• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Statistical Properties of a System Consisting of a Superconducting Qubit Coupled to an Optical Field Inside a Transmission Line

    2018-06-15 07:32:48ClodoaldoValverdeGabrielaRodriguesVazVitorTelesdeOliveiraandBaslioBaseia
    Communications in Theoretical Physics 2018年6期

    Clodoaldo Valverde? Gabriela Rodrigues VazVitor Teles de Oliveiraand Bas′?lio Baseia

    1Campus de Ciencias Exatas e Tecnologicas,Universidade Estadual de Goias,BR 153,km 98,75.132-903 Anapolis,GO,Brazil

    2Universidade Paulista(UNIP)-74.845-090,Goiania,Goias,Brazil

    3Instituto de F′?sica,Universidade Federal de Goias-74.001-970,Goiania,Goias,Brazil

    4Departamento de F′?sica,Universidade Federal da Para′?ba-58.051-970,Jo?ao Pessoa,Para′?ba,Brazil

    1 Introduction

    The processing of quantum information in hybrid systems has gained great interest in the last years.[1?2]These systems combine with advantages atoms,spins,and solidstate devices with various applications,e.g.,quantum computation and quantum information.[3?4]They are also advantageous in view of their compatibilities with individual subsystems and may offer potential opportunities to overcome obstacles in quantum states engineering.[5?8]One important example of hybrid systems is given by the arrangement of a Cooper pair box(CPB)qubit interaction with a circuit quantum electrodynamics(CQED)device.[9?11]The CQED opens a new frontier to study the ultra-strong coupling between “atoms” and individual microwave photons,[12]being also a potentially powerful architecture for quantum information and construction of the quantum computer.[13]Similar systems exhist,as one that employs a quantum optomechanical cavity,[14]which allows the manipulation and detection of mechanical movements in the quantum regime,as creation of non classical states using light.All these approaches form a basis for applications in quantum information,where optomechanical devices can serve as interfaces between radiation and matter.It is also possible to construct hybrid quantum devices that combine in finite degrees of freedom from different physical systems.All these systems offer an alternative to fundamental tests of quantum mechanics in a regime of inaccessible parameters of size and mass.[14?17]

    Hybrid systems have been explored in several works,e.g.:in the study of Bose-Einstein condensates,[18]photon blockade,[19?20]propagating phonons,[21]atomic physics and quantum optics,[22?23]quantum dynamics,[24]and quantum circuits combined with electronic spins.[25]Among the many concerning works,[23,26?29]few of them treat the in fluences of time dependent parameters,as frequency and amplitude,upon the properties of the system.[30?31]According to Refs.[32–33]these in fluences upon the coupling rate of the subsystems can be determined by the optical mass detection technique;a recent review on cavity- field coupled to optomechanics is given in Ref.[17].

    In thiswork wehaveemployed the(intensitydependent)Buck-Sukumar model(BS)[34]to treat this coupled system where a superconducting CPB works as qubit interacting with a transmission line working as a CQED[35?36]in presence of losses[37]and under the action of a time dependent external field.The BS model was proposed in attention to a result obtained by Eberlyet al.[38]using the original Jaynes-Cummings model(JC)to treat the coupled CPB system with the CQED,thefirst assumed in its ground state and the second in a coherent state:it was found that,for large times,the oscillations of the CPB excitation inversion could only be obtained combining numerical techniques with analytical approximations;the scenario became even more complicated for fields(CQED)starting from a thermal state,with no solution in the original JC model.Contrarily,the BS offered exact solutions.[34,38]As one should expect from Eq.(3)below,the results using BS and JC models coincide when the CQED has low intensity,which corresponds to small values of number averages??n?<10.According to Ref.[39],although its experimental realization seems to be not feasible in the domain of quantum optics,it may be simulated in arrays of coupled waveguides.[40]This new model was used by many authors in different scenarios,e.g.,Ref.[41],including an interpolation between it and the JC model.[39]In both situations the BS model offered an exact solution.Another such interpolation was considered recently.[42]

    In the present CPB-CQED con figuration Fig.1 we investigate the evolution of the CPB excitation inversion and statistical properties of both subsystems.The in fluence caused by losses and external forces upon these two properties is also considered.The relationship between the entropy and the degree of state mixing that occurs during the system evolution is also discussed.The paper is outlined as follows.In Sec.2 we present the physical arrangement and the hamiltonian for our coupled system,including the basic theoretical procedures.In Sec.3 we describe the evolution of CPB excitation inversion and entropy of the system.Section 4 contains the results and discussion and Sec.5 includes the comments and conclusion.

    2 Model of the COPB-CQED System

    The CQED is implemented through a transmission line resonator whose electric field is coupled to a superconducting CPB,as shown in Fig.1.The scheme is inspired by the works in Refs.[36,43–44].The CPB is positioned at the antinodes of the first harmonic standing wave electric field.The transition frequency between the ground|g?and first excited state|e?of CPB is approximately given by,

    Here we consider}=1 and assume the two Josephson junctions of the CPB with the same energyEJ;Φ is the external flux;EJandECstand respectively for the energy of each Josephson junction and the charge energy of a single-electronEC=e2/(C1+2CJ);EJmaxstands for the maximum Josephson energy at flux Φ=0 whereas Φ0=h/2eis the magnetic quantum flux.The parametersC1andCJstand for the input capacitance and the capacitance of each Josephson tunnel,respectively.[36,43?44]

    Thus,we can write the Hamiltonian of the total system in the form,

    where ?a?(?a)stands for the creation(annihilation)operator of the field with frequencyω;?σ+(?σ?)is the rasing(lowering)operators acting opon the CPB,?σzis a Pauli operator given below,ωcis the CPB frequency,andλ0stands for the coupling strength between CPB and CQED.We use the Pauli’s matrices to describe the action of operators on the two-level CPB system.As mentioned above we have,

    where the state|g?(|e?)stands for the ground(excited)state of the CPB.Here we will consider a more general scenario replacingω→ω(t)=ω0+f(t)andλ0→ζ(t)=λ(1+f(t)/ω0)1/2,withω0being the natural frequency of the CQED andf(t)is an external agent coupled to CQED.In this context we also consider the presence of losses in the system,as follows,

    whereω(t)is a time dependent frequency,γandδstand for the CPB decay constant and the loss of the CQED,respectively.

