• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Thermal Conductivity of Complex Plasmas Using Novel Evan-Gillan Approach

    2018-06-15 07:32:42AamirShahzadSyedIrfanHaiderMuhammadKashifMuhammadShahzadShifaTariqMunirandMaoGangHe
    Communications in Theoretical Physics 2018年6期

    Aamir Shahzad?Syed Irfan HaiderMuhammad KashifMuhammad Shahzad ShifaTariq Munir and Mao-Gang He

    1Molecular Modeling and Simulation Laboratory,Department of Physics,Government College University Faisalabad(GCUF),Allama Iqbal Road,Faisalabad 38040,Pakistan

    2Key Laboratory of Thermo-Fluid Science and Engineering,Ministry of Education(MOE),Xi’an Jiaotong University,Xi’an 710049,China

    1 Introduction

    In recent years,the use of new materials for different specific applications,it is vital to understand and characterize its transport properties such as thermal transport,mass transport,and electrical transport.In the advancement of large and fast massively parallel computers,it is now possible to devise new molecular modeling methods that can reliably compute transport properties of complex materials from bottom to the top.Technological development in different areas such as electronics,automobiles and nuclear energy demands better thermal management.Conventional methods of measuring heat properties are reaching their limits.There is an immediate need to look for innovative means to achieve enhanced heat capacity and low thermal conductivity of conventional heat transfer fluid is proving to be a serious limitation.A comprehensive and systematic e ff ort is necessary to incorporate the effective thermal conductivity of complex materials and their limitations.The real structures and geometries of multi-phase materials are so vast and vivid that one cannot use a single model to estimate the effective thermal conductivity of complex fluid materials in the whole range due to their inherent limitations.In this scenario,complex fluid materials have emerged as an attractive solution to meet these challenges.[1]

    In addition to further characteristics of complex fluid materials,the composition and dimensions of these fluid materials help in the investigation of microscopic level properties,which are difficult to measure even with state of the art experimental techniques.Such techniques are also required for studying new thermo-physical phenomena in the micro to a nanoscale device made of novel nanostructures,such as carbon electronics and nano level fluidic flow.[2?5]Similarly,size,and dimension effects on vibrational modes for thermal conductivity in a complex crystal are extremely important especially for the variety of electronic and energy conversion technologies.The boundary scattering effects are strong for many vibrational modes because of strong anisotropy in their nonpropagating nature.This non-diffusive(non-propagating)nature can be suppressed by the adequate composition of nanostructures inside the fluids materials.So,the lattice thermal conductivities get important for fluids materials,dependent on their structure,heat capacities and the equation of state.[6]Thermal conductivities are carried out by atomic vibrations called phonons(quasi-particle traveling at the speed of sound).Heat propagation and conductivity are directly related to the time a phonon travels in a material before it collides with another phonon or defect.This characteristic time is called phonon lifetime.Shortening phonon lifetimes achieve low thermal conductivity,which is important for thermo-electronic materials.Phonon lifetime is one of the key parameters for quantifying the thermal conductivity,but assessing and measuring it is extremely challenging both experimentally and theoretically.State of the art simulation techniques is required to overcome it.Traditional computer simulations did not lead to a dramatic increase in thermal conductivity as found in experiments.[7]

    The atomic and molecular levels study of fluid dynamics is still an open challenge from the analytical and experimental point of view. The molecular dynamics(MD)simulation is the powerful tool for the investigation of transport properties of fluid dynamics at atomic or molecular scale and gives the understandings about the complex systems that cannot be directly accessible by experiments.[8?10]MD simulation is the favorable technique over the other computational techniques for the dynamical study of materials and complex systems.[11]The thermal properties,structures,and behavior of complex and large systems may be explored by using faster and powerful computer simulation modeling tools.Generally,two MD methods are in considerations for the estimation of thermal conductivity,namely,equilibrium MD(EMD),non-equilibrium MD(NEMD).The former method employs the Green-Kubo relations(GKRs)to calculate time correlation function of microscopic heat flux and the thermal conductivity. The method based on GKRs requires a long time to run the simulation and its computational cost limits to the systems having only a few hundred atoms.The lateral method is also a popular way to simulate the complex mechanisms,an example of it is inhomogeneous NEMD(InHNEMD)techniques,which mimic the experiment by imposing temperature differences,[11?12]heat current,[13?14]transient heat impulsion[15]across the system.This technique has faster convergence than EMD method.However,both techniques have complexities in terms finite size effects,large temperature gradients,spatially inhomogeneity.The Evan’s homogenous NEMD(HNEMD)required minimum sizes and produced small statistical errors than previously discussed techniques.[16]The HNEMD has no such complexities as discussed in above mentioned NEMD methods.The reason for preferring this scheme is that if physical walls are replaced by periodic boundary conditions(PBCs),all particles perceive similar treatment.The link between EMD and NEMD methods is due to fluctuationdissipation theorem,[17]which represents the relation between linear response to external perturbations and equilibrium time correlation function of the fluxes of the system.The HNEMD techniques have already been checked with emphasis on the application on heat transport problems of different fluids,thermal transport coefficients,and the autocorrelation function of heat current.[14]

