortices or troughs over southwestern China, which are conducive to active convection development and frequent rainfall occurrence in summer ( Gao, 2000; Yu et al., 2007; Zhou et al., 2019 ; Lin et al., 2021; Wang et al., 2021 ).Plateau vortices and southwest vortices are important vortex systems inducing heavy rainfall in mountainous southwestern China( Lu et al.2020 ).Beyond that, westerly troughs are also a favorable synoptic system, as a significant disturbance superimposed on the midlatitude westerlies, to easily induce rainfall in this area ( Wang and Chen,2007; Yu et al., 2007 ; Si et al., 2018 ).

    The westerly trough is a typical mobile system, which commonly brings rainfall in front of the trough by positive vorticity advection and ascending motion.The dynamical and physical processes leading to vorticity growth under westerly-trough forcing has been studied for many years ( Leroux et al., 2013; Liu et al., 2021 ; Ren et al., 2021 ).These analyses demonstrate that terrain might play a forcing role in the evolution of the westerly trough, thus further influencing associated rainfall activities.Once the trough moves southeastwards out of the TP, it also has the potential to greatly impact the densely populated downstream areas(e.g., the SB and the middle and lower reaches of the Yangtze River),easily causing geological disasters such as mudslides, mountain torrents,and urban waterlogging.Therefore, southeastward-moving type systems and related physical processes during heavy rainfall in southwestern China should be paid more attention.

    In view of the significant correlation between trough evolution and precipitation development under complex topographic forcing, the impact of multi-scale topography on westerly troughs and related rainfall should be detected, which might be the key to improving the simulation and prediction of westerly trough precipitation from a terrain perspective in this region.Therefore, we aim to reveal the key topographic factor impacting westerly-trough rainfall based on terrain-sensitive numerical experiments in a case study.The horizontal pattern and temporal evolution of the rainfall case is shown in Figs.1 and 2 .The remainder of this paper is organized as follows: The model and experimental design are briefly described in Section 2 .The evolution of the westerly trough,its correlation with the evolution of precipitation, and the multi-scale topographic controls on the westerly-trough and extreme rainfall, are investigated in Section 3 .A summary is given in Section 4 .

    2.Numerical model and experimental design

    2.1. Model

    Version 4.2.1 of the Weather Research and Forecasting model was used to perform numerical simulations ( Fig.1 ).The domain covered southwestern China with 601 × 601 horizontal grid points and 2.7 km grid spacing centered at (28.1°N, 102.2°E) and with 61 vertical levels from the surface to 10 hPa.We adopted the YSU boundary layer scheme,the unified Noah land surface model, RRTM longwave/Dudia shortwave radiation options, and the WSM6 microphysics scheme.

    The initial and lateral boundary conditions were derived from the GFS 0.25° × 0.25° operational analyses available every 6 h.The model was integrated from 0000 UTC 17 June 2020 and lasted 48 h.Hourly CMORPH (CPC Morphing Technique) precipitation with a 0.1° resolution was used to examine the simulation of precipitation.

    2.2. Experimental design

    Besides the above control (CNTR) model run, we carried out three additional sensitivity experiments ( Fig.3 (a)), named TP, TP + HC, and ALL (i.e., TP + HC + SB), to examine the individual topographic effects of TP, HC, and SB on the westerly-trough rainfall ( Fig.3 (b–e)).In the three experiments, the topographic elements were gradually added and their differences compared.

    In terms of the idealized terrain construction (as shown in Fig.3 (a1–a3)), the geometric shapes were composed of an ellipse, a circle, and a nearly rounded rectangle to approximate the TP, SB, and HC.For more details, please refer to Wang and Tan (2006 , 2014) and Li et al.(2021) .Note that such a design is convenient to adjoin and split certain regular terrain components freely, so as to facilitate resolving/distinguishing the individual roles of terrain components.

    3.Results

    3.1. General description of the rainfall event

    In summer 2020, a heavy rainfall episode occurred in Sichuan Province, featuring southeastward propagation from the TP to HC and SB ( Fig.1 ).The peak rainfall intensity exceeded 100 mm h?1and 250 mm/24 h, resulting in catastrophic floods and serious geological disasters near the steep terrain adjoining the TP, HC, and SB.

    The main rain band presented a “U-shaped ” pattern ( Fig.1 ).The lefthand branch of the rainfall (west of 105°E) propagated southeastwards from the TP along the steep terrain adjoining the TP, SB, and HC from 0600 UTC 17 to 1200 UTC 18 June 2020 ( Fig.1 (a–f)).From the synoptic chart, the U-shaped rain band along the steep terrain was closely associated with the passage of a westerly trough.The right-hand branch of the rainfall (east of 105°E) maintained stably ( Fig.1 (a1–f1)), with a strong rainfall center near 108°E ( Fig.1 (a1–c1)) due to a low vortex (c.f., 700-hPa synoptic chart, omitted herein).In view of the dual influences of complex terrain on the trough itself and evolution of precipitation, the terrain-related rainfall will be the focus in the following analysis.