    The state|Ψ(t)?describing the time evolution of the entire system can be written as,

    where|g?(|e?)represents the CPB in its ground(excited)state andnstands for the number of excitation in the CQED.Throughout this study we will assume the CPB initially prepared in the excited state|e?and the CQED in a superposition of two coherent states,initial conditionCg,n(0)=0.As usually,we assume the subsystems CQED and CPB decoupled att=0.

    The evolution of the wave function described by Eq.(6)is obtained via the solution of the Schr¨odinger equation,

    Solving this coupled system by the 4-th order Runge-Kutta numerical method,we obtain the coefficientsCe,n(t)andCg,n+1(t).This allows us to determine the dynamic properties of the system,e.g.,those related to the CPB excitation inversion and the entropies of both subsystems.

    Fig.1 (Color online)Schematic of the arrangement to investigate the system.In it a superconducting qubit(green)interacts with the electric field(pink),both inside a transmission line(blue);the latter consists of a central conductor and two ground planes on either side.

    3 Evolution of CPB Excitation Inversion and Entropy

    The CPB excitation inversion,I(t),here is given by the form,

    The effect concerns the population transition between the fundamental and excited levels of CPB.On the other hand,the von Neumann’s entropy offers a quantitative measure of the disorder of a system as well as its degree of impurity,as shown by Phoenix and Knight.[45]This kind of entropy,defined in the formSQC=?Tr(ρQCln(ρQC))is a measure of the entanglement of two(or more)subsystems.Here the term entanglement is used with the meaning of mixed state,whose measure is given by Tr(?ρ2),instead of the more usual meaning of correlated quantum states in the EPR sense.[46]The density operatorρQCdescribing the entire system can be defined as?ρQC=|Ψ(t)??Ψ(t)|;thus the entropy takes the form,

    The entropySQC(ρQC)is zero whenρQCrepresents a pure state and is maximum and equal to ln(N)for a state of maximum mixing,whereNis the dimension of the Hilbert space.However,here our state is pure only att=0;fort>0 the state of the whole system ceases to be pure due to the presence of losses and the eventual action of time-dependent external fields.Now,concerning the relationship between the entropy?S=?ρln(?ρ)and the degree of mixing of the state,?D=Tr(?ρ2),despite having this relation between?Sand?ρ,to our knowledge the connection between these two quantities,?Sand?D,is not trivial.

    4 Results and Discussions

    4.1 Entropy:(a)Resonant Case

    We will initially analyze the entropy of the system in the absence of losses for the superposition of coherent states{|α?},for|α|=3.Figure 2 shows the changes that repeat in the periodT≈1.58λtwhile the entropy presents a maximum value 0.7.

    Fig.2 Time evolution of the entropy for the QED-circuit initially in a superposition of coherent states,in the resonant case,for|α|=3.0, ω0=2000λ and ω =2000λ.

    Figure 3 shows the entropy as a function of the dimensionless timeλt:in the first column,going from Figs.3(a)to 3(c),we vary the parameterγand fixδ=0.0;in the second column we setγ=0.0 and varyδ.The time evolution of the entropy was observed in the presence of loss affecting only the CPB while in Figs.3(d)to 3(f)the entropy evolves with losses affecting only the CQED.Comparing Figs.3(a)with 3(d),3(b)with 3(e),and 3(c)with 3(f),we note that the higher in fluence on the entropy occurs when the loss is included in the CQED,than when caused by the loss in the CPB.Based on the results by Refs.[47]and[48]the decoherence effect is greater in CQED due to the fact that this subsystem can be more excited than the CPB.The reverse only occurs for very low average excitation of CQED,??n?=|α|2?1.As expected,in both cases the maximum value of entropy increases when losses are included(seefigs.2 and 3).

    Another detail observed is that,for the ratioγ/δ≈16 between the decays the in fluences on the entropy are quite similar for|α|≤3(Fig.4).On the other hand,while the CQED state loses its coherence,its entropy tends to zero rapidly(seefig.3(e)).

    Fig.3 Time evolution of the entropy of the QED-circuit initially in a superposition of coherent states,for|α|=3.0,ω0=2000λ and ω =2000λ:(a) γ =0.001λ and δ=0.0;(b) γ =0.015λ and δ=0.0;(c) γ =0.030λ and δ=0.0;d)δ=0.001λ and γ =0.0;(e) δ=0.015λ and γ =0.0;(f) δ=0.030λ and γ =0.0.

    Fig.4 (Color online)Time evolution of the entropy of the QED-circuit initially in a superposition of coherent states,with|α|=3.0,ω0=2000λ and ω =2000λ.The blue region stands for: γ =0.0 and δ=0.001λ;the yellow region is for δ=0.0 and γ =0.015λ.

    4.2 Entropy of the System:(b)Non Resonant Case

    Here the subsystems are assumed non resonant,with fixed detuningf(t)=η.The entropy in absence of loss is smaller than in its presence and the periodicity disappears when detuning increases(Fig.5).In absence of losses,detuning affects the entropy of both subsystems,causing a decrease in its maximum value;this effect is amplified in presence of losses(seefig.6).The amplitude of the entropy decreases whenever the detuning is large,η?1.

