• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Statistical Properties of a System Consisting of a Superconducting Qubit Coupled to an Optical Field Inside a Transmission Line

    2018-06-15 07:32:48ClodoaldoValverdeGabrielaRodriguesVazVitorTelesdeOliveiraandBaslioBaseia
    Communications in Theoretical Physics 2018年6期

    Clodoaldo Valverde? Gabriela Rodrigues VazVitor Teles de Oliveiraand Bas′?lio Baseia

    1Campus de Ciencias Exatas e Tecnologicas,Universidade Estadual de Goias,BR 153,km 98,75.132-903 Anapolis,GO,Brazil

    2Universidade Paulista(UNIP)-74.845-090,Goiania,Goias,Brazil

    3Instituto de F′?sica,Universidade Federal de Goias-74.001-970,Goiania,Goias,Brazil

    4Departamento de F′?sica,Universidade Federal da Para′?ba-58.051-970,Jo?ao Pessoa,Para′?ba,Brazil

    1 Introduction

    The processing of quantum information in hybrid systems has gained great interest in the last years.[1?2]These systems combine with advantages atoms,spins,and solidstate devices with various applications,e.g.,quantum computation and quantum information.[3?4]They are also advantageous in view of their compatibilities with individual subsystems and may offer potential opportunities to overcome obstacles in quantum states engineering.[5?8]One important example of hybrid systems is given by the arrangement of a Cooper pair box(CPB)qubit interaction with a circuit quantum electrodynamics(CQED)device.[9?11]The CQED opens a new frontier to study the ultra-strong coupling between “atoms” and individual microwave photons,[12]being also a potentially powerful architecture for quantum information and construction of the quantum computer.[13]Similar systems exhist,as one that employs a quantum optomechanical cavity,[14]which allows the manipulation and detection of mechanical movements in the quantum regime,as creation of non classical states using light.All these approaches form a basis for applications in quantum information,where optomechanical devices can serve as interfaces between radiation and matter.It is also possible to construct hybrid quantum devices that combine in finite degrees of freedom from different physical systems.All these systems offer an alternative to fundamental tests of quantum mechanics in a regime of inaccessible parameters of size and mass.[14?17]

    Hybrid systems have been explored in several works,e.g.:in the study of Bose-Einstein condensates,[18]photon blockade,[19?20]propagating phonons,[21]atomic physics and quantum optics,[22?23]quantum dynamics,[24]and quantum circuits combined with electronic spins.[25]Among the many concerning works,[23,26?29]few of them treat the in fluences of time dependent parameters,as frequency and amplitude,upon the properties of the system.[30?31]According to Refs.[32–33]these in fluences upon the coupling rate of the subsystems can be determined by the optical mass detection technique;a recent review on cavity- field coupled to optomechanics is given in Ref.[17].

    In thiswork wehaveemployed the(intensitydependent)Buck-Sukumar model(BS)[34]to treat this coupled system where a superconducting CPB works as qubit interacting with a transmission line working as a CQED[35?36]in presence of losses[37]and under the action of a time dependent external field.The BS model was proposed in attention to a result obtained by Eberlyet al.[38]using the original Jaynes-Cummings model(JC)to treat the coupled CPB system with the CQED,thefirst assumed in its ground state and the second in a coherent state:it was found that,for large times,the oscillations of the CPB excitation inversion could only be obtained combining numerical techniques with analytical approximations;the scenario became even more complicated for fields(CQED)starting from a thermal state,with no solution in the original JC model.Contrarily,the BS offered exact solutions.[34,38]As one should expect from Eq.(3)below,the results using BS and JC models coincide when the CQED has low intensity,which corresponds to small values of number averages??n?<10.According to Ref.[39],although its experimental realization seems to be not feasible in the domain of quantum optics,it may be simulated in arrays of coupled waveguides.[40]This new model was used by many authors in different scenarios,e.g.,Ref.[41],including an interpolation between it and the JC model.[39]In both situations the BS model offered an exact solution.Another such interpolation was considered recently.[42]

    In the present CPB-CQED con figuration Fig.1 we investigate the evolution of the CPB excitation inversion and statistical properties of both subsystems.The in fluence caused by losses and external forces upon these two properties is also considered.The relationship between the entropy and the degree of state mixing that occurs during the system evolution is also discussed.The paper is outlined as follows.In Sec.2 we present the physical arrangement and the hamiltonian for our coupled system,including the basic theoretical procedures.In Sec.3 we describe the evolution of CPB excitation inversion and entropy of the system.Section 4 contains the results and discussion and Sec.5 includes the comments and conclusion.

    2 Model of the COPB-CQED System

    The CQED is implemented through a transmission line resonator whose electric field is coupled to a superconducting CPB,as shown in Fig.1.The scheme is inspired by the works in Refs.[36,43–44].The CPB is positioned at the antinodes of the first harmonic standing wave electric field.The transition frequency between the ground|g?and first excited state|e?of CPB is approximately given by,

    Here we consider}=1 and assume the two Josephson junctions of the CPB with the same energyEJ;Φ is the external flux;EJandECstand respectively for the energy of each Josephson junction and the charge energy of a single-electronEC=e2/(C1+2CJ);EJmaxstands for the maximum Josephson energy at flux Φ=0 whereas Φ0=h/2eis the magnetic quantum flux.The parametersC1andCJstand for the input capacitance and the capacitance of each Josephson tunnel,respectively.[36,43?44]

    Thus,we can write the Hamiltonian of the total system in the form,

    where ?a?(?a)stands for the creation(annihilation)operator of the field with frequencyω;?σ+(?σ?)is the rasing(lowering)operators acting opon the CPB,?σzis a Pauli operator given below,ωcis the CPB frequency,andλ0stands for the coupling strength between CPB and CQED.We use the Pauli’s matrices to describe the action of operators on the two-level CPB system.As mentioned above we have,

    where the state|g?(|e?)stands for the ground(excited)state of the CPB.Here we will consider a more general scenario replacingω→ω(t)=ω0+f(t)andλ0→ζ(t)=λ(1+f(t)/ω0)1/2,withω0being the natural frequency of the CQED andf(t)is an external agent coupled to CQED.In this context we also consider the presence of losses in the system,as follows,

    whereω(t)is a time dependent frequency,γandδstand for the CPB decay constant and the loss of the CQED,respectively.

