王瑜 劉揚(yáng) 卓座品 薛俊鵬 許銳能 孫麗莉 廖紅
摘要:【目的】通過分析肥料中氮基礎(chǔ)上降低磷鉀配比對(duì)武夷巖茶產(chǎn)量及品質(zhì)的影響,為巖茶的優(yōu)質(zhì)、健康生產(chǎn)優(yōu)化養(yǎng)分配比提供科學(xué)依據(jù)?!痉椒ā吭囼?yàn)于武夷山進(jìn)行,供試品種為水仙。設(shè)置3種肥料配比處理(N-P2O5-K2O):15-15-15(農(nóng)民用肥,對(duì)照CK)、18-8-18(降磷,T1處理)和21-8-11(降磷降鉀,T2處理),統(tǒng)計(jì)相關(guān)產(chǎn)量指標(biāo),定量測(cè)定5項(xiàng)常規(guī)品質(zhì)指標(biāo)及3種主要次生代謝物濃度,并對(duì)茶葉滋味和香氣物質(zhì)進(jìn)行非靶向代謝組學(xué)分析?!窘Y(jié)果】不同配比施肥影響標(biāo)準(zhǔn)葉比率(茶葉有效產(chǎn)量),其中T2處理不僅能顯著提高標(biāo)準(zhǔn)葉比率(P<0.05,下同),分別為CK和T1處理的1.35和1.40倍,還能顯著增加茶青游離氨基酸的濃度,改善茶青品質(zhì)。以施肥處理作為限制條件,對(duì)非靶向代謝物進(jìn)行限制性主坐標(biāo)軸分析發(fā)現(xiàn),肥料配比對(duì)茶青代謝物總變異的貢獻(xiàn)顯著(P=0.001),不同配比施肥可分別解釋滋味和香氣代謝物總變異的23.30%和22.00%。液相分析結(jié)果表明,T2處理可顯著提高黃酮類物質(zhì)風(fēng)信子質(zhì)(Hyacinthin)、醚類化合物索拉非尼(Sorafenib)及茶氨酸等代謝物的濃度;氣相結(jié)果表明,T2處理可明顯提高香氣代謝物的濃度,包括奶油香物質(zhì)2,3-Octanedione等。表明T2處理主要通過提高滋味與香氣代謝物濃度(尤其香氣代謝物)以改善茶青品質(zhì)。【結(jié)論】在以氮為基礎(chǔ)比例上適當(dāng)降低磷和鉀的占比,不僅能顯著提高武夷巖茶的有效產(chǎn)量,且滋味和香氣代謝物濃度也顯著增加,進(jìn)而在一定程度上改善了茶青品質(zhì)。
關(guān)鍵詞: 氮磷鉀配比;標(biāo)準(zhǔn)葉比率;品質(zhì);滋味;香氣;武夷巖茶
中圖分類號(hào): S571.106.2? ? ? ? ? ? ? ? ? ? ? ? ? 文獻(xiàn)標(biāo)志碼: A 文章編號(hào):2095-1191(2022)02-0391-10
Effects of high nitrogen and low phosphorus medium potassium ratios on the yield and quality of Wuyi Rock tea
WANG Yu, LIU Yang, ZHUO Zuo-pin, XUE Jun-peng,?XU Rui-neng, SUN Li-li LIAO Hong
(Root Biology Center, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou? 350002, China)
Abstract:【Objective】To investigate the effects of reducing the ratio of phosphorus(P) and potassium(K) based on nitrogen(N) in fertilizers on the yield and quality of Wuyi tea, so as to provide a theoretical basis for producing high quality rock tea and fertilization of better nutrient ratios. 【Method】In this study, the experimental garden located in Wuyishan City, and tea cultivar was Shuixian. Three different ratios of NPK(N-P2O5-K2O) fertilizers 15-15-15(CK), 18-8-18(T1, treatment was reduced the ratio of P) and 21-8-11(T2, treatment was reduced the ratio of P and K) were used. The bud density, the weight of hundred buds and the percentage of standard tea leaves were measured in spring. Five conventional quality indicators including the contents of water extract, soluble sugars, tea polyphenols, free amino acids and flavonoids were determined. The concentrations of three major secondary metabolites such as theanine, caffeine and ECG(epicatechin gallate) were detected by high performance liquid chromatography. The flavor and aroma associated substances were analyzed through Ultra performance liquid chromatography-quadrupole-time of flight mass spectrometer and gas chromatography mass spectrometer, respectively. 【Result】The results showed that the different ratios of fertilizer significantly influenced the percentage of standard tea leaves, but had little effects on the bud density and the weight of hundred buds. T2 either significantly increased the percentage of standard tea leaves(P<0.05,the same below), which were about 1.35 and 1.40 times of CK and T1, respectively, or greatly increased the contents of free amino acids and water extracts in tea, and thus improving the quality of fresh tea leaves. Constrained principal coordinate analysis(CPCoA) of untargeted metabolomics, with fertilization treatments as restrictive condition, showed that the flavor and aroma associated metabolites were significantly influenced by the ratios of N, P, K, whose contributions were about 23.30% and 22.00%, respectively. The liquid phase analysis exhibited that T2 significantly increased the concentrations of the flavonoid compound Hyacinthin, the ether compound Sorafenib, and the main secondary metabolites theanine and caffeine. The gas chromatographic analysis showed that T2 increased the concentrations of aroma related metabolites obviously, including creamy aroma substance 2,3-Octanedione. The results above revealed that T2 could increase the concentration of flavor and aroma metabolites, and thus improving the tea quality, especially aroma. 【Conclusion】Optimal fertilizers ratio of N, P, K, namely high N, low P and moderate K, effectively increases yield and improve the quality of Wuyi tea, especially flavor and aroma quality.
