• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A New Treatment for Some Periodic Schr¨odinger Operators II:The Wave Function

    2018-06-15 07:32:26WeiHe賀偉
    Communications in Theoretical Physics 2018年6期

    Wei He(賀偉)

    School of Electronic Engineering,Chengdu Technological University,Chengdu 611730,China

    1 Introduction

    In the previous paper Ref.[1]we study how the Floquet theory manifests in the multiple asymptotic spectral solutions of some periodic Schr¨odinger operators.We have only studied the eigenvalue aspect of these solutions.Following this method,it is very convenient to derive the corresponding asymptotic wave functions,we present the results in this paper.We focus on our canonical examples:the Mathieu equation and the Lame equation,which are the most widely used in periodic spectral problem.Our main conclusion are made for elliptic potentials,but as we have explained,to collect evidences for the proposals a crucial consistent requirement is that the solutions of the Lame equation must reduce to corresponding solutions of the Mathieu equation.Therefore the Mathieu equation,which is much better understood,is included here as a reference example.Unlike in Ref.[1],in this paper we do not use the ellipsoidal wave equation as the example for the elliptic potential as it would lead to lengthly formulae for wave functions,instead the wave functions of Lame equation are already enough for our purpose.

    In Sec.2 we derive the wave functions for large energy(weak coupling)perturbation.In Sec.3 we derive the wave functions for small energy(strong coupling)perturbation.Some wave functions have been studied before,we brie fly comment the old materials where earlier treatments can be found.In Sec.4 we explain how the eigenfunctions are related to supersymmetric gauge theory,in the context of Gaueg/Bethe correspondence.[2]

    The conclusion of this paper is that the wave functions give further evidence for the relations between multiple asymptotic solutions and the Floquet property associated with multiple periods.Among the wave functions,the eigenfunction(43)is a new solution.

    2 Large Energy Wave Function

    2.1 The Floquet Wave Function

    As we have shown previously,the large energy perturbation can be carried out using a method from KdV theory,[3?4]the wave function is given by

    v?(x)are given by the KdV Hamiltonian densities.[4]

    The dispersion relationλ(ν),whereνis the Floquet exponent,is obtained by the classical Floquet theory,

    The relations(3)and(4)give a complete perturbative solution for large energy.

    2.2 Mathieu Equation

    The potential for the Mathieu equation is

    It is clear that withλas the expansion parameter,the coefficients ofλ??/2are not necessary periodic functions.However,the wave functions must satisfy the Floquet property,this is made clear by the following parameter change using the eigenvalue expansion.

    The large energy dispersion relation is a classic result,see for example Refs.[5–8].The relation(4)can be used to compute,it is

    Now the coefficients ofν?l,withl>1,are periodic functions,the wave functions take the formψ±(x)=e±iνx?(±x)with?(x)a periodic function.This wave function is related to theN=2 pure Yang-Mills gauge theory with surface operator,see the discussion in Sec.4.

    Another bases of the asymptotic wave functions,commonly used in many literatures,arecem(x)andsem(x).Up to a constant,their relation toψ±(x)is

    2.3 Lame Equation

    The potential for the Lame equation is an elliptic function,for the large energy perturbation we should use the Weierstrass form to obtain compact formulae.In this paper we use the potential

    The corresponding dispersion relation was derived by Langmann,[9]expressed as aq-series,the same expression also appears in the context of its relation to gauge theory,[2]we examined this relation in Ref.[10].Another way to derive the dispersion relation is to use the formula(4),then we get an expression involving quasi-modular functions,[11]

    The wave functions also satisfy the propertyψ±(?x)=ψ?(x).In Sec.4 we would show the connection of this wave function and the partition function of theN=2?supersymmetric gauge theory with surface operator.

    There is a comment about the polynomials of elliptic functions that appear in Eqs.(12)and(15).Recall that any elliptic function can be expressed as a linear combination of zeta functions and their derivatives.In fact,the Hamiltonian densitiesv?(x)for the elliptic potential have no pole of order one atx=0,therefore,they are linear combinations of?kxe?(x)withk>0.Then the integrated Hamiltonians appearing in Eq.(12)are linear combinations ofxand?kx?ζ(x)withk>0.In the wave function(15)the phase e±iνxcontains the linear term ofx,the coefficients ofν?lare linear combinations of?kx?ζ(x)withk>0,probably include anx-independent constant term.The constant terms can be absorbed into the normalization constant,then the expressions are linear polynomials of?kx?ζ(x)withk>0.Or equivalently,because?ζ(x)=?xln?1(πx/2ω1,q),they are linear polynomials of?kxln?1(πx/2ω1,q)withk>1.This point is important when we connect the wave function to the instanton partition function in Sec.4,especially for higher order terms which we do not explicitly give in Eq.(15).

    Substituteλ1/2into Eq.(12)we get the wave functions in the Floquet form,

    The corresponding large energy asymptotic eigenvalueλand wave functionsψ±(χ,ν)take the same functional form as the eigenvalue(7)and the wave functions(9),but with the coordinate variable substituted byχ.