    3.2. Model validation

    Fig.1 (a2–f2) shows the evolution of the simulated 6-h accumulative precipitation and the moving westerly trough.Compared with the observation ( Fig.1 (a1–f1)), the model reproduces the pattern and trend of the precipitation and trough, especially the U-shaped rain band along with the southeastward-stretching trough from 1200 UTC 17 to 0000 UTC 18 June 2020 ( Fig.1 (b1–d1)).The locations of simulated strong precipitation centers also approach the observed ones, e.g., the precipitation between 28° and 30°N, near 102°E at 1800 UTC 17 June 2020.

    The precipitation occurs in front of the trough along the steep terrain( Fig.1 (a2–f2)), dominated by positive vorticity advection.The precipitation propogates southwards and moves eastwards, synchronous with the trough evolution.

    3.3. Westerly-trough rainfall evolution features

    Fig.2 shows longitude–time diagrams of hourly precipitation and zonally averaged (between 26° and 30°N) relative vorticity and vertical velocity at 500 hPa for the CNTR run.During the deepening stage of the trough before 0600 UTC 18 June, the strong vorticity concentrates west of 104°E, with the maximum intensity exceeding 2.0 × 10?4s?1, and propagates eastwards from 0000 UTC 17 to 0600 UTC 18 June( Fig.2 (c)).The positive vorticity zone expands between 98° and 104°E( Fig.2 (c)), accompanied by active convection ( Fig.2 (b)) and precipitation ( Fig.2 (a)).The vertical velocity is larger than 0.6 m s?1, and the precipitation intensity reaches up to 3.5 mm h?1.

    After 1200 UTC 18 June, plateau precipitation between 98° and 100.5°E generates again, characterized by a significant diurnal cycle of nocturnal rainfall (compared with the rain band over the plateau during 1200 UTC 17 to 0000 UTC 18 June).Meanwhile, the vorticity and convection are obvious within the precipitation corridor.In the first half of the event, the drastic vorticity growth due to southward movement and deepening of the trough before 0600 UTC 18 June, together with the convection development in front of the trough, are the main causes of heavy rainfall.

    3.4. Multi-scale topographic influences

    3.4.1.Spatialpattern

    Fig.3 shows the spatial pattern of the westerly-trough rainfall under various configuration scenarios among the multi-terrain elements( Fig.3 (a)).The ALL run is used as a baseline to perform comparative analyses ( Fig.3 (b–e)).

    For the ALL experiment ( Fig.3 (b3, c3, d3, e3)), it can be seen that the trough line extends southeast to 25°N at 500 hPa ( Fig.3 (b3)), producing strong cyclonic curvature circulation accompanied by strong vorticity(shaded) at 500 hPa and even 700 hPa ( Fig.3 (c3)).Convection and precipitation develop in front of the trough.

    Relatively, if the SB is removed ( Fig.3 (a2, b2, c2, d2, e2)), the eastward transfer of the trough is slowed down in the TP + HC experiment(cf., Fig.3 (b2, b3)).In other words, the basin terrain attracts and accelerates the eastward transfer of the trough, induces a tilting trough line towards the basin side and a narrower trough width, and therefore changes the pattern and orientation of precipitation (cf., Fig.3 (d2, e2)and Fig.3 (d3, e3)).

    Fig.1.(a–f) Observed (left-hand panels, a1–f1) and simulated (right-hand panels, a2–f2) 6-h accumulative precipitation (colored; units: mm/6 h) at 6-h intervals from 0600 UTC 17 to 1200 UTC 18 June 2020.The gray shading represents terrain height (units: m), and blue contours denote geopotential height (units: dgpm).

    Fig.1.(Continued).

    Further, the HC run ( Fig.3 (a1)) results in greater changes in the trough and related precipitation without the obstruction of the HC barrier.The southward extension of the trough is greatly accelerated and the trough line rapidly reaches 22°N to the south of the TP at the 500-hPa level ( Fig.3 (b1)).Correspondingly, the southward-moving rain band is accelerated, quickly sweeping most of the southern areas within the domain ( Fig.3 (d1, e1)).

    Fig.2.Time–longitude diagrams of (a) hourly precipitation (shaded; units: mm), (b) zonally averaged (26°–30°N) vertical velocity (units: m s ? 1 ), and (c) relative vorticity (shaded; units: 10 ? 4 s ? 1 ) at 500 hPa for the CNTR run.