Key words: ratio of N, P, K fertilizers; percentage of standard leaves; quality; flavor; aroma; Wuyi Rock tea
Foundation items: National Natural Science Foundation of China(31701989); Tea Root Nutrient Efficiency Improvement and Application Innovation Team Project of Ministry of Agriculture and Rural Affairs of China(125A0301); General Project of Fujian Natural Science Foundation(2021J01114);Fujian Agriculture and Forestry University(FAFU) Construction Project for Technological Innovation and Service System of Tea Industry Chain(K1520005A03)
0 引言
【研究意義】茶[Camellia sinensis(L.) O. Kuntze]是世界上最重要的非酒精飲料之一。武夷巖茶作為烏龍茶中的極品,因其獨(dú)特的香氣、口感和保健功效,受到廣大消費(fèi)者的追捧(Hodgson et al.,2014;王吉玉和李秋雨,2020)。而隨著市場(chǎng)需求量的增加,武夷巖茶的產(chǎn)量也在迅速增加。茶樹作為一種葉用植物,隨著不斷的生長(zhǎng)其對(duì)于氮磷鉀的需求也越來越大,只能通過大量施肥來保證茶葉產(chǎn)量(Liu et al.,2015)。由于缺乏科學(xué)指導(dǎo),茶園因不合理施肥在帶來產(chǎn)量的同時(shí)也造成了茶葉品質(zhì)下降、土壤退化和環(huán)境污染等問題。因此,針對(duì)不同氮磷鉀配比對(duì)武夷巖茶產(chǎn)量及品質(zhì)的影響,優(yōu)化養(yǎng)分配比,對(duì)武夷巖茶優(yōu)質(zhì)健康生產(chǎn)具有重要意義?!厩叭搜芯窟M(jìn)展】茶葉產(chǎn)量和品質(zhì)與土壤養(yǎng)分狀況密切相關(guān),產(chǎn)地對(duì)武夷巖茶品質(zhì)的影響尤為顯著(周志等,2019a,2019b),適當(dāng)施肥有利于茶葉產(chǎn)量及品質(zhì)的形成(劉揚(yáng)等,2020)。同時(shí),施肥顯著影響茶葉品質(zhì)代謝物的合成(Li et al.,2017)。施氮可促進(jìn)茶葉中游離氨基酸和咖啡堿的合成,平衡脂代謝與滋味/香氣化合物形成的關(guān)系,從而提高品質(zhì)(Liu et al.,2017);但過量施氮顯著增加茶葉青草味前體物質(zhì)的形成,降低香氣品質(zhì)(Ruan et al.,2010;蘇有健等,2011)。據(jù)報(bào)道,氮磷鉀肥配施能增加茶樹樹勢(shì),提高葉片凈光合速率,增加茶葉產(chǎn)量并改善品質(zhì)(余正江等,1997;羅凡等,2014)。而氮磷鉀配比(N-P2O5-K2O)對(duì)不同品種茶葉產(chǎn)量與品質(zhì)的影響差異較大。與普通復(fù)合肥(15-15-15)相比,高氮低磷低鉀配比(4-1-1)能顯著提高鳩坑種茶葉產(chǎn)量,增加茶湯鮮爽度(董水平等,2004);而高氮低磷中鉀配比(17-3-13)對(duì)日本藪北茶葉產(chǎn)量影響不顯著,但茶葉中氨基酸含量明顯提高(田潤(rùn)泉和呂閏強(qiáng),2016)。在綠茶烏牛早中,1.2-0.1-0.2配比能顯著提高咖啡堿和氨基酸的含量(呂梅等,2019);而金牡丹的最適氮磷鉀配比為2.75-1.2-1.1,有利于促進(jìn)水浸出物、咖啡堿和氨基酸的形成(田甜等,2018)。武夷巖茶具有巖骨花香、清香甘活等獨(dú)特的品質(zhì)特征(修明,2004),其對(duì)茶葉香氣和滋味品質(zhì)形成所需的養(yǎng)分也與其他茶類不同(劉美雅等,2015)。【本研究切入點(diǎn)】前人研究發(fā)現(xiàn)不同氮磷鉀配施對(duì)茶葉的產(chǎn)量和品質(zhì)有所影響,但茶葉的產(chǎn)地和品種不同對(duì)氮磷鉀配比的需求也不同;目前的研究報(bào)道對(duì)烏龍茶不同氮磷鉀配比的研究相對(duì)較少,尤其是武夷巖茶,同時(shí)氮磷鉀養(yǎng)分對(duì)標(biāo)準(zhǔn)葉比率的影響還未見報(bào)道?!緮M解決的關(guān)鍵問題】以茶農(nóng)普遍施用的15-15-15等比例復(fù)合肥為對(duì)照,以氮為基礎(chǔ)比例1,在單位面積施肥量基本相近的基礎(chǔ)上,設(shè)計(jì)18-8-18(降磷比例)和21-8-11(降磷降鉀比例)2種氮磷鉀配比,研究降磷鉀配比對(duì)武夷巖茶茶葉產(chǎn)量和品質(zhì)的影響,以期確定較為適宜的氮磷鉀配比,為武夷巖茶科學(xué)施肥提供理論依據(jù)。
1 材料與方法
1. 1 試驗(yàn)材料與試驗(yàn)地點(diǎn)
供試材料為武夷山主栽茶樹品種之一水仙,試驗(yàn)地點(diǎn)位于福建省武夷山市星村鎮(zhèn)燕子窠茶園(東經(jīng)117°55'17.2",北緯27°39'13.9")。由于茶園開墾與栽培管理統(tǒng)一,茶葉基本采用機(jī)械采摘與修剪,因此茶樹的樹齡與長(zhǎng)勢(shì)基本一致。施肥前,茶園土壤基本理化性質(zhì):pH 4.62,堿解氮104.93 mg/kg,有效磷59.13 mg/kg,速效鉀99.27 mg/kg,有機(jī)質(zhì)22.65 g/kg。
1. 2 試驗(yàn)設(shè)計(jì)
