• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A New Treatment for Some Periodic Schr¨odinger Operators II:The Wave Function

    2018-06-15 07:32:26WeiHe賀偉
    Communications in Theoretical Physics 2018年6期

    Wei He(賀偉)

    School of Electronic Engineering,Chengdu Technological University,Chengdu 611730,China

    1 Introduction

    In the previous paper Ref.[1]we study how the Floquet theory manifests in the multiple asymptotic spectral solutions of some periodic Schr¨odinger operators.We have only studied the eigenvalue aspect of these solutions.Following this method,it is very convenient to derive the corresponding asymptotic wave functions,we present the results in this paper.We focus on our canonical examples:the Mathieu equation and the Lame equation,which are the most widely used in periodic spectral problem.Our main conclusion are made for elliptic potentials,but as we have explained,to collect evidences for the proposals a crucial consistent requirement is that the solutions of the Lame equation must reduce to corresponding solutions of the Mathieu equation.Therefore the Mathieu equation,which is much better understood,is included here as a reference example.Unlike in Ref.[1],in this paper we do not use the ellipsoidal wave equation as the example for the elliptic potential as it would lead to lengthly formulae for wave functions,instead the wave functions of Lame equation are already enough for our purpose.

    In Sec.2 we derive the wave functions for large energy(weak coupling)perturbation.In Sec.3 we derive the wave functions for small energy(strong coupling)perturbation.Some wave functions have been studied before,we brie fly comment the old materials where earlier treatments can be found.In Sec.4 we explain how the eigenfunctions are related to supersymmetric gauge theory,in the context of Gaueg/Bethe correspondence.[2]

    The conclusion of this paper is that the wave functions give further evidence for the relations between multiple asymptotic solutions and the Floquet property associated with multiple periods.Among the wave functions,the eigenfunction(43)is a new solution.

    2 Large Energy Wave Function

    2.1 The Floquet Wave Function

    As we have shown previously,the large energy perturbation can be carried out using a method from KdV theory,[3?4]the wave function is given by

    v?(x)are given by the KdV Hamiltonian densities.[4]

    The dispersion relationλ(ν),whereνis the Floquet exponent,is obtained by the classical Floquet theory,

    The relations(3)and(4)give a complete perturbative solution for large energy.

    2.2 Mathieu Equation

    The potential for the Mathieu equation is

    It is clear that withλas the expansion parameter,the coefficients ofλ??/2are not necessary periodic functions.However,the wave functions must satisfy the Floquet property,this is made clear by the following parameter change using the eigenvalue expansion.

    The large energy dispersion relation is a classic result,see for example Refs.[5–8].The relation(4)can be used to compute,it is

    Now the coefficients ofν?l,withl>1,are periodic functions,the wave functions take the formψ±(x)=e±iνx?(±x)with?(x)a periodic function.This wave function is related to theN=2 pure Yang-Mills gauge theory with surface operator,see the discussion in Sec.4.

    Another bases of the asymptotic wave functions,commonly used in many literatures,arecem(x)andsem(x).Up to a constant,their relation toψ±(x)is

    2.3 Lame Equation

    The potential for the Lame equation is an elliptic function,for the large energy perturbation we should use the Weierstrass form to obtain compact formulae.In this paper we use the potential

    The corresponding dispersion relation was derived by Langmann,[9]expressed as aq-series,the same expression also appears in the context of its relation to gauge theory,[2]we examined this relation in Ref.[10].Another way to derive the dispersion relation is to use the formula(4),then we get an expression involving quasi-modular functions,[11]

    The wave functions also satisfy the propertyψ±(?x)=ψ?(x).In Sec.4 we would show the connection of this wave function and the partition function of theN=2?supersymmetric gauge theory with surface operator.

    There is a comment about the polynomials of elliptic functions that appear in Eqs.(12)and(15).Recall that any elliptic function can be expressed as a linear combination of zeta functions and their derivatives.In fact,the Hamiltonian densitiesv?(x)for the elliptic potential have no pole of order one atx=0,therefore,they are linear combinations of?kxe?(x)withk>0.Then the integrated Hamiltonians appearing in Eq.(12)are linear combinations ofxand?kx?ζ(x)withk>0.In the wave function(15)the phase e±iνxcontains the linear term ofx,the coefficients ofν?lare linear combinations of?kx?ζ(x)withk>0,probably include anx-independent constant term.The constant terms can be absorbed into the normalization constant,then the expressions are linear polynomials of?kx?ζ(x)withk>0.Or equivalently,because?ζ(x)=?xln?1(πx/2ω1,q),they are linear polynomials of?kxln?1(πx/2ω1,q)withk>1.This point is important when we connect the wave function to the instanton partition function in Sec.4,especially for higher order terms which we do not explicitly give in Eq.(15).

    Substituteλ1/2into Eq.(12)we get the wave functions in the Floquet form,

    The corresponding large energy asymptotic eigenvalueλand wave functionsψ±(χ,ν)take the same functional form as the eigenvalue(7)and the wave functions(9),but with the coordinate variable substituted byχ.

