• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Effect of the target positions on the rapid identification of aluminum alloys by using filament-induced breakdown spectroscopy combined with machine learning

    2022-05-16 07:10:06XiaoguangLi李曉光XuetongLu陸雪童YongZhang張勇ShaozhongSong宋少忠ZuoqiangHao郝作強(qiáng)andXunGao高勛
    Chinese Physics B 2022年5期
    關(guān)鍵詞:張勇

    Xiaoguang Li(李曉光) Xuetong Lu(陸雪童) Yong Zhang(張勇)Shaozhong Song(宋少忠) Zuoqiang Hao(郝作強(qiáng)) and Xun Gao(高勛)

    1School of Electrical Information,Changchun Guanghua University,Changchun 130033,China

    2School of Physics,Changchun University of Technology,Changchun 130600,China

    3School of Information Engineering,Jilin Engineering Normal University,Changchun 130052,China

    4School of Physics and Electronic Sciences,Shandong Normal University,Jinan 250358,China

    Keywords: filament-induced breakdown spectroscopy (FIBS), principal component analysis (PCA), support vector machine(SVM),K-nearest neighbor(KNN),aluminum alloys identification

    1. Introduction

    Laser-induced breakdown spectroscopy(LIBS)is an elemental analysis method. In qualitative and quantitative analysis of the constituent elements of substances (solid, liquid or gas samples), the emission spectrum of plasma is generated by ablation of target surface by a tightly focused nanosecond laser.[1,2]Due to changes in the interaction between laser and matter,femtosecond LIBS(fs-LIBS)can improve the parameters of LIBS quantitative analysis(for example,better reproducibility,reduced matrix effect and reduced damage).[3,4]Other advantages of fs-LIBS include low ablation threshold,signal accumulation of a large number of pulses,and reduced heat-affected zone.[5,6]Due to the dynamic balance between optical Kerr self-focusing and plasma de-focusing, the femtosecond laser beam is focused in the air to form a long filament with the clamped laser intensity of 1013W/cm2–1014W/cm2.[7]Compared with traditional long-pulse laserinduced breakdown spectroscopy, a significant advantage of FIBS is that it can overcome diffraction to transmit highintensity filaments over long distances. It has been widely used in quantitative analysis of substances, detection of explosive substances,heavy metal pollution in water,biological fields, isotope detection, environmental detection, and other fields.[8–14]

    In recent years, FIBS combined with machine learning algorithms to detect and identify samples has attracted much attention. Kalamet al.[15]used fs-LIBS and principal component analysis(PCA)to detect and identify explosive molecules(nitroimidazole and nitropyrazole). The Schmidt–Cassegrain telescope collects radiant plasma at about 8.5 m. The focal length of the focusing lens is 10 cm, 30 cm, 50 cm, 100 cm,and 200 cm. As the focal length of the lens increases,the contribution rate of the first three PCs drops from 99% to 52%.Kalamet al.[16]used FIBS combined with PCA to detect and identify metals, alloys, and bimetals at a distance (6.5 m).When the ICCD gain is 1000 and 2500, the first three PCs of metal and bimetal account for 73% and 98% of the total variance. Junjuriet al.[17]used fs-LIBS combined with PCA and artificial neural networks (ANN) to obtain a 100% correct prediction rate for post-consumer plastic identification.Fuet al.[14]used FIBS combined with PCA to identify tree species (willow, pine, and poplar) and their growth environment,and the first three PCs accounted for 99.83%of the total data.Narlaet al.[18]used FIBS to extract features from PCA as input variables for support vector machine(SVM)to identify metals and metal alloys. Both the color CCD image and femtosecond LIBS achieve 100% identification accuracy. Kalamet al.[19]used fs-LIBS and FIBS to identify four types of rocks by using PCA in near-field and standoff modes(15 cm,6.5 m),and the first three PCs accounted for 93%,82%,97%,and 91%of the total variance in the data set in the nearfield and standoff mode,respectively.