1. 2. 1 肥料配比設(shè)計(jì) 設(shè)置3種不同氮磷鉀(N-P2O5-K2O)配比的肥料處理,分別為15-15-15(茶農(nóng)普遍用肥,對(duì)照,CK)、18-8-18(降磷,T1處理)與21-8-11(降磷降鉀,T2處理)。其中,T1和T2處理為根據(jù)本課題組前期對(duì)烏龍茶區(qū)茶青中氮磷鉀比率和武夷山茶園土壤狀況的研究分析而設(shè)置的降磷降鉀處理(周志等,2019a;Sun et al.,2019)?;谇捌谘芯堪l(fā)現(xiàn)烏龍茶區(qū)茶青中氮磷鉀比率約為10-1-5,且武夷山茶園土壤中磷含量超標(biāo),已形成巨大的磷庫(kù),因此本研究在以氮為基礎(chǔ)比例1、單位面積施肥量相同的基礎(chǔ)上,設(shè)置T1處理為18-8-18(1-0.44-1)的降磷占比,T2處理為21-8-11(1-0.38-0.52)的降磷降鉀占比。
1. 2. 2 茶園施肥與樣品采集 在茶園(丘陵)自下往上同一水平面上選取相同的行數(shù)劃分3片區(qū)域進(jìn)行不同的施肥處理(圖1),分別進(jìn)行CK、T1和T2不同氮磷鉀配比的施肥處理。于2019年1月進(jìn)行施肥,肥料沿茶樹滴水線進(jìn)行開溝條施,溝深約15 cm,施肥量均為750 kg/ha,施肥后覆土。于2019年4月底水仙采茶季進(jìn)行茶葉樣品采集,利用測(cè)產(chǎn)框(0.33 m×0.33 m,下同)采集茶葉樣品,每個(gè)處理選取10個(gè)茶葉樣品,共計(jì)30份茶葉樣品。茶葉樣品進(jìn)行產(chǎn)量統(tǒng)計(jì)后,于105 ℃快速進(jìn)行高溫固定30 min,再于75 ℃烘干至恒重;熱固定后的樣品磨成粉末狀,用于測(cè)定茶葉常規(guī)品質(zhì)指標(biāo)、滋味與香氣相關(guān)代謝物。
1. 3 測(cè)定項(xiàng)目與方法
1. 3. 1 茶葉產(chǎn)量的測(cè)定 一個(gè)測(cè)產(chǎn)框內(nèi)采摘到的茶芽數(shù)目統(tǒng)計(jì)后,換算成1 m2的茶芽數(shù)目,即為茶芽密度。每框茶葉烘干至恒重后稱量,計(jì)算百芽重:
百芽重=每框茶葉干重/茶芽數(shù)目×100
符合一芽三葉標(biāo)準(zhǔn)的茶葉樣品為標(biāo)準(zhǔn)葉,頂端兩片葉對(duì)夾生且不符合一芽三葉標(biāo)準(zhǔn)的為非標(biāo)準(zhǔn)葉。
標(biāo)準(zhǔn)葉比率(%)=標(biāo)準(zhǔn)葉數(shù)目/總茶葉數(shù)目×100
1. 3. 2 茶葉常規(guī)品質(zhì)指標(biāo)的測(cè)定 茶葉常規(guī)品質(zhì)指標(biāo)包括水浸出物、可溶性糖、茶多酚、游離氨基酸和總黃酮類的濃度。茶葉水浸出物的測(cè)定參考沸水回流法(余浩等,2016),可溶性糖的測(cè)定采用蒽酮比色法(鄒青松等,2011),茶多酚總量的測(cè)定采用酒石酸亞鐵比色法(高玉萍等,2013),游離氨基酸的測(cè)定采用茚三酮顯色法(邵金良等,2008),總黃酮類化合物的測(cè)定采用氯化鋁顯色法(何書美和劉敬蘭,2007)。
1. 3. 3 茶葉滋味相關(guān)代謝物的測(cè)定 茶葉滋味相關(guān)代謝物的測(cè)定內(nèi)容包括主要次生代謝物及非靶向代謝物。樣品的制備采用甲醇提取法,50 mg的茶葉樣品中加入1 mL 70%甲醇溶液,混勻后于25 ℃超聲提取20 min;12000 g離心10 min后取上清液作為樣品待測(cè)液。主要次生代謝物包括茶氨酸、咖啡堿、表兒茶素沒食子酸酯(Epicatechin gallate,ECG)等,利用高效液相色譜儀(1260,Agilent,America)對(duì)樣品進(jìn)行靶向測(cè)定,色譜柱型號(hào)選用Zorbax SB-Aq(4.6×250 mm,5 μm,Agilent,America)(Sun et al.,2019)。非靶向代謝物通過超高效液相色譜—四級(jí)桿—飛行時(shí)間質(zhì)譜進(jìn)行代謝組學(xué)分析,選用Acquity UPLC HSS T3(2.1×100 mm,1.8 μm,Waters,Manchester)色譜柱,結(jié)合SYNAPT G2-Si HDMS QTOF質(zhì)譜儀(Waters,Manchester)進(jìn)行數(shù)據(jù)采集(Chen et al.,2018)。
1. 3. 4 茶葉香氣相關(guān)代謝物的測(cè)定 茶葉香氣相關(guān)代謝物的測(cè)定采用頂空吸法(朱旗等,2001)。稱取2.0 g樣品于SPME瓶中,快速擰緊蓋子,采用MPS自動(dòng)進(jìn)樣器(Gerstel,German)進(jìn)行樣品前處理,80 ℃孵化30 min,萃取60 min后進(jìn)樣。毛細(xì)管色譜柱型號(hào)選用Rxi-5Sil MS(0.25 μm×0.25 mm×30 m,Restec,America),利用氣相色譜質(zhì)譜儀器(7890B,Agilent,America)與飛行時(shí)間質(zhì)譜儀(Pegasus HT,Leco,America)進(jìn)行數(shù)據(jù)采集。
1. 4 統(tǒng)計(jì)分析
主要采用Graphpad Prism 7進(jìn)行數(shù)據(jù)處理并作圖,利用SPSS 16.0對(duì)數(shù)據(jù)進(jìn)行鄧肯(Duncan)多重比較分析。滋味非靶向代謝物采集的數(shù)據(jù)在Waters Acquity UPLC系統(tǒng)上通過Progenesis QI進(jìn)行解卷積分析,香氣非靶向代謝物采集的數(shù)據(jù)采用LECO-Chroma行分析。使用R語言的語言包GUniFrac和vegan分析限制性主坐標(biāo)軸(Constrained principal coordinate analysis,CPCoA),使用ggplot2制作小提琴圖;采用TBtools繪制熱圖。
2 結(jié)果與分析
2. 1 不同配比施肥對(duì)茶葉產(chǎn)量的影響