    Let us inspect more carefully the limit for eigenvalue and wave functions of the Lame equation.For the wave functions(15),we shift the argument byx→x+ω2,then take the limitq→0(i.e.withω1fixed,ω2→i∞)forψ±(x+ω2).The following expansions are needed,

    3 Small Energy Wave Function

    3.1 Location of Small Energy Perturbation

    Besides the large energy solution,there exists other solutions which are small energy excitations around local minima,i.e.the critical points of potential.We notice for some periodic potentials at each local minimum there is an asymptotic solution,and all known asymptotic solutions are located at a local minimum.[1,10]

    For example,the potentialu(x)=2hcos2xhas local minima atx?=0 andx?=π/2 modulo periods.At the minimau(x?)=±2h,therefore the eigenvalues take the form

    whereδis the energy of small excitations.The small en-ergy perturbation is also the strong coupling solution for the potential,h?1,see Refs.[6](Chapter V).In a similar way,the elliptic potentialu(x)=αe?(x;2ω1,2ω2)has local minima atx?=ωi,where the potentialu(x?)=α(ei+ζ1),i=1,2,3.The first minima atx?=ω1is associated to the large energy excitations already analyzed in the Subsec.2.3,the leading order energy comes from the quasimomentumλ~?ν2+···The other two minima are associated to small energy perturbative solutions,nevertheless,in order to get compact formulae we should use the Jacobian form of the Lame equation to compute.

    In this section we derive the corresponding strong coupling wave function,they have the Floquet form,and for elliptic potential their monodromies along periods 2Kand 2K+2K′indeed satisfy the relations we proposed in the previous paper.[1]

    3.2 Mathieu Equation

    The first small energy perturbation

    Around the minimumx?=0,λ=?2h+δ,the potential strengthh?1 is large compared to the energyδ,therefore the expansion parameter ish1/2.The relationvx+v2=u+λhas an asymptotic solution in the form[1]

    We can change the parameterδto the Floquet exponentν,by the following strong coupling expansion of the dispersion relation which is well known,[5?8]

    Because the wave functions are unnormalized,the terms in the exponent might appear in slightly different form,nevertheless the differences are constants and can be absorbed into the normalization constant.This comment applies to all of the asymptotic wave functions in this paper.When the exponentνtakes real value the asymptotic wave functions have the propertyψ?±(x)=ψ?(x).This solution seems often not recorded in the mathematical literature,however,it was analyzed in a paper by Stoner and Reeve.[12]The book Ref.[13]contains a discussion about this solution in the context of quantum mechanics.

    The second small energy perturbation

    Around the minimumx?=π/2,λ=2h+δ,the potential strengthh1/2again serves as the expansion parameter.The relationvx+v2=u+λhas an asymptotic solution in the form(21),with

    allows us to change the parameterδto the Floquet exponentν.Then we get the corresponding asymptotic wave functions

    The dispersion relation at this local minimum[5?8]

    The study of this solution dates back to the work of Ince and the work of Goldstein in the 1920s.Some recent materials easier to access include the paper by Dingle and Muller,[14]the books by McLachlan,[5]by Arscott[6]and by Muller-Kirsten.[13]

    This asymptotic solution is related to the largehlimit of the standard Mathieu functions by

    withmtakes either even or odd integers.[6]As we haveψ±(?x)=ψ?(x),thencem(x)is an even function andsem(x)is an odd function,as desired.

    3.3 Lame Equation

    Now we turn to the more interesting case of elliptic potential where the advantage of our method becomes more transparent.As we have shown in Refs.[1,10],for small energy perturbative solution the Jacobian form of the elliptic function is more suitable,therefore we rewrite the potential asu(z)=αk2sn2(z|k2),and the Lame equation is

    We also useμto denote the Floquet exponent throughout of this subsection,it is different from the Floquet exponentνused for the Weierstrass form.[10]

    The locations of the small energy perturbations are given by two solutions of the condition?zsn2z=0 atz?=0 andz?=Kwhich correspond tou(z?)=0 andu(z?)=αk2.

    The first small energy expansion

    In order to change the parameter Λ to the Floquet exponentμ,we use the widely known strong coupling expansion of the dispersion relation[6,8,13]

    Only in the case when all quantities,including the elliptic modulusk,take real values we haveψ?±(z)=ψ?(z).In particular,up to the first two leading order the wave functions can be written as

    This asymptotic solution can be compared to the earlier results about the asymptotic Lame function obtained by Malurkar in the 1930s,and results by Muller in the 1960s.[13,15]

    In the limitα→∞,k→0,μ→νwithα1/2k→2ih1/2finite,we recover the unnormalized wave functions,which differ some constant terms in the exponent from the asymptotic Mathieu wave functions(25).

    The second small energy expansion

    The corresponding dispersion relation has been missed for a long time in the literature,motivated by some ideas from quantum gauge theory[2]recently we have derived it by the WKB analysis and a duality argument,[10]then we rederive it using the method adopted in this paper.[1]It is

    Taking the limit to the Mathieu wave functions(29),we would again encounter the difference of some constant terms,which can be absorbed into the normalization constant.