    The entropy of the system in presence of losses and a time-dependent detuning(f(t)=ηcos(ω′t))has an opposite effect to what happens whenf(t)=η=const.One observes that a variable detuning causes no decrease in the maximum value entropy of the system,as shown in Fig.7.

    Fig.5 Time evolution of the entropy of the QED-circuit initially in a superposition of coherent states,with|α|=3.0,ω0=2000λ,ω =2000λ,and γ = δ=0.0;(a)for η = λ;(b)for η =20λ;(c)for η =100λ.

    Fig.6 Time evolution of the entropy of the QED-circuit initially in a superposition of coherent states,with|α|=3.0,ω0=2000λ,ω =2000λ,γ =0.015λ,and δ=0.001λ (a)for η = λ;(b)for η =20λ;(c)for η =100λ.

    Fig.7 Time evolution of the entropy of the QED-circuit initially in a superposition of coherent states,with|α|=3.0,ω0=2000λ,ω =2000λ,γ =0.015λ,δ=0.001λ,and η =100λ;(a)for ω′=10;(b)for ω′=20;(c)for ω′=50.

    4.3 CPB Excitation Inversion:(a)Resonant Case

    Firstly we consider the CPB in absence of losses and the field state in the mentioned superposition of two coherent states,for|α|=3.0;according to Fig.8 no collapse and revival effect is shown in the CPB excitation inversion.

    Figure 9 shows the excitation inversion as a function of(dimensionless)time(λt):in the first column,going from Figs.9(a)to 9(c)we letγto vary and setδ=0.0;in the second column we setγ=0.0 and letδto vary.Comparing Figs.9(a)with 9(d),9(b)with 9(e)and 9(c)with 9(f)we see again that the loss affecting the CQED has a greater in fluence on the inversion of excitation of the CPB.As the CQED can be more excited than the CPB,the deleterious effect of losses is greater in the CQED;for the ratioγ/δ≈16 between the decays,the in fluences of losses on the excitation inversion are quite similar for any|α|≤3.

    4.4 CPB Excitation Inversion:(b)Non Resonant Case

    Here the subsystems are assumed non resonant with constant detuningf(t)=η.The excitation inversion in absence of losses is greater than in their presence and the periodicity disappears when detuning increases(Fig.10).Detuning affects the excitation inversion of the CPB by decreasing the maximum amplitude value,the same effect is observed in entropy(seefig.5).Excitation inversion in the CPB does not occur for large detuning(η?1).When the system is in the presence of losses the excitation inversion occurs only for small detuning values,seefig.11(a),for higher detuning values there is no occurrence of excitation inversion;seefigs.11(b)and 11(c).

    The evolution of excitation inversion of the system in the presence of losses with a variable detuning(f(t)=ηcos(ω′t))shows an opposite behavior to that forf(t)=η=constant.Now the time dependent detuning causes no extinction of the excitation inversion,i.e.,the system continues reversing the excitation but maximum value amplitude of inversion decreases with time,as shown in Fig.12.

    Fig.8 Time evolution of the excitation inversion for the QED-circuit initially in coherent state superposition,with|α|=3.0,ω0=2000λ,and ω =2000λ.

    Fig.9 Time evolution of the excitation inversion for the QED-circuit initially in coherent state superposition,with|α|=3.0,ω0=2000λ,and ω =2000λ;(a)for γ =0.001λ and δ=0.0;(b) γ =0.015λ and δ=0.0;(c) γ =0.030λ and δ=0.0;(d)δ=0.001λ and γ =0.0;(e)δ=0.015λ and γ =0.0;(f)δ=0.030λ and γ =0.0.

    Fig.10 Time evolution of the excitation inversion for the QED-circuit initially in coherent state superposition,with|α|=3.0,ω0=2000λ,ω =2000λ,and γ = δ=0.0;(a)for η = λ;(b)for η =20λ;(c)for η =100λ.

    Fig.11 Time evolution of the excitation inversion for the QED-circuit initially in coherent state superposition,with|α|=3.0,ω0=2000λ,ω =2000λ,γ =0.015λ,and δ=0.001λ;(a)for η = λ;(b)for η =20λ;(c)for η =100λ.

    Fig.12 Time evolution of the excitation inversion for the QED-circuit initially in coherent state superposition,with|α|=3.0,ω0=2000λ,ω =2000λ,γ =0.015λ,δ=0.001λ,and η =100λ;(a)for ω′=10;(b)for ω′=20;(c)for ω′=50.

    5 Conclusion

    In this work we studied the dynamic properties(entropy of both sub-systems and the CPB excitation inversion)of a hybrid system composed of a CPB and an CQED.We considered the CPB initially excited and the CQED as a superposition of two coherent states.We have assumed the CPB-CQED system described by an intensity-dependent interaction introduced by Buck-Sukumar model.Concerning the entropy,which is related to the entanglement of subsystem states,we studied its time evolution in the presence of losses affecting both subsystems,for resonant and non-resonant cases.The influence on the entropy of a time-dependent(sinusoidal)frequency,via the CQED,was also considered.The excitation inversion was investigated under the same conditions and in fluences.The inclusion of losses in CPB and CQED makes the scenario more realistic.We have shown that the CQED subsystem is much more sensitive in the presence of losses than the CPB,this can be explained,due to the fact that the CQED presents a much larger number of photons in relation to the CPB.In addition,the time dependence of the couplingλtand CQED frequencyω(t)brings our results to different physical conditions.It was shown that the CPB excitation inversion occurs when detuning is constant in time;however,when it varies the excitation inversion always occurs no matter the value of detuning.In this hybrid system it is possible to control the entropy and inversion of excitation by choosing the parameters appropriately,for example,the appropriate choice of detuning allows us to increase the maximum entropy of the system,which was~0.45 in Fig.6(c)and passed to be~0.75 in Fig.7(c),another example can be seen in the excitation inversion that no longer occurs Figs.11(b)and 11(c)and conversely occur in Figs.12(b)and 12(c).