    Different laser pulses (such as laser wavelength, pulse duration, and laser energy) and experimental conditions (for example, the direction of incident laser to target surface, the method of collecting spectral signals,or the distance between focusing lens and target surface) affect the spectral emission of laser-induced plasma.[20,21]Harilalet al.[22]found that the spectral radiation intensity and spatial distribution of the electron density of copper ablated by filament have the same trend,which firstly increases and then decreases along the filament.The variation of the spectral radiation intensity at different positions of the filament is related to the atomic density, which affects the ablation efficiency. Increasing the filament laser pulse energy, the filament plasma electron density also becomes higher,because there is an energy reservoir around the filament. Yaoet al.[23]studied the influence of femtosecond laser energy on ablation characteristics. When the femtosecond laser energy increases, the internal energy of the energy reservoir around the filament also increases. The different distances between the focusing lens and target surface will result in different spot sizes on the target surface, which will affect the interaction between laser and target. This results in changes in laser-induced plasma spectral radiation characteristics,ablation efficiency,and FIBS analysis performance.[24,25]In our previous work,[26]we studied the effect of the distance between focusing lens and target surface on quantitative analysis of Mn in aluminum alloys by using FIBS. It is found that the distance between the focusing lens and target surface affects spectral stability and accuracy of quantitative analysis,and the filament is better than the pre-and post-filaments.Therefore,this paper uses FIBS combined with machine algorithms to identify aluminum alloys, uses PCA to analyze the data set of intensity and intensity ratio of fifteen characteristic spectral lines of FIBS spectrum, and combines SVM and Knearest neighbor (KNN) to analyze the effect of the distance between the focusing lens and target surface on identification accuracy of aluminum alloys.

    2. Experiments and samples

    Figure 1 is an experimental setup for identifying aluminum alloys by using FIBS. Ti: sapphire laser system (Coherent,repetitive frequency of 1 kHz,wavelength of 800 nm)generates 45 fs laser pulses. The femtosecond laser beam is focused on aluminum alloys by a K9 lens 1 with the focal length of 1000 mm. The plasma emission spectral signal is collected by lens 2 (BK7,f=75 mm, diameter 50 mm) and coupled to Andor Echelle 5000 spectrometer (resolution of 0.05 nm at 500 nm,and detection spectrum range of 200 nm–880 nm)equipped with ICCD through an optical fiber(diameter 600 μm). The aluminum alloy target is placed on a threedimensional(3D)translation stage in order to avoid excessive ablation. To obtain FIBS spectrum in accumulation mode (5 times accumulation), delay time, and the gate width are set 4 μs and 10 μs,respectively. A one-dimensional(1D)translation stage is used to change the distance between lens 1 and the target surface, and the forming filament is about 40 mm (observed by the naked eye). The whole experiments are done at the experimental conditions of pulse energy of 2 mJ,standard atmospheric pressure,room temperature of 22°C,and relative humidity of 25%.

    In our experiment,five kinds of aluminum alloy samples(1060/2024/5052/6061/7075) were purchased on the market with length of 5 cm,the width of 5 cm,and thickness of 2 mm.Table 1 is the element concentrations of aluminum alloy samples.

    Fig.1. FIBS system setup.

    Table 1. Element concentrations of aluminum alloy samples (in units of wt%).

    3. Data processing

    3.1. PCA

    PCA is an unsupervised data dimensionality reduction method. It calculates the eigenvector of data covariance matrix,and projects each variable onto largest eigenvector to reduce the number of variables and ensure that each variable is independent.[27–30]When using PCA, for original dataXm×n[mrepresents the number of samples (number of spectra),nrepresents the number of features(wavelength)],standard conversions of samples are

    where eigenvalueωis the diagonal element, andRis eigenvector ofxcorresponding to the eigenvalueω. The principal component is selected according to the contribution rate of the principal component. The principal component (PC) represents the variance of the data set,and PC1 is the highest.

    3.2. SVM

    SVM establishes the optimal hyperplane based on the principle of maximizing the interval.[31–33]The training sample set is (xi,yi),xis the sample attribute value, andyis the result label. A linear function is constructed in the highdimensional space to realize the nonlinear discriminant function in the low-dimensional space,and the optimal linear decision function analysis data is obtained. A hyperplanef(x)=ωTx+bis established in the data space to find the optimal classification hyperplane. This problem is solved by the Lagrangian method,and the dual form is obtained by

    Finally,the decision function is

    whereσrepresents the width of the Gaussian kernel function.

    3.3. KNN

    wheredis an indicator function. WhenXi=Ti,d=1,otherwised=0.