    Let us inspect more carefully the limit for eigenvalue and wave functions of the Lame equation.For the wave functions(15),we shift the argument byx→x+ω2,then take the limitq→0(i.e.withω1fixed,ω2→i∞)forψ±(x+ω2).The following expansions are needed,

    3 Small Energy Wave Function

    3.1 Location of Small Energy Perturbation

    Besides the large energy solution,there exists other solutions which are small energy excitations around local minima,i.e.the critical points of potential.We notice for some periodic potentials at each local minimum there is an asymptotic solution,and all known asymptotic solutions are located at a local minimum.[1,10]

    For example,the potentialu(x)=2hcos2xhas local minima atx?=0 andx?=π/2 modulo periods.At the minimau(x?)=±2h,therefore the eigenvalues take the form

    whereδis the energy of small excitations.The small en-ergy perturbation is also the strong coupling solution for the potential,h?1,see Refs.[6](Chapter V).In a similar way,the elliptic potentialu(x)=αe?(x;2ω1,2ω2)has local minima atx?=ωi,where the potentialu(x?)=α(ei+ζ1),i=1,2,3.The first minima atx?=ω1is associated to the large energy excitations already analyzed in the Subsec.2.3,the leading order energy comes from the quasimomentumλ~?ν2+···The other two minima are associated to small energy perturbative solutions,nevertheless,in order to get compact formulae we should use the Jacobian form of the Lame equation to compute.

    In this section we derive the corresponding strong coupling wave function,they have the Floquet form,and for elliptic potential their monodromies along periods 2Kand 2K+2K′indeed satisfy the relations we proposed in the previous paper.[1]

    3.2 Mathieu Equation

    The first small energy perturbation

    Around the minimumx?=0,λ=?2h+δ,the potential strengthh?1 is large compared to the energyδ,therefore the expansion parameter ish1/2.The relationvx+v2=u+λhas an asymptotic solution in the form[1]

    We can change the parameterδto the Floquet exponentν,by the following strong coupling expansion of the dispersion relation which is well known,[5?8]

    Because the wave functions are unnormalized,the terms in the exponent might appear in slightly different form,nevertheless the differences are constants and can be absorbed into the normalization constant.This comment applies to all of the asymptotic wave functions in this paper.When the exponentνtakes real value the asymptotic wave functions have the propertyψ?±(x)=ψ?(x).This solution seems often not recorded in the mathematical literature,however,it was analyzed in a paper by Stoner and Reeve.[12]The book Ref.[13]contains a discussion about this solution in the context of quantum mechanics.

    The second small energy perturbation

    Around the minimumx?=π/2,λ=2h+δ,the potential strengthh1/2again serves as the expansion parameter.The relationvx+v2=u+λhas an asymptotic solution in the form(21),with

    allows us to change the parameterδto the Floquet exponentν.Then we get the corresponding asymptotic wave functions

    The dispersion relation at this local minimum[5?8]

    The study of this solution dates back to the work of Ince and the work of Goldstein in the 1920s.Some recent materials easier to access include the paper by Dingle and Muller,[14]the books by McLachlan,[5]by Arscott[6]and by Muller-Kirsten.[13]

    This asymptotic solution is related to the largehlimit of the standard Mathieu functions by

    withmtakes either even or odd integers.[6]As we haveψ±(?x)=ψ?(x),thencem(x)is an even function andsem(x)is an odd function,as desired.

    3.3 Lame Equation

    Now we turn to the more interesting case of elliptic potential where the advantage of our method becomes more transparent.As we have shown in Refs.[1,10],for small energy perturbative solution the Jacobian form of the elliptic function is more suitable,therefore we rewrite the potential asu(z)=αk2sn2(z|k2),and the Lame equation is

    We also useμto denote the Floquet exponent throughout of this subsection,it is different from the Floquet exponentνused for the Weierstrass form.[10]

    The locations of the small energy perturbations are given by two solutions of the condition?zsn2z=0 atz?=0 andz?=Kwhich correspond tou(z?)=0 andu(z?)=αk2.

    The first small energy expansion

    In order to change the parameter Λ to the Floquet exponentμ,we use the widely known strong coupling expansion of the dispersion relation[6,8,13]

    Only in the case when all quantities,including the elliptic modulusk,take real values we haveψ?±(z)=ψ?(z).In particular,up to the first two leading order the wave functions can be written as

    This asymptotic solution can be compared to the earlier results about the asymptotic Lame function obtained by Malurkar in the 1930s,and results by Muller in the 1960s.[13,15]

    In the limitα→∞,k→0,μ→νwithα1/2k→2ih1/2finite,we recover the unnormalized wave functions,which differ some constant terms in the exponent from the asymptotic Mathieu wave functions(25).

    The second small energy expansion

    The corresponding dispersion relation has been missed for a long time in the literature,motivated by some ideas from quantum gauge theory[2]recently we have derived it by the WKB analysis and a duality argument,[10]then we rederive it using the method adopted in this paper.[1]It is

    Taking the limit to the Mathieu wave functions(29),we would again encounter the difference of some constant terms,which can be absorbed into the normalization constant.