    In summary,it was shown that,when using the intensity-dependent BS model extended to a realistic scenario taking into account in fluence of losses,detuning and time dependent external fields,interesting results emerge.This also indicates that one can perform a dynamic control of subsystem properties through the manipulation of parameters involved,with potential applications to the command of quantum information processes.We have also shown that the decoherence effect is greater in the CQED,which is due to the fact that the CQED can have more excitations than the CPB.Decoherence affecting the CQED can be reduced by improving its quality.We hope that these results could provide some good insights for researchers in this area.

    Acknowledgment

    The authors thank the supports by the Conselho Nacional de Desenvolvimento Cient′? fico e Tecnologico(CNPq),the FAPEG-CNPq,Brazilian Agencies,and Rosemberg Fortes Nunes Rodrigues for Fig.1.

    [1]Z.L.Xiang,S.Ashhab,J.Q.You,and F.Nori,Rev.Mod.Phys.85(2013)623.

    [2]C.Jiang,Y.S.Cui,H.X.Liu,et al.,Chin.Phys.B24(2015)54206.

    [3]T.Duty,Physics(College.Park.Md).3(2010)80.

    [4]Q.Guo,L.Y.Cheng,H.F.Wang,and S.Zhang,Chin.Phys.B24(2015)40303.

    [5]I.Buluta,S.Ashhab,and F.Nori,Rep.Prog.Phys.74(2011)104401.

    [6]J.J.L.Morton and B.W.Lovett,Annu.Rev.Condens.Matter Phys.2(2011)189.

    [7]C.Valverde,A.N.Castro,and B.Baseia,Opt.Commun.366(2016)301.

    [8]R.Y.Yan,H.L.Wang,and Z.B.Feng,Int.J.Theor.Phys.55(2016)258.

    [9]K.D.Petersson,L.W.McFaul,M.D.Schroer,et al.,Nature(London)490(2012)380.

    [10]S.M.Girvin,M.H.Devoret,and R.J.Schoelkopf,Phys.Scr.T137(2009)014012.

    [11]Zhi-Bo Feng and M.Li,Physica C507(2014)65.

    [12]M.H.Devoret,S.Girvin,and R.Schoelkopf,Annalen der Physik16(2007)767.

    [13]M.H.Devoret and R.Schoelkopf,Science339(2013)1169.

    [14]T.J.Kippenberg and K.J.Vahala,Science321(2008)1172.

    [15]T.J.Kippenberg and K.J.Vahala,Opt.Express15(2007)17172.

    [16]F.Ivan and K.Khaled,Nature Photonics3(2009)201.

    [17]M.Aspelmeyer,T.J.Kippenberg,and F.Marquardt,Rev.Mod.Phys.86(2014)1391.

    [18]F.Brennecke,S.Ritter,T.Donner,and T.Esslinger,Science322(2008)235.

    [19]P.Rabl,Phys.Rev.Lett.107(2011)063601.

    [20]J.Q.Liao and F.Nori,Phys.Rev.A88(2013)023853.

    [21]M.V.Gustafsson,et al.,Science346(2014)207.

    [22]J.A.Schreier,et al.,Phys.Rev.B77(2008)180502.

    [23]T.P.Purdy,et al.,Phys.Rev.Lett.105(2010)133602.

    [24]J.V.Wezel and T.H.Oosterkamp,Proc.R.Soc.A468(2012)35.

    [25]X.Y.Lu,Z.L.Xiang,W.Cui,et al.,Phys.Rev.A88(2013)12329.

    [26]A.J¨ockel,et al.,Nature Nanotechnology10(2014)55.

    [27]A.C.P flanzer,O.Romero-Isart,and J.I.Cirac,Phys.Rev.A88(2013)033804.

    [28]J.M.Pirkkalainen,et al.,Nature(London)494(2013)211.

    [29]J.M.Pirkkalainen,S.U.Cho,F.Massel,et al.,Nature Communications6(2015)6981.

    [30]M.Janowicz,Phys.Rev.A57(1998)4784.

    [31]J.Fei,S.Y.X.,and Y.P.Yang,Chin.Phys.B18(2009)3193.

    [32]J.J.Li and K.D.Zhu,Appl.Phys.Lett.94(2009)63116.

    [33]J.J.Li and K.D.Zhu,Appl.Phys.Lett.94(2009)249903.

    [34]B.Buck and C.V.Sukumar,Phys.Lett.A81(1981)132.

    [35]R.J.Schoelkopf and S.M.Girvin,Nature(London)451(2008)664.

    [36]A.Blais,R.S.Huang,A.Wallra ff,et al.,Phys.Rev.A69(2004)062320.

    [37]Y.L.Chen,Y.F.Xiao,X.Zhou,et al.,J.Phys.B:At.Mol.Opt.Phys.41(2008)175503.

    [38]J.H.Eberly,J.B.Narozhni,and J.J.Sanchez-Mandragon,Phys.Rev.Lett.44(1980)1323.

    [39]B.M.Rodr′Igues-Lara,J.Opt.Soc.Am.B31(2014)1719.