    The state|Ψ(t)?describing the time evolution of the entire system can be written as,

    where|g?(|e?)represents the CPB in its ground(excited)state andnstands for the number of excitation in the CQED.Throughout this study we will assume the CPB initially prepared in the excited state|e?and the CQED in a superposition of two coherent states,initial conditionCg,n(0)=0.As usually,we assume the subsystems CQED and CPB decoupled att=0.

    The evolution of the wave function described by Eq.(6)is obtained via the solution of the Schr¨odinger equation,

    Solving this coupled system by the 4-th order Runge-Kutta numerical method,we obtain the coefficientsCe,n(t)andCg,n+1(t).This allows us to determine the dynamic properties of the system,e.g.,those related to the CPB excitation inversion and the entropies of both subsystems.

    Fig.1 (Color online)Schematic of the arrangement to investigate the system.In it a superconducting qubit(green)interacts with the electric field(pink),both inside a transmission line(blue);the latter consists of a central conductor and two ground planes on either side.

    3 Evolution of CPB Excitation Inversion and Entropy

    The CPB excitation inversion,I(t),here is given by the form,

    The effect concerns the population transition between the fundamental and excited levels of CPB.On the other hand,the von Neumann’s entropy offers a quantitative measure of the disorder of a system as well as its degree of impurity,as shown by Phoenix and Knight.[45]This kind of entropy,defined in the formSQC=?Tr(ρQCln(ρQC))is a measure of the entanglement of two(or more)subsystems.Here the term entanglement is used with the meaning of mixed state,whose measure is given by Tr(?ρ2),instead of the more usual meaning of correlated quantum states in the EPR sense.[46]The density operatorρQCdescribing the entire system can be defined as?ρQC=|Ψ(t)??Ψ(t)|;thus the entropy takes the form,

    The entropySQC(ρQC)is zero whenρQCrepresents a pure state and is maximum and equal to ln(N)for a state of maximum mixing,whereNis the dimension of the Hilbert space.However,here our state is pure only att=0;fort>0 the state of the whole system ceases to be pure due to the presence of losses and the eventual action of time-dependent external fields.Now,concerning the relationship between the entropy?S=?ρln(?ρ)and the degree of mixing of the state,?D=Tr(?ρ2),despite having this relation between?Sand?ρ,to our knowledge the connection between these two quantities,?Sand?D,is not trivial.

    4 Results and Discussions

    4.1 Entropy:(a)Resonant Case

    We will initially analyze the entropy of the system in the absence of losses for the superposition of coherent states{|α?},for|α|=3.Figure 2 shows the changes that repeat in the periodT≈1.58λtwhile the entropy presents a maximum value 0.7.

    Fig.2 Time evolution of the entropy for the QED-circuit initially in a superposition of coherent states,in the resonant case,for|α|=3.0, ω0=2000λ and ω =2000λ.

    Figure 3 shows the entropy as a function of the dimensionless timeλt:in the first column,going from Figs.3(a)to 3(c),we vary the parameterγand fixδ=0.0;in the second column we setγ=0.0 and varyδ.The time evolution of the entropy was observed in the presence of loss affecting only the CPB while in Figs.3(d)to 3(f)the entropy evolves with losses affecting only the CQED.Comparing Figs.3(a)with 3(d),3(b)with 3(e),and 3(c)with 3(f),we note that the higher in fluence on the entropy occurs when the loss is included in the CQED,than when caused by the loss in the CPB.Based on the results by Refs.[47]and[48]the decoherence effect is greater in CQED due to the fact that this subsystem can be more excited than the CPB.The reverse only occurs for very low average excitation of CQED,??n?=|α|2?1.As expected,in both cases the maximum value of entropy increases when losses are included(seefigs.2 and 3).

    Another detail observed is that,for the ratioγ/δ≈16 between the decays the in fluences on the entropy are quite similar for|α|≤3(Fig.4).On the other hand,while the CQED state loses its coherence,its entropy tends to zero rapidly(seefig.3(e)).

    Fig.3 Time evolution of the entropy of the QED-circuit initially in a superposition of coherent states,for|α|=3.0,ω0=2000λ and ω =2000λ:(a) γ =0.001λ and δ=0.0;(b) γ =0.015λ and δ=0.0;(c) γ =0.030λ and δ=0.0;d)δ=0.001λ and γ =0.0;(e) δ=0.015λ and γ =0.0;(f) δ=0.030λ and γ =0.0.

    Fig.4 (Color online)Time evolution of the entropy of the QED-circuit initially in a superposition of coherent states,with|α|=3.0,ω0=2000λ and ω =2000λ.The blue region stands for: γ =0.0 and δ=0.001λ;the yellow region is for δ=0.0 and γ =0.015λ.