產(chǎn)量指標(biāo)是直接反映植物生長(zhǎng)情況及對(duì)養(yǎng)分有效利用的重要指標(biāo)。通過對(duì)不同配比施肥處理的茶葉進(jìn)行茶芽密度、百芽重及標(biāo)準(zhǔn)葉比率等產(chǎn)量相關(guān)指標(biāo)的測(cè)定分析,結(jié)果發(fā)現(xiàn),不同肥料配比影響水仙“一芽三葉”標(biāo)準(zhǔn)采摘葉的比率,從而影響茶葉制率,即有效產(chǎn)量(圖2和圖3)。如圖3所示,T2處理下標(biāo)準(zhǔn)葉比率顯著高于其余處理(P<0.05,下同),達(dá)77.05%,分別為CK和T1處理的1.35和1.40倍;CK與T1處理間標(biāo)準(zhǔn)葉比率無顯著差異(P>0.05,下同),分別為57.28%和54.99%,均形成較多的非標(biāo)準(zhǔn)葉,即對(duì)夾葉,從而影響茶葉的制率與品質(zhì)。此外,與CK相比,T1和T2處理對(duì)茶芽密度和百芽重的影響差異不顯著。綜上可知,即高氮低磷中鉀配比(T2處理)能顯著提高茶葉有效產(chǎn)量,但不同配比施肥對(duì)常規(guī)產(chǎn)量指標(biāo)茶芽密度和百芽重?zé)o顯著影響。
2. 2 不同配比施肥對(duì)茶葉常規(guī)品質(zhì)的影響
茶葉中游離氨基酸、水浸出物、可溶性糖、茶多酚及黃酮類化合物為茶葉的5項(xiàng)常規(guī)品質(zhì)指標(biāo),其濃度直接影響茶葉的滋味和口感,是影響茶品質(zhì)的重要成分(唐建敏等,2012)。通過對(duì)茶葉常規(guī)品質(zhì)指標(biāo)進(jìn)行測(cè)定發(fā)現(xiàn),不同配比施肥顯著影響茶葉中游離氨基酸、水浸出物和可溶性糖的濃度,但對(duì)茶多酚和總黃酮類化合物無顯著影響(圖4)。其中,T1和T2處理均能增加茶葉中水浸出物和可溶性糖的濃度,T2處理下茶葉的水浸出物和T1處理下可溶性糖濃度分別為38.20%和62.41 mg/g,分別較CK顯著增加10.40%和7.79%,水浸出物濃度高表明茶湯耐泡且濃厚,而可溶性糖高則表明茶湯回甘好;此外,T2處理還能顯著提高茶葉中游離氨基酸的濃度,達(dá)33.06 mg/g,分別比CK和T1處理增加6.51%和5.65%,茶葉中游離氨基酸的濃度高說明茶湯具有更高的鮮爽度??梢?,降低肥料中磷的配比有利于提高茶葉中水浸出物和可溶性糖的濃度,同時(shí)降低磷鉀的配比可顯著提高游離氨基酸濃度。
2. 3 不同配比施肥對(duì)茶葉滋味相關(guān)代謝物的影響
對(duì)茶葉甲醇提取物進(jìn)行靶向與非靶向代謝組測(cè)定,以探究不同配比施肥對(duì)茶葉滋味相關(guān)代謝物的影響。通過對(duì)茶葉進(jìn)行靶向和非靶向代謝組學(xué)測(cè)定,共獲得2247個(gè)代謝物。從圖5可看出,不同施肥處理下甲醇提取物中茶葉代謝物差異顯著,且不同施肥處理可解釋總變異的23.30%,坐標(biāo)軸CPCoA 1的差異為主導(dǎo)效應(yīng),可解釋59.69%的差異,表明不同配比施肥可能影響茶葉的滋味。將差異代謝物均一化后進(jìn)行熱圖分析,相較于CK,T1和T2處理下茶葉中滋味相關(guān)代謝物的濃度明顯增加(圖6),說明肥料中適當(dāng)降低磷的配比即可提高茶葉中滋味相關(guān)代謝物的濃度。從圖7可看出,與CK相比,T1和T2處理可顯著提高黃酮類芳香族化合物Pratenol A的濃度,分別是CK的1.16和1.10倍。T2處理還可顯著增加黃酮類物質(zhì)風(fēng)信子質(zhì)(Hyacinthin)的濃度,T2處理的濃度分別較CK和T1處理增加24.02%和55.62%。同時(shí),T2處理在醚類化合物索拉非尼(Sorafenib)及主要次生代謝物茶氨酸與咖啡堿的濃度都顯著高于CK和T1處理;其中,T2處理較CK和T1處理,在醚類化合物索拉非尼濃度上分別增加12.07%和15.13%,在茶氨酸濃度上分別增加48.76%和33.81%,在咖啡堿濃度上分別增加48.76%和33.81%;說明與等比例的配施CK相比,降磷和降磷降鉀處理在一定程度上更有利于滋味代謝物在茶葉中的積累。綜上所述,在肥料中適當(dāng)降低磷的配比在一定程度可提高茶葉中滋味相關(guān)代謝物的濃度。
2. 4 不同配比施肥對(duì)茶葉香氣相關(guān)代謝物的影響
對(duì)茶葉香氣相關(guān)代謝物進(jìn)行非靶向測(cè)定,以探究不同配比施肥對(duì)茶葉香氣的影響。利用氣相色譜質(zhì)譜儀對(duì)茶葉樣品進(jìn)行測(cè)定分析,共獲得471個(gè)代謝物。以施肥處理作為限制條件,對(duì)代謝物進(jìn)行限制性主坐標(biāo)軸分析發(fā)現(xiàn),不同處理下茶葉代謝物間呈現(xiàn)明顯的分離狀態(tài),且不同處理可解釋香氣成分總差異的22.00%,坐標(biāo)軸CPCoA 1的差異為主導(dǎo)效應(yīng),可解釋61.94%的差異,表明不同配施處理顯著改變茶葉中香氣成分(圖8)。從差異代謝物的熱圖分析結(jié)果(圖9)可看出,與CK和T1處理相比,T2處理可大量提高香氣代謝物的累積,說明肥料中適當(dāng)降低磷和鉀的比例更有利于提高茶葉中香氣相關(guān)代謝物的濃度。從圖10可看出,T2處理顯著提高了茶葉中奶油香物質(zhì)2,3-Octanedione和酰胺類化合物N,N,O-triacetylhydroxylamine的濃度,表現(xiàn)為T2>T1>CK,同時(shí),T2處理在3,7-Dimethyl-1,5,7-octatrien-3-ol和2-Methyl-undecane等相關(guān)代謝物的濃度上顯著高于CK和T1處理,其中,在3,7-Dimethyl-1,5,7-octatrien-3-ol濃度上分別增加43.68%和71.27%,在2-Methyl-undecane濃度上分別增加31.39%和22.48%,T1處理與CK差異不顯著。說明與等比例配施及僅降磷的處理相比,降磷降鉀處理更能提高茶葉中香氣代謝物的濃度。綜上所述,在不同配施處理下茶葉的香氣組分存在明顯的差異,且高氮低磷中鉀配比更有利于一些香氣物質(zhì)的累積。
3 討論