    [40]B.M.Rodr′Iguez-Lara,F.Soto-Eguibar,A.Z.Cardenas,and H.M.Moya-Cessa,Opt.Express21(2013)12888.

    [41]A.N.Chaba,B.Baseia,C.X.Wang,and Recta Vyas,Physica A232(1996)273.

    [42]C.Valverde and B.Baseia,Mod.Phys.Lett.B32(2018)1850026.

    [43]J.Koch,T.M.Yu,J.Gambetta,et al.,Phys.Rev.A76(2007)042319.

    [44]J.M.Fink,R.Bianchetti,M.Baur,et al.,Phys.Rev.Lett.103(2009)083601.

    [45]S.J.D.Phoenix and P.L.Knight,Phys.Rev.A44(1991)6023.

    [46]A.Einstein,B.Podolsky,and N.Rosen,Phys.Rev.47(1935)777.

    [47]M.Brune,E.Hagley,J.Dreyer,et al.,Phys.Rev.Lett.77(1996)4887.

    [48]C.Monroe,D.M.Meekhof,B.E.King,and D.J.Wineland,Science272(1996)1131.

    欧美久久黑人一区二区| 亚洲中文av在线| 国产有黄有色有爽视频| 国产av又大| 黑人猛操日本美女一级片| 在线观看舔阴道视频| 99久久久亚洲精品蜜臀av| 欧美黑人精品巨大| 久久久久久久久久久久大奶| 多毛熟女@视频| 亚洲va日本ⅴa欧美va伊人久久| 91字幕亚洲| 亚洲熟妇中文字幕五十中出 | 精品国产超薄肉色丝袜足j| 婷婷六月久久综合丁香| 久久精品成人免费网站| √禁漫天堂资源中文www| 不卡av一区二区三区| 女人高潮潮喷娇喘18禁视频| 亚洲熟妇中文字幕五十中出 | 神马国产精品三级电影在线观看 | 色婷婷久久久亚洲欧美| 午夜a级毛片| 亚洲av电影在线进入| 满18在线观看网站| 嫁个100分男人电影在线观看| 一进一出好大好爽视频| 老汉色av国产亚洲站长工具| 亚洲av电影在线进入| 久久精品影院6| 精品免费久久久久久久清纯| 成年女人毛片免费观看观看9| 午夜日韩欧美国产| 亚洲欧美日韩无卡精品| а√天堂www在线а√下载| 色婷婷av一区二区三区视频| 午夜91福利影院| 好男人电影高清在线观看| 99精品欧美一区二区三区四区| 高清毛片免费观看视频网站 | 久久国产乱子伦精品免费另类| 欧美日韩中文字幕国产精品一区二区三区 | 国产不卡一卡二| 亚洲av第一区精品v没综合| 久久久久久亚洲精品国产蜜桃av| 在线十欧美十亚洲十日本专区| 国产av在哪里看| 黑丝袜美女国产一区| 视频区图区小说| 成人精品一区二区免费| 亚洲成人精品中文字幕电影 | 久久青草综合色| 国产一区二区三区视频了| 亚洲男人天堂网一区| 久久精品亚洲av国产电影网| 99精品在免费线老司机午夜| 免费看a级黄色片| 嫩草影院精品99| 青草久久国产| 免费一级毛片在线播放高清视频 | 国产精品九九99| 成人黄色视频免费在线看| 国产成人一区二区三区免费视频网站| 搡老乐熟女国产| 成年版毛片免费区| 日韩欧美三级三区| 麻豆国产av国片精品| 黄色a级毛片大全视频| 动漫黄色视频在线观看| 色综合站精品国产| e午夜精品久久久久久久| 好看av亚洲va欧美ⅴa在| 男女午夜视频在线观看| 亚洲aⅴ乱码一区二区在线播放 | 黄色视频不卡| 99久久国产精品久久久| 精品国产国语对白av| 精品人妻1区二区| 俄罗斯特黄特色一大片| 久久久久国产一级毛片高清牌| 成人永久免费在线观看视频| 久久亚洲精品不卡| 人成视频在线观看免费观看| bbb黄色大片| 在线观看免费午夜福利视频| 视频区图区小说| 99久久国产精品久久久| 精品午夜福利视频在线观看一区| 午夜免费鲁丝| 国产精品一区二区精品视频观看| 男女午夜视频在线观看| 精品乱码久久久久久99久播| 亚洲精品粉嫩美女一区| 日韩av在线大香蕉| 女人精品久久久久毛片| 国产成人av激情在线播放| 777久久人妻少妇嫩草av网站| 国产精品影院久久| www.999成人在线观看| 9热在线视频观看99| 亚洲精品一区av在线观看| 天堂动漫精品| 国产有黄有色有爽视频| 电影成人av| 桃色一区二区三区在线观看| 看片在线看免费视频| 亚洲精品在线美女| 18禁国产床啪视频网站| 人成视频在线观看免费观看| 国产区一区二久久| 国产激情欧美一区二区| 高清欧美精品videossex| 亚洲精品中文字幕在线视频| 国产一区在线观看成人免费| www.999成人在线观看| 