    Overall, the HC is the pivotal topographic factor affecting the southward extension of the trough and related rainy region, while SB accerelates the eastward movement of the trough and changes the tilting direction of the trough line, thus further changing the location and orientation of precipitation.Relatively speaking, the degree of impact of the HC on the evolutions of the trough and precipitation is particularly significant.If both HC and SB are removed, the coverage of precipitation to the south of the TP increases dramatically.

    3.4.2.Temporalevolution

    From the spatial patterns of rainfall under various terrain scenarios( Fig.3 (d, e)), the TP experiment exhibits a special mode, but the other two simulations take on similar patterns.Therefore, we compare the cases of the TP and TP + HC runs ( Fig.4 ) to illuminate the role of TP in the evolution of precipitation.Both have clear southward-propagating trends from 34°N to 22°N, and obvious nocturnal rainfall between 33°and 30°N during 1200 UTC 17 June to 0000 UTC 18 June.However,the precipitation shifts faster for the TP run in the case without the HC barrier (cf., Fig.4 (a) and 4(d)), determined by quick-growing vorticity( Fig.4 (c, f)) and convection ( Fig.4 (b, e)) due to the rapidly deepening trough.For example, precipitation spreads southwards from 30°N to 26°N within 12 h (0000–1200 UTC 17 June) for the TP run, while it takes nearly 24 h (0000 UTC 17 to 0000 UTC 18 June) for rainfall to finish this route in the TP + HC experiment.Furthermore, compared to the TP + HC simulation, the TP run presents a multi-rainband mode and a longer duration, producing a stronger areal rainfall amount(cf., Fig.4 (a, d)).

    3.4.3.Extremerainfall

    To further quantify the respective effects of multiple terrain elements on precipitation, rainfall intensity, areal rainfall amount, and precipita-

    Fig.3.Idealized terrain in the (a1) TP run, (a2) TP + HC experiment, and (a3) ALL run.(b, c) Vorticity (colored; units: 10 ? 5 s ? 1 ), terrain (gray contours; units: m),and geopotential height (blue contours; units: dgpm) at 500 hPa and 700 hPa at 1800 UTC June 2020.(d, e) 6-h precipitation (colored; units: mm), terrain (gray shading; units: m), and geopotential height (blue contours; units: dgpm) at 1200 UTC and 1800 UTC 17 June 2020.Left, middle, and right panels are cases for the TP, TP + HC, and ALL runs, respectively.

    tion cover ratios are calculated as indices to estimate the differences among the three experiments ( Fig.5 ).

    Fig.4.Time–zonal diagrams of the meridional-mean (100°–105°E) (a) hourly precipitation (shaded; units: mm), (b) vertical velocity (shaded; units: m s ? 1 ), and (c)relative vorticity (shaded; units: 10 ? 4 m s ? 1 ) for the TP experiment.(d–f) As in (a–c) but for the TP + HC run.

    The TP case brings about the maximal rainfall intensity(5.84 mm h?1) and cover ratio (42.1% of the target region) due to drastically-deepening trough southwards, and therefore produces the strongest areal rainfall amount (182281.55 mm h?1) relative to the other two model runs in which the three indices remain equivalent in magnitude.For extreme rainfall (rainfall intensity>10 mm h?1herein), the TP run still accounts for the largest proportion of areal rainfall amount (122481.25 mm h?1), because of the coaction of the combined wider coverage (7.2% cover ratio) and stronger rainfall intensity ( ~21.44 mm h?1).Comparing the TP and TP + HC runs, a roughly 3–4 times increase in the cover ratio (from 1.8% to 7.2%) and areal rainfall amount (from 22863.42 to 122481.25 mm h?1) occurs by removing the HC barrier.

    Vorticity and potential vorticity (PV) can be utilized as metrics to indicate the strength and influence range of the trough.A southwardstretching trough signifies robust long-distance transport of PV mass from the high PV reservior at high latitudes towards the trough bottom (see the strong signal of PV in Fig.6 (a)).Therefore, we estimate the top-10% vorticity and standardized distance of PV meridional transport (scaled by using the meridional range of the domain as a reference length) for the three model runs, to quantify and explain how precipitation change responds to strength and stretching variations of the trough due to the various topographic effects ( Fig.6 (b)).The results show the strongest vorticity (4.12 × 10?4) and the farthest transport path (0.85,a dimensionless variable) in the TP run, relative to the other two experiments.Due simply to the super strength and range of influence of the trough, large rainfall intensity and coverage ratios are brought, therefore producing the large areal rainfall amount.