    4.2 Entropy of the System:(b)Non Resonant Case

    Here the subsystems are assumed non resonant,with fixed detuningf(t)=η.The entropy in absence of loss is smaller than in its presence and the periodicity disappears when detuning increases(Fig.5).In absence of losses,detuning affects the entropy of both subsystems,causing a decrease in its maximum value;this effect is amplified in presence of losses(seefig.6).The amplitude of the entropy decreases whenever the detuning is large,η?1.

    The entropy of the system in presence of losses and a time-dependent detuning(f(t)=ηcos(ω′t))has an opposite effect to what happens whenf(t)=η=const.One observes that a variable detuning causes no decrease in the maximum value entropy of the system,as shown in Fig.7.

    Fig.5 Time evolution of the entropy of the QED-circuit initially in a superposition of coherent states,with|α|=3.0,ω0=2000λ,ω =2000λ,and γ = δ=0.0;(a)for η = λ;(b)for η =20λ;(c)for η =100λ.

    Fig.6 Time evolution of the entropy of the QED-circuit initially in a superposition of coherent states,with|α|=3.0,ω0=2000λ,ω =2000λ,γ =0.015λ,and δ=0.001λ (a)for η = λ;(b)for η =20λ;(c)for η =100λ.

    Fig.7 Time evolution of the entropy of the QED-circuit initially in a superposition of coherent states,with|α|=3.0,ω0=2000λ,ω =2000λ,γ =0.015λ,δ=0.001λ,and η =100λ;(a)for ω′=10;(b)for ω′=20;(c)for ω′=50.

    4.3 CPB Excitation Inversion:(a)Resonant Case

    Firstly we consider the CPB in absence of losses and the field state in the mentioned superposition of two coherent states,for|α|=3.0;according to Fig.8 no collapse and revival effect is shown in the CPB excitation inversion.

    Figure 9 shows the excitation inversion as a function of(dimensionless)time(λt):in the first column,going from Figs.9(a)to 9(c)we letγto vary and setδ=0.0;in the second column we setγ=0.0 and letδto vary.Comparing Figs.9(a)with 9(d),9(b)with 9(e)and 9(c)with 9(f)we see again that the loss affecting the CQED has a greater in fluence on the inversion of excitation of the CPB.As the CQED can be more excited than the CPB,the deleterious effect of losses is greater in the CQED;for the ratioγ/δ≈16 between the decays,the in fluences of losses on the excitation inversion are quite similar for any|α|≤3.

    4.4 CPB Excitation Inversion:(b)Non Resonant Case

    Here the subsystems are assumed non resonant with constant detuningf(t)=η.The excitation inversion in absence of losses is greater than in their presence and the periodicity disappears when detuning increases(Fig.10).Detuning affects the excitation inversion of the CPB by decreasing the maximum amplitude value,the same effect is observed in entropy(seefig.5).Excitation inversion in the CPB does not occur for large detuning(η?1).When the system is in the presence of losses the excitation inversion occurs only for small detuning values,seefig.11(a),for higher detuning values there is no occurrence of excitation inversion;seefigs.11(b)and 11(c).

    The evolution of excitation inversion of the system in the presence of losses with a variable detuning(f(t)=ηcos(ω′t))shows an opposite behavior to that forf(t)=η=constant.Now the time dependent detuning causes no extinction of the excitation inversion,i.e.,the system continues reversing the excitation but maximum value amplitude of inversion decreases with time,as shown in Fig.12.

    Fig.8 Time evolution of the excitation inversion for the QED-circuit initially in coherent state superposition,with|α|=3.0,ω0=2000λ,and ω =2000λ.

    Fig.9 Time evolution of the excitation inversion for the QED-circuit initially in coherent state superposition,with|α|=3.0,ω0=2000λ,and ω =2000λ;(a)for γ =0.001λ and δ=0.0;(b) γ =0.015λ and δ=0.0;(c) γ =0.030λ and δ=0.0;(d)δ=0.001λ and γ =0.0;(e)δ=0.015λ and γ =0.0;(f)δ=0.030λ and γ =0.0.

    Fig.10 Time evolution of the excitation inversion for the QED-circuit initially in coherent state superposition,with|α|=3.0,ω0=2000λ,ω =2000λ,and γ = δ=0.0;(a)for η = λ;(b)for η =20λ;(c)for η =100λ.

    Fig.11 Time evolution of the excitation inversion for the QED-circuit initially in coherent state superposition,with|α|=3.0,ω0=2000λ,ω =2000λ,γ =0.015λ,and δ=0.001λ;(a)for η = λ;(b)for η =20λ;(c)for η =100λ.

    Fig.12 Time evolution of the excitation inversion for the QED-circuit initially in coherent state superposition,with|α|=3.0,ω0=2000λ,ω =2000λ,γ =0.015λ,δ=0.001λ,and η =100λ;(a)for ω′=10;(b)for ω′=20;(c)for ω′=50.

    5 Conclusion

    In this work we studied the dynamic properties(entropy of both sub-systems and the CPB excitation inversion)of a hybrid system composed of a CPB and an CQED.We considered the CPB initially excited and the CQED as a superposition of two coherent states.We have assumed the CPB-CQED system described by an intensity-dependent interaction introduced by Buck-Sukumar model.Concerning the entropy,which is related to the entanglement of subsystem states,we studied its time evolution in the presence of losses affecting both subsystems,for resonant and non-resonant cases.The influence on the entropy of a time-dependent(sinusoidal)frequency,via the CQED,was also considered.The excitation inversion was investigated under the same conditions and in fluences.The inclusion of losses in CPB and CQED makes the scenario more realistic.We have shown that the CQED subsystem is much more sensitive in the presence of losses than the CPB,this can be explained,due to the fact that the CQED presents a much larger number of photons in relation to the CPB.In addition,the time dependence of the couplingλtand CQED frequencyω(t)brings our results to different physical conditions.It was shown that the CPB excitation inversion occurs when detuning is constant in time;however,when it varies the excitation inversion always occurs no matter the value of detuning.In this hybrid system it is possible to control the entropy and inversion of excitation by choosing the parameters appropriately,for example,the appropriate choice of detuning allows us to increase the maximum entropy of the system,which was~0.45 in Fig.6(c)and passed to be~0.75 in Fig.7(c),another example can be seen in the excitation inversion that no longer occurs Figs.11(b)and 11(c)and conversely occur in Figs.12(b)and 12(c).