亚洲狠狠婷婷综合久久图片| 亚洲国产精品一区二区三区在线| 最新美女视频免费是黄的| 在线观看www视频免费| 老汉色av国产亚洲站长工具| 久久久久国产一级毛片高清牌| 国产乱人伦免费视频| 一级a爱片免费观看的视频| 久久香蕉国产精品| 免费搜索国产男女视频| 久久久久久久久久久久大奶| 亚洲成人免费电影在线观看| 999久久久国产精品视频| 国产一区二区激情短视频| 午夜精品久久久久久毛片777| 久久人人爽av亚洲精品天堂| 一边摸一边做爽爽视频免费| 日本五十路高清| 免费高清视频大片| 欧美日韩亚洲综合一区二区三区_| 夜夜爽天天搞| x7x7x7水蜜桃| 久久青草综合色| 国产亚洲精品久久久久久毛片| 无遮挡黄片免费观看| 亚洲av日韩精品久久久久久密| 国产黄色免费在线视频| 欧美丝袜亚洲另类 | 在线观看免费视频网站a站| 国产精品 国内视频| 高清在线国产一区| 黑人巨大精品欧美一区二区蜜桃| 亚洲一区二区三区欧美精品| 免费一级毛片在线播放高清视频 | 又黄又粗又硬又大视频| 人妻久久中文字幕网| 欧美最黄视频在线播放免费 | 欧美+亚洲+日韩+国产| 丰满的人妻完整版| 色综合站精品国产| 欧美乱妇无乱码| 在线观看日韩欧美| 黄色丝袜av网址大全| 热99国产精品久久久久久7| 亚洲专区中文字幕在线| 男女床上黄色一级片免费看| 久久久久久久久久久久大奶| 欧美一级毛片孕妇| 亚洲va日本ⅴa欧美va伊人久久| 亚洲精品在线观看二区| 国产三级黄色录像| 一进一出抽搐动态| 99国产精品99久久久久| 久久人人97超碰香蕉20202| 一二三四社区在线视频社区8| 成年人黄色毛片网站| 色综合婷婷激情| 一a级毛片在线观看| 成人手机av| 亚洲av成人一区二区三| 在线观看免费视频网站a站| 国产欧美日韩一区二区精品| 国产成+人综合+亚洲专区| 久热这里只有精品99| 波多野结衣一区麻豆| 亚洲一区二区三区不卡视频| 亚洲av美国av| 一级片'在线观看视频| 精品一区二区三区视频在线观看免费 | 这个男人来自地球电影免费观看| 日韩免费高清中文字幕av| 亚洲精品一二三| 三级毛片av免费| 国产乱人伦免费视频| 久久久水蜜桃国产精品网| 国产97色在线日韩免费| 老熟妇仑乱视频hdxx| 18禁美女被吸乳视频| 国产日韩一区二区三区精品不卡| 亚洲第一av免费看| 日本wwww免费看| 国产精品一区二区精品视频观看| 国产有黄有色有爽视频| 免费在线观看日本一区| 国产精品久久久人人做人人爽| 中文字幕人妻熟女乱码| 少妇 在线观看| 琪琪午夜伦伦电影理论片6080| 免费久久久久久久精品成人欧美视频| 91字幕亚洲| 国产精品 国内视频| 麻豆一二三区av精品| avwww免费| 操出白浆在线播放| 亚洲中文字幕日韩| 18禁美女被吸乳视频| 淫妇啪啪啪对白视频| 色在线成人网| 国产色视频综合| 国产成+人综合+亚洲专区| 在线免费观看的www视频| 国产97色在线日韩免费| 精品电影一区二区在线| 狠狠狠狠99中文字幕| 怎么达到女性高潮| 1024香蕉在线观看| 老司机福利观看| 日韩中文字幕欧美一区二区| 欧美黑人精品巨大| 别揉我奶头~嗯~啊~动态视频| 日本黄色日本黄色录像| 日本vs欧美在线观看视频| 久久国产精品影院| 一夜夜www| 人妻丰满熟妇av一区二区三区| 欧美在线黄色| 操出白浆在线播放| 国产一区二区三区视频了| 国产成人精品无人区| 99精品在免费线老司机午夜| 99热只有精品国产| 欧洲精品卡2卡3卡4卡5卡区| 亚洲自拍偷在线| 真人一进一出gif抽搐免费| 一本大道久久a久久精品| 美女大奶头视频| 人成视频在线观看免费观看| 别揉我奶头~嗯~啊~动态视频| 精品欧美一区二区三区在线| www日本在线高清视频| 国产xxxxx性猛交| 国产成人精品无人区| 日本三级黄在线观看| 少妇 在线观看| a级片在线免费高清观看视频| 久久精品亚洲av国产电影网| 免费在线观看日本一区| 亚洲全国av大片| 91av网站免费观看| 国产激情久久老熟女| 妹子高潮喷水视频| a级毛片在线看网站| 国产熟女xx| 亚洲精品美女久久久久99蜜臀| 成人三级做爰电影| 日本五十路高清| 久久午夜亚洲精品久久| 亚洲国产精品合色在线| 久久人妻熟女aⅴ| 国产1区2区3区精品| 国产免费av片在线观看野外av| 免费不卡黄色视频| 久久人人97超碰香蕉20202| 黄片大片在线免费观看| 又紧又爽又黄一区二区| cao死你这个sao货| 欧美精品啪啪一区二区三区| 丝袜美腿诱惑在线| 真人做人爱边吃奶动态| 久久久水蜜桃国产精品网| 国产av一区在线观看免费| 日韩成人在线观看一区二区三区| 日韩一卡2卡3卡4卡2021年| 久久精品91蜜桃| 久久久久久久精品吃奶| 老司机亚洲免费影院| 啦啦啦 在线观看视频| 级片在线观看| 日本 av在线| av片东京热男人的天堂| 