    The area of complex dusty plasmas has rapidly grown over the past two decades to become the major area of study in the field of plasma physics. The results of strongly coupled complex dusty plasmas(SCCDPs)have been calculated for three-dimensional(3D)thermal conductivity(λ)by Salin and Caillol,[18]Faussurier and Murillo,[19]Donkoet al.[20]Donko and Hartmann[11]and presented authors of Shahzad and He,[21?22]as well as two-dimensional(2D)estimations,have been explored by Hou and Piel,[4]Khrustalyov and Vaulina[5]and presented authors of Shahzad and He.[23]Moreover,for the 2D systems,at?1long-time tail exists for auto correlation function(ACF)as compared tot?3/2short-time decay for the 3D systems.Presently,the external small perturbation is applied for the 2D dusty plasma systems at the lowerintermediately and high couplings(Γ).This small perturbation can cause small deviation from the initial state and the current ACF decays faster thant?1for large simulation time step dt,and it shows a definite value of heat energy fluxJ(t).[10,20]The current ACF oscillation,retardation of perturbation,and damping of external field generate smooth decay in the vicinity of 2D dusty plasmas.Consequently,integral converges when attempting to compute the transport coefficients by using Green-Kubo relation.The main objective of current work is to investigate the preliminary normalized(λ0)of 2D complex fluid material in strongly coupled complex regime through an improved Evan-Gillan HNEMD algorithm at constant external perturbation.The Gillan and Dixon[24]have also used this modified approach for LJ liquids to measure the autocorrelation function of microscopic heat current and thermal coefficients with weak external perturbations.This modified algorithm has already been used for transport coefficients of one component plasma(OCCP),[25]ionic liquids and for the investigation of simple fluids,[13?14]rheological issues of Yukawa liquids,[11]and semiconductor systems.[2]Therefore,this method is considered as a best computational tool in the limit of zero applied external perturbation.The extensive HNEMD simulations are performed to study the performance of algorithms and to compare the results obtained from EMD and NEMD simulations for a wide range of plasma parameters(Γ,κ)than those used for formerly used for Yukawa liquids.

    2 Computational Method

    2.1 Simulation Technique and Parameters

    Several simulation techniques have unnecessary cost,then simplify approach could be a select e.g.molecular mechanics dynamic simulation(MMDS).It allows study molecular ensembles for thousands of atoms.The MMDS technique works as a core on a simple explanation of force between the individual atoms.Here,HNEMD approach is implemented to determine the thermal conductivity of CDPLs by applying external perturbation,which is modeled by using Yukawa potential model use for the explanation of dust particles interact with one another.Yukawa potential is used for a system of charged particles.While

    2.2 HNEMD Model and Thermal Conductivity

    The GRKs are the mathematical terms for transport coefficients in the form of time integral correlation functions.GKR is for hydrodynamic transport coefficient of neutral particles.It has also been used for OCCP[25]and SCCDPs.[18,27]This formula gives linear response expression for thermal conductivity.It enables our calculations using a time-series record of motion of individual dust particles.For thermal transport coefficient,it is a time integral of the correlation function of the microscopic flux of heat energy and where it required input include timeseries for position and velocity of a dust particle.

    whereArepresents the area,Tdenotes the absolute temperature,kBis Boltzmann’s constant.The relation of microscopic heat energyJQis

    In this equationrij=ri?rjis the position vector andFijis the force of interaction on particleidue tojandpirepresents the momentum vector of thei-th particle.The energyEiof particleiisEi=Pi/2m+1/2Σφij,fori/=j,whereφijis the Yukawa pair potential given in Eq.(1)between particleiandj.According to,linear response theory(LRT)the perturbed equations of motion,given by Evans-Gillan in Ref.[22]define interparticle force acting on the particleiand the tensorial phase space distribution functionDi(ri,pi)describes the coupling of the system.According to non-Hamiltonian dynamics,LRT describes thisDi(ri,pi)as arbitrary phase space dynamical variable for a system moving underFe(t)[22?23]and is calculated as

    whereH0is the time derivative of the total energy with respect to field dependent equation of motion and in Ref.[22]and average brackets denote the statistical average andβ=1/kBT.

    The external force does a mechanical work on the system and it disturbs its equilibrium position,therefore,the Gaussian thermostat is applied in the dynamics of the system to maintain the equilibrium of the system.The dynamics of the system satisfy the condition of adiabatic incompressibility of phase space and Eq.(4)is only valid forBi(ri,pi)=0 and it is given in Ref.[22]ifDi(ri,pi)is taken as

    Then,Eq.(4)withJQA=A(t)is simply related to Green-Kubo formula given in Eq.(2).It is an assumption to our system that force is sufficiently weak and the system remains homogeneous and compatible with PBCs by taking momentum derivative sum equals zero.Therefore,the response in heat energy flux is

    The above Eq.(10)is the basic formula for evaluation of autocorrelation function of heat energy current by a perturbation method.The efficiency of the above formula depends on the extensive range of Yukawa plasma parameters.It is important to know the perturbation has Dirac delta function,therefore,the response of heat energy current is proportional to autocorrelation function itself rather than time integral of this function.[24]Recently,the presented authors(Shahzad and He)have reported a detail discussion on thermal conductivity calculation and Ewald-Yukawa sum for the case ofJQthat corresponds to phase space variable.[16]

    3 HNEMD Results and Discussion

    In this section,the thermal conductivity calculations are obtained through homogenous perturbed MD(HPMD)simulations,using Eq.(10),for 2D complex dusty plasma systems.The thermal conductivity is compared here with appropriate frequency normalization in the limit of a suitable equilibrium low value of normalized external perturbation,for an absolute range of plasma coupling(Γ≥10)and screening strength(κ≥1).For 2D case,the thermal conductivity of complex dusty plasmas may be represented asλ0=λ/nmωpa2ws(normalized by plasma frequency)and orλ?=λ/nmωEa2ws(normalized by plasma frequency).These types of normalizations have been used usually for the earlier studies of OCCP[25]and CDPLs[18?19]for estimating thermal conductivity.Especially for the 3D strongly coupled system the Einstein frequency decreases by increasing screening parameter.[22,28]This improved HPMD approach to 2D strongly coupled plasmas enables it possible to compute all the possible range of plasma states(Γ,κ)at constant value of normalized perturbationP?(=Pzaws/JQZ).For results reported here,we have checked and varied the following parameters including system size(N),normalized perturbation(P?),thermostat(α),simulations total run time,simulation step size(dt),and Debye screening(κ),Coulomb coupling(system temperature≡1/Γ)for the investigation of plasma thermal conductivity.Different sequences of HPMD simulations are performed for various suitable low values of normalized external perturbation in order to find appropriate value ofP?.In our case,the possible low value of external perturbation isP?=0.02 at which 2D complex plasma system gives equilibrium thermal conductivity for all plasma state points.It is interesting and