    Up to now,everything about the small energy expansions for the Lame equation is consistent with the known results,although the monodromy relations,formulae(26)and(32)in Ref.[1],used to derive the corresponding dispersion relation remain a physics induced conjecture.

    4 A Connection toN=2Gauge Theory

    Now we come back to the original motivation which inspired our study to the spectral problem of periodic Schr¨odinger operators,especially for the elliptic potentials. As we have shown in Refs.[1,10],the asymptoticeigenvaluesof the Mathieu and the Lame equations are related to the solution of some deformedN=2 supersymmetric Yang-Mills gauge theories in the Nekrasov-Shatashvili limit(NS).[2]The three asymptotic spectral solutions are precisely i n accordance with three different dual descriptions of the low energy effective physics of gauge theory,i.e.the Seiberg-Witten duality,[16?17]in particular the large energy solution is related to the Nekrasov instanton partition function.[18]

    The large energy asymptoticwave functionsare related to the instanton partition function of gauge theory with surface operator inserted.The partition function with surface operator extends Nekrasov’s localization formula,it is introduced and developed in Refs.[19–20].The computation can be carried out by the characters developed in Ref.[21].The paper by Alday and Tachikawa gives a detailed study about the relations between the SU(2)gauge theory with surface operator,the SL(2)conformal block and the two-body quantum Calogero-Moser model.[22]In the following,we brie fly explain the relation between the gauge theory partition function with surface operator and the asymptotic wave functions(9)and(15).

    Let us start from the SU(2)N=2?gauge theory with surface operator,whose partition function takes the following form,

    whereais the scalar v.e.v,mis the mass of adjoint matter,?1,?2are the ?-deformation andx1,x2are the counting parameters.Written in the exponential form,its pole structure in the limit?1→0,?2→0 is

    In order to relate gauge theory and the quantum mechanics spectral problem,some manipulations on the functionZare needed.The spectral solution of the Lame operator is related to the large-a-expansion of instanton partition function(46),in accordance with the large-νexpansions of the eigenvalue(13)and the eigenfunctions(15).BothF/?1?2andG/?1containa-independent terms when expanded as large-a-series,which deserve special attention.These terms are polynomials ofx1,x2,and can be represented by the Dedekind eta function and the elliptic theta function,

    To see the connections of functionsF,Gand the eigenvalue,eigenfunction,we first need to identify the parameters by

    The elliptic nomeqis the instanton parameter of gauge theory,therefore,the functionFis anx-independentq-series which gives the eigenvalue,the functionGis aq-series depending on the coordinatexwhich gives the wave function.The eigenvalueλin(13)is related to the functionFin the limit?2→0 by

    In gauge theory the term?ν2is perturbative,hence not included in the instanton partition function.This relation is examined in detail in Ref.[10](see formula(34)in that paper),there is a difference ofαζ1=α(π2/12ω21)E2on the right hand side because here we use the shifted potential e?(x).

    On the other hand,the wave functions(15)is related to the functionGin the limit?2→0 by

    In the expression we emphasize the parameters used on both sides,and use the property of the large energy wave functionsψ?(?x?ω2)=ψ+(x+ω2).For example,up to the ordera?2we have

    Using the relation of parameters given in Eq.(49),the first three pieces are summed into three elliptic functions,

    The eigenvalue(13)and the eigenfunction(15)provide an elliptic modular representation for the gauge theory partition function when?2=0.In fact,we observe evidence that even for the case when both deformation parameters are turned on,?1/=0,?2/=0,the instanton partition function with surface operator can be expressed in terms of theta functions.This property indicates the instanton partition function secretly records relations to the elliptic curve.Indeed,this connection can be seen from the point of view of either integrable system[2]or conformal field theory.[22?23]

    In the decoupling limit,theN=2?gauge theory becomes the pure gauge theory.The corresponding partition function with surface operator can be found in Ref.[24],it is related to the asymptotic Mathieu wave functions(9).

    Appendix A:A Matrix that Counts Divisors of Integers

    When we take thea→∞limit of the instanton partition with surface operator,onlya-independent terms in the functionsFandGremain.These terms are represented by two elliptic modular functions,

    withχ=πx/2ω1.Had we expanded them asq-series as usual,there might not be interesting things deserve to say.Nevertheless,if we rewrite them in terms ofx1,x2as given in Eq.(49),and then expand minus of the logarithm of them as series ofx1,x2,we get

    The coefficient matrix Θ4[i,j]is a symmetric in finite matrix with all elements positive,as a digest here we present thefirst 22 dimensions.Notice that the numbers for rows and columns of the matrix begin from 0.

    For example,in the 18-th row we have the divisor functionσ?1(18),

    This fact indicates a relation of the eta function and the theta function expanded as in(A3),(A4):while the logarithm of eta function knows the in finite sequence of numbers 1,3/2,4/3,7/4,...,the logarithm of theta function diagnoses where they come from.It is the same in spirit for the situation in gauge theory:while the instanton partition function without surface operator knows the eigenvalue expansion,it is the instanton partition function with surface operator tells the whole story.