    4.Summary

    A westerly trough heavy rainfall episode near the steep terrain adjoining the TP, HC, and SB was investigated to explore the influence of multi-scale topography.The main conclusions can be summarized as follows.The HC is the pivotal topographic factor affecting the southward extension of westerly-trough rainfall.The SB accerelates the eastward movement of the system, changes the tilting direction of the trough line, and therefore the location and orientation of precipitation.Relatively speaking, the former is particularly significant for the evolution of rainfall.For extreme rainfall, the rainfall coverage to the south of TP increases dramatically (a roughly threefold rise from 1.8% to 7.2%in the cover ratio) without HC blocking, resulting in an increased areal rainfall amount (from 22863.42 to 122481.25 mm h?1) by removing the HC barrier.Two metrics to characterize trough strength and the range of influence of the trough –vorticity and the standardized distance of PV meridional transport –exhibited strong signals in the TP run, which was responsible for the change of rainfall due to the HC effect.

    In a previous study, Li et al.(2021) analyzed the multi-scale topographic influence on the vortex development for an eastwardpropagating rainfall event that occurred in southwestern China.They found that the HC played a key role in the formation of southwest vortex,while SB influenced its location and intensity.Wang and Tan (2014) also emphasized the significance of the HC topography, besides the TP, on southwest vortex formation through providing the source of the vortex stream.

    Our results focus on the westerly trough, a low-value system in nature, similar to a vortex to some degree, consistent with these previous studies.We reveal a strong response of the westerly trough to HC change.Furthermore, we demonstrate the influence of HC on westerlytrough and extreme rainfall, and show some quantitative analysis results.In future work, the impacts of slope change near the steep terrain at the boundary among TP, HC, and SB on the evolution of troughs and related rainfall are expected to be explored.Beyond that, more thermodynamic and dynamic aspects based on vorticity and PV equations are needed to reveal the mechanism responsible for the genesis and dispersion of the westerly trough itself, and its correlation with rainfall variation.

    Fig.5.The (a) rainfall intensity (units: mm h ? 1 ), (b) areal rainfall amount(units: mm h ? 1 ), and (c) precipitation coverage ratio (units: %) for various topography scenarios.

    Fig.6.The (a) potential vorticity (units: PVU) and (b) peak distance and vorticity (units: 10 ? 5 s ? 1 ) in the TP run, TP + HC experiment, and ALL run.

    Funding

    The authors were supported by the National Key Research and Development Program on the Monitoring, Early Warning and Prevention of Major Natural Disasters [grant number 2018YFC1507104],the National Natural Science Foundation of China [grant numbers 41875079, 41875056 , and 41975137 ], and a Key Technology Research project on multi-source meteorological data fusion in medium and small basins [grant number DSJ-KY-2021-004 ].