相關(guān)研究表明,科學(xué)施用肥料能有效提高茶葉產(chǎn)量(吳志丹等,2014;向芬等,2018)。適當(dāng)施用氮肥能夠提高龍井43和竹枝春的新梢長(zhǎng)度、重量及數(shù)目,從而提高茶葉的產(chǎn)量,但不同茶樹品種的氮敏感度存在差異(伍炳華等,1991)。以氮為主,增施磷鉀肥能提高茶葉產(chǎn)量,當(dāng)?shù)租浥浔葹?-1-1時(shí),佛手茶的產(chǎn)量最高(陳永興,2007);而在浙江富陽茶園中施用同樣配比的肥料時(shí),鳩坑種春茶鮮葉的產(chǎn)量卻很低,當(dāng)?shù)租浥浔葹?-1-1時(shí)春茶產(chǎn)量最高(董水平等,2004), 可見不同品種茶樹對(duì)氮配比的需求不同。也有研究認(rèn)為,調(diào)節(jié)磷與鉀配比能影響茶葉的產(chǎn)量,當(dāng)磷鉀配比在1-2時(shí),能有利于烏牛早茶苗的營(yíng)養(yǎng)吸收與生長(zhǎng)(呂梅等,2019)。在本研究中,不同配比施肥并沒有顯著影響茶樹水仙的常規(guī)產(chǎn)量指標(biāo)茶芽密度和百芽重,但顯著影響標(biāo)準(zhǔn)葉比率。鮮葉原料是茶葉品質(zhì)的基礎(chǔ),采摘葉是否符合標(biāo)準(zhǔn)會(huì)直接影響武夷巖茶制作過程中的均勻度,進(jìn)而影響茶葉制率與有效產(chǎn)量(劉寶順等,2019),其中原因可能是肥料中磷與鉀配比的降低在一定程度上促進(jìn)了茶樹對(duì)氮的吸收,而氮的吸收有利于茶葉鮮度的保持(蘇有健等,2011)。因此,在以氮為基礎(chǔ)比例,單位面積施肥量相同的基礎(chǔ)上,在肥料中適當(dāng)降低磷與鉀的配比能提高茶葉的制率即有效產(chǎn)量。
主要次生代謝物是茶葉品質(zhì)的重要指標(biāo),茶氨酸是茶葉中含量十分豐富的一類非蛋白類氨基酸,與茶葉的鮮味有關(guān)(Cheng et al.,2017);咖啡堿與兒茶素分別貢獻(xiàn)茶湯中的苦味和澀味(Cui et al.,2016;Poole and Tordoff,2017),其中兒茶素ECG是一種天然的抗癌藥物成分(Babich et al.,2005)。只有合理配施才能綜合促進(jìn)茶葉品質(zhì)的形成,在綠茶烏牛早中,當(dāng)?shù)租浥浔葹?.2-0.1-0.2時(shí)茶葉中咖啡堿和氨基酸的含量明顯提高;金牡丹在氮磷鉀配比為2.75-1.2-1.1時(shí),有利于提高茶葉中水浸出物、咖啡堿和氨基酸的積累;而日本藪北茶在高氮比例17-3-13時(shí),茶葉中的氨基酸含量明顯提高(董水平等,2004;田潤(rùn)泉和呂閏強(qiáng),2016;田甜等,2018)。由此可看出,肥料中高氮配比能提高茶葉中含氮類化合物尤其是氨基酸的合成。本研究與前人的結(jié)果一致,氮配比相對(duì)較高的21-8-11能促進(jìn)茶葉中含氮化合物的累積。
早期對(duì)福建省烏龍茶進(jìn)行大量樣品的采集分析發(fā)現(xiàn),烏龍茶茶青中氮磷鉀的比例約為10-1-5,茶葉對(duì)磷的需求量遠(yuǎn)遠(yuǎn)低于氮和鉀(Sun et al.,2019);在烏龍茶主要產(chǎn)區(qū)武夷山與安溪的茶園土壤中已形成巨大的磷庫(kù)(周志等,2019a;劉揚(yáng)等,2020),過量磷的施用不僅造成資源的浪費(fèi),還會(huì)帶來水體富營(yíng)養(yǎng)化及土壤鎘污染等問題(童潛明,2014;張文靜等,2018),因此,在茶園管理中需嚴(yán)格控制磷的施用量。研究認(rèn)為,磷缺乏或過量都會(huì)抑制黃酮類物質(zhì)的合成(Ding et al.,2017),本研究中,磷配比最高的CK中滋味與香氣相關(guān)代謝物濃度普遍最低,適當(dāng)降低磷的配比可提高黃酮類芳香族化合物Pratenol A、奶油香化合物2,3-Octanedione的含量(洪偉和何錫敏,2007)。因此,肥料中適當(dāng)降低磷的使用可改善茶葉中滋味與香氣相關(guān)品質(zhì)。
施用鉀肥能提高茶葉中游離氨基酸、水浸出物和茶多酚的濃度(Ruan et al.,2013),改善茶葉的滋味;也能促進(jìn)芳樟醇物質(zhì)的累積,形成良好的花香物質(zhì)(邊金霖等,2012)。香氣是茶樹品種水仙的一個(gè)重要特點(diǎn),橙花叔醇是烏龍茶的主要香氣成分之一(林貴英,2005)。然而,本研究發(fā)現(xiàn)鉀配比最高的T1處理中,香氣相關(guān)代謝物的濃度普遍較低,產(chǎn)生橙香的1-Nonanol香氣物質(zhì)也最低。因此,肥料中過高的鉀配比不利于水仙香氣的形成。
綜上所述,高氮低磷中鉀配比能增加巖茶的有效產(chǎn)量、提高茶葉中滋味與香氣相關(guān)代謝物的濃度,在降低環(huán)境風(fēng)險(xiǎn)的情況下能夠一定程度上提高茶葉品質(zhì),尤其是香氣。
4 結(jié)論
高氮低磷中鉀配比不僅能促進(jìn)標(biāo)準(zhǔn)葉的生長(zhǎng),顯著提高武夷巖茶的有效產(chǎn)量,且滋味和香氣代謝物濃度也顯著增加,進(jìn)而在一定程度上改善了茶青品質(zhì)。因此,綜合表現(xiàn)建議武夷巖茶使用配比為21-8-11高氮低磷中鉀的肥料。
參考文獻(xiàn):
邊金霖,董跡芬,林杰,朱全武,駱耀平. 2012. 鉀肥施用對(duì)茶鮮葉香氣組分的影響[J]. 福建農(nóng)林大學(xué)學(xué)報(bào)(自然科學(xué)版),41(6):601-607. [Bian J L,Dong J F,Lin J,Zhu Q W,Luo Y P. 2012. The effect of potash fertilizer on tea aroma compounds[J]. Journal of Fujian Agriculture and Forestry University(Natural Science Edition),41(6):601-607.] doi:10.3969/j.issn.1671-5470.2012.06. 009.