    This might be a folklore of number theory,nevertheless,it is strange instanton knows it.

    5 Acknowledgments

    I thank Institute of Modern Physics at Northwest University,Xi’an,during the summer school“Integrable models and their applications 2016”where this work is finalized.Part of the work has been done when I was supported by the FAPESP No.2011/21812-8,through IFT-UNESP.

    [1]W.He,Commun.Theor.Phys.69(2018)115.

    [2]N.Nekrasov and S.Shatashvili,Quantization of integrable systems and four dimensional gauge theories,in16th International Congress on Mathematical Physics,World Scientific,Singapore(2010)265.

    [3]R.M.Miura,C.S.Gardner,and M.D.Kruskal,J.Math.Phys.9(1968)1204.

    [4]O.Babelon,D.Bernard,and M.Talon,Introduction to Classical Integrable Systems,Cambridge University Press,Cambridge(2003).

    [5]N.W.McLachlan,Theory and Application of Mathieu Functions,Oxford University Press,Oxford(1947).

    [6]F.M.Arscott,Periodic Differential Equations,Pergamon Press,Oxford(1964).

    [7]Z.X.Wang and D.R.Guo,Special Functions,World Scientific,Singapore(1989).

    [8]NIST Digital Library of Mathematical Functions,F.W.J.Olver,A.B.Olde Daalhuis,D.W.Lozier,et al.,eds.http://dlmf.nist.gov.

    [9]E.Langmann,An Explicit Solution of the(Quantum)Elliptic Calogero-Sutherland Model,inSymmetry and Perturbation Theory(Cala Gonone),World Scientific,Singapore(2005)159.

    [10]W.He,J.Math.Phys.56(2015)072302.

    [11]W.He,Ann.Phys.353(2015)150.

    [12]M.Stoner and J.Reeve,Phys.Rev.D 18(1978)4746.

    [13]H.J.W.Muller-Kirsten,Introduction to Quantum Mechanics:Schr¨odinger Equation and Path Integral,World Scientific,Singapore(2006).

    [14]R.B.Dingle and H.J.W.Muller,Journal fur Die Reine und Angewandte Mathematik 211(1962)11.

    [15]H.J.W.Muller,Math.Nachr.31(1966)89.

    [16]N.Seiberg and E.Witten,Nucl.Phys.B 426(1994)19.

    [17]N.Seiberg and E.Witten,Nucl.Phys.B 431(1994)484.

    [18]N.Nekrasov,Adv.Theor.Math.Phys.7(2004)831.

    [19]A.Braverman,Instanton Counting via Affine Lie Algebras I:Equivariant J-functions of(Affine)Flag Manifolds and Whittaker Vectors,Proceedings of the CRM Workshop on Algebraic Structures and Moduli Spaces(Montreal),American Mathematical Society,Providence(2004)[arXiv:math/0401409].

    [20]A.Braverman and P.Etingof,Instanton counting via affine Lie algebras II:from Whittaker Vectors to the Seiberg-Witten Prepotential,[arXiv:math/0409441].

    [21]B.Feigin,M.Finkelberg,A.Negut,and L.Rybnikov,Selecta Mathematica 17(2011)513.

    [22]L.F.Alday and Y.Tachikawa,Lett.Math.Phys.94(2010)87.

    [23]L.F.Alday,D.Gaiotto,and Y.Tachikawa,Lett.Math.Phys.91(2010)167.

    [24]H.Awata,H.Fuji,H.Kanno,et al.,Adv.Theor.Math.Phys.16(2012)725.