    When external force is selected parallel to thez-axisFe(t)=δ(0,Pz),δis Dirac delta function,the above Eq.(8)becomes significant here that this normalized steady state low value ofP?=0.02 is very small as compared to earlier known value of external force in Ref.[23]This low value re flects more appropriate and acceptable results using presented HPMD technique than earlier used HNEMD technique.Theλ0results obtained through HPMD computer simulation are checked for the universal temperature scaling law at this reduced steady-state value ofP?=0.02:

    Equation(11)gives the simple scaling law(universal temperature law)and it is showed that the PHMD data calculated by usingλ?=nmωEa2wsandT?=T/Tm≡Γm/Γ(ratio of the system temperature to melting temperature),hereTmand Γmare the melting points and related detail is given in Refs.[15?19,23]Here,the unknown constants(A,B and C)are found after curve fitting to available HPMD simulation data for complex plasmas at different plasma state points(Γ,κ).

    We now turn our attention to the main results obtained through the HPMD simulations.In our case,before the external perturbationP?is switched on,the system is equilibrated using the Gaussian thermostat,which generates the canonical ensemble given in Refs.[22–23].In practice,it is necessary for the MD system to be thermostated for the removal of additional heat that is generated due to work done by the external perturbationP?.[3,23]Presently,for a possible low value of the external perturbation strength ofP?=0.02(steady state value)is to be chosen for the estimation of equilibrium thermal conductivity at all plasma states of Γ (≡10,100)andκ(≡1,3).The results obtained through present HPMD approach are shown in Figs.1–3,where we have traced the plasma thermal conductivity through a computation of usual Yukawa particles in 2D within the strongly coupled regime for different screening parameters ofκ=1,2,and 3 respectively.These figures show our key results along with the earlier numerical estimations taken from 2D GKREMD of dissipative Yukawa systems of Khrustalyov and Vaulina[5]as well as the 2D NEMD results of Hou and Piel[4]and the previous measurements taken from the 2D homogenous NEMD computations of Shahzad and He[23]nearly at the same data points.Our HPMD data are in practically good agreement with the previous numerical computations based on different methods that yield better measurements for plasma thermal conductivity.It is observed from figures that the measured thermal conductivity has lower values as compared to earlier estimated values at nearly same plasma state points.The presented simulation resultsλ0(Γ)are performed forN=400 particles and a sequence of four different computations are taken into account at constant perturbation ofP?=0.02 for eachκ=1,2,and 3,respectively.Our numerical data ofλ0(Γ)are in nearly reasonable agreement with earlier numerical data of GKR-EMD,NEMD and HNEMD investigation.[4?5,23]

    Fig.1 Comparison of results obtained from Yukawa thermal conductivity λ0(normalized by ωp)as a function of plasma coupling Γ(system temperature)for SCCDPs at κ=1.Our 2D HPMD simulation results:present data(for N=400 particles)and simulation results for the 2D HNEMD obtained by the Shahzad and He,[23]2D NEMD(Brownian dynamics)results of Hou and Piel,[4]GKR-EMD of Khrustalyov and Vaulina at scaling factors of ζ=1,0.25 and ∞.[5]

    Fig.2 Comparison of results obtained from Yukawa thermal conductivity λ0(normalized by ωp)as a function of plasma coupling Γ(system temperature)for SCCDPs at κ=2.For details,see the caption of Fig.1.

    Figures 1 and 2 show the thermal conductivity,normalized by the plasma frequency(ωp),as a function of Coulomb coupling(system temperature=1/Γ)for the cases ofκ=1 and 2,respectively.For both cases,our simulations covering the appropriate range of Coulomb coupling parameter i.e.from the nearly liquid state to strongly coupled states,depending on differentκvalues.The presented simulation data are generally in fair agreement at nearly same plasma parameters and figures show overall the same trends as in the earlier numerical methods of 2D Yukawa liquids.[4?5,23]It is observed that our investigation ofλ0at low value of Γ(=10)is definitely higher than that of NEMD of Hou and Piel[4]and GKR-EMD estimations of Khrustalyov and Vaulina[5]but slightly higher that HNMED(N=1024)simulations Shahzad and He.[23]It is noted that our result for low value of Γ shows that particle-particle interactions are very weak and particles have maximum kinetic energy and the effectiveness of screening parameter is large.At intermediate to higher Γ(=20,50,and 100),the present results lie closer to earlier 2D NEMD simulations[4]and HNMED(N=4096)computations[23]but slightly less than 2D dissipative Yukawa GKR-EMD numerical results.[5]For both cases,it can be seen that the presentedλ0is well matched with earlier 2D numerical estimations[23]at intermediate Γ(=20).It is significant to note that a constantλ0is observed at intermediate to higher plasma coupling Γ at constant external perturbationP?=0.02,however,it is observed that a very slightly decreasing behavior is observed at higher Γ,contrary to earlier simulations of Shahzad and He.[23]But it is examined that a constantλ0is found at intermediate to higher Γ at constantP?,con firming earlier numerical results.[4?5,23]It is interesting to note here that the existence ofλ0is present for low-intermediate to higher Γ with an increase inκand remains within a satisfactory limited statistical uncertainty,con firming previous simulation results.[23]In our simulation,the presented plasma conductivity for lower to intermediate Γ shows the existence ofλ0and it is a clear contradiction with the earlier simulation results of Donkoet al.[29]where theλ0was not found at lower Γ.

    Fig.3 Comparison of results obtained from Yukawa thermal conductivity λ0(normalized by ωp)as a function of plasma coupling Γ(system temperature)for SCCDPs at κ=3.For details,see the caption of Fig.1.