    Up to now,everything about the small energy expansions for the Lame equation is consistent with the known results,although the monodromy relations,formulae(26)and(32)in Ref.[1],used to derive the corresponding dispersion relation remain a physics induced conjecture.

    4 A Connection toN=2Gauge Theory

    Now we come back to the original motivation which inspired our study to the spectral problem of periodic Schr¨odinger operators,especially for the elliptic potentials. As we have shown in Refs.[1,10],the asymptoticeigenvaluesof the Mathieu and the Lame equations are related to the solution of some deformedN=2 supersymmetric Yang-Mills gauge theories in the Nekrasov-Shatashvili limit(NS).[2]The three asymptotic spectral solutions are precisely i n accordance with three different dual descriptions of the low energy effective physics of gauge theory,i.e.the Seiberg-Witten duality,[16?17]in particular the large energy solution is related to the Nekrasov instanton partition function.[18]

    The large energy asymptoticwave functionsare related to the instanton partition function of gauge theory with surface operator inserted.The partition function with surface operator extends Nekrasov’s localization formula,it is introduced and developed in Refs.[19–20].The computation can be carried out by the characters developed in Ref.[21].The paper by Alday and Tachikawa gives a detailed study about the relations between the SU(2)gauge theory with surface operator,the SL(2)conformal block and the two-body quantum Calogero-Moser model.[22]In the following,we brie fly explain the relation between the gauge theory partition function with surface operator and the asymptotic wave functions(9)and(15).

    Let us start from the SU(2)N=2?gauge theory with surface operator,whose partition function takes the following form,

    whereais the scalar v.e.v,mis the mass of adjoint matter,?1,?2are the ?-deformation andx1,x2are the counting parameters.Written in the exponential form,its pole structure in the limit?1→0,?2→0 is

    In order to relate gauge theory and the quantum mechanics spectral problem,some manipulations on the functionZare needed.The spectral solution of the Lame operator is related to the large-a-expansion of instanton partition function(46),in accordance with the large-νexpansions of the eigenvalue(13)and the eigenfunctions(15).BothF/?1?2andG/?1containa-independent terms when expanded as large-a-series,which deserve special attention.These terms are polynomials ofx1,x2,and can be represented by the Dedekind eta function and the elliptic theta function,

    To see the connections of functionsF,Gand the eigenvalue,eigenfunction,we first need to identify the parameters by

    The elliptic nomeqis the instanton parameter of gauge theory,therefore,the functionFis anx-independentq-series which gives the eigenvalue,the functionGis aq-series depending on the coordinatexwhich gives the wave function.The eigenvalueλin(13)is related to the functionFin the limit?2→0 by

    In gauge theory the term?ν2is perturbative,hence not included in the instanton partition function.This relation is examined in detail in Ref.[10](see formula(34)in that paper),there is a difference ofαζ1=α(π2/12ω21)E2on the right hand side because here we use the shifted potential e?(x).

    On the other hand,the wave functions(15)is related to the functionGin the limit?2→0 by

    In the expression we emphasize the parameters used on both sides,and use the property of the large energy wave functionsψ?(?x?ω2)=ψ+(x+ω2).For example,up to the ordera?2we have

    Using the relation of parameters given in Eq.(49),the first three pieces are summed into three elliptic functions,

    The eigenvalue(13)and the eigenfunction(15)provide an elliptic modular representation for the gauge theory partition function when?2=0.In fact,we observe evidence that even for the case when both deformation parameters are turned on,?1/=0,?2/=0,the instanton partition function with surface operator can be expressed in terms of theta functions.This property indicates the instanton partition function secretly records relations to the elliptic curve.Indeed,this connection can be seen from the point of view of either integrable system[2]or conformal field theory.[22?23]

    In the decoupling limit,theN=2?gauge theory becomes the pure gauge theory.The corresponding partition function with surface operator can be found in Ref.[24],it is related to the asymptotic Mathieu wave functions(9).

    Appendix A:A Matrix that Counts Divisors of Integers

    When we take thea→∞limit of the instanton partition with surface operator,onlya-independent terms in the functionsFandGremain.These terms are represented by two elliptic modular functions,

    withχ=πx/2ω1.Had we expanded them asq-series as usual,there might not be interesting things deserve to say.Nevertheless,if we rewrite them in terms ofx1,x2as given in Eq.(49),and then expand minus of the logarithm of them as series ofx1,x2,we get

    The coefficient matrix Θ4[i,j]is a symmetric in finite matrix with all elements positive,as a digest here we present thefirst 22 dimensions.Notice that the numbers for rows and columns of the matrix begin from 0.

    For example,in the 18-th row we have the divisor functionσ?1(18),

    This fact indicates a relation of the eta function and the theta function expanded as in(A3),(A4):while the logarithm of eta function knows the in finite sequence of numbers 1,3/2,4/3,7/4,...,the logarithm of theta function diagnoses where they come from.It is the same in spirit for the situation in gauge theory:while the instanton partition function without surface operator knows the eigenvalue expansion,it is the instanton partition function with surface operator tells the whole story.