    秋霞在线观看毛片| 日韩制服骚丝袜av| 中文字幕av电影在线播放| 久热爱精品视频在线9| 亚洲欧美色中文字幕在线| 午夜福利乱码中文字幕| 亚洲av美国av| 欧美日韩亚洲综合一区二区三区_| 亚洲黑人精品在线| 观看av在线不卡| e午夜精品久久久久久久| 啦啦啦在线观看免费高清www| 久久久精品94久久精品| 97人妻天天添夜夜摸| 国产成人系列免费观看| 久久99一区二区三区| 国产97色在线日韩免费| 欧美国产精品va在线观看不卡| av天堂在线播放| 国产亚洲欧美在线一区二区| 少妇人妻 视频| 脱女人内裤的视频| 亚洲国产欧美日韩在线播放| 国产在线免费精品| 精品国产一区二区久久| 精品久久久精品久久久| 亚洲欧美色中文字幕在线| 久久中文字幕一级| 国产男人的电影天堂91| 97人妻天天添夜夜摸| 男女无遮挡免费网站观看| 久久人妻福利社区极品人妻图片 | 国产精品久久久久久精品电影小说| 精品亚洲成国产av| 成年美女黄网站色视频大全免费| 女人精品久久久久毛片| 热99国产精品久久久久久7| 精品亚洲成a人片在线观看| 日韩熟女老妇一区二区性免费视频| 后天国语完整版免费观看| 亚洲av电影在线观看一区二区三区| 国产黄色视频一区二区在线观看| 亚洲第一青青草原| 亚洲一卡2卡3卡4卡5卡精品中文| 99久久综合免费| 免费在线观看影片大全网站 | 美女扒开内裤让男人捅视频| 久热爱精品视频在线9| 国产av一区二区精品久久| 精品福利永久在线观看| 成人影院久久| 老司机靠b影院| 亚洲久久久国产精品| 国产精品偷伦视频观看了| 制服人妻中文乱码| 精品国产超薄肉色丝袜足j| 在线亚洲精品国产二区图片欧美| 91老司机精品| 五月开心婷婷网| 国产精品九九99| 99精国产麻豆久久婷婷| 欧美在线一区亚洲| 亚洲天堂av无毛| 亚洲欧洲精品一区二区精品久久久| 国产免费一区二区三区四区乱码| 久久久久网色| 欧美 日韩 精品 国产| 一个人免费看片子| 国产av一区二区精品久久| 中文字幕人妻丝袜一区二区| 成年美女黄网站色视频大全免费| 日本av免费视频播放| 女人精品久久久久毛片| 高潮久久久久久久久久久不卡| 9热在线视频观看99| 超碰97精品在线观看| 久久人人97超碰香蕉20202| 久久精品国产a三级三级三级| 国产xxxxx性猛交| 国产在线免费精品| 亚洲欧美一区二区三区黑人| 久久99一区二区三区| 嫁个100分男人电影在线观看 | 久久久久网色| 欧美黑人欧美精品刺激| 午夜av观看不卡| 啦啦啦中文免费视频观看日本| 少妇粗大呻吟视频| 99国产综合亚洲精品| 十分钟在线观看高清视频www| 黑人欧美特级aaaaaa片| 亚洲三区欧美一区| 看免费成人av毛片| 大码成人一级视频| 国产日韩欧美视频二区| 一二三四社区在线视频社区8| 免费观看a级毛片全部| 国产av国产精品国产| 久久精品国产a三级三级三级| 叶爱在线成人免费视频播放| 国产男女内射视频| 国产日韩欧美视频二区| 国产成人精品在线电影| 久久久国产一区二区| 丝袜脚勾引网站| 国产午夜精品一二区理论片| 日韩人妻精品一区2区三区| 伦理电影免费视频| 久久精品久久久久久久性| 日韩,欧美,国产一区二区三区| 操出白浆在线播放| 久久久久网色| 国产伦理片在线播放av一区| 国产成人91sexporn| 最近手机中文字幕大全| 午夜免费观看性视频| 又大又爽又粗| av在线播放精品| 日韩制服丝袜自拍偷拍| 国产成人精品久久二区二区91| 国产亚洲午夜精品一区二区久久| 欧美成人精品欧美一级黄| 国产精品.久久久| 操美女的视频在线观看| 五月天丁香电影| 久久久精品免费免费高清| 欧美亚洲 丝袜 人妻 在线| 黄色怎么调成土黄色| 日韩制服丝袜自拍偷拍| 亚洲国产欧美一区二区综合| 免费在线观看日本一区| 国产在线观看jvid| 欧美精品一区二区免费开放| 色播在线永久视频| 亚洲精品久久成人aⅴ小说| 国产精品国产三级专区第一集| 啦啦啦中文免费视频观看日本| 十八禁高潮呻吟视频| 欧美在线一区亚洲| 日日摸夜夜添夜夜爱| 国产日韩欧美亚洲二区| 亚洲精品久久久久久婷婷小说| 校园人妻丝袜中文字幕| 国产精品麻豆人妻色哟哟久久| 国产精品久久久久久人妻精品电影 | 久久久久精品人妻al黑| 一级毛片 在线播放| 黄色视频在线播放观看不卡| 国产在线免费精品| 国产精品 欧美亚洲| 另类精品久久| 99精国产麻豆久久婷婷| svipshipincom国产片| 丝袜在线中文字幕| 