    4. Results and discussion

    4.1. FIBS spectra

    Figure 2 shows the FIBS spectra of five aluminum alloys.At the distance of 976 mm between the focusing lens and target surface, the 20 sets of spectral data were averaged and normalized. It can be seen that the AlO radical B2Σ+X2Σ+transition spectrum line is detected in the wavelength range of 440 nm–540 nm. This is due to the coexistence of several reactions among the excited radicals, atoms, molecules, and the environment in plasma generated by the laser,which leads to the formation or depletion of substances.[37,38]The wavelength range of 550 nm–880 nm has a wavy continuous spectrum,because the Echelle spectrometer diffracts the spectrum in this wavelength range.

    Fig. 2. FIBS spectra of the aluminum alloys: (a) 1060, (b) 2024, (c)5052,(d)6061,and(e)7075.

    According to the National Institute of Standards and Technology (NIST) standards database, the FIBS spectrum in the wavelength range of 200 nm–880 nm is marked, and the plasma optical emissions of six elements iron(Fe),silicon(Si),magnesium(Mg),copper(Cu),zinc(Zn)and manganese(Mn)are found. The concentration of elements in experimental samples of aluminum alloy is different, and the intensity of the FIBS characteristic spectrum is also different. The aluminum alloys are identified by the intensity of characteristic spectral lines. The selection of the characteristic spectral line satisfies the high intensity of the spectral line and high signalto-background ratios (SBR), and there is no strong interference spectral line around the characteristic spectral line. The characteristic spectrum selects fifteen spectrum lines of six elements with an error of 0.1 nm,as shown in Table 2.

    Table 2. The 15 characteristic spectral lines.

    4.2. Different positions of filament

    The initial powerPinof the femtosecond laser pulse is higher than the critical power of self-focusingPcr,which will produce filaments. According to the semi-empirical Marburger formula, the positionLcwhere the self-focusing collapse occurs(where the beam radius is the smallest along the propagation direction)is[39]

    wherefis the geometric focal length of the lens,and the calculatedd=966 mm. The position where the filaments start to form (966 mm) is before the geometric focus (1000 mm)of the focusing lens,because Kerr nonlinear self-focusing focuses the laser beam in advance.[40]According to changing trend of the spectral line intensity, it can be considered that the filament ends at a distance of 992 mm between the focusing lens and target surface. We are studying three interval ranges: (i) the pre-filament area (958 mm–966 mm); (ii) the filament area (966 mm–992 mm); and (iii) the post-filament area(992 mm–1000 mm).

    4.3. Result of PCA

    The intensities of fifteen characteristic lines of six elements are used as the PCA data set to obtain the PC contribution of the FIBS spectrum. The optimal number of PCs depends on many factors, such as the structure of the original data, the application, and the experience and expertise of the researchers (select the spectrum according to the sample element). Anabitarteet al.[41]used PCA combined with SVM to identify nucleoli and analyzed the influence of the number of PCs on identification accuracy. It shows that at least three PCs can obtain accurate results, that is, the cumulative contribution rate of three PCs should be greater than 85%. In the pre-filament area, the filament area and the post-filament area(the distance between the focusing lens and target surface is 958 mm, 976 mm, and 1000 mm, respectively). The first three PCs explained 69.48%,79.46%,and 64.54%of the total data, and the first three PCs cumulatively explained 83.26%,89.06%,and 81.57%of the total data. The first three PCs cannot display the total variance of the data set. PCA results are related to experimental fluctuations(instability and limitations of the detection system,unevenness of local samples,etc.)and the inherent characteristics of the characteristic spectrum. The spectrometer (resolution=0.05 nm) used in our experiment cannot detect certain signals of trace elements.[29]

    In order to improve the PCA results, the intensity ratio between different spectral lines is calculated.[14,19]Including Si I 251.61 nm, Si I 252.41 nm, Zn I 257.07 nm,Mg I 277.98 nm, Mg II 279.79 nm, Cu I 282.43 nm, Mg I 285.21 nm,Mn II 293.93 nm,Cu I 324.75 nm,Fe I 344.06 nm,Mn II 348.29 nm, Mn I 403.31 nm, Fe I 587.84 nm, and Fe II 670.96 nm. Because the intensity ratio produces a larger size. That is, Mg I 277.98 nm/Mn II 293.93 nm, Mg II 279.79 nm/Cu I 282.43 nm,Cu I 324.75 nm/Mn II 348.29 nm,Fe I 344.06 nm/Mn I 403.31 nm, Mg I 285.21 nm/Fe II 670.96 nm, Si I 251.61 nm/Zn I 257.07 nm, Zn I 257.06 nm/Fe I 344.06 nm, Si I 252.41 nm/Fe I 587.84 nm,Si I 252.41 nm/Mg II 279.79 nm, Si I 251.6 nm/Mn II 348.29 nm,Si I 251.6 nm/Cu I 324.75 nm,Zn I 257.07 nm/Cu I 282.43 nm, Zn I 257.07 nm/Mn II 299.93 nm, and Zn I 257.07 nm/Mg I 277.98 nm. The calculated spectral signal intensity ratio is the data set of PCA.