    This might be a folklore of number theory,nevertheless,it is strange instanton knows it.

    5 Acknowledgments

    I thank Institute of Modern Physics at Northwest University,Xi’an,during the summer school“Integrable models and their applications 2016”where this work is finalized.Part of the work has been done when I was supported by the FAPESP No.2011/21812-8,through IFT-UNESP.

    [1]W.He,Commun.Theor.Phys.69(2018)115.

    [2]N.Nekrasov and S.Shatashvili,Quantization of integrable systems and four dimensional gauge theories,in16th International Congress on Mathematical Physics,World Scientific,Singapore(2010)265.

    [3]R.M.Miura,C.S.Gardner,and M.D.Kruskal,J.Math.Phys.9(1968)1204.

    [4]O.Babelon,D.Bernard,and M.Talon,Introduction to Classical Integrable Systems,Cambridge University Press,Cambridge(2003).

    [5]N.W.McLachlan,Theory and Application of Mathieu Functions,Oxford University Press,Oxford(1947).

    [6]F.M.Arscott,Periodic Differential Equations,Pergamon Press,Oxford(1964).

    [7]Z.X.Wang and D.R.Guo,Special Functions,World Scientific,Singapore(1989).

    [8]NIST Digital Library of Mathematical Functions,F.W.J.Olver,A.B.Olde Daalhuis,D.W.Lozier,et al.,eds.http://dlmf.nist.gov.

    [9]E.Langmann,An Explicit Solution of the(Quantum)Elliptic Calogero-Sutherland Model,inSymmetry and Perturbation Theory(Cala Gonone),World Scientific,Singapore(2005)159.

    [10]W.He,J.Math.Phys.56(2015)072302.

    [11]W.He,Ann.Phys.353(2015)150.

    [12]M.Stoner and J.Reeve,Phys.Rev.D 18(1978)4746.

    [13]H.J.W.Muller-Kirsten,Introduction to Quantum Mechanics:Schr¨odinger Equation and Path Integral,World Scientific,Singapore(2006).

    [14]R.B.Dingle and H.J.W.Muller,Journal fur Die Reine und Angewandte Mathematik 211(1962)11.

    [15]H.J.W.Muller,Math.Nachr.31(1966)89.

    [16]N.Seiberg and E.Witten,Nucl.Phys.B 426(1994)19.

    [17]N.Seiberg and E.Witten,Nucl.Phys.B 431(1994)484.

    [18]N.Nekrasov,Adv.Theor.Math.Phys.7(2004)831.

    [19]A.Braverman,Instanton Counting via Affine Lie Algebras I:Equivariant J-functions of(Affine)Flag Manifolds and Whittaker Vectors,Proceedings of the CRM Workshop on Algebraic Structures and Moduli Spaces(Montreal),American Mathematical Society,Providence(2004)[arXiv:math/0401409].

    [20]A.Braverman and P.Etingof,Instanton counting via affine Lie algebras II:from Whittaker Vectors to the Seiberg-Witten Prepotential,[arXiv:math/0409441].

    [21]B.Feigin,M.Finkelberg,A.Negut,and L.Rybnikov,Selecta Mathematica 17(2011)513.

    [22]L.F.Alday and Y.Tachikawa,Lett.Math.Phys.94(2010)87.

    [23]L.F.Alday,D.Gaiotto,and Y.Tachikawa,Lett.Math.Phys.91(2010)167.

    [24]H.Awata,H.Fuji,H.Kanno,et al.,Adv.Theor.Math.Phys.16(2012)725.