国产成人精品久久二区二区91| 中国国产av一级| 亚洲国产成人一精品久久久| 最近最新中文字幕大全免费视频 | videosex国产| 黑人猛操日本美女一级片| 免费看av在线观看网站| 亚洲欧美精品自产自拍| 50天的宝宝边吃奶边哭怎么回事| 亚洲av成人不卡在线观看播放网 | 国产精品欧美亚洲77777| 国产无遮挡羞羞视频在线观看| 日韩熟女老妇一区二区性免费视频| 91麻豆av在线| 亚洲国产欧美日韩在线播放| 日韩,欧美,国产一区二区三区| 最黄视频免费看| 啦啦啦在线免费观看视频4| 又紧又爽又黄一区二区| 国产精品av久久久久免费| av又黄又爽大尺度在线免费看| 国产视频一区二区在线看| 黄色一级大片看看| 欧美少妇被猛烈插入视频| 黄色 视频免费看| 中文字幕人妻丝袜制服| 91老司机精品| 在线观看免费视频网站a站| 一区在线观看完整版| 高清欧美精品videossex| 欧美变态另类bdsm刘玥| 黄色片一级片一级黄色片| 日本欧美国产在线视频| 九草在线视频观看| 欧美另类一区| 国产深夜福利视频在线观看| 国产精品国产三级专区第一集| 亚洲国产欧美网| 最近最新中文字幕大全免费视频 | 精品国产一区二区三区久久久樱花| 欧美少妇被猛烈插入视频| 午夜精品国产一区二区电影| 日韩大码丰满熟妇| av不卡在线播放| 国产午夜精品一二区理论片| 爱豆传媒免费全集在线观看| 久久久久久人人人人人| 这个男人来自地球电影免费观看| av不卡在线播放| 99国产精品免费福利视频| 国产97色在线日韩免费| 三上悠亚av全集在线观看| 国产免费福利视频在线观看| 好男人视频免费观看在线| 午夜免费观看性视频| 黄色片一级片一级黄色片| 日韩 亚洲 欧美在线| 国产三级黄色录像| 亚洲av电影在线观看一区二区三区| 极品少妇高潮喷水抽搐| 国产精品一国产av| 亚洲欧美一区二区三区国产| 肉色欧美久久久久久久蜜桃| xxxhd国产人妻xxx| 考比视频在线观看| 精品欧美一区二区三区在线| av天堂在线播放| 免费高清在线观看视频在线观看| 色婷婷久久久亚洲欧美| 国产一区二区激情短视频 | 亚洲专区国产一区二区| 亚洲国产精品一区二区三区在线| 国产免费视频播放在线视频| 欧美人与善性xxx| 狂野欧美激情性xxxx| 妹子高潮喷水视频| 国产黄色免费在线视频| 在线 av 中文字幕| 大陆偷拍与自拍| 久久国产精品人妻蜜桃| 日韩 欧美 亚洲 中文字幕| 99热国产这里只有精品6| 国产老妇伦熟女老妇高清| 啦啦啦 在线观看视频| 多毛熟女@视频| 亚洲精品一区蜜桃| 操出白浆在线播放| 老汉色∧v一级毛片| 国产成人精品久久二区二区91| 久久 成人 亚洲| 人妻 亚洲 视频| 精品久久久久久电影网| 欧美亚洲日本最大视频资源| 欧美亚洲 丝袜 人妻 在线| 国产精品久久久久成人av| 久久精品国产亚洲av涩爱| 又粗又硬又长又爽又黄的视频| 久久久久久久大尺度免费视频| 色精品久久人妻99蜜桃| 欧美人与性动交α欧美软件| 成人亚洲欧美一区二区av| 黄色a级毛片大全视频| 青春草视频在线免费观看| 少妇人妻 视频| 韩国高清视频一区二区三区| 久久精品成人免费网站| 丝袜脚勾引网站| 大陆偷拍与自拍| xxxhd国产人妻xxx| 人人妻人人爽人人添夜夜欢视频| 一级毛片电影观看| 精品一区二区三卡| 成人国语在线视频| 每晚都被弄得嗷嗷叫到高潮| 最近中文字幕2019免费版| 99久久精品国产亚洲精品| 天天躁夜夜躁狠狠久久av| 777米奇影视久久| a 毛片基地| 成人免费观看视频高清| 国产精品人妻久久久影院| 2021少妇久久久久久久久久久| 亚洲成人国产一区在线观看 | 99久久99久久久精品蜜桃| 国产亚洲精品第一综合不卡| 欧美激情高清一区二区三区| 欧美久久黑人一区二区| 国产爽快片一区二区三区| 精品国产乱码久久久久久男人| 国产精品三级大全| 午夜激情av网站| 日韩欧美一区视频在线观看| 日韩av不卡免费在线播放| 欧美另类一区| 精品国产超薄肉色丝袜足j| 欧美人与善性xxx| 别揉我奶头~嗯~啊~动态视频 | 在线 av 中文字幕| 少妇被粗大的猛进出69影院| 久久精品成人免费网站| 校园人妻丝袜中文字幕| 亚洲 国产 在线| 久久人妻熟女aⅴ| 激情五月婷婷亚洲| 999精品在线视频| 亚洲人成77777在线视频| 9色porny在线观看| 91麻豆精品激情在线观看国产 | 侵犯人妻中文字幕一二三四区| 国产免费福利视频在线观看| 热99国产精品久久久久久7| 