    One further set of simulations is plotted to illustrate the plasmaλ0behaviors of the simulated complex dusty plasmas at higher value of screening.For this case,Fig.3 shows the normalizedλ0computed by the HPMD approach forN=400 atκ=3 and a sequence of different simulations is performed.This figure shows that our results are satisfactory agreement with various simulation data sets and the uncertainties inherent to the different earlier approaches are comparable.It is depicted from this figure that the present results lie close to the earlier 2D NEMD results of Hou and Piel[4]at intermediate to higher Γ (=20,100).At lower value of Γ,our simulation result is slightly higher than earlier HNMED simulation result,however,it is definitely higher than earlier numerical results of NEMD,GKR-EMD.Moreover,it is examined that the presence of normalized plasmaλ0at all plasma state points and it is observed that plasmaλ0found to be constant,as expected in earlier simulation results.[4]Moreover,it is noted that the measured data of plasmaλ0estimations atP?=0.02,where plasmaλ0has equilibrium values and independent ofP?,are within limited statistical uncertainties.The overall HPMD simulation data obtained with lower system size(N=400)are revealed to be well matched within statistical limits of errors at lower,intermediate and higher Γ states,however,some data points are deviate at the lower Γ states.This deviation grows up suddenly at lower Γ states and intermediate screeningκ=2.This deviation of our numerical result from previous data point is still acceptable,for all cases.It is demonstrated from all figures with comparisons of earlier results that the presented results through HPMD approach with lowerNare more accurate and acceptable.

    Fig.4 Variation of normalized plasma conductivity(λ?)by Einstein frequency(ωE)with normalized temperature(T ?)for complex dusty plasmas system at different κ =1,2,and 3.The bold line is computed by employing simple functional form of:λ?=AT?+B/T?+C,representing the universal temperature law for the 2D complex dusty plasmas.[23]

    We determine the universal behavior of complex dusty plasma in which normalized conductivityλ?follows a temperature scaling law.Figure 4 shows the variation of normalized plasmaλ?(=λ/nmωEa2WS)verses various normalized temperaturesT?(=T/Tm).It is observed that these measured results are in good agreement to the former reported results for 2D Yukawa liquids.[11]In our case,T?is plotted along horizontal axis andλ?is plotted along vertical axis as shown in figure.This figure displays the variation of normalized(by EinsteinωE)λ?for different normalized temperatureT?atκ=1,2,and 3.The bold line,shown in Fig.4,is obtained by fitting curve of the functional form(temperature scaling law)given in Eq.(11)reported in Refs.[19,23]with the coefficients:A=0.02302,B=?1.49422 andC=0.69373.These obtained fitting coefficients(A,BandC)for the dimensionless plasma thermal conductivity given in Eq.(11),λ?=AT?+B/T?+C,are measured from presented HPMD simulation data display in Figs.1–3.It is observed that there is dispersion of obtained data of normalizedλ?shown in Fig.4.The scattering of these data from bold line suggested one possible reason that this may be happen due to high negative value of coefficientBin the functional fit of Eq.(11)in comparison to the previous EMD,HNMED measurements.It is noted that the bold fitting line is nearly exact fitting,con firming earlier numerical results.Moreover,Einstein frequency(ωE)is much more important than plasma frequency(ωp)because the distribution of data along solid line explains more accurately the physical significance of dusty plasma thermal conductivity.It is observed from Fig.4 that theλ?of dusty plasma is close to functional form for low value ofκandT?.For higher values ofκ,at intermediate values ofT?,λ?shows less dependence on these two variables and it is little far from functional form(temperature scaling).But at higherT?the conductivity of dusty plasmas is close to functional form,forκ=3 in 2D case.It is concluded that present results show the less growing behavior of dusty plasmasλ?with the increase of normalized temperature and screening.The plotted functional form demonstrates the correct universal behavior at three different values of screening on the extensive range ofT?for the reduced force field strengthP?=0.02.The result measured by plasmasλ?(T?),employing the HPMD technique,give empirical fitting and the plot shows better fit compared to the prior results.

    4 Conclusions

    We have estimated thermal conductivity of the 2D strongly coupled complex Yukawa liquid using improved Evan-Gillan HPMD approach for suitable range of plasma parameters of screening lengthsκ(=1,3)and Coulomb couplings Γ(=10,100).Nonequilibrium molecular dynamics method uses the thermal response of heat energy current to calculate the preliminary results of plasma thermal conductivity.Our presented method is better than earlier HNEMD and NEMD methods because the very small value of external perturbation(P?=0.02)is only imposed on several individual particles each time step.We have shown that normalized plasmaλ?as the function of normalized temperatureT?follows simple temperature scaling law.It is concluded that the present approach for evaluating the thermal conductivity from homogenous PMD method yields consistent results and this method is quite accurate and much faster than the previous EMD and NEMD methods.For future work,the system size(N)and external perturbation strength(P?)can be varied to examine how effectively this improved HPMD algorithm calculates the thermal conductivities of Yukawa and other Coulomb systems.

    Acknowledgments

    We are very obliged to the National Advanced Computing Centre of National Centre for Physics(NCP),Pakistan and National High-Performance Computing Center(NHPCC)of Xian Jiaotong University,China for allocating computer time to test and run our MD code.

    [1]Y.Feng,B.Yu,P.Xu,and M.Zou,J.Phys.D40(2007)3164.

    [2]K.K.Mandadapu,R.E.Jones,and P.Papadopoulos,J.Chem.Phys.130(2009)204106.

    [3]A.Shahzad and M.G.He,AIP Conf.Proc.1547(2013)173.

    [4]L.J.Hou and A.Piel,J.Phys.A42(2009)214025.

    [5]Y.V.Khrustalyov and O.S.Vaulina,Phys.Rev.85(2012)046405.

    [6]W.Yu,D.M.France,J.L.Routbort,and S.U.Choi,Heat Trans.Eng.29(2008)432.