    汤姆久久久久久久影院中文字幕| 高清黄色对白视频在线免费看| 五月天丁香电影| 日本wwww免费看| 又大又爽又粗| 国产精品久久久久久人妻精品电影 | 欧美日韩黄片免| 精品国产超薄肉色丝袜足j| 在线 av 中文字幕| 精品久久久精品久久久| 亚洲午夜理论影院| 中文字幕精品免费在线观看视频| 成人永久免费在线观看视频 | 欧美日韩亚洲综合一区二区三区_| cao死你这个sao货| 老司机福利观看| 热re99久久国产66热| 精品国产亚洲在线| a级片在线免费高清观看视频| 男女之事视频高清在线观看| 久久精品国产99精品国产亚洲性色 | 亚洲色图av天堂| 亚洲伊人色综图| 99国产精品免费福利视频| 亚洲黑人精品在线| 国产精品欧美亚洲77777| 在线观看免费高清a一片| 国产亚洲精品一区二区www | 久久国产亚洲av麻豆专区| 国产日韩一区二区三区精品不卡| 欧美黄色淫秽网站| 91麻豆av在线| 成人三级做爰电影| 亚洲精品国产色婷婷电影| 黑人巨大精品欧美一区二区mp4| 丰满少妇做爰视频| 咕卡用的链子| 99国产精品一区二区三区| 欧美日韩精品网址| 日韩一区二区三区影片| 国产欧美日韩一区二区三区在线| 亚洲第一青青草原| 91国产中文字幕| 色尼玛亚洲综合影院| 老司机深夜福利视频在线观看| 好男人电影高清在线观看| 蜜桃在线观看..| 91成人精品电影| 桃红色精品国产亚洲av| 两个人免费观看高清视频| 欧美激情久久久久久爽电影 | 国产亚洲av高清不卡| 欧美日韩黄片免| 丝瓜视频免费看黄片| 人人妻,人人澡人人爽秒播| tube8黄色片| 国产主播在线观看一区二区| 1024香蕉在线观看| 亚洲中文av在线| 欧美激情高清一区二区三区| 香蕉国产在线看| 欧美大码av| 国产精品99久久99久久久不卡| 欧美av亚洲av综合av国产av| 99国产精品一区二区蜜桃av | 欧美性长视频在线观看| av在线播放免费不卡| 18禁美女被吸乳视频| 国产成人免费观看mmmm| 日韩免费高清中文字幕av| 久久久久久免费高清国产稀缺| 国产亚洲一区二区精品| 亚洲国产av新网站| 色综合欧美亚洲国产小说| 国产精品一区二区免费欧美| 亚洲av成人一区二区三| 免费在线观看视频国产中文字幕亚洲| 一边摸一边做爽爽视频免费| 99国产极品粉嫩在线观看| kizo精华| 露出奶头的视频| 桃红色精品国产亚洲av| 精品国产乱码久久久久久小说| 菩萨蛮人人尽说江南好唐韦庄| 免费av中文字幕在线| 丁香六月欧美| 亚洲中文日韩欧美视频| 欧美亚洲日本最大视频资源| 午夜精品国产一区二区电影| 日韩精品免费视频一区二区三区| 国产精品久久久人人做人人爽| 女人高潮潮喷娇喘18禁视频| 国产无遮挡羞羞视频在线观看| 涩涩av久久男人的天堂| 亚洲成人免费av在线播放| 国产不卡一卡二| 国产精品麻豆人妻色哟哟久久| 捣出白浆h1v1| 电影成人av| 无人区码免费观看不卡 | av电影中文网址| 在线观看舔阴道视频| 香蕉久久夜色| a级毛片黄视频| 亚洲精品一卡2卡三卡4卡5卡| 变态另类成人亚洲欧美熟女 | 免费看a级黄色片| 女同久久另类99精品国产91| 我要看黄色一级片免费的| 国产在视频线精品| 午夜激情av网站| 亚洲三区欧美一区| 日韩制服丝袜自拍偷拍| 日韩视频在线欧美| 久久久久精品人妻al黑| 精品免费久久久久久久清纯 | 日韩一卡2卡3卡4卡2021年| 久久久久精品国产欧美久久久| 日日爽夜夜爽网站| 久热爱精品视频在线9| 大型黄色视频在线免费观看| 国产精品香港三级国产av潘金莲| 大香蕉久久网| 色老头精品视频在线观看| 99国产精品一区二区三区| 水蜜桃什么品种好| 欧美 日韩 精品 国产| 亚洲 国产 在线| 日韩制服丝袜自拍偷拍| 午夜福利欧美成人| 满18在线观看网站| 亚洲国产欧美在线一区| 一边摸一边做爽爽视频免费| 日韩熟女老妇一区二区性免费视频| 99久久国产精品久久久| 欧美激情久久久久久爽电影 | 大码成人一级视频| 亚洲成人免费电影在线观看| 女人久久www免费人成看片| 久久这里只有精品19| 国产成+人综合+亚洲专区| 搡老岳熟女国产| 黄色视频,在线免费观看| 精品福利永久在线观看| 午夜福利免费观看在线| 国产一区二区三区综合在线观看| 高清视频免费观看一区二区| 免费女性裸体啪啪无遮挡网站| 嫁个100分男人电影在线观看| 少妇的丰满在线观看| 黄色a级毛片大全视频| 色婷婷久久久亚洲欧美| 少妇粗大呻吟视频| 