大陆偷拍与自拍| 啦啦啦视频在线资源免费观看| 人妻一区二区av| 欧美另类一区| 另类亚洲欧美激情| 久久久国产一区二区| 免费黄频网站在线观看国产| 两人在一起打扑克的视频| 国产高清视频在线播放一区 | 日本av手机在线免费观看| 考比视频在线观看| 久久久久精品国产欧美久久久 | www.999成人在线观看| 亚洲欧洲精品一区二区精品久久久| 精品视频人人做人人爽| 一级片'在线观看视频| 午夜福利视频在线观看免费| 一本色道久久久久久精品综合| 欧美+亚洲+日韩+国产| 午夜av观看不卡| 一区二区三区激情视频| 免费看十八禁软件| 亚洲三区欧美一区| 中文欧美无线码| 手机成人av网站| 女人久久www免费人成看片| 老鸭窝网址在线观看| 99国产综合亚洲精品| 国产亚洲欧美精品永久| 精品少妇一区二区三区视频日本电影| 中文字幕人妻丝袜制服| 老司机深夜福利视频在线观看 | 日韩av在线免费看完整版不卡| 国产片特级美女逼逼视频| 国产免费福利视频在线观看| a级毛片黄视频| 性色av乱码一区二区三区2| 美国免费a级毛片| 国产av精品麻豆| 精品高清国产在线一区| 国产av精品麻豆| 亚洲欧美一区二区三区久久| videos熟女内射| 欧美日韩福利视频一区二区| 久久久久久久国产电影| 视频区图区小说| 婷婷成人精品国产| 欧美人与性动交α欧美精品济南到| 激情视频va一区二区三区| 中国美女看黄片| 国产黄色视频一区二区在线观看| 日韩大码丰满熟妇| 欧美日韩av久久| 欧美精品一区二区大全| 又紧又爽又黄一区二区| 只有这里有精品99| 免费在线观看影片大全网站 | 日韩一区二区三区影片| 国产一区二区三区av在线| 国产视频一区二区在线看| 丝袜人妻中文字幕| 激情视频va一区二区三区| 成人手机av| 国产精品一二三区在线看| 久久99精品国语久久久| 亚洲国产欧美日韩在线播放| 国产成人av教育| 晚上一个人看的免费电影| av福利片在线| av天堂在线播放| 桃花免费在线播放| 天天影视国产精品| 亚洲国产中文字幕在线视频| 亚洲人成网站在线观看播放| 亚洲av电影在线观看一区二区三区| 欧美激情 高清一区二区三区| 久久热在线av| 岛国毛片在线播放| 99久久综合免费| 大陆偷拍与自拍| 一本大道久久a久久精品| 中文字幕另类日韩欧美亚洲嫩草| 免费日韩欧美在线观看| 亚洲精品自拍成人| 欧美日韩黄片免| 国产精品一国产av| 亚洲图色成人| 国产成人欧美在线观看 | 91老司机精品| 国产精品.久久久| 99久久99久久久精品蜜桃| 欧美日韩亚洲综合一区二区三区_| 中文字幕精品免费在线观看视频| 男的添女的下面高潮视频| 777久久人妻少妇嫩草av网站| 纵有疾风起免费观看全集完整版| 狂野欧美激情性bbbbbb| 丝袜人妻中文字幕| 国产高清视频在线播放一区 | 女人爽到高潮嗷嗷叫在线视频| 成人亚洲欧美一区二区av| 日韩免费高清中文字幕av| 中文字幕人妻丝袜制服| 九色亚洲精品在线播放| 免费人妻精品一区二区三区视频| 黄色 视频免费看| 人人妻人人澡人人看| 人人妻,人人澡人人爽秒播 | 国产在线一区二区三区精| 十分钟在线观看高清视频www| 国产又爽黄色视频| 国产片内射在线| 国产亚洲av片在线观看秒播厂| 欧美在线一区亚洲| 1024视频免费在线观看| 亚洲欧美一区二区三区久久| 国产一卡二卡三卡精品| 亚洲国产欧美在线一区| 久久久国产欧美日韩av| 亚洲美女黄色视频免费看| 老司机影院成人| 国产av精品麻豆| 亚洲色图综合在线观看| 国产一卡二卡三卡精品| 精品欧美一区二区三区在线| 国产爽快片一区二区三区| 国产色视频综合| 又黄又粗又硬又大视频| 国产在线视频一区二区| 人人妻人人澡人人看| 黑人巨大精品欧美一区二区蜜桃| 国产男女超爽视频在线观看| 亚洲精品乱久久久久久| 侵犯人妻中文字幕一二三四区| 亚洲精品美女久久久久99蜜臀 | 侵犯人妻中文字幕一二三四区| 亚洲熟女精品中文字幕| 精品高清国产在线一区| 免费在线观看完整版高清| 两个人看的免费小视频| 国产91精品成人一区二区三区 | 国产精品久久久久久人妻精品电影 | 精品久久久久久久毛片微露脸 | 一区二区av电影网| 免费在线观看视频国产中文字幕亚洲 | 国产午夜精品一二区理论片| 亚洲成国产人片在线观看| 久久久久久久国产电影| 操出白浆在线播放| 久久久精品区二区三区| 国产精品久久久久久人妻精品电影 | 亚洲第一青青草原| 久久久久视频综合| 亚洲精品一区蜜桃| 