    [7]A.J.H.McGaughey and M.Kaviany,Int.J.Heat Mass.Trans.47(2004)783.

    [8]G.Ciccotti,G.Jacucci,and I.R.McDonald,J.Stat.Phys.21(1979)01.

    [9]W.G.Hoover and W.T.Ashurst,Nonequilibrium Molecular Dynamics,Academic London,London(1975).

    [10]D.J.Evans and G.P.Morriss,Statistical Mechanics of Non-Equilibrium Liquids,Academic London,London(1990).

    [11]Z.Donko and P.Hartmann,Phys.Rev.E69(2004)016405.

    [12]F.Muller-Plathe,J.Chem.Phys.106(1997)6082.

    [13]J.P.Hansen and I.R.McDonald,Theory of Simple Liquids,Academic London,London(1986).

    [14]D.J.Evans,Phys.Lett.A91(1982)457.

    [15]R.J.Hulse,R.L.Rowley,and W.V.Wilding,Int.J.Thermo.Phys.26(2005)01.

    [16]A.Shahzad and M.G.He,Contrib.Plasma.Phys.52(2012)667.

    [17]R.Kubo,Rep.Prog.Phys.29(1966)255.

    [18]G.Salin and M.J.Caillol,Phys.Plasmas.10(2003)1220.

    [19]G.Faussurier,M.S.Murillo,and Gibbs-Bogolyubov,Phys.Rev.E67(2003)046404.

    [20]Z.Donko,J.Phys.A:Math.Theor.42(2009)214029.

    [21]A.Shahzad,M.G.He,S.Irfan Haider,and Y.Feng,Phys.Plasmas.24(2017)093701.

    [22]A.Shahzad and M.G.He,Phys.Plasmas.19(2012)083707.

    [23]A.Shahzad and M.G.He,Phys.Plasmas.22(2015)23707.

    [24]M.J.Gillan and M.Dixon,J.Phys.C16(1983)869.

    [25]C.Pierleon,G.Ciccotti,and B.Bernu,Euro.Phys.Lett.4(1987)1115.

    [26]E.Wigner,Phys.Rev.46(2004)1002.

    [27]H.Ohta and S.Hamaguchi,Phys.Plasmas7(2000)4506.

    [28]T.Saigo and S.Hamaguchi,Phys.Plasmas9(2002)1210.

    [29]Z.Donko,J.Goree,P.Hartmann,and B.Liu,Phys.Rev.E79(2009)026401.