久久亚洲精品不卡| 天天添夜夜摸| 波多野结衣一区麻豆| 久久久久国产一级毛片高清牌| 亚洲色图综合在线观看| 一级黄色大片毛片| 国产在线观看jvid| 大型av网站在线播放| 久久久精品国产亚洲av高清涩受| 黄色怎么调成土黄色| 久久久久久免费高清国产稀缺| 丝袜喷水一区| 免费看十八禁软件| 亚洲 欧美一区二区三区| 男人舔女人的私密视频| 肉色欧美久久久久久久蜜桃| 最新美女视频免费是黄的| 999精品在线视频| 国产不卡av网站在线观看| 狠狠婷婷综合久久久久久88av| 深夜精品福利| 19禁男女啪啪无遮挡网站| 久9热在线精品视频| 亚洲成人手机| 国产高清激情床上av| 在线观看免费日韩欧美大片| 欧美乱码精品一区二区三区| 精品视频人人做人人爽| 在线观看免费午夜福利视频| 老司机亚洲免费影院| 1024香蕉在线观看| 最新在线观看一区二区三区| 一边摸一边做爽爽视频免费| 性高湖久久久久久久久免费观看| 国产精品久久电影中文字幕 | 99久久人妻综合| 一夜夜www| 黑人猛操日本美女一级片| 超碰97精品在线观看| 久久久国产精品麻豆| 精品午夜福利视频在线观看一区 | 国产成人精品久久二区二区91| 黄色丝袜av网址大全| 每晚都被弄得嗷嗷叫到高潮| 国产福利在线免费观看视频| 国产精品电影一区二区三区 | 夜夜骑夜夜射夜夜干| 精品国产一区二区三区四区第35| 久9热在线精品视频| 咕卡用的链子| 欧美黄色片欧美黄色片| 国产成人欧美在线观看 | 1024香蕉在线观看| 国产麻豆69| 色老头精品视频在线观看| 亚洲男人天堂网一区| 99精品久久久久人妻精品| 一本综合久久免费| 免费在线观看完整版高清| 日本一区二区免费在线视频| 9热在线视频观看99| 久久av网站| 亚洲国产av影院在线观看| 国产精品久久久久久精品电影小说| 久久毛片免费看一区二区三区| 精品熟女少妇八av免费久了| 午夜激情av网站| 日韩三级视频一区二区三区| 亚洲国产中文字幕在线视频| 18禁观看日本| 麻豆av在线久日| 国产男女内射视频| 搡老熟女国产l中国老女人| 午夜日韩欧美国产| 美国免费a级毛片| 丝袜喷水一区| 国产欧美日韩一区二区精品| 国产精品国产高清国产av | tocl精华| 欧美日韩精品网址| 国产av精品麻豆| www.熟女人妻精品国产| 亚洲美女黄片视频| 亚洲一卡2卡3卡4卡5卡精品中文| 成年版毛片免费区| 国产一区二区三区在线臀色熟女 | 可以免费在线观看a视频的电影网站| 下体分泌物呈黄色| 亚洲 国产 在线| 国产人伦9x9x在线观看| 久久影院123| 岛国在线观看网站| 十八禁高潮呻吟视频| 久久天堂一区二区三区四区| 啪啪无遮挡十八禁网站| 久久久国产一区二区| 女性被躁到高潮视频| 男人舔女人的私密视频| 国产在线视频一区二区| 麻豆av在线久日| 精品一区二区三区四区五区乱码| av一本久久久久| 日韩中文字幕欧美一区二区| 1024香蕉在线观看| 国产免费福利视频在线观看| 最黄视频免费看| av天堂久久9| 国产精品一区二区精品视频观看| 丁香欧美五月| 视频区欧美日本亚洲| 色精品久久人妻99蜜桃| 国产亚洲午夜精品一区二区久久| 大片免费播放器 马上看| 亚洲中文字幕日韩| 十八禁网站网址无遮挡| 久久这里只有精品19| 欧美人与性动交α欧美软件| 精品人妻在线不人妻| 国产黄频视频在线观看| 精品一区二区三区av网在线观看 | 欧美成人午夜精品| 国产av一区二区精品久久| 黄色视频,在线免费观看| 免费在线观看黄色视频的| 热re99久久国产66热| 色在线成人网| 国产免费av片在线观看野外av| 久久久国产精品麻豆| 国产成人精品无人区| 99香蕉大伊视频| 久久人人爽av亚洲精品天堂| 精品少妇一区二区三区视频日本电影| 一区二区日韩欧美中文字幕| 老鸭窝网址在线观看| 成人18禁在线播放| 久热爱精品视频在线9| 国产欧美日韩一区二区三| 亚洲国产欧美一区二区综合| 丰满人妻熟妇乱又伦精品不卡| 亚洲五月色婷婷综合| 久久天堂一区二区三区四区| 国产精品偷伦视频观看了| 久久午夜综合久久蜜桃| 久久久久久久大尺度免费视频| 国产一区二区三区在线臀色熟女 | 丁香六月天网| 国产精品国产高清国产av | 女人爽到高潮嗷嗷叫在线视频| 纯流量卡能插随身wifi吗| 国产伦理片在线播放av一区| 日本一区二区免费在线视频| 不卡av一区二区三区| kizo精华| 99香蕉大伊视频| 国产亚洲精品一区二区www | 