    Figure 3 is the result of PCA intensities of fifteen characteristic lines in FIBS spectra of five aluminum alloys in the pre-filament area,the filament area and the post-filament area(the distance between the focusing lens and target surface is 958 mm,976 mm,and 1000 mm,respectively). PCA converts the FIBS spectra of five samples into three PCs. The cumulative interpretation rate of the three PCs by using intensity ratio as the source data set is 97.22%,98.17%,and 95.31%,respectively, which is better than the PCA results of fifteen spectral line intensities as feature vectors (83.26%, 89.06%, and 81.57%). Because the signal intensity ratio is used as the PCA data set,the result is independent of the system measurement error,which affects the measured spectral signal intensity.

    Fig.3. PCA results at three positions(pre-filament at 958 mm,filament at 976 mm,and post-filament at 1000 mm,respectively).

    4.4. Results of SVM/KNN combined PCA

    Five aluminum alloy samples have a total of 800 sets of FIBS spectra, and 15 characteristic spectral line intensity ratios are used as a data set for PCA.In the pre-filament area,the filament area and the post-filament area(the distance between the focusing lens and target surface is 958 mm,976 mm,and 1000 mm, respectively). The cumulative interpretation rates of the first three PCs are 97.22%, 98.17%, and 95.31%, respectively. PC1, PC2, and PC3 replace FIBS spectra to construct feature space vectors,which are used as input variables of SVM and KNN to identify five aluminum alloys.The MATLAB2018 toolbox is used as a data processing tool for 5-fold cross-validation. The confusion matrix represents the identification accuracy of SVM and KNN, and the identification accuracy is the evaluation index for identification.[42]Figure 4 shows the identification results of PCA-SVM and PCA-KNN at three positions(the distance between the focusing lens and target surface is 958 mm, 976 mm, and 1000 mm, respectively). Figure 5 shows the spatial distribution of aluminum alloys identification accuracy. The result of each position is an average of five sample identification results.The identification accuracy of PCA-SVM exceeds 82%, and the identification accuracy of PCA-KNN exceeds 66%. In the three positions,the SVM identification accuracy is 83.4%, 100%, and 82%,respectively. The identification accuracy of KNN is 69.2%,90%, and 66%, respectively. It can be seen that the identification results of the two algorithms have the same trend, and both rise first and then fall. The identification accuracy of the filament area is higher than that of the pre-and post-filament areas and is stable,and the identification accuracy of SVM is higher than that of KNN.

    In our previous work,we found that the quantitative analysis accuracy and spectral stability of the filament area are better than the pre- and post-filament areas.[26]The intensity clamping effect of the filament leads to better laser power stability,sensitivity,and radiation plasma stability in the filament area. The filament carries a small part of the laser energy,and most of the energy is released into the energy reservoir around the filament. The energy store continuously compensates for the energy loss in the ablation process of aluminum alloys, and plays a role in auxiliary ablation. Therefore, the ablation efficiency of filament depends on both the intensity clamping effect in filament and the energy reservoir around the filament.[23,43,44]Before the beam collapse occurs, the Kerr self-focusing effect causes the modulation instability of the laser,which makes the laser intensity uneven. The laser beam is in a divergent state in the post-filament area, the diffraction and dispersion are stronger than the self-focusing effect,and the spectral stability is lower than the pre-filament area.Therefore,the identification accuracy of the pre-filament area is higher than the identification accuracy of the post-filament area.