    日韩伦理黄色片| 亚洲激情五月婷婷啪啪| av免费在线看不卡| 亚洲婷婷狠狠爱综合网| 高清毛片免费看| 亚洲人成网站在线观看播放| 亚洲精品aⅴ在线观看| 69精品国产乱码久久久| 久久久久人妻精品一区果冻| 亚洲欧美日韩另类电影网站| 国产av一区二区精品久久| 九草在线视频观看| 一区在线观看完整版| 日韩三级伦理在线观看| 2021少妇久久久久久久久久久| 亚洲图色成人| 久久女婷五月综合色啪小说| 人人妻人人澡人人看| 校园人妻丝袜中文字幕| 18禁动态无遮挡网站| 国产不卡av网站在线观看| 纵有疾风起免费观看全集完整版| 2018国产大陆天天弄谢| 熟女人妻精品中文字幕| 热99久久久久精品小说推荐| 精品福利永久在线观看| 国产成人精品婷婷| 日韩 亚洲 欧美在线| 国产淫语在线视频| 这个男人来自地球电影免费观看 | 成人亚洲欧美一区二区av| 69精品国产乱码久久久| 一二三四中文在线观看免费高清| 久久精品国产亚洲av天美| 免费在线观看完整版高清| 一级,二级,三级黄色视频| 又粗又硬又长又爽又黄的视频| 又黄又粗又硬又大视频| 日韩视频在线欧美| 日本黄大片高清| 18禁裸乳无遮挡动漫免费视频| 美女xxoo啪啪120秒动态图| 97精品久久久久久久久久精品| 国产一区有黄有色的免费视频| 色5月婷婷丁香| 亚洲精品久久久久久婷婷小说| 国国产精品蜜臀av免费| 国产无遮挡羞羞视频在线观看| 国产成人午夜福利电影在线观看| 一区在线观看完整版| 日本av手机在线免费观看| 久久99热6这里只有精品| 午夜免费男女啪啪视频观看| 成人手机av| 亚洲av电影在线观看一区二区三区| 最近的中文字幕免费完整| 一区二区日韩欧美中文字幕 | 卡戴珊不雅视频在线播放| 免费看av在线观看网站| 女性生殖器流出的白浆| 爱豆传媒免费全集在线观看| 国产亚洲精品久久久com| 久久久a久久爽久久v久久| 中文字幕另类日韩欧美亚洲嫩草| 各种免费的搞黄视频| 久久国内精品自在自线图片| 日韩一区二区视频免费看| 中文天堂在线官网| 午夜免费鲁丝| 欧美成人午夜免费资源| 亚洲欧美精品自产自拍| www.熟女人妻精品国产 | 国产极品粉嫩免费观看在线| 国产在视频线精品| 成年女人在线观看亚洲视频| 中文欧美无线码| 9色porny在线观看| 激情视频va一区二区三区| 欧美人与善性xxx| 在线观看免费日韩欧美大片| 精品少妇内射三级| 免费少妇av软件| 在线看a的网站| 2018国产大陆天天弄谢| 少妇人妻精品综合一区二区| 黄色配什么色好看| 日韩大片免费观看网站| 九色亚洲精品在线播放| 免费大片黄手机在线观看| 五月伊人婷婷丁香| 一区二区三区乱码不卡18| 午夜福利视频在线观看免费| 日本黄大片高清| 国产男女内射视频| 亚洲成人一二三区av| 亚洲成av片中文字幕在线观看 | xxx大片免费视频| 国产精品久久久久久av不卡| 超碰97精品在线观看| 国产成人一区二区在线| 熟女电影av网| 欧美精品国产亚洲| 在线观看www视频免费| 91精品三级在线观看| 日韩伦理黄色片| 久久精品国产综合久久久 | 国产高清国产精品国产三级| 韩国精品一区二区三区 | 欧美xxxx性猛交bbbb| 免费看不卡的av| 国产精品偷伦视频观看了| 人人妻人人添人人爽欧美一区卜| 国产乱人偷精品视频| 久久人妻熟女aⅴ| 男女边吃奶边做爰视频| 丝袜在线中文字幕| 人体艺术视频欧美日本| 国产亚洲最大av| 国产69精品久久久久777片| 精品人妻熟女毛片av久久网站| 精品国产乱码久久久久久小说| 国产精品久久久久久av不卡| 成人午夜精彩视频在线观看| 最黄视频免费看| 亚洲婷婷狠狠爱综合网| 另类亚洲欧美激情| 欧美bdsm另类| 午夜福利影视在线免费观看| 久热这里只有精品99| 欧美亚洲 丝袜 人妻 在线| 日本爱情动作片www.