91精品三级在线观看| 日本撒尿小便嘘嘘汇集6| 国产精品久久久久久精品电影小说| 欧美午夜高清在线| 亚洲熟女精品中文字幕| 9191精品国产免费久久| 国产不卡一卡二| 免费观看a级毛片全部| 一本大道久久a久久精品| 欧美黑人精品巨大| 高清毛片免费观看视频网站 | kizo精华| 免费看十八禁软件| 欧美中文综合在线视频| 女性被躁到高潮视频| 精品视频人人做人人爽| 在线天堂中文资源库| 精品国产乱码久久久久久小说| 啦啦啦在线免费观看视频4| 国产日韩欧美视频二区| kizo精华| 最新的欧美精品一区二区| 成人影院久久| 亚洲精品成人av观看孕妇| 在线永久观看黄色视频| 久久天躁狠狠躁夜夜2o2o| 可以免费在线观看a视频的电影网站| av国产精品久久久久影院| 热re99久久精品国产66热6| 国产高清激情床上av| 女人精品久久久久毛片| 乱人伦中国视频| 成人黄色视频免费在线看| 侵犯人妻中文字幕一二三四区| 肉色欧美久久久久久久蜜桃| 美国免费a级毛片| 女人久久www免费人成看片| 国产在线精品亚洲第一网站| 国产不卡av网站在线观看| 欧美成人免费av一区二区三区 | 国产在线一区二区三区精| 如日韩欧美国产精品一区二区三区| 九色亚洲精品在线播放| 国产福利在线免费观看视频| 免费日韩欧美在线观看| 男女之事视频高清在线观看| 一本大道久久a久久精品| 久久精品人人爽人人爽视色| 色视频在线一区二区三区| 久久精品熟女亚洲av麻豆精品| 免费不卡黄色视频| 亚洲少妇的诱惑av| 国产一区二区在线观看av| 成人av一区二区三区在线看| 欧美人与性动交α欧美精品济南到| 国产日韩欧美视频二区| 久久精品成人免费网站| av免费在线观看网站| 免费女性裸体啪啪无遮挡网站| 亚洲av片天天在线观看| 露出奶头的视频| 啦啦啦视频在线资源免费观看| 99re6热这里在线精品视频| 91大片在线观看| 在线观看免费视频网站a站| 亚洲精品乱久久久久久| 丝袜喷水一区| 老司机午夜福利在线观看视频 | 国产欧美日韩一区二区精品| 老司机靠b影院| 成人手机av| 国产日韩欧美视频二区| 桃红色精品国产亚洲av| 精品国产亚洲在线| 久久九九热精品免费| 精品少妇一区二区三区视频日本电影| 亚洲一区二区三区欧美精品| 成年人午夜在线观看视频| 少妇裸体淫交视频免费看高清 | 久久久久国产一级毛片高清牌| 新久久久久国产一级毛片| 午夜老司机福利片| 丝瓜视频免费看黄片| 国产精品美女特级片免费视频播放器 | 香蕉丝袜av| 9191精品国产免费久久| 黄色视频,在线免费观看| 色播在线永久视频| 午夜福利在线免费观看网站| 亚洲欧美一区二区三区久久| 国产有黄有色有爽视频| 超碰成人久久| 纵有疾风起免费观看全集完整版| 成年版毛片免费区| 久久精品91无色码中文字幕| 女同久久另类99精品国产91| 久久精品亚洲av国产电影网| 蜜桃国产av成人99| 精品熟女少妇八av免费久了| 嫩草影视91久久| 精品国产一区二区久久| 99国产极品粉嫩在线观看| 久久久精品国产亚洲av高清涩受| av天堂在线播放| 日本撒尿小便嘘嘘汇集6| 精品亚洲乱码少妇综合久久| 在线av久久热| 99re在线观看精品视频| √禁漫天堂资源中文www| 精品视频人人做人人爽| 高清在线国产一区| 免费在线观看完整版高清| 久久热在线av| 亚洲,欧美精品.| 国产在线精品亚洲第一网站| 一二三四社区在线视频社区8| 黄色a级毛片大全视频| 91精品三级在线观看| 精品国产乱子伦一区二区三区| 十八禁网站网址无遮挡| 一级毛片精品| 免费高清在线观看日韩| 免费在线观看视频国产中文字幕亚洲| 欧美在线一区亚洲| 亚洲专区国产一区二区| 国产精品成人在线| 中文字幕制服av| 日本一区二区免费在线视频| 亚洲少妇的诱惑av| 精品欧美一区二区三区在线| 在线观看免费视频网站a站| 色尼玛亚洲综合影院| 热99久久久久精品小说推荐| 久久人妻av系列| 人人妻人人爽人人添夜夜欢视频| 亚洲精品av麻豆狂野| 女性生殖器流出的白浆| 一本综合久久免费| 纵有疾风起免费观看全集完整版| 亚洲欧美日韩另类电影网站| 久久久久国内视频| 中文亚洲av片在线观看爽 | 免费在线观看日本一区| 久久精品人人爽人人爽视色| 日韩免费高清中文字幕av| 日本a在线网址| 色老头精品视频在线观看| 久久免费观看电影| 亚洲精品在线美女| 视频区图区小说| 97在线人人人人妻| 一级片'在线观看视频| 国产高清激情床上av| 