    In summary,it was shown that,when using the intensity-dependent BS model extended to a realistic scenario taking into account in fluence of losses,detuning and time dependent external fields,interesting results emerge.This also indicates that one can perform a dynamic control of subsystem properties through the manipulation of parameters involved,with potential applications to the command of quantum information processes.We have also shown that the decoherence effect is greater in the CQED,which is due to the fact that the CQED can have more excitations than the CPB.Decoherence affecting the CQED can be reduced by improving its quality.We hope that these results could provide some good insights for researchers in this area.

    Acknowledgment

    The authors thank the supports by the Conselho Nacional de Desenvolvimento Cient′? fico e Tecnologico(CNPq),the FAPEG-CNPq,Brazilian Agencies,and Rosemberg Fortes Nunes Rodrigues for Fig.1.

    [1]Z.L.Xiang,S.Ashhab,J.Q.You,and F.Nori,Rev.Mod.Phys.85(2013)623.

    [2]C.Jiang,Y.S.Cui,H.X.Liu,et al.,Chin.Phys.B24(2015)54206.

    [3]T.Duty,Physics(College.Park.Md).3(2010)80.

    [4]Q.Guo,L.Y.Cheng,H.F.Wang,and S.Zhang,Chin.Phys.B24(2015)40303.

    [5]I.Buluta,S.Ashhab,and F.Nori,Rep.Prog.Phys.74(2011)104401.

    [6]J.J.L.Morton and B.W.Lovett,Annu.Rev.Condens.Matter Phys.2(2011)189.

    [7]C.Valverde,A.N.Castro,and B.Baseia,Opt.Commun.366(2016)301.

    [8]R.Y.Yan,H.L.Wang,and Z.B.Feng,Int.J.Theor.Phys.55(2016)258.

    [9]K.D.Petersson,L.W.McFaul,M.D.Schroer,et al.,Nature(London)490(2012)380.

    [10]S.M.Girvin,M.H.Devoret,and R.J.Schoelkopf,Phys.Scr.T137(2009)014012.

    [11]Zhi-Bo Feng and M.Li,Physica C507(2014)65.

    [12]M.H.Devoret,S.Girvin,and R.Schoelkopf,Annalen der Physik16(2007)767.

    [13]M.H.Devoret and R.Schoelkopf,Science339(2013)1169.

    [14]T.J.Kippenberg and K.J.Vahala,Science321(2008)1172.

    [15]T.J.Kippenberg and K.J.Vahala,Opt.Express15(2007)17172.

    [16]F.Ivan and K.Khaled,Nature Photonics3(2009)201.

    [17]M.Aspelmeyer,T.J.Kippenberg,and F.Marquardt,Rev.Mod.Phys.86(2014)1391.

    [18]F.Brennecke,S.Ritter,T.Donner,and T.Esslinger,Science322(2008)235.

    [19]P.Rabl,Phys.Rev.Lett.107(2011)063601.

    [20]J.Q.Liao and F.Nori,Phys.Rev.A88(2013)023853.

    [21]M.V.Gustafsson,et al.,Science346(2014)207.

    [22]J.A.Schreier,et al.,Phys.Rev.B77(2008)180502.

    [23]T.P.Purdy,et al.,Phys.Rev.Lett.105(2010)133602.

    [24]J.V.Wezel and T.H.Oosterkamp,Proc.R.Soc.A468(2012)35.

    [25]X.Y.Lu,Z.L.Xiang,W.Cui,et al.,Phys.Rev.A88(2013)12329.

    [26]A.J¨ockel,et al.,Nature Nanotechnology10(2014)55.

    [27]A.C.P flanzer,O.Romero-Isart,and J.I.Cirac,Phys.Rev.A88(2013)033804.

    [28]J.M.Pirkkalainen,et al.,Nature(London)494(2013)211.

    [29]J.M.Pirkkalainen,S.U.Cho,F.Massel,et al.,Nature Communications6(2015)6981.

    [30]M.Janowicz,Phys.Rev.A57(1998)4784.

    [31]J.Fei,S.Y.X.,and Y.P.Yang,Chin.Phys.B18(2009)3193.

    [32]J.J.Li and K.D.Zhu,Appl.Phys.Lett.94(2009)63116.

    [33]J.J.Li and K.D.Zhu,Appl.Phys.Lett.94(2009)249903.

    [34]B.Buck and C.V.Sukumar,Phys.Lett.A81(1981)132.

    [35]R.J.Schoelkopf and S.M.Girvin,Nature(London)451(2008)664.

    [36]A.Blais,R.S.Huang,A.Wallra ff,et al.,Phys.Rev.A69(2004)062320.

    [37]Y.L.Chen,Y.F.Xiao,X.Zhou,et al.,J.Phys.B:At.Mol.Opt.Phys.41(2008)175503.

    [38]J.H.Eberly,J.B.Narozhni,and J.J.Sanchez-Mandragon,Phys.Rev.Lett.44(1980)1323.