在线观看| 中文字幕免费在线视频6| 人体艺术视频欧美日本| 狂野欧美激情性xxxx在线观看| 建设人人有责人人尽责人人享有的| 国产探花极品一区二区| 精品久久蜜臀av无| 欧美亚洲日本最大视频资源| 五月开心婷婷网| 一级毛片 在线播放| 国产片特级美女逼逼视频| av视频免费观看在线观看| 中文欧美无线码| 99久久综合免费| av在线老鸭窝| 精品人妻偷拍中文字幕| 久久久久人妻精品一区果冻| av黄色大香蕉| 免费高清在线观看视频在线观看| 人妻人人澡人人爽人人| 赤兔流量卡办理| 成人黄色视频免费在线看| 亚洲成人手机| 精品一区二区三卡| 欧美人与性动交α欧美精品济南到 | av片东京热男人的天堂| 久久久久国产精品人妻一区二区| 性高湖久久久久久久久免费观看| 中国三级夫妇交换| 久久99热6这里只有精品| 久久久国产精品麻豆| 亚洲综合色网址| 欧美3d第一页| 国产成人精品无人区| 久久午夜综合久久蜜桃| 免费黄网站久久成人精品| 全区人妻精品视频| 观看美女的网站| 国产日韩欧美亚洲二区| 这个男人来自地球电影免费观看 | 青春草亚洲视频在线观看| 在线亚洲精品国产二区图片欧美| 午夜福利网站1000一区二区三区| 黑人欧美特级aaaaaa片| 十八禁高潮呻吟视频| 边亲边吃奶的免费视频| 看免费av毛片| 欧美97在线视频| 免费人妻精品一区二区三区视频| 国产在视频线精品| 久久久久国产网址| 国国产精品蜜臀av免费| 精品亚洲成a人片在线观看| 男的添女的下面高潮视频| 黄色怎么调成土黄色| 伊人久久国产一区二区| 视频在线观看一区二区三区| 最近手机中文字幕大全| 亚洲欧美成人精品一区二区| 免费播放大片免费观看视频在线观看| 亚洲精品日本国产第一区| 亚洲在久久综合| 99久久中文字幕三级久久日本| 51国产日韩欧美| 日韩,欧美,国产一区二区三区| 亚洲一级一片aⅴ在线观看| 在线免费观看不下载黄p国产| 国产在线视频一区二区| 久久久精品94久久精品| videos熟女内射| 亚洲精品自拍成人| 国内精品宾馆在线| 在线精品无人区一区二区三| 久久久国产一区二区| 香蕉精品网在线| 免费观看在线日韩| 高清不卡的av网站| 久久毛片免费看一区二区三区| 亚洲美女视频黄频| 亚洲av综合色区一区| 香蕉丝袜av| 中国国产av一级| 精品亚洲成国产av| 国产欧美日韩综合在线一区二区| 少妇熟女欧美另类| 国产免费一级a男人的天堂| 观看美女的网站| 国产色婷婷99| 久久这里只有精品19| 国产黄色视频一区二区在线观看| 你懂的网址亚洲精品在线观看| 成人影院久久| 天天影视国产精品| 日韩不卡一区二区三区视频在线| 免费看av在线观看网站| 1024视频免费在线观看| 在线 av 中文字幕| 国产av码专区亚洲av| 制服人妻中文乱码| 在线观看一区二区三区激情| 国产国语露脸激情在线看| 黄色视频在线播放观看不卡| 女性生殖器流出的白浆| 视频中文字幕在线观看| 人妻 亚洲 视频| 亚洲欧洲国产日韩| 香蕉精品网在线| 交换朋友夫妻互换小说| 精品久久久精品久久久| 欧美激情极品国产一区二区三区 | 久久久久精品人妻al黑| 久久ye,这里只有精品| 国产深夜福利视频在线观看| 欧美精品一区二区免费开放| 久久人人爽人人片av| 国产av码专区亚洲av| 日韩成人av中文字幕在线观看| 亚洲欧美色中文字幕在线| 哪个播放器可以免费观看大片| 五月天丁香电影| 亚洲精品美女久久av网站| 欧美亚洲 丝袜 人妻 在线| 欧美精品av麻豆av| 国产69精品久久久久777片| 岛国毛片在线播放| 亚洲欧洲精品一区二区精品久久久 | 少妇的丰满在线观看| 美女视频免费永久观看网站| 亚洲激情五月婷婷啪啪| 最近手机中文字幕大全| 亚洲av电影在线进入| 久久影院123| 丁香六月天网| 少妇人妻 视频| 99热这里只有是精品在线观看| 寂寞人妻少妇视频99o| 日日爽夜夜爽网站| 久久久久精品人妻al黑| 黄片播放在线免费| 亚洲,欧美精品.| 亚洲一级一片aⅴ在线观看| 女的被弄到高潮叫床怎么办| 国产精品偷伦视频观看了| 国产片特级美女逼逼视频| 国产男女超爽视频在线观看| 日日爽夜夜爽网站| 在线天堂中文资源库| 欧美另类一区| 久久精品aⅴ一区二区三区四区 | 精品少妇久久久久久888优播| 秋霞伦理黄片| 高清av免费在线| 亚洲伊人色综图| 香蕉国产在线看| 九色亚洲精品在线播放| 亚洲av欧美aⅴ国产| 一级毛片我不卡| 人妻一区二区av| 亚洲国产欧美在线一区| 亚洲国产毛片av蜜桃av| 免费在线观看黄色视频的| 韩国av在线不卡| 在线看a的网站| 丰满少妇做爰视频| 国产免费现黄频在线看| 日本av手机在线免费观看| 一区二区日韩欧美中文字幕 | 亚洲欧美一区二区三区国产| 欧美精品人与动牲交sv欧美| 国产精品嫩草影院av在线观看| 日韩熟女老妇一区二区性免费视频| 中国国产av一级| 日韩一区二区视频免费看| 桃花免费在线播放| 