    久久99热6这里只有精品| 国产探花极品一区二区| 我的老师免费观看完整版| 国产真实伦视频高清在线观看| 日本精品一区二区三区蜜桃| 亚洲av免费高清在线观看| 老司机福利观看| 尾随美女入室| 一区二区三区高清视频在线| 色吧在线观看| 最近手机中文字幕大全| 九九爱精品视频在线观看| 两性午夜刺激爽爽歪歪视频在线观看| 日本免费一区二区三区高清不卡| 国产一区二区在线av高清观看| 久久国内精品自在自线图片| 国产色爽女视频免费观看| 亚洲av二区三区四区| 国产男靠女视频免费网站| a级毛片免费高清观看在线播放| 久久午夜亚洲精品久久| 成人一区二区视频在线观看| 亚洲第一区二区三区不卡| 亚洲综合色惰| 99久久精品国产国产毛片| 精品午夜福利视频在线观看一区| 少妇高潮的动态图| 最新中文字幕久久久久| 最近中文字幕高清免费大全6| 国产亚洲欧美98| 日韩欧美在线乱码| 亚洲成人精品中文字幕电影| 99九九线精品视频在线观看视频| 亚洲精品456在线播放app| 国产精品不卡视频一区二区| 国产 一区精品| 一级毛片电影观看 | 国产成人精品久久久久久| 一进一出好大好爽视频| 国内精品宾馆在线| 免费一级毛片在线播放高清视频| 欧美又色又爽又黄视频| 噜噜噜噜噜久久久久久91| 国产美女午夜福利| 真人做人爱边吃奶动态| 最好的美女福利视频网| 一个人免费在线观看电影| 色视频www国产| 国产亚洲精品av在线| 久久欧美精品欧美久久欧美| 欧美一区二区亚洲| 啦啦啦啦在线视频资源| 中文资源天堂在线| 永久网站在线| 99热这里只有是精品在线观看| 亚洲美女搞黄在线观看 | 久久久成人免费电影| 国产精品三级大全| 久久午夜福利片| 麻豆av噜噜一区二区三区| 又爽又黄a免费视频| 国产精品人妻久久久久久| 日韩精品中文字幕看吧| 三级男女做爰猛烈吃奶摸视频| 亚洲电影在线观看av| 久久热精品热| 美女大奶头视频| 99热只有精品国产| av在线天堂中文字幕| 亚洲婷婷狠狠爱综合网| 日本欧美国产在线视频| 色视频www国产| 天堂影院成人在线观看| 美女被艹到高潮喷水动态| 成人永久免费在线观看视频| 寂寞人妻少妇视频99o| 日本精品一区二区三区蜜桃| 99热全是精品| 婷婷亚洲欧美| 免费不卡的大黄色大毛片视频在线观看 | 麻豆成人午夜福利视频| 中文资源天堂在线| 久久婷婷人人爽人人干人人爱| videossex国产| 天堂影院成人在线观看| 国产爱豆传媒在线观看| 亚洲无线在线观看| 99热这里只有是精品在线观看| 欧美+日韩+精品| 亚洲成人中文字幕在线播放| 99riav亚洲国产免费| 观看免费一级毛片| 天天躁夜夜躁狠狠久久av| 国产男人的电影天堂91| 国产中年淑女户外野战色| 久久久欧美国产精品| 色视频www国产| 久久精品国产亚洲av涩爱 | 一夜夜www| 欧美另类亚洲清纯唯美| 精品一区二区三区人妻视频| 丰满乱子伦码专区| 欧美成人免费av一区二区三区| 黄色一级大片看看| 国产精品,欧美在线| 日本欧美国产在线视频| 亚洲av中文字字幕乱码综合| 欧美日韩精品成人综合77777| 91久久精品国产一区二区成人| 日本在线视频免费播放| 国产乱人视频| 深爱激情五月婷婷| 特大巨黑吊av在线直播| 你懂的网址亚洲精品在线观看 | av国产免费在线观看| 欧美zozozo另类| 99久久成人亚洲精品观看| 精品熟女少妇av免费看| av在线天堂中文字幕| 亚洲欧美精品综合久久99| 免费无遮挡裸体视频| 色吧在线观看| 欧美xxxx性猛交bbbb| 久久久久久久久久成人| 国产成人91sexporn| 久久国内精品自在自线图片| 欧美日韩国产亚洲二区| 亚洲av.av天堂| 麻豆成人午夜福利视频| 久久久久国产精品人妻aⅴ院| www.色视频.com| 免费观看的影片在线观看| 成人一区二区视频在线观看| 久久人人精品亚洲av| 搡老妇女老女人老熟妇| av黄色大香蕉| 神马国产精品三级电影在线观看| 久久午夜福利片| 日韩大尺度精品在线看网址| 成人三级黄色视频| 国内精品宾馆在线| 日韩国内少妇激情av| 国产精品av视频在线免费观看| 亚洲五月天丁香| 成人美女网站在线观看视频| 亚洲欧美日韩无卡精品| 一本久久中文字幕| 亚洲无线观看免费| 在线免费观看的www视频| 成人av在线播放网站| 国产午夜精品论理片| 亚洲美女视频黄频| 午夜激情欧美在线| 欧美区成人在线视频| 国产成人福利小说| 99热这里只有精品一区| 又粗又爽又猛毛片免费看| 舔av片在线| 99热这里只有精品一区| 亚洲激情五月婷婷啪啪| 在线观看午夜福利视频| 免费av观看视频| 久久人人精品亚洲av| 久久午夜福利片| 蜜臀久久99精品久久宅男| 变态另类丝袜制服| 国产精品伦人一区二区| 成人av一区二区三区在线看| 一个人观看的视频www高清免费观看| 真实男女啪啪啪动态图| 日本与韩国留学比较| 毛片一级片免费看久久久久| 午夜视频国产福利| 免费av毛片视频| 乱系列少妇在线播放| 日本熟妇午夜| 亚洲精品粉嫩美女一区| 国产精品永久免费网站| 久久人人精品亚洲av| 国模一区二区三区四区视频| 伦精品一区二区三区| 九九久久精品国产亚洲av麻豆| 99在线视频只有这里精品首页| 91狼人影院| 久久99热这里只有精品18| 亚洲国产精品成人久久小说 | 国产女主播在线喷水免费视频网站 | 国产又黄又爽又无遮挡在线| 色在线成人网| 好男人在线观看高清免费视频| 欧美人与善性xxx| 国产精品av视频在线免费观看| 别揉我奶头~嗯~啊~动态视频| 国产精品99久久久久久久久| 九色成人免费人妻av| 成年女人毛片免费观看观看9| 国产高清不卡午夜福利| 男女之事视频高清在线观看| 日日摸夜夜添夜夜添小说| 黄片wwwwww| 1024手机看黄色片| 免费av不卡在线播放| 久久久精品94久久精品| 十八禁国产超污无遮挡网站| 亚洲精品日韩av片在线观看| 