陳永興. 2007. 不同氮磷鉀組合搭配對(duì)佛手茶產(chǎn)量效應(yīng)的影響初報(bào)[J]. 茶葉科學(xué)技術(shù),(4):3-5. [Chen Y X. 2007. The phosphorus potassium of different nitrogen makes the impact on effect of output of the fingered citron tea up to offer for the first time[J]. Tea Science and Techno-logy,(4):3-5.] doi:10.3969/j.issn.1007-4872.2007.04.002.
董水平,蔣玉根,馬國(guó)瑞. 2004. 不同氮、磷、鉀配比對(duì)茶樹產(chǎn)量及品質(zhì)的影響[J]. 茶葉,30(3):148-149. [Dong S P,Jiang Y G,Ma G R. 2004. Effects of different ratios of nitrogen,phosphorus,and potassium on the yield and quality of tea tree[J]. Journal of Tea,30(3):148-149.] doi:10.3969/j.issn.0577-8921.2004.03.010.
高玉萍,涂云飛,楊秀芳,梁慧玲,孔俊豪,龔淑英. 2013. 茶多酚制品中多酚含量測(cè)定方法比較研究[J]. 中國(guó)茶葉加工,(3):28-32. [Gao Y P,Tu Y F,Yang X F,Liang H L,Kong J H,Gong S Y. 2013. Methods comparison of determinating the polyphenols content in tea polyphenols products[J]. China Tea Processing,(3):28-32.] doi:10. 15905/j.cnki.33-1157/ts.2013.03.011.
何書美,劉敬蘭. 2007. 茶葉中總黃酮含量測(cè)定方法的研究[J]. 分析化學(xué),35(9):1365-1368. [He S M,Liu J L. 2007. Study on the determination method of flavone content in tea[J]. Chinese Journal of Analytical Chemistry,35(9):1365-1368.] doi:10.3321/j.issn:0253-3820.2007. 09.028.
洪偉,何錫敏. 2007. 奶香型香料2,3-辛二酮的合成[J]. 香料香精化妝品,(1):1-3. [Hong W,He X M. 2007. Synthesis of 2,3-octanedione with milk smell[J]. Flavour Fragrance Cosmetics,(1):1-3.] doi:10.3969/j.issn.1000-4475.2007.01.001.
林貴英. 2005. 土壤理化性狀對(duì)武夷巖茶品質(zhì)的影響[J]. 福建茶葉,(3):23-25. [Lin G Y. 2005. Effect of physical and chemical characters of soil on the tea quality of Wuyi Yancha[J]. Tea in Fujian,(3):23-25.] doi:10.3969/j.issn.1005-2291.2005.03.012.
劉寶順,潘玉華,占仕權(quán),劉仕章,周啟富,劉欣. 2019. 武夷巖茶初制技術(shù)[J]. 中國(guó)茶葉,41(4):40-42. [Liu B S,Pan Y H,Zhan S Q,Liu S Z,Zhou Q F,Liu X. 2019. Primary production technology of Wuyi rock tea[J]. China Tea,41(4):40-42.] doi:10.3969/j.issn.1000-3150.2019.04.017.
劉美雅,伊?xí)栽疲?,馬立鋒,阮建云. 2015. 茶園土壤性狀及茶樹營(yíng)養(yǎng)元素吸收、轉(zhuǎn)運(yùn)機(jī)制研究進(jìn)展[J]. 茶葉科學(xué),35(2):110-120. [Liu M Y,Yi X Y,Shi Y Z,Ma L F,Ruan J Y. 2015. Research progress of soil properties in tea gardens and the absorption and translocation mechanisms of nutrients and other elements in tea plant[J]. Journal of Tea Science,35(2):110-120.] doi:10.3969/j.issn.1000-369X.2015.02.003.
劉揚(yáng),孫麗莉,廖紅. 2020. 養(yǎng)分管理對(duì)安溪茶園土壤肥力及茶葉品質(zhì)的影響[J]. 土壤學(xué)報(bào),57(4):917-927. [Liu Y,Sun L L,Liao H. 2020. Effects of nutrient management on soil fertility and tea quality in Anxi tea plantation[J]. Acta Pedologica Sinica,57(4):917-927.] doi:10.11766/trxb201904300148.
羅凡,張廳,龔雪蛟,杜曉,馬偉偉. 2014. 不同施肥方式對(duì)茶樹新梢氮磷鉀含量及光合生理的影響[J]. 應(yīng)用生態(tài)學(xué)報(bào),25(12):3499-3506. [Luo F,Zhang T,Gong X J,Du X,Ma W W. 2014. Effects of different fertilization ways on the contents of N,P,K in new shoots and photo-biological characters of tea tree[J]. Chinese Journal of Applied Ecology,25(12):3499-3506.] doi:10.13287/j.1001-9332.20141010.007.
呂梅,紀(jì)文娟,王潤(rùn)賢,方炎明. 2019. 配方施肥對(duì)烏牛早茶苗營(yíng)養(yǎng)生長(zhǎng)及茶葉品質(zhì)的影響[J]. 江蘇農(nóng)業(yè)科學(xué),47(1):120-126. [Lü M,Ji W J,Wang R X,F(xiàn)ang Y M. 2019. Effects of formula fertilizer on vegetative growth and quality of Wuniuzao tea and seedlings[J]. Jiangsu Agricultural Sciences,47(1):120-126.] doi:10.15889/j.issn. 1002-1302.2019.01.029.
邵金良,黎其萬,董寶生,劉宏程,束繼紅. 2008. 茚三酮比色法測(cè)定茶葉中游離氨基酸總量[J]. 中國(guó)食品添加劑,35(2):162-165. [Shao J L,Li Q W,Dong B S,Liu H C,Shu J H. 2008. Determination of total free-amino acid in tea by Nihydrin colorimetry[J]. China Food Additives,35(2):162-165.] doi:10.3969/j.issn.1006-2513.2008.02.039.