成年av动漫网址| 成人毛片a级毛片在线播放| 亚洲 欧美一区二区三区| 18禁国产床啪视频网站| 丰满乱子伦码专区| 精品亚洲成a人片在线观看| 2022亚洲国产成人精品| 51国产日韩欧美| 永久网站在线| 亚洲国产最新在线播放| 性高湖久久久久久久久免费观看| 亚洲 欧美一区二区三区| 国产不卡av网站在线观看| 国产激情久久老熟女| 亚洲国产精品国产精品| 草草在线视频免费看| 久久99热6这里只有精品| a级毛片在线看网站| 亚洲av免费高清在线观看| 亚洲av电影在线进入| 精品第一国产精品| 国产成人一区二区在线| 色视频在线一区二区三区| 另类亚洲欧美激情| 丰满乱子伦码专区| 18+在线观看网站| 男女边吃奶边做爰视频| 国产色婷婷99| 精品久久国产蜜桃| 国产又爽黄色视频| 亚洲精品乱久久久久久| 内地一区二区视频在线| 国产一区二区三区av在线| 亚洲人与动物交配视频| 久久免费观看电影| 美女国产高潮福利片在线看| 国产熟女欧美一区二区| 久久午夜福利片| 免费看光身美女| 中国国产av一级| 秋霞伦理黄片| 国产精品欧美亚洲77777| 91成人精品电影| 日本wwww免费看| 国产成人欧美| 五月伊人婷婷丁香| 国产精品蜜桃在线观看| 亚洲熟女精品中文字幕| 在线观看www视频免费| 免费人妻精品一区二区三区视频| 亚洲五月色婷婷综合| 美女大奶头黄色视频| 国产亚洲精品久久久com| 你懂的网址亚洲精品在线观看| 精品久久久精品久久久| 香蕉丝袜av| 亚洲国产最新在线播放| 亚洲第一区二区三区不卡| 一区二区三区乱码不卡18| 欧美日韩综合久久久久久| 99九九在线精品视频| 看免费成人av毛片| 少妇的丰满在线观看| 亚洲成人一二三区av| 狠狠婷婷综合久久久久久88av| 国产日韩一区二区三区精品不卡| 成年动漫av网址| 精品久久国产蜜桃| 亚洲精品一二三| 精品一区在线观看国产| 人妻一区二区av| 欧美日韩视频高清一区二区三区二| 18禁国产床啪视频网站| 精品第一国产精品| 欧美日本中文国产一区发布| 国产1区2区3区精品| 国产欧美亚洲国产| 少妇猛男粗大的猛烈进出视频| 亚洲中文av在线| 免费观看无遮挡的男女| 大陆偷拍与自拍| 99九九在线精品视频| 最近中文字幕2019免费版| 一级毛片我不卡| 肉色欧美久久久久久久蜜桃| 高清欧美精品videossex| 制服丝袜香蕉在线| 亚洲人与动物交配视频| 婷婷色麻豆天堂久久| 亚洲人与动物交配视频| 成人手机av| 香蕉精品网在线| 又大又黄又爽视频免费| 国产亚洲av片在线观看秒播厂| 一本色道久久久久久精品综合| 国产日韩欧美在线精品| 男女高潮啪啪啪动态图| 人妻一区二区av| 免费观看性生交大片5| 日韩成人伦理影院| 免费观看无遮挡的男女| 精品国产一区二区三区久久久樱花| 婷婷色综合www| 国产免费一级a男人的天堂| 欧美精品亚洲一区二区| 欧美精品一区二区免费开放| 亚洲美女搞黄在线观看| 我的女老师完整版在线观看| 亚洲丝袜综合中文字幕| 成人影院久久| 免费大片黄手机在线观看| 热re99久久国产66热| 美女脱内裤让男人舔精品视频| 亚洲四区av| 美女大奶头黄色视频| 国产日韩欧美视频二区| 一区在线观看完整版| 男人舔女人的私密视频| 一级毛片 在线播放| 国产色婷婷99| 青春草亚洲视频在线观看| 不卡视频在线观看欧美| 欧美日韩国产mv在线观看视频| 插逼视频在线观看| 熟女人妻精品中文字幕| 午夜av观看不卡| 国产欧美日韩一区二区三区在线| 一级毛片 在线播放| 亚洲三级黄色毛片| 成人影院久久| av有码第一页| 热99国产精品久久久久久7| 久久免费观看电影| 国产69精品久久久久777片| 精品国产乱码久久久久久小说| 十八禁高潮呻吟视频| 亚洲综合色网址| 国产不卡av网站在线观看| xxxhd国产人妻xxx| 免费av不卡在线播放| 日本欧美国产在线视频| 亚洲av中文av极速乱| 国产一级毛片在线| 我的女老师完整版在线观看| 国产av一区二区精品久久| 视频中文字幕在线观看| 欧美日韩综合久久久久久| 女性被躁到高潮视频| 汤姆久久久久久久影院中文字幕| 久久久久久久国产电影| 亚洲国产欧美在线一区| 国产伦理片在线播放av一区| 国产精品久久久久久av不卡| 男女下面插进去视频免费观看 | 久久精品国产自在天天线| 99久久人妻综合| 啦啦啦在线观看免费高清www| 