    [39]B.M.Rodr′Igues-Lara,J.Opt.Soc.Am.B31(2014)1719.

    [40]B.M.Rodr′Iguez-Lara,F.Soto-Eguibar,A.Z.Cardenas,and H.M.Moya-Cessa,Opt.Express21(2013)12888.

    [41]A.N.Chaba,B.Baseia,C.X.Wang,and Recta Vyas,Physica A232(1996)273.

    [42]C.Valverde and B.Baseia,Mod.Phys.Lett.B32(2018)1850026.

    [43]J.Koch,T.M.Yu,J.Gambetta,et al.,Phys.Rev.A76(2007)042319.

    [44]J.M.Fink,R.Bianchetti,M.Baur,et al.,Phys.Rev.Lett.103(2009)083601.

    [45]S.J.D.Phoenix and P.L.Knight,Phys.Rev.A44(1991)6023.

    [46]A.Einstein,B.Podolsky,and N.Rosen,Phys.Rev.47(1935)777.

    [47]M.Brune,E.Hagley,J.Dreyer,et al.,Phys.Rev.Lett.77(1996)4887.

    [48]C.Monroe,D.M.Meekhof,B.E.King,and D.J.Wineland,Science272(1996)1131.

    久久亚洲真实| 男人舔女人下体高潮全视频| 免费观看精品视频网站| 色视频www国产| 一本久久中文字幕| 国产精华一区二区三区| 国产精品精品国产色婷婷| 黄色视频,在线免费观看| 欧美一区二区亚洲| 国产高清有码在线观看视频| 欧美黄色淫秽网站| 色视频www国产| 国产伦精品一区二区三区四那| 又紧又爽又黄一区二区| 男人舔女人下体高潮全视频| 女人十人毛片免费观看3o分钟| 69av精品久久久久久| 国产美女午夜福利| 午夜视频国产福利| 好男人电影高清在线观看| 每晚都被弄得嗷嗷叫到高潮| 丰满人妻一区二区三区视频av | 午夜久久久久精精品| 日韩国内少妇激情av| 日韩人妻高清精品专区| 久久久久亚洲av毛片大全| 岛国视频午夜一区免费看| 久久亚洲真实| 国内久久婷婷六月综合欲色啪| 又黄又粗又硬又大视频| 亚洲自拍偷在线| www日本在线高清视频| 亚洲国产欧美网| 国产精品野战在线观看| 午夜免费男女啪啪视频观看 | av天堂中文字幕网| 悠悠久久av| 12—13女人毛片做爰片一| 免费在线观看影片大全网站| 又粗又爽又猛毛片免费看| ponron亚洲| 免费在线观看影片大全网站| 亚洲精品日韩av片在线观看 | 欧美激情在线99| 老鸭窝网址在线观看| 中国美女看黄片| 在线观看日韩欧美| a级一级毛片免费在线观看| 久久精品91蜜桃| 国产精品久久久人人做人人爽| 丝袜美腿在线中文| 中文在线观看免费www的网站| 老司机在亚洲福利影院| 欧美午夜高清在线| 成年人黄色毛片网站| 最新美女视频免费是黄的| 欧美日韩精品网址| 色吧在线观看| 一本一本综合久久| 精品久久久久久久人妻蜜臀av| 悠悠久久av| 哪里可以看免费的av片| 欧美日韩福利视频一区二区| 午夜免费男女啪啪视频观看 | 精品午夜福利视频在线观看一区| 搞女人的毛片| 一级a爱片免费观看的视频| 18禁在线播放成人免费| 老司机福利观看| 久久精品亚洲精品国产色婷小说| 在线观看一区二区三区| 日日干狠狠操夜夜爽| 99久国产av精品| 久久精品国产亚洲av涩爱 | 久久久国产精品麻豆| 男人和女人高潮做爰伦理| 国产精品一区二区免费欧美| 国产精品综合久久久久久久免费| 嫩草影院精品99| 午夜激情福利司机影院| 国产伦一二天堂av在线观看| 最新中文字幕久久久久| 嫁个100分男人电影在线观看| 国产高清videossex| av福利片在线观看| 亚洲精品美女久久久久99蜜臀| 国产亚洲av嫩草精品影院| 日韩欧美国产在线观看| 亚洲成人久久性| 麻豆国产97在线/欧美| 1024手机看黄色片| 国产精品野战在线观看| 日本与韩国留学比较| 亚洲av电影在线进入| 成人午夜高清在线视频| 可以在线观看的亚洲视频| www国产在线视频色| 99久久成人亚洲精品观看| 成人一区二区视频在线观看| 黄色成人免费大全| 久久精品人妻少妇| 一区福利在线观看| 国产av不卡久久| 免费看美女性在线毛片视频| 国产成人影院久久av| 欧美日韩一级在线毛片| www.