一进一出抽搐动态| 精品福利观看| 深爱激情五月婷婷| 成人欧美大片| 香蕉av资源在线| 久久精品国产亚洲网站| 亚洲电影在线观看av| 久久综合国产亚洲精品| 日韩大尺度精品在线看网址| 一进一出好大好爽视频| 欧美成人精品欧美一级黄| 色哟哟哟哟哟哟| 狠狠狠狠99中文字幕| 亚洲三级黄色毛片| 日韩精品有码人妻一区| 在线看三级毛片| 在线a可以看的网站| 我要看日韩黄色一级片| 99精品在免费线老司机午夜| 91麻豆精品激情在线观看国产| 亚洲人与动物交配视频| 亚洲中文字幕日韩| 亚洲国产精品成人综合色| 国产探花在线观看一区二区| 久久精品国产清高在天天线| 成人二区视频| 久久久午夜欧美精品| 一本久久中文字幕| 婷婷精品国产亚洲av| 中文字幕熟女人妻在线| 大又大粗又爽又黄少妇毛片口| 精品久久久久久久久亚洲| 国产淫片久久久久久久久| 黄色一级大片看看| 我要搜黄色片| 国产精品人妻久久久久久| 免费电影在线观看免费观看| 高清毛片免费看| 国产亚洲欧美98| 亚洲国产高清在线一区二区三| 美女xxoo啪啪120秒动态图| 国产又黄又爽又无遮挡在线| 深夜a级毛片| 亚洲av熟女| 中文字幕免费在线视频6| 欧美+日韩+精品| 亚洲精品日韩av片在线观看| 久久久精品94久久精品| 麻豆乱淫一区二区| 亚洲av中文字字幕乱码综合| 我的老师免费观看完整版| 亚洲综合色惰| 欧美成人一区二区免费高清观看| 日韩欧美国产在线观看| 午夜福利在线观看免费完整高清在 | 国内精品美女久久久久久| 天堂√8在线中文| 国产黄色视频一区二区在线观看 | 国模一区二区三区四区视频| 男女那种视频在线观看| 国产爱豆传媒在线观看| 成人漫画全彩无遮挡| 老司机午夜福利在线观看视频| 欧美激情久久久久久爽电影| 激情 狠狠 欧美| 男女那种视频在线观看| 久久久久久久久大av| 久久草成人影院| ponron亚洲| 18禁裸乳无遮挡免费网站照片| 精品少妇黑人巨大在线播放 | 免费电影在线观看免费观看| 精品久久久久久成人av| 精品久久久久久久久亚洲| 在线免费观看不下载黄p国产| 久久精品91蜜桃| 91久久精品国产一区二区成人| 在线播放无遮挡| 久久人人爽人人爽人人片va| 真实男女啪啪啪动态图| 国产精品一及| 99热这里只有精品一区| av国产免费在线观看| 精品无人区乱码1区二区| 精品一区二区三区人妻视频| 久久九九热精品免费| 国语自产精品视频在线第100页| 亚洲性夜色夜夜综合| 成人特级黄色片久久久久久久| 久久人人爽人人爽人人片va| 亚洲天堂国产精品一区在线| 国产精品av视频在线免费观看| 成人鲁丝片一二三区免费| 精品人妻偷拍中文字幕| 麻豆国产av国片精品| 免费av不卡在线播放| 免费观看人在逋| 日日摸夜夜添夜夜添小说| 国产男靠女视频免费网站| 久久天躁狠狠躁夜夜2o2o| 久久久久免费精品人妻一区二区| 成人国产麻豆网| 成人av在线播放网站| 欧美日韩一区二区视频在线观看视频在线 | 日日撸夜夜添| 国产在视频线在精品| 一a级毛片在线观看| 最新在线观看一区二区三区| 亚洲精品亚洲一区二区| 午夜激情欧美在线| 亚洲精品日韩在线中文字幕 | 免费人成在线观看视频色| 99久久中文字幕三级久久日本| 成年av动漫网址| 国产精品无大码| 99热全是精品| 亚洲av中文av极速乱| 免费观看的影片在线观看| av天堂中文字幕网| 午夜福利在线观看吧| 久久久久国产网址| 日本爱情动作片www.在线观看 | 一区二区三区免费毛片| 国产精品1区2区在线观看.| 女人十人毛片免费观看3o分钟| 91在线观看av| 免费看美女性在线毛片视频| 欧美日韩国产亚洲二区| 观看美女的网站| 91在线观看av| 一级毛片久久久久久久久女| 欧美日韩国产亚洲二区| 日本免费a在线| 久久久久免费精品人妻一区二区| 久久综合国产亚洲精品| 日韩国内少妇激情av| 在线观看美女被高潮喷水网站| 久久久欧美国产精品| 国国产精品蜜臀av免费| 真人做人爱边吃奶动态| 国产精品爽爽va在线观看网站| 啦啦啦韩国在线观看视频| 国产成年人精品一区二区| 精品人妻一区二区三区麻豆 | 亚洲精品456在线播放app| 亚洲美女黄片视频| 蜜桃亚洲精品一区二区三区| 97人妻精品一区二区三区麻豆| 国产亚洲欧美98| 人人妻人人澡欧美一区二区| 久久精品国产99精品国产亚洲性色| 2021天堂中文幕一二区在线观| 一进一出抽搐动态| 亚洲精品亚洲一区二区| a级毛色黄片| 国产av在哪里看| 少妇熟女欧美另类| 村上凉子中文字幕在线| 欧美中文日本在线观看视频| 日韩中字成人| 欧洲精品卡2卡3卡4卡5卡区| 国产精品久久久久久精品电影| 内地一区二区视频在线| 一进一出好大好爽视频| 日本一本二区三区精品| 天堂√8在线中文| 联通29元200g的流量卡| 国国产精品蜜臀av免费| 日韩成人伦理影院| 超碰av人人做人人爽久久| 搡老熟女国产l中国老女人| 欧美性感艳星| 日本熟妇午夜| 亚洲精品影视一区二区三区av| 一个人看的www免费观看视频| 少妇猛男粗大的猛烈进出视频 | 精品国产三级普通话版| 亚洲图色成人| 男插女下体视频免费在线播放| 精品不卡国产一区二区三区| 毛片女人毛片| 日本-黄色视频高清免费观看| 免费观看的影片在线观看| 国产午夜福利久久久久久| 男人和女人高潮做爰伦理| 欧美一区二区精品小视频在线| 成人av在线播放网站| 在线观看av片永久免费下载| 国产视频内射| 少妇被粗大猛烈的视频| 亚洲第一电影网av| 黑人高潮一二区| 精品一区二区三区av网在线观看| 成年女人永久免费观看视频| 久久久久免费精品人妻一区二区| 成人午夜高清在线视频| 老熟妇乱子伦视频在线观看| 最后的刺客免费高清国语| 亚洲国产高清在线一区二区三| 午夜精品在线福利| 日韩人妻高清精品专区| 夜夜夜夜夜久久久久| 亚洲成人精品中文字幕电影| 国产精品久久电影中文字幕| 