久久欧美精品欧美久久欧美| 欧美精品一区二区免费开放| 天堂俺去俺来也www色官网| 欧美在线一区亚洲| 日韩免费高清中文字幕av| 五月开心婷婷网| 亚洲在线自拍视频| 精品乱码久久久久久99久播| 变态另类成人亚洲欧美熟女 | 99热国产这里只有精品6| 久久国产精品影院| 中国美女看黄片| www日本在线高清视频| 亚洲性夜色夜夜综合| 可以在线观看毛片的网站| 他把我摸到了高潮在线观看| 丰满人妻熟妇乱又伦精品不卡| 国产成人系列免费观看| 首页视频小说图片口味搜索| 国产男靠女视频免费网站| 一区在线观看完整版| 麻豆成人av在线观看| а√天堂www在线а√下载| 久久精品国产综合久久久| 国产午夜精品久久久久久| 丰满人妻熟妇乱又伦精品不卡| 99re在线观看精品视频| 人妻久久中文字幕网| 亚洲成人免费av在线播放| 国产精品秋霞免费鲁丝片| 女人被躁到高潮嗷嗷叫费观| cao死你这个sao货| 国产乱人伦免费视频| 久久精品国产亚洲av高清一级| 亚洲午夜理论影院| 91成年电影在线观看| 50天的宝宝边吃奶边哭怎么回事| 岛国视频午夜一区免费看| 丰满人妻熟妇乱又伦精品不卡| 99re在线观看精品视频| 亚洲avbb在线观看| 一区二区日韩欧美中文字幕| 成人18禁在线播放| 亚洲激情在线av| 美女扒开内裤让男人捅视频| av欧美777| 可以免费在线观看a视频的电影网站| 国产男靠女视频免费网站| 亚洲五月婷婷丁香| 在线观看免费高清a一片| 成人永久免费在线观看视频| 国产成人免费无遮挡视频| 亚洲全国av大片| 国产伦人伦偷精品视频| 波多野结衣一区麻豆| 麻豆一二三区av精品| 国产一区在线观看成人免费| 亚洲人成电影免费在线| 岛国在线观看网站| 国产一区二区在线av高清观看| 在线观看免费午夜福利视频| 久久久久九九精品影院| 人妻久久中文字幕网| 天堂俺去俺来也www色官网| 性色av乱码一区二区三区2| 国产精品一区二区在线不卡| 欧美日韩亚洲高清精品| 国产精品日韩av在线免费观看 | 一级作爱视频免费观看| 久久久久国产精品人妻aⅴ院| 99精品欧美一区二区三区四区| 国产单亲对白刺激| 久久精品91蜜桃| 色综合站精品国产| 成人手机av| 精品一区二区三区视频在线观看免费 | 99精品欧美一区二区三区四区| 成人三级做爰电影| 老熟妇仑乱视频hdxx| 这个男人来自地球电影免费观看| 国产伦一二天堂av在线观看| 国产黄a三级三级三级人| 99久久综合精品五月天人人| 精品国产超薄肉色丝袜足j| 少妇裸体淫交视频免费看高清 | 中文欧美无线码| 亚洲中文日韩欧美视频| 在线观看一区二区三区| 久久午夜亚洲精品久久| 高清欧美精品videossex| 超碰97精品在线观看| 一本大道久久a久久精品| 亚洲成人精品中文字幕电影 | 在线观看免费日韩欧美大片| 亚洲一区二区三区不卡视频| 多毛熟女@视频| 激情视频va一区二区三区| 国产精品自产拍在线观看55亚洲| 伦理电影免费视频| 国产成人欧美| 黄频高清免费视频| 国产在线精品亚洲第一网站| 欧美+亚洲+日韩+国产| 久久人妻福利社区极品人妻图片| 亚洲成国产人片在线观看| 夜夜看夜夜爽夜夜摸 | 欧美日韩视频精品一区| 欧美国产精品va在线观看不卡| 一二三四社区在线视频社区8| 校园春色视频在线观看| ponron亚洲| 久久久久国内视频| 久久精品国产综合久久久| 男女床上黄色一级片免费看| 校园春色视频在线观看| 波多野结衣高清无吗| 91国产中文字幕| 日韩国内少妇激情av| 欧美激情极品国产一区二区三区| 丰满人妻熟妇乱又伦精品不卡| 村上凉子中文字幕在线| 国产av又大| 老司机在亚洲福利影院| av有码第一页| 午夜91福利影院| 久久人妻熟女aⅴ| 一边摸一边抽搐一进一出视频| av超薄肉色丝袜交足视频| 久久香蕉精品热| 久久午夜亚洲精品久久| 韩国精品一区二区三区| 精品久久蜜臀av无| 欧美午夜高清在线| 免费在线观看日本一区| 天天添夜夜摸| 亚洲午夜精品一区,二区,三区| 久久久久久久久久久久大奶| 国产99白浆流出| 国产精品美女特级片免费视频播放器 | www.自偷自拍.com| 国产成人欧美在线观看| 一区二区日韩欧美中文字幕| 淫妇啪啪啪对白视频| 日本黄色日本黄色录像| 成人精品一区二区免费| 亚洲国产精品一区二区三区在线| 国产亚洲精品久久久久久毛片| 成人黄色视频免费在线看| 亚洲 国产 在线| 欧美丝袜亚洲另类 | 天天添夜夜摸| 色播在线永久视频| 亚洲一码二码三码区别大吗| 日本黄色视频三级网站网址| 在线观看免费午夜福利视频| 欧美av亚洲av综合av国产av| 国产高清videossex| svipshipincom国产片| a级片在线免费高清观看视频| 国产99久久九九免费精品| 亚洲人成77777在线视频| 欧美性长视频在线观看| a在线观看视频网站| 