熟女人妻精品国产| 久久精品国产综合久久久| 欧美激情久久久久久爽电影| 亚洲成人久久性| 亚洲乱码一区二区免费版| 在线观看一区二区三区| 19禁男女啪啪无遮挡网站| 深爱激情五月婷婷| 18禁裸乳无遮挡免费网站照片| 国产淫片久久久久久久久 | 欧美在线一区亚洲| 日韩亚洲欧美综合| 色尼玛亚洲综合影院| 啦啦啦观看免费观看视频高清| 国产亚洲精品综合一区在线观看| 伊人久久大香线蕉亚洲五| 欧美日韩中文字幕国产精品一区二区三区| 国产中年淑女户外野战色| 中文字幕高清在线视频| 色在线成人网| 中国美女看黄片| 黑人欧美特级aaaaaa片| 人人妻,人人澡人人爽秒播| 国产精品精品国产色婷婷| 少妇的丰满在线观看| 内射极品少妇av片p| 精华霜和精华液先用哪个| 欧美激情在线99| 丰满人妻熟妇乱又伦精品不卡| 麻豆成人av在线观看| 18禁国产床啪视频网站| 成年人黄色毛片网站| 99久久精品一区二区三区| 国产国拍精品亚洲av在线观看 | 老汉色av国产亚洲站长工具| 久久精品国产亚洲av涩爱 | 亚洲美女黄片视频| 伊人久久大香线蕉亚洲五| 久久精品国产亚洲av香蕉五月| 丰满乱子伦码专区| 69av精品久久久久久| 日本黄色片子视频| 美女高潮的动态| 日韩欧美免费精品| 黄色片一级片一级黄色片| 欧美一级a爱片免费观看看| 99国产精品一区二区三区| 久久人人精品亚洲av| 国产一区二区激情短视频| 性色avwww在线观看| 国产精品久久电影中文字幕| 91九色精品人成在线观看| 日韩免费av在线播放| 免费高清视频大片| 亚洲成av人片免费观看| 国产久久久一区二区三区| 韩国av一区二区三区四区| 精品国产超薄肉色丝袜足j| 91久久精品电影网| 久久欧美精品欧美久久欧美| 亚洲,欧美精品.| 亚洲av第一区精品v没综合| 国产麻豆成人av免费视频| 中文字幕人妻熟人妻熟丝袜美 | 搞女人的毛片| 国产伦一二天堂av在线观看| 看黄色毛片网站| 日日夜夜操网爽| 欧美一级a爱片免费观看看| 高清在线国产一区| а√天堂www在线а√下载| tocl精华| 丰满人妻一区二区三区视频av | 看片在线看免费视频| 精品日产1卡2卡| 成人av在线播放网站| 亚洲五月婷婷丁香| 日本 欧美在线| 亚洲精品影视一区二区三区av| 精品无人区乱码1区二区| 国内精品久久久久精免费| 精品福利观看| 国产野战对白在线观看| 色综合站精品国产| 禁无遮挡网站| 亚洲天堂国产精品一区在线| 亚洲av成人不卡在线观看播放网| 日韩欧美精品免费久久 | 国产三级中文精品| 成人无遮挡网站| av专区在线播放| 国产一区在线观看成人免费| 国产淫片久久久久久久久 | 中文亚洲av片在线观看爽| 色综合站精品国产| 两个人看的免费小视频| 国产不卡一卡二| 亚洲最大成人手机在线| 成人高潮视频无遮挡免费网站| 99热只有精品国产| 99久国产av精品| 三级国产精品欧美在线观看| 观看美女的网站| 日本一本二区三区精品| 国产不卡一卡二| 国产欧美日韩一区二区精品| 天天一区二区日本电影三级| 国产国拍精品亚洲av在线观看 | 午夜免费成人在线视频| 亚洲精品久久国产高清桃花| 91在线观看av| 免费电影在线观看免费观看| 99久国产av精品| 我的老师免费观看完整版| 国内毛片毛片毛片毛片毛片| 啦啦啦韩国在线观看视频| 午夜福利欧美成人| 99久久精品国产亚洲精品| 在线观看66精品国产| 精品久久久久久久毛片微露脸| 日本在线视频免费播放| 成人三级黄色视频| 热99re8久久精品国产| 免费av不卡在线播放| 亚洲无线在线观看| 日本在线视频免费播放| 亚洲成人精品中文字幕电影| 可以在线观看的亚洲视频| 国产精品99久久99久久久不卡| 国产一区二区亚洲精品在线观看| 级片在线观看| 国产不卡一卡二| 亚洲人与动物交配视频| 亚洲 欧美 日韩 在线 免费| 日韩av在线大香蕉| 日韩欧美在线乱码| 哪里可以看免费的av片| 最新美女视频免费是黄的| 亚洲真实伦在线观看| 欧美成人一区二区免费高清观看| 搞女人的毛片| 嫩草影院精品99| 级片在线观看| 精品国产三级普通话版| aaaaa片日本免费| 国产美女午夜福利| 国产成+人综合+亚洲专区| 深夜精品福利| 精品久久久久久久久久久久久| 精品人妻偷拍中文字幕| 国产精品三级大全| 最近最新免费中文字幕在线| 国产三级中文精品| 欧美日韩中文字幕国产精品一区二区三区| 在线免费观看不下载黄p国产 | 露出奶头的视频| 色视频www国产| 精品不卡国产一区二区三区| 亚洲熟妇熟女久久| 国产淫片久久久久久久久 | 国产中年淑女户外野战色| 一个人看视频在线观看www免费 | 午夜激情福利司机影院| 国产免费男女视频| 香蕉av资源在线| 免费观看的影片在线观看| 精品国内亚洲2022精品成人| 此物有八面人人有两片| 亚洲狠狠婷婷综合久久图片| 亚洲国产中文字幕在线视频| 午夜福利高清视频| 琪琪午夜伦伦电影理论片6080| 一进一出抽搐动态| 