国产精品一区二区在线不卡| 亚洲熟妇熟女久久| 9191精品国产免费久久| 亚洲av日韩在线播放| 一本大道久久a久久精品| 久久99一区二区三区| 黄色成人免费大全| 如日韩欧美国产精品一区二区三区| 亚洲国产成人一精品久久久| aaaaa片日本免费| 国产精品久久久av美女十八| 丰满人妻熟妇乱又伦精品不卡| 国产精品免费一区二区三区在线 | 99国产精品一区二区三区| 天天操日日干夜夜撸| 亚洲欧美日韩另类电影网站| 久9热在线精品视频| 国产深夜福利视频在线观看| 精品欧美一区二区三区在线| 久久久欧美国产精品| 成人18禁高潮啪啪吃奶动态图| 日韩精品免费视频一区二区三区| 久久精品91无色码中文字幕| 亚洲国产欧美一区二区综合| 精品高清国产在线一区| a级片在线免费高清观看视频| 午夜免费鲁丝| 久热这里只有精品99| 99热网站在线观看| 欧美日韩黄片免| 麻豆av在线久日| 久久精品亚洲精品国产色婷小说| 99re6热这里在线精品视频| 熟女少妇亚洲综合色aaa.| 18禁观看日本| 中国美女看黄片| 久久精品国产综合久久久| 成年人免费黄色播放视频| 9色porny在线观看| av视频免费观看在线观看| 成人国产av品久久久| 亚洲伊人色综图| 一边摸一边抽搐一进一小说 | 亚洲中文日韩欧美视频| 久久av网站| 久久久久久久久免费视频了| 色94色欧美一区二区| 不卡av一区二区三区| 免费看十八禁软件| 午夜精品国产一区二区电影| 精品久久蜜臀av无| 宅男免费午夜| 热re99久久国产66热| 亚洲性夜色夜夜综合| 曰老女人黄片| 国产色视频综合| 韩国精品一区二区三区| 亚洲avbb在线观看| 十八禁网站网址无遮挡| 国产成+人综合+亚洲专区| 日韩人妻精品一区2区三区| 热re99久久精品国产66热6| 国产精品秋霞免费鲁丝片| 亚洲欧美色中文字幕在线| 成人影院久久| 色94色欧美一区二区| 色老头精品视频在线观看| 国产黄频视频在线观看| 十八禁高潮呻吟视频| 午夜激情久久久久久久| 99re6热这里在线精品视频| 亚洲欧美一区二区三区久久| 最近最新免费中文字幕在线| 中文字幕制服av| 大码成人一级视频| 美女高潮喷水抽搐中文字幕| 91九色精品人成在线观看| 久久亚洲真实| 蜜桃国产av成人99| 在线av久久热| 欧美激情 高清一区二区三区| 亚洲成人手机| 日韩人妻精品一区2区三区| 12—13女人毛片做爰片一| 亚洲成国产人片在线观看| 亚洲精品一二三| 大片免费播放器 马上看| 精品福利永久在线观看| 欧美日韩亚洲高清精品| 777米奇影视久久| 亚洲男人天堂网一区| 欧美日韩国产mv在线观看视频| 亚洲精华国产精华精| 在线亚洲精品国产二区图片欧美| 大码成人一级视频| 亚洲成av片中文字幕在线观看| 国产亚洲精品一区二区www | 国产精品一区二区免费欧美| 久久中文字幕人妻熟女| 国产视频一区二区在线看| 精品久久久久久电影网| 久久精品国产亚洲av香蕉五月 | 亚洲伊人色综图| 免费av中文字幕在线| 日韩熟女老妇一区二区性免费视频| 国产精品国产高清国产av | 黄色毛片三级朝国网站| 天堂中文最新版在线下载| 欧美成人午夜精品| 日本撒尿小便嘘嘘汇集6| 一进一出好大好爽视频| 精品国产国语对白av| 亚洲一区二区三区欧美精品| 久久精品国产a三级三级三级| av网站在线播放免费| 久久久水蜜桃国产精品网| 在线 av 中文字幕| 美女主播在线视频| 精品国产一区二区三区四区第35| 免费在线观看日本一区| 亚洲一码二码三码区别大吗| 午夜视频精品福利| 2018国产大陆天天弄谢| 国产午夜精品久久久久久| 激情在线观看视频在线高清 | 色综合婷婷激情| 男女边摸边吃奶| 人人妻,人人澡人人爽秒播| 中文字幕最新亚洲高清| 国产一区二区三区在线臀色熟女 | 老熟妇乱子伦视频在线观看| 精品国产乱码久久久久久小说| 一区福利在线观看| 日日摸夜夜添夜夜添小说| 久久久久久久久久久久大奶| 亚洲全国av大片| 多毛熟女@视频| 亚洲中文av在线| 国产精品免费视频内射| 精品久久久久久电影网| 亚洲精品一二三| 久久精品亚洲精品国产色婷小说| 欧美成狂野欧美在线观看| 在线观看一区二区三区激情| 精品国内亚洲2022精品成人 | 国产熟女午夜一区二区三区| 日韩视频在线欧美| 丁香六月欧美| 亚洲精华国产精华精| av天堂在线播放| 国产一区二区 视频在线| 亚洲av第一区精品v没综合| 女人被躁到高潮嗷嗷叫费观| 亚洲精品国产一区二区精华液|