日韩欧美三级三区| 国产精品野战在线观看| 99九九线精品视频在线观看视频| 黄色配什么色好看| 一边摸一边抽搐一进一小说| 1000部很黄的大片| 久久精品国产亚洲网站| 欧美日韩精品成人综合77777| 亚洲美女搞黄在线观看 | 亚洲人成网站在线观看播放| 亚洲av一区综合| 国产毛片a区久久久久| 亚洲婷婷狠狠爱综合网| 国内精品美女久久久久久| 久99久视频精品免费| 日韩精品青青久久久久久| 日本黄色片子视频| avwww免费| 国产乱人偷精品视频| 亚洲av免费在线观看| 啦啦啦韩国在线观看视频| 露出奶头的视频| 亚洲欧美成人精品一区二区| 亚洲七黄色美女视频| 波野结衣二区三区在线| 精品欧美国产一区二区三| 一区二区三区高清视频在线| 日本黄色片子视频| 草草在线视频免费看| 国产高清三级在线| 综合色av麻豆| 久久久久国产网址| 一本久久中文字幕| 亚洲精品亚洲一区二区| 如何舔出高潮| 国产精品国产三级国产av玫瑰| 成人综合一区亚洲| 欧美性感艳星| .国产精品久久| 男人的好看免费观看在线视频| eeuss影院久久| 国产v大片淫在线免费观看| 亚洲精品亚洲一区二区| 亚洲国产精品成人久久小说 | 最近视频中文字幕2019在线8| 淫妇啪啪啪对白视频| 欧美又色又爽又黄视频| 久久久久九九精品影院| 成人高潮视频无遮挡免费网站| 女生性感内裤真人,穿戴方法视频| 日韩欧美国产在线观看| 深夜a级毛片| 免费在线观看成人毛片| 寂寞人妻少妇视频99o| videossex国产| 99久久九九国产精品国产免费| 美女xxoo啪啪120秒动态图| 亚洲人成网站在线观看播放| АⅤ资源中文在线天堂| av在线老鸭窝| 99久久中文字幕三级久久日本| 亚洲不卡免费看| 国内揄拍国产精品人妻在线| 久久草成人影院| 少妇人妻一区二区三区视频| 可以在线观看的亚洲视频| 色哟哟哟哟哟哟| 99久久精品国产国产毛片| 亚洲成人av在线免费| 69av精品久久久久久| 国产视频一区二区在线看| 熟女人妻精品中文字幕| 3wmmmm亚洲av在线观看| 亚洲在线自拍视频| 免费看美女性在线毛片视频| 99视频精品全部免费 在线| 亚洲成人久久爱视频| 亚洲成人中文字幕在线播放| 亚洲人成网站高清观看| 美女xxoo啪啪120秒动态图| 国产精品1区2区在线观看.| 麻豆成人午夜福利视频| 18禁黄网站禁片免费观看直播| 天堂影院成人在线观看| 亚洲最大成人av| h日本视频在线播放| 精品一区二区三区视频在线| 日韩一本色道免费dvd| 国产黄色视频一区二区在线观看 | 成人毛片a级毛片在线播放| 日韩av在线大香蕉| 色5月婷婷丁香| 深爱激情五月婷婷| 日韩成人伦理影院| 国产成年人精品一区二区| 精品人妻一区二区三区麻豆 | 久久6这里有精品| 日韩,欧美,国产一区二区三区 | 亚洲成人久久性| 别揉我奶头~嗯~啊~动态视频| av在线蜜桃| av女优亚洲男人天堂| 麻豆久久精品国产亚洲av| 国产片特级美女逼逼视频| 日本黄大片高清| 精品欧美国产一区二区三| 日本黄大片高清| 简卡轻食公司| 日韩人妻高清精品专区| 国产麻豆成人av免费视频| ponron亚洲| 少妇人妻精品综合一区二区 | 午夜福利高清视频| 中文字幕免费在线视频6| 国产国拍精品亚洲av在线观看| 国产探花极品一区二区| 久久午夜亚洲精品久久| 一级a爱片免费观看的视频| av在线老鸭窝| 在线观看美女被高潮喷水网站| 国产精品久久久久久久电影| 国产69精品久久久久777片| 色吧在线观看| 伦精品一区二区三区| 美女cb高潮喷水在线观看| 2021天堂中文幕一二区在线观| 老师上课跳d突然被开到最大视频| 嫩草影院精品99| 九九在线视频观看精品| 最新在线观看一区二区三区| 亚洲av免费在线观看| 特级一级黄色大片| 亚洲av免费高清在线观看| 成人三级黄色视频| 联通29元200g的流量卡| 丝袜美腿在线中文| 又粗又爽又猛毛片免费看| 亚洲图色成人| 久久久精品欧美日韩精品| 精品不卡国产一区二区三区| 成年免费大片在线观看| 亚洲自偷自拍三级| 人妻制服诱惑在线中文字幕| 国产精品一区www在线观看| 成人国产麻豆网| 小蜜桃在线观看免费完整版高清| 午夜福利在线观看吧| 日本五十路高清| 久久久a久久爽久久v久久| 综合色丁香网| 国产成人精品久久久久久| 欧美成人免费av一区二区三区| 九色成人免费人妻av| 亚洲色图av天堂| 秋霞在线观看毛片| 99热只有精品国产| 亚洲欧美日韩东京热| 国产精品一区www在线观看| 草草在线视频免费看| 亚洲成av人片在线播放无| 男人的好看免费观看在线视频| 成人三级黄色视频| 美女被艹到高潮喷水动态| 亚洲婷婷狠狠爱综合网| 欧美日本亚洲视频在线播放| 国产成人a区在线观看| 岛国在线免费视频观看| 欧美+亚洲+日韩+国产| 乱码一卡2卡4卡精品| 日本免费a在线| 99久久久亚洲精品蜜臀av| 日本三级黄在线观看| 舔av片在线| 不卡一级毛片| 精品99又大又爽又粗少妇毛片| a级毛片a级免费在线| 国产精品久久久久久久电影| 如何舔出高潮| 久久久久久大精品| 精品熟女少妇av免费看| 午夜精品国产一区二区电影 | 亚洲人与动物交配视频| 日日撸夜夜添| 一个人看视频在线观看www免费| 亚洲国产精品成人久久小说 | 男人的好看免费观看在线视频| 搡老岳熟女国产| 国产在线男女| 午夜福利视频1000在线观看| 欧美日韩精品成人综合77777| 小蜜桃在线观看免费完整版高清| 最近手机中文字幕大全| 看非洲黑人一级黄片| 人人妻人人看人人澡| 国内精品宾馆在线| 日本 av在线| 91在线观看av| 最近在线观看免费完整版| 99久久精品热视频| 欧美绝顶高潮抽搐喷水| 国产黄色视频一区二区在线观看 | 少妇丰满av| 亚洲国产日韩欧美精品在线观看| 日本欧美国产在线视频| 国产精品av视频在线免费观看| 国产精品亚洲美女久久久|