久久久久久亚洲精品国产蜜桃av| 妹子高潮喷水视频| 欧美日韩视频精品一区| 中文字幕亚洲精品专区| 婷婷色综合大香蕉| 国产欧美日韩一区二区三区在线| 日本av免费视频播放| 久久人人爽人人片av| 麻豆av在线久日| 一级a爱视频在线免费观看| www.av在线官网国产| 黄片播放在线免费| 日本黄色日本黄色录像| 午夜福利视频精品| 成在线人永久免费视频| 精品高清国产在线一区| 国产三级黄色录像| 少妇猛男粗大的猛烈进出视频| 欧美激情极品国产一区二区三区| 国产99久久九九免费精品| 男女床上黄色一级片免费看| 我的亚洲天堂| 欧美日本中文国产一区发布| 亚洲,一卡二卡三卡| 99国产精品免费福利视频| 久久久久久久久免费视频了| 少妇被粗大的猛进出69影院| 国产精品人妻久久久影院| 亚洲国产成人一精品久久久| 制服诱惑二区| 久久久久久免费高清国产稀缺| 美女大奶头黄色视频| 老司机亚洲免费影院| 中文字幕另类日韩欧美亚洲嫩草| netflix在线观看网站| 午夜福利在线免费观看网站| 亚洲中文日韩欧美视频| 成人免费观看视频高清| 国产成人免费无遮挡视频| 日本黄色日本黄色录像| 脱女人内裤的视频| 亚洲成av片中文字幕在线观看| 91老司机精品| 国产精品二区激情视频| 国产日韩一区二区三区精品不卡| 久久亚洲国产成人精品v| 中国国产av一级| 免费在线观看完整版高清| 国产一区二区 视频在线| 国产免费视频播放在线视频| 亚洲国产精品999| 一区二区三区四区激情视频| 天堂中文最新版在线下载| 麻豆乱淫一区二区| 国产一区二区在线观看av| 成年动漫av网址| 校园人妻丝袜中文字幕| 国产免费福利视频在线观看| 欧美亚洲日本最大视频资源| xxx大片免费视频| 亚洲国产精品999| 精品久久久精品久久久| 欧美日韩成人在线一区二区| 国产亚洲av片在线观看秒播厂| 久久午夜综合久久蜜桃| 天天添夜夜摸| 黄网站色视频无遮挡免费观看| 国产成人91sexporn| 久久天堂一区二区三区四区| 大片免费播放器 马上看| 麻豆av在线久日| 亚洲伊人色综图| 欧美另类一区| 成人亚洲欧美一区二区av| 一级黄片播放器| 免费不卡黄色视频| 欧美黄色片欧美黄色片| 国语对白做爰xxxⅹ性视频网站| 一级,二级,三级黄色视频| 亚洲精品国产区一区二| 国产极品粉嫩免费观看在线| 国产爽快片一区二区三区| 最黄视频免费看| 在线亚洲精品国产二区图片欧美| 国产熟女午夜一区二区三区| 欧美日韩精品网址| 亚洲天堂av无毛| 老司机在亚洲福利影院| 精品福利永久在线观看| 久热爱精品视频在线9| cao死你这个sao货| 老司机亚洲免费影院| 国产成人精品久久二区二区91| 国产精品熟女久久久久浪| 99国产精品一区二区蜜桃av | 国产野战对白在线观看| 少妇的丰满在线观看| 精品国产一区二区三区四区第35| 多毛熟女@视频| 久久av网站| 日日爽夜夜爽网站| 99国产综合亚洲精品| www日本在线高清视频| 欧美精品人与动牲交sv欧美| 国产亚洲av高清不卡| 国产精品一国产av| 成年av动漫网址| 少妇人妻久久综合中文| 亚洲第一av免费看| 国产精品一区二区在线不卡| 国产免费现黄频在线看| 精品少妇一区二区三区视频日本电影| 女人精品久久久久毛片| 国产欧美日韩精品亚洲av| 丝袜脚勾引网站| 老司机午夜十八禁免费视频| 欧美黑人欧美精品刺激| 久久精品亚洲熟妇少妇任你| 久久精品久久久久久噜噜老黄| 久热这里只有精品99| 咕卡用的链子| 亚洲熟女精品中文字幕| 久久精品aⅴ一区二区三区四区| 精品国产国语对白av| 中文欧美无线码| 日韩电影二区| av国产久精品久网站免费入址| 中文欧美无线码| 久久精品熟女亚洲av麻豆精品| 王馨瑶露胸无遮挡在线观看| 国产色视频综合| 日韩电影二区| 欧美日韩国产mv在线观看视频| 国产精品偷伦视频观看了| 亚洲国产看品久久| 精品高清国产在线一区| 91国产中文字幕| 日韩精品免费视频一区二区三区| 精品国产国语对白av| 亚洲色图 男人天堂 中文字幕| 精品一区二区三卡| 精品国产国语对白av| 后天国语完整版免费观看| 久久久精品免费免费高清| 亚洲精品国产av成人精品| 别揉我奶头~嗯~啊~动态视频 | 久久精品亚洲av国产电影网| 男人添女人高潮全过程视频| 中文字幕高清在线视频| 中文欧美无线码| 久久久精品免费免费高清| 一本大道久久a久久精品| 99热国产这里只有精品6| 尾随美女入室| 国产片特级美女逼逼视频| av片东京热男人的天堂|