蘇有健,廖萬有,丁勇,王宏樹,夏先江. 2011. 不同氮營(yíng)養(yǎng)水平對(duì)茶葉產(chǎn)量和品質(zhì)的影響[J]. 植物營(yíng)養(yǎng)與肥料學(xué)報(bào),17(6):1430-1436. [Su Y J,Liao W Y,Ding Y,Wang H S,Xia X J. 2011. Effects of nitrogen fertilization on yield and quality of tea[J]. Plant Nutrition and Fertilizer Scien-ce,17(6):1430-1436.] doi:10.11674/zwyf.2011.05 38.
唐建敏,郭雅丹,汪婷,曾艷,唐茜. 2012. 滎經(jīng)枇杷茶野生大茶樹主要品質(zhì)生化成分研究[J]. 四川農(nóng)業(yè)大學(xué)學(xué)報(bào),30(4):424-428. [Tang J M,Guo Y D,Wang T,Zeng Y,Tang Q. 2012. Study on biochemical composition of Ying-jing loquat wild tea plants in Sichuan[J]. Journal of Si-chuan Agricultural University,30(4):424-428.] doi:10. 3969/j.issn.1000-2650.2012.04.010.
田潤(rùn)泉,呂閏強(qiáng). 2016. 配方施肥對(duì)茶園土壤養(yǎng)分狀況及茶鮮葉產(chǎn)量品質(zhì)的影響[J]. 茶葉學(xué)報(bào),57(3):149-152. [Tian R Q,Lü R Q. 2016. Effect of formulated fertilization on nutrient in soil,quality and yield of tea shoots[J]. Acta Tea Sinica,57(3):149-152.] doi:10.3969/j.issn.1007-4872.2016.03.009.
田甜,韋錦堅(jiān),趙德恩,梁偉埃,文金華. 2018. 氮磷鉀配施對(duì)茶葉品質(zhì)的影響[J]. 熱帶農(nóng)業(yè)科學(xué),38(4):36-45. [Tian T,Wei J J,Zhao D E,Liang W A,Wen J H. 2018. Effects of combined application of N,P and K on the quality of tea[J]. Chinese Journal of Tropical Agriculture,38(4):36-45.] doi:10.12008/j.issn.1009-2196.2018.04. 008.
童潛明. 2014. 磷肥的鎘污染不可掉以輕心[J]. 國(guó)土資源導(dǎo)刊,11(7):19. [Tong Q M. 2014. Special attention should be paid to Cadmium pollution caused by phosphate fertili-zer[J]. Land & Resources Herald,11(7):19.] doi:10. 3969/j.issn.1672-5603.2014.07.003.
王吉玉,李秋雨. 2020. 武夷巖茶促進(jìn)中外文化交流的策略分析[J]. 現(xiàn)代交際,(12):58-59. [Wang J Y,Li Q Y. 2020. Analysis of strategies to promote cultural exchanges between China and foreign countries through Wuyi rock tea[J]. Modern Communication,(12):58-59.]
伍炳華,韓文炎,姚國(guó)坤. 1991. 茶樹氮磷鉀營(yíng)養(yǎng)的品種間差異:Ⅰ. 氮肥在茶樹品種間的生長(zhǎng)和生理效應(yīng)[J]. 茶葉科學(xué),11(1):11-18. [Wu B H,Han W Y,Yao G K. 1991. Different responses to the nutritions of nitrogen(N) phosphorus(P) and potassium(K) among various cultigens of teaⅠ.Growing and physiological responses to the nitrogen applied[J]. Journal of Tea Science,11(1):11-18.]
吳志丹,尤志明,王峰,江福英,朱留剛. 2014. 施氮量對(duì)茶樹生長(zhǎng)及葉片光合特性的影響[J]. 茶葉科學(xué)技術(shù),(4):16-20. [Wu Z D,You Z M,Wang F,Jiang F Y,Zhu L G. 2014. Effect of nitrogen application rate on the growth and leaf photosynthetic characteristics of tea[J]. Tea Science and Technology,(4):16-20.] doi:10.3969/j.issn.1007-4872.2014.04.004.
向芬,李維,劉紅艷,周凌云,江昌俊. 2018. 氮素水平對(duì)不同品種茶樹光合及葉綠素?zé)晒馓匦缘挠绊慬J]. 西北植物學(xué)報(bào),38(6):1138-1145. [Xiang F,Li W,Liu H Y,Zhou L Y Jiang C J. 2018. Characteristics of photosynthetic and chlorophyll fluorescence of tea varieties under diffe-rent nitrogen application levels[J]. Acta Botanica Boreali-Occidentalia Sinica,38(6):1138-1145.] doi:10.7606/j.issn.1000-4025.2018.06.1138.
修明. 2004. 武夷巖茶品質(zhì)特征及審評(píng)方法[J]. 中國(guó)茶葉加工,(1):39-40. [Xiu M. 2004. Quality characteristics of Wuyiyancha and the sensory evaluation[J]. China Tea Processing,(1):39-40.] doi:10.15905/j.cnki.33-1157/ts. 2004.01.013.
余浩,唐敏,黃升謀. 2016. 沖泡條件對(duì)綠茶水浸出物含量及感官品質(zhì)的影響研究[J]. 綠色科技,(24):137-140. [Yu H,Tang M,Huang S M. 2016. Effect of brewing condition on water extracts and sensory quality of tea[J]. Journal of Green Science and Technology,(24):137-140.] doi:10.16663/j.cnki.lskj.2016.24.052.
余正江,楊秀才,韋長(zhǎng)流. 1997. 茶園施用氮磷鉀復(fù)混肥對(duì)春茶新梢生長(zhǎng)和產(chǎn)量的影響[J]. 茶葉,23(4):16-18. [Yu Z J,Yang X C,Wei C L. 1997. Effects of nitrogen,phosphorus,kaliumcompound fertilizer on the growth and yield of spring tea shoots in tea garden[J]. Journal of Tea,23(4):16-18.]
張文靜,高涵,郭黎卿. 2018. 長(zhǎng)江經(jīng)濟(jì)帶磷肥行業(yè)水污染形勢(shì)與管控對(duì)策研究[J]. 磷肥與復(fù)肥,33(12):80-82. [Zhang W J,Gao H,Guo L Q. 2018. Water pollution trends and control strategy research for phosphate fertili-zer industry of Yangtze River Economic Zone[J],Phosphate and Compound Fertilizer,33(12):80-82.] doi:10.3969/j.issn.1007-6220.2018.12.022.