少妇被粗大的猛进出69影院 | 少妇的逼水好多| 亚洲情色 制服丝袜| 久久精品人人爽人人爽视色| a级毛片黄视频| 晚上一个人看的免费电影| 久久av网站| 国产亚洲最大av| 在线观看免费视频网站a站| 一本色道久久久久久精品综合| 18禁动态无遮挡网站| 亚洲av国产av综合av卡| 99久国产av精品国产电影| 国产成人精品在线电影| 免费观看无遮挡的男女| 久久精品国产亚洲av涩爱| 中文字幕最新亚洲高清| 久久这里有精品视频免费| 热99国产精品久久久久久7| videosex国产| 免费观看性生交大片5| 尾随美女入室| 精品久久国产蜜桃| 国产淫语在线视频| 国产一区亚洲一区在线观看| 日日啪夜夜爽| 99香蕉大伊视频| 午夜精品国产一区二区电影| 亚洲精品色激情综合| 亚洲精品一二三| 99久久综合免费| 成人毛片a级毛片在线播放| 国产精品久久久久久精品古装| 美女国产视频在线观看| 秋霞伦理黄片| 亚洲欧美日韩卡通动漫| 国产成人精品无人区| 婷婷色av中文字幕| 各种免费的搞黄视频| 国产精品不卡视频一区二区| av国产久精品久网站免费入址| 成人毛片60女人毛片免费| 欧美3d第一页| 各种免费的搞黄视频| 熟女av电影| videossex国产| 男女啪啪激烈高潮av片| 久久久久久人人人人人| 国产国拍精品亚洲av在线观看| 99re6热这里在线精品视频| av国产久精品久网站免费入址| 精品人妻偷拍中文字幕| 久久人人97超碰香蕉20202| 777米奇影视久久| 欧美激情 高清一区二区三区| 卡戴珊不雅视频在线播放| 交换朋友夫妻互换小说| 狠狠精品人妻久久久久久综合| 国产一区亚洲一区在线观看| 在线精品无人区一区二区三| 亚洲四区av| 如日韩欧美国产精品一区二区三区| 亚洲国产精品国产精品| 国产精品一区二区在线不卡| 波野结衣二区三区在线| 一级黄片播放器| 亚洲伊人久久精品综合| 久久久精品免费免费高清| 久久韩国三级中文字幕| 一级,二级,三级黄色视频| 熟妇人妻不卡中文字幕| 欧美另类一区| 免费av不卡在线播放| 亚洲五月色婷婷综合| 少妇人妻久久综合中文| 久久亚洲国产成人精品v| 国语对白做爰xxxⅹ性视频网站| 这个男人来自地球电影免费观看 | 一级毛片我不卡| 香蕉丝袜av| 精品一区二区三区视频在线| 高清黄色对白视频在线免费看| 美女国产高潮福利片在线看| 久久久亚洲精品成人影院| 97精品久久久久久久久久精品| 欧美亚洲 丝袜 人妻 在线| 丝袜在线中文字幕| 成人国产av品久久久| 亚洲人与动物交配视频| 亚洲国产av新网站| 国产精品人妻久久久久久| 精品少妇内射三级| 国产极品天堂在线| tube8黄色片| 欧美性感艳星| 日本黄大片高清| 国产欧美日韩一区二区三区在线| 黑人猛操日本美女一级片| 亚洲av电影在线进入| 日韩一区二区三区影片| 少妇的丰满在线观看| 免费看光身美女| 美女国产高潮福利片在线看| 亚洲欧美成人综合另类久久久| 精品亚洲成国产av| 黄色怎么调成土黄色| 人成视频在线观看免费观看| 亚洲精品国产av蜜桃| 午夜久久久在线观看| 久久女婷五月综合色啪小说| 青春草国产在线视频| 亚洲美女视频黄频| 亚洲,欧美精品.| 国产精品熟女久久久久浪| 看非洲黑人一级黄片| 久久婷婷青草| av国产久精品久网站免费入址| 免费人妻精品一区二区三区视频| 在线观看一区二区三区激情| 啦啦啦视频在线资源免费观看| 一级,二级,三级黄色视频| 男女午夜视频在线观看 | 最近中文字幕2019免费版| 免费看av在线观看网站| 2018国产大陆天天弄谢| 亚洲av电影在线进入| 在线观看www视频免费| 一级片'在线观看视频| 人人妻人人澡人人爽人人夜夜| 欧美成人午夜精品| 一本—道久久a久久精品蜜桃钙片| 国产一区二区三区综合在线观看 | 制服诱惑二区| 在线观看免费视频网站a站| 99九九在线精品视频| 制服诱惑二区| 日韩欧美一区视频在线观看| av国产久精品久网站免费入址| 欧美精品一区二区免费开放| 精品一品国产午夜福利视频| 咕卡用的链子| 欧美人与性动交α欧美精品济南到 | 久久久久久久国产电影| 成人影院久久| 在线看a的网站| 亚洲精品一区蜜桃| 久久久久久久精品精品| 中文天堂在线官网| 乱人伦中国视频| 欧美精品av麻豆av| 亚洲国产精品一区二区三区在线| 丝瓜视频免费看黄片| 综合色丁香网| 精品福利永久在线观看|