在线播放无遮挡| 3wmmmm亚洲av在线观看| 啪啪无遮挡十八禁网站| 国产高清videossex| 欧美日韩精品网址| 国产精品香港三级国产av潘金莲| 日本免费a在线| 成人鲁丝片一二三区免费| 欧美乱码精品一区二区三区| 一级a爱片免费观看的视频| 久9热在线精品视频| 国产精品电影一区二区三区| 色在线成人网| 日本免费a在线| 日本三级黄在线观看| 国产精品久久久久久亚洲av鲁大| 国产成人福利小说| 国产美女午夜福利| 伊人久久精品亚洲午夜| 91字幕亚洲| 中亚洲国语对白在线视频| 久久草成人影院| 久久精品亚洲精品国产色婷小说| 亚洲中文字幕一区二区三区有码在线看| 变态另类丝袜制服| 久久久久性生活片| 成人永久免费在线观看视频| 1000部很黄的大片| 长腿黑丝高跟| 可以在线观看的亚洲视频| 欧美乱码精品一区二区三区| 日本 av在线| 很黄的视频免费| 欧美不卡视频在线免费观看| 成熟少妇高潮喷水视频| 中亚洲国语对白在线视频| 美女 人体艺术 gogo| 中文字幕高清在线视频| 国产乱人视频| 欧美一区二区亚洲| 国产 一区 欧美 日韩| 国产一区在线观看成人免费| 给我免费播放毛片高清在线观看| 观看免费一级毛片| 国产高潮美女av| 欧美性感艳星| 亚洲av电影不卡..在线观看| 999久久久精品免费观看国产| 国产精品女同一区二区软件 | 婷婷精品国产亚洲av在线| 18禁美女被吸乳视频| 真实男女啪啪啪动态图| 18禁黄网站禁片免费观看直播| 国产淫片久久久久久久久 | 一区二区三区高清视频在线| 18禁黄网站禁片免费观看直播| 久久久久久久午夜电影| 成人性生交大片免费视频hd| 国产av麻豆久久久久久久| 国产乱人视频| 母亲3免费完整高清在线观看| 国产国拍精品亚洲av在线观看 | 嫩草影院入口| 99热这里只有精品一区| 精品国产超薄肉色丝袜足j| a级毛片a级免费在线| 日韩欧美在线二视频| 亚洲欧美激情综合另类| 亚洲国产精品久久男人天堂| 国产探花极品一区二区| 国产真人三级小视频在线观看| 免费大片18禁| 日本一本二区三区精品| 成人三级黄色视频| 天堂√8在线中文| 亚洲天堂国产精品一区在线| 女人高潮潮喷娇喘18禁视频| 欧美成狂野欧美在线观看| 757午夜福利合集在线观看| 90打野战视频偷拍视频| 亚洲人成网站高清观看| 国产成人系列免费观看| 亚洲精品影视一区二区三区av| 中文字幕高清在线视频| 高清日韩中文字幕在线| 国产真实乱freesex| 日本熟妇午夜| 啦啦啦免费观看视频1| 搡老妇女老女人老熟妇| 真实男女啪啪啪动态图| 女人高潮潮喷娇喘18禁视频| 一边摸一边抽搐一进一小说| 色综合婷婷激情| 国产成年人精品一区二区| 全区人妻精品视频| 国产免费av片在线观看野外av| 90打野战视频偷拍视频| 国内久久婷婷六月综合欲色啪| 男人舔奶头视频| 亚洲精品久久国产高清桃花| 国产色婷婷99| 不卡一级毛片| 天美传媒精品一区二区| 国产在线精品亚洲第一网站| 国产乱人视频| 51午夜福利影视在线观看| 麻豆成人午夜福利视频| 狂野欧美白嫩少妇大欣赏| 99久久精品一区二区三区| 亚洲美女视频黄频| 中文字幕精品亚洲无线码一区| 亚洲人成网站在线播放欧美日韩| 免费电影在线观看免费观看| 亚洲欧美激情综合另类| 一级黄色大片毛片| 久久久精品欧美日韩精品| 国产在视频线在精品| 国产三级在线视频| 毛片女人毛片| 国产精品乱码一区二三区的特点| 亚洲熟妇熟女久久| www.熟女人妻精品国产| 午夜福利18| 午夜精品久久久久久毛片777| 白带黄色成豆腐渣| 亚洲性夜色夜夜综合| 淫妇啪啪啪对白视频| eeuss影院久久| 国内精品久久久久久久电影| 欧美三级亚洲精品| 国产精品久久久久久人妻精品电影| 成人欧美大片| 日韩欧美一区二区三区在线观看| 国产69精品久久久久777片| 每晚都被弄得嗷嗷叫到高潮| 高清毛片免费观看视频网站| www日本在线高清视频| 欧美性猛交黑人性爽| 欧美成人免费av一区二区三区| 亚洲精品成人久久久久久| 亚洲人成网站在线播| 九九久久精品国产亚洲av麻豆| av黄色大香蕉| 99在线人妻在线中文字幕| 午夜视频国产福利| 午夜亚洲福利在线播放| 欧美最新免费一区二区三区 | or卡值多少钱| 欧美精品啪啪一区二区三区| 欧美xxxx黑人xx丫x性爽| 日本黄色视频三级网站网址| 在线观看日韩欧美| 亚洲自拍偷在线| 校园春色视频在线观看| 色吧在线观看| 免费一级毛片在线播放高清视频| 我要搜黄色片| 欧美最新免费一区二区三区 | xxxwww97欧美| 国产一区二区在线观看日韩 | 亚洲自拍偷在线| 男人和女人高潮做爰伦理| 麻豆成人av在线观看| 亚洲国产欧美人成| 国产精品久久久久久久久免 | 狂野欧美白嫩少妇大欣赏| 免费无遮挡裸体视频| 国产黄色小视频在线观看| 成人精品一区二区免费| 