周志,劉揚(yáng),張黎明,許銳能,孫麗莉,廖紅. 2019a. 武夷茶區(qū)茶園土壤養(yǎng)分狀況及其對(duì)茶葉品質(zhì)成分的影響[J]. 中國(guó)農(nóng)業(yè)科學(xué),52(8):1425-1434. [Zhou Z,Liu Y,Zhang L M,Xu R N,Sun L L,Liao H. 2019a. Soil nutrient status in Wuyi tea region and its effects on tea quality-related constituents[J]. Scientia Agricultura Sinica,52(8):1425-1434.] doi:10.3864/j.issn.0578-1752.2019.08.012.
周志,薛俊鵬,卓座品,郭子龍,許銳能,孫麗莉,何世安,廖紅. 2019b. 一方水土養(yǎng)一方茶:產(chǎn)地影響武夷巖茶品質(zhì)的代謝組基礎(chǔ)[J]. 中國(guó)科學(xué):生命科學(xué),49(8):1013-1023. [Zhou Z,Xue J P,Zhuo Z P,Guo Z L,Xu R N,Sun L L,He S A,Liao H. 2019b. Unique region produces special tea:Metabolomic basis of the influence of production region on the quality of Wuyi Rock Tea[J]. Scientia Sinica Vitae,49(8):1013-1023.] doi:10.1360/SSV-2019-0026.
朱旗,施兆鵬,任春梅. 2001. 用頂空吸附法與茶湯過柱吸附法分析綠茶香氣[J]. 湖南農(nóng)業(yè)大學(xué)學(xué)報(bào)(自然科學(xué)版),27(6):469-471. [Zhu Q,Shi Z P,Ren C M. 2001. Analy-sis of aroma of instant green tea by headspace absorption and tea liquid absorption[J]. Journal of Hunan Agricultural University,27(6):469-471.] doi:10.3321/j.issn:1007-1032.2001.06.017.
鄒青松,陳山,王曉,陳瑋,李素霞,韋艷君. 2011. 瑤山甜茶可溶性糖的測(cè)定[J]. 食品工業(yè)科技,(1):296-299. [Zou Q S,Chen S,Wang X,Chen W,Li S X,Wei Y J. 2011. Determination of the soluble sugar in Rubus Suavissimus S. Lee[J]. Science and Technology of Food Industry,(1):296-299.]
Babich H,Krupka M E,Nissim H A,Zuckerbraun H L. 2005. Differential in vitro cytotoxicity of(-)-epicatechin gallate(ECG) to cancer and normal cells from the human oral cavity[J]. Toxicology in Vitro,19(2):231-242. doi:10. 1016/j.tiv.2004.09.001.
Chen S,Li M H,Zheng G Y,Wang T T,Lin J,Wang S S,Wang X X,Chao Q L,Cao S X,Yang Z B,Yu X M. 2018. Metabolite profiling of 14 Wuyi rock tea cultivars using UPLC-QTOF MS and UPLC-QqQ MS combined with chemometrics[J]. Molecules,23(2):104. doi:10. 3390/molecules23020104.
Cheng S H,F(xiàn)u X M,Wang X Q,Liao Y Y,Zeng L T,Dong F,Yang Z Y. 2017. Studies on the biochemical formation pathway of the amino acid L-theanine in tea(Camellia sinensis) and other plants[J]. Journal of Agricultural and Food Chemistry,65(33):7210-7216. doi:10.1021/acs.jafc.7b02437.
Cui L L,Yao S B,Dai X L,Yin Q G,Liu Y J,Jiang X L,Wu Y H,Qian Y M.,Pang Y Z,Gao L P,Xia T. 2016. Identification of UDP-glycosyltransferases involved in the biosynthesis of astringent taste compounds in tea(Camellia sinensis)[J]. Journal of Experimental Botany,67(8):2285-2297. doi:10.1093/jxb/erw053.
Ding Z T,Jia S S,Wang Y,Xiao J,Zhang Y F. 2017. Phosphate stresses affect ionome and metabolome in tea plants[J]. Plant Physiology and Biochemistry,120(1):30-39. doi:10.1016/j.plaphy.2017.09.007.
Hodgson A B,Randell R K,Mahabir-Jagessar-T K,Lotito S,Mulder T,Mela D J,Jeukendrup A E,Jacobs D M. 2014. Acute effects of green tea extract intake on exogenous and endogenous metabolites in human plasma[J]. Journal of Agricultural and Food Chemistry,62(5):1198-1208. doi:10.1021/jf404872y.
Li W,Xiang F,Zhong M C,Zhou L Y,Liu H Y,Li S J,Wang X W. 2017. Transcriptome and metabolite analysis identifies nitrogen utilization genes in tea plant(Camellia sinensis)[J]. Scientific Reports,7:92-101. doi:10.1038/s41598-017-01949-0.
Liu M Y,Burgos A,Ma L F,Zhang Q F,Tang D D,Ruan J Y. 2017. Lipidomics analysis unravels the effect of nitrogen fertilization on lipid metabolism in tea plant(Camellia sinensis L.)[J]. BMC Plant Biology,17(1):1-10. doi:10.1186/s12870-017-1111-6.
Liu Y,Wang D Z,Zhang S Z,Zhao H M. 2015. Global expansion strategy of Chinese herbal tea beverage[J]. Advance Journal of Food Science and Technology,7(9):739-745. doi:10.19026/ajfst.7.1731.
Poole R L,Tordoff M G. 2017. The taste of caffeine[J]. Journal of Caffeine Research,7(2):39-52. doi:10.1089/jcr. 2016.0030.
Ruan J Y,Ma L F,Shi Y Z. 2013. Potassium management in tea plantations:Its uptake by field plants,status in soils,and efficacy on yields and quality of teas in China[J]. Journal of Plant Nutrition and Soil Science,176(3):450-459. doi:10.1002/jpln.201200175.
Ruan J,Haerdter R,Gerendás J. 2010. Impact of nitrogen supply on carbon/nitrogen allocation:A case study on amino acids and catechins in green tea[Camellia sinensis(L.) O. Kuntze] plants[J]. Plant Biology,12(5):724-734. doi:10.1111/j.1438-8677.2009.00288.x.
Sun L L,Liu Y,Wu L Q,Liao H. 2019. Comprehensive analysis revealed the close relationship between N/P/K status and secondary metabolites in tea leaves[J]. ACS Omega,4(1):176-184. doi:10.1021/acsomega.8b02611.
(責(zé)任編輯 鄧慧靈)