12—13女人毛片做爰片一| aaaaa片日本免费| 日韩成人在线观看一区二区三区| 热99re8久久精品国产| 欧美亚洲日本最大视频资源| 中国美女看黄片| 久久中文字幕一级| 色尼玛亚洲综合影院| 亚洲伊人色综图| 在线观看午夜福利视频| 午夜福利影视在线免费观看| 成人亚洲精品一区在线观看| 亚洲熟女毛片儿| 老鸭窝网址在线观看| 中文字幕精品免费在线观看视频| 午夜福利在线免费观看网站| 窝窝影院91人妻| 亚洲成av片中文字幕在线观看| 国产精品一区二区在线不卡| 一区二区日韩欧美中文字幕| 国内久久婷婷六月综合欲色啪| 中文字幕人妻丝袜一区二区| 香蕉久久夜色| 丝袜人妻中文字幕| 久久人人97超碰香蕉20202| 大码成人一级视频| 欧美老熟妇乱子伦牲交| 亚洲av成人一区二区三| 亚洲五月天丁香| 国产一区二区三区视频了| 日本vs欧美在线观看视频| 精品一品国产午夜福利视频| 欧美最黄视频在线播放免费 | 精品欧美一区二区三区在线| 人人妻人人爽人人添夜夜欢视频| 在线观看舔阴道视频| 电影成人av| 欧美日韩亚洲高清精品| 自拍欧美九色日韩亚洲蝌蚪91| 免费在线观看完整版高清| 午夜日韩欧美国产| 亚洲精华国产精华精| 久久久久久人人人人人| 99久久综合精品五月天人人| 99国产精品免费福利视频| 亚洲av成人一区二区三| 午夜福利在线观看吧| 亚洲精品国产区一区二| 久久精品亚洲av国产电影网| 亚洲色图综合在线观看| 久久精品91蜜桃| 午夜免费激情av| 亚洲一区中文字幕在线| 国产精品av久久久久免费| 国产精品电影一区二区三区| 91精品三级在线观看| 最近最新中文字幕大全电影3 | 99精品久久久久人妻精品| 欧美日韩亚洲高清精品| 99精品久久久久人妻精品| 欧美一区二区精品小视频在线| 99香蕉大伊视频| 99久久久亚洲精品蜜臀av| 后天国语完整版免费观看| 国产成人欧美| 99香蕉大伊视频| 黄色丝袜av网址大全| 另类亚洲欧美激情| 正在播放国产对白刺激| 在线永久观看黄色视频| 国产精品野战在线观看 | 身体一侧抽搐| 大码成人一级视频| 日本黄色日本黄色录像| 亚洲va日本ⅴa欧美va伊人久久| 18禁裸乳无遮挡免费网站照片 | 国产熟女xx| 久久精品成人免费网站| 国产av在哪里看| 中文字幕最新亚洲高清| 久久中文字幕人妻熟女| 亚洲 欧美 日韩 在线 免费| 桃色一区二区三区在线观看| 精品乱码久久久久久99久播| 亚洲专区字幕在线| 如日韩欧美国产精品一区二区三区| 亚洲成人精品中文字幕电影 | 久久精品国产亚洲av香蕉五月| 91精品国产国语对白视频| 欧美在线一区亚洲| 天天躁夜夜躁狠狠躁躁| 国产精品 欧美亚洲| 色综合站精品国产| 少妇 在线观看| 日本vs欧美在线观看视频| 18禁国产床啪视频网站| 国产成+人综合+亚洲专区| 两性夫妻黄色片| 在线观看一区二区三区激情| 黄色a级毛片大全视频| 亚洲七黄色美女视频| 99久久久亚洲精品蜜臀av| 熟女少妇亚洲综合色aaa.| 琪琪午夜伦伦电影理论片6080| 国产精品99久久99久久久不卡| 国产成人一区二区三区免费视频网站| 精品一品国产午夜福利视频| 日日夜夜操网爽| 国产精品 国内视频| 国产精品影院久久| xxx96com| 亚洲国产精品一区二区三区在线| 黄色 视频免费看| 99久久综合精品五月天人人| 国产精品九九99| 久久国产精品影院| 久久久久久亚洲精品国产蜜桃av| 亚洲成av片中文字幕在线观看| www日本在线高清视频| 久99久视频精品免费| 国产av一区二区精品久久| 亚洲欧美一区二区三区久久| 日韩人妻精品一区2区三区| 自线自在国产av| √禁漫天堂资源中文www| 日韩视频一区二区在线观看| 亚洲欧美激情在线| 久久久久久亚洲精品国产蜜桃av| 午夜福利,免费看| 超碰成人久久| 99香蕉大伊视频| av视频免费观看在线观看| 欧美日韩国产mv在线观看视频| 亚洲一区二区三区欧美精品| 久久久国产欧美日韩av| 高潮久久久久久久久久久不卡| cao死你这个sao货| 嫩草影视91久久| 国产精品一区二区在线不卡| 香蕉丝袜av| 久久久久久人人人人人| 伦理电影免费视频| 久久人妻福利社区极品人妻图片| 国产无遮挡羞羞视频在线观看| 人妻久久中文字幕网| 淫秽高清视频在线观看| 一区二区三区激情视频| av网站在线播放免费| 亚洲av电影在线进入| 成人特级黄色片久久久久久久| 色综合欧美亚洲国产小说| 美女高潮到喷水免费观看| 亚洲欧美激情在线| 成熟少妇高潮喷水视频| 午夜福利在线免费观看网站| 国产无遮挡羞羞视频在线观看| 国产精品久久电影中文字幕| 大陆偷拍与自拍| 亚洲一区二区三区色噜噜 | 村上凉子中文字幕在线| 亚洲成人免费av在线播放| 看免费av毛片| 午夜福利在线观看吧| 美女大奶头视频| 一区二区三区国产精品乱码| 久久九九热精品免费| 在线观看一区二区三区|