国产成年人精品一区二区| 日韩欧美国产在线观看| 草草在线视频免费看| 成熟少妇高潮喷水视频| 亚洲国产精品999在线| 99久久精品国产亚洲精品| 成人国产综合亚洲| 国产伦人伦偷精品视频| 99久久99久久久精品蜜桃| 九色成人免费人妻av| 高潮久久久久久久久久久不卡| 他把我摸到了高潮在线观看| 丰满人妻熟妇乱又伦精品不卡| 日韩欧美精品v在线| 国产精品久久视频播放| 欧美精品啪啪一区二区三区| 午夜亚洲福利在线播放| 亚洲国产日韩欧美精品在线观看 | 欧美一级a爱片免费观看看| 香蕉av资源在线| 亚洲国产精品久久男人天堂| 亚洲精品成人久久久久久| e午夜精品久久久久久久| 欧美+亚洲+日韩+国产| 亚洲欧美日韩高清专用| 全区人妻精品视频| 嫁个100分男人电影在线观看| 亚洲成av人片在线播放无| 淫秽高清视频在线观看| 亚洲av中文字字幕乱码综合| 亚洲熟妇中文字幕五十中出| 级片在线观看| 丰满的人妻完整版| 熟女少妇亚洲综合色aaa.| 97碰自拍视频| 亚洲av免费高清在线观看| av天堂中文字幕网| 亚洲美女视频黄频| 少妇裸体淫交视频免费看高清| 日韩大尺度精品在线看网址| 亚洲激情在线av| 日本三级黄在线观看| 久久久久久久久大av| 亚洲第一电影网av| www日本黄色视频网| 中文字幕精品亚洲无线码一区| 一个人看的www免费观看视频| 不卡一级毛片| 99riav亚洲国产免费| 丰满人妻熟妇乱又伦精品不卡| 亚洲精品一卡2卡三卡4卡5卡| 日日干狠狠操夜夜爽| 亚洲无线观看免费| АⅤ资源中文在线天堂| 精品一区二区三区av网在线观看| 99热只有精品国产| 国产 一区 欧美 日韩| 色吧在线观看| 精品久久久久久久久久免费视频| 国产精品,欧美在线| 又爽又黄无遮挡网站| 亚洲 国产 在线| 日韩有码中文字幕| 成人av一区二区三区在线看| 亚洲国产色片| 欧美+亚洲+日韩+国产| 欧美日韩一级在线毛片| 日韩欧美 国产精品| 久久久国产成人免费| 成人特级黄色片久久久久久久| 制服丝袜大香蕉在线| 久久精品国产综合久久久| 亚洲国产欧美人成| 亚洲午夜理论影院| 国产精品精品国产色婷婷| 日本熟妇午夜| 99久久综合精品五月天人人| 午夜福利18| 国产单亲对白刺激| 欧美av亚洲av综合av国产av| 国产97色在线日韩免费| 日韩欧美国产一区二区入口| 真人一进一出gif抽搐免费| 亚洲电影在线观看av| 一边摸一边抽搐一进一小说| 日韩精品中文字幕看吧| 亚洲av熟女| 网址你懂的国产日韩在线| 国产伦人伦偷精品视频| www.www免费av| 老司机在亚洲福利影院| 久久性视频一级片| 国产高清视频在线播放一区| 免费在线观看成人毛片| 国产三级在线视频| 国产精品久久电影中文字幕| 国产91精品成人一区二区三区| 日韩大尺度精品在线看网址| 久久久久久国产a免费观看| 看黄色毛片网站| 嫩草影院精品99| 99国产精品一区二区三区| 国模一区二区三区四区视频| 动漫黄色视频在线观看| 无人区码免费观看不卡| 97碰自拍视频| 欧美黄色淫秽网站| 久久这里只有精品中国| 国产在线精品亚洲第一网站| 成年女人永久免费观看视频| 欧美日本视频| 丝袜美腿在线中文| 国产老妇女一区| 嫁个100分男人电影在线观看| 成年女人看的毛片在线观看| 好男人在线观看高清免费视频| 亚洲成人久久性| 很黄的视频免费| 国产亚洲精品一区二区www| 亚洲成人精品中文字幕电影| 精品99又大又爽又粗少妇毛片 | 天天躁日日操中文字幕| 国产精品98久久久久久宅男小说| a在线观看视频网站| 国内精品美女久久久久久| 精品免费久久久久久久清纯| 亚洲成人久久爱视频| 97碰自拍视频| 在线观看日韩欧美| 99久久久亚洲精品蜜臀av| 久久久久性生活片| 久久精品国产自在天天线| 久久久久久久亚洲中文字幕 | 97人妻精品一区二区三区麻豆| 中出人妻视频一区二区| 免费av毛片视频| 国产探花在线观看一区二区| 免费高清视频大片| 国产伦精品一区二区三区四那| 欧美性感艳星| 波野结衣二区三区在线 | xxxwww97欧美| 美女被艹到高潮喷水动态| 中文字幕人妻丝袜一区二区| a级一级毛片免费在线观看| 亚洲av一区综合| av天堂中文字幕网| 亚洲国产色片| 亚洲成人精品中文字幕电影| 精品久久久久久久久久久久久| 免费高清视频大片| 久久精品国产综合久久久| 亚洲黑人精品在线| 亚洲中文字幕日韩| 一级黄片播放器| 中文字幕人成人乱码亚洲影| 99热这里只有精品一区| 亚洲熟妇中文字幕五十中出| 久久久久免费精品人妻一区二区| 亚洲狠狠婷婷综合久久图片| 老熟妇乱子伦视频在线观看| 日韩欧美精品免费久久 | 国产在线精品亚洲第一网站| 美女黄网站色视频| 久久久久久久亚洲中文字幕 | 99国产极品粉嫩在线观看| 97超级碰碰碰精品色视频在线观看|