    In filament area (the distance between the focusing lens and target surface is 976 mm), 100 groups of FIBS spectrum data of PCA are randomly selected according to 3:2.The LIBS spectral data of the training set and test set are 60 groups and 40 groups, respectively. SVM model established in the training set predicts 40 sets of spectral data in the test set. The result is shown in Fig. 6, where “*” represents

    Fig. 4. Three positions identification results (pre-filament at 958 mm, filament at 976 mm, and post-filament at 1000 mm, respectively). (a)PCA-SVM and(b)PCA-KNN.

    Fig.5. Spatial distribution of aluminum alloys identification accuracy.

    the predicted label, and “°” represents the actual label. The results show that the identification accuracy of PCA-SVM is 97.5%. In the 40 test set spectra, one 7075 was misjudged as 2024. The identification accuracy of PCA-KNN is 92.5%.Two 7075 were misjudged as 2024, and one 1060 was misjudged as 6061.The running time of SVM is 0.62 s–1.74 s,the running time of KNN is 0.37 s–1.39 s,and the running time of KNN is faster than SVM.SVM has certain advantages in processing nonlinear data.The SVM classifier is very simple,and only a small amount of training data is needed to establish a stable classification model. Even if the sample dimension is very high, it will not bring inconvenience to storage and calculation.More stable and accurate identification results can be obtained. The KNN algorithm uses all samples in identification, and needs to be compared with the rest of the points in the set each time. So compared to KNN,SVM has better identification results and stability and is simpler to implement.[45]

    Fig.6. Spectral identification results in the test set: (a)PCA-SVM and(b)PCA-KNN.

    5. Conclusions

    This study is based on FIBS, using PCA combined with SVM and KNN to identify aluminum alloys. Two spectral feature extraction methods are proposed for PCA:The characteristic parameter is constituted by the ratio of the intensity of the characteristic spectral line and the intensity of the element spectral line.SVM and KNN are used to identify aluminum alloys. The identification accuracy of the filament area is higher than pre- and post-filament area. The identification accuracy of SVM in the filament area is 100%,and the KNN is 90%. It is because of the clamping effect of the filament and the role of the energy reservoir around the filament. FIBS combines machine learning algorithms to distinguish aluminum alloys,which is beneficial to accurately and quickly detect and identify aluminum alloys during manufacturing, inspection, and recycling processes, and improve the utilization rate of aluminum alloys. In addition, the purpose of this experiment is not to use as many aluminum alloys as possible to prove that this method is applicable to all categories, but to provide a useful method to prove that FIBS can effectively identify aluminum alloy samples. The method of this experiment is also suitable for detecting other substances.For example,FIBS can quickly detect and identify substances from the standoff mode,in dangerous and polluted environments.

    Acknowledgement

    Project supported by the Natural Science Foundation of Jilin Province,China(Grant No.2020122348JC).

    猜你喜歡
    張勇
    A new global potential energy surface of the ground state of SiH+2(X2A1)system and dynamics calculations of the Si++H2(v0=2,j0=0)→SiH++H reaction
    Design of a low-frequency miniaturized piezoelectric antenna based on acoustically actuated principle
    Photon blockade in a cavity–atom optomechanical system
    跟曾國藩學(xué)修身
    做人與處世(2022年6期)2022-05-26 10:26:35
    傅山的“四寧四毋”
    做人與處世(2022年4期)2022-05-26 04:43:14
    關(guān)于組合和式的Dwork類型超同余式
    張勇
    書香兩岸(2020年3期)2020-06-29 12:33:45
    《家務(wù)機(jī)器人》等
    在體驗(yàn)中走向共生
    Wind Estimation for UAV Based on Multi-sensor Information Fusion
    av在线播放精品| 日日摸夜夜添夜夜添av毛片| 丰满少妇做爰视频| 国产不卡一卡二| 久久这里有精品视频免费| 蜜桃亚洲精品一区二区三区| 亚洲人成网站在线观看播放| 久久久久久大精品| 国产一区二区亚洲精品在线观看| 久久亚洲精品不卡| 国产一级毛片七仙女欲春2| 国产午夜福利久久久久久| 日日啪夜夜撸| 寂寞人妻少妇视频99o| 国产精品一区二区在线观看99 | 欧美性感艳星| 精品久久久久久久久av| 久久精品夜夜夜夜夜久久蜜豆| 人人妻人人澡欧美一区二区| 黄片wwwwww| 精品久久久久久电影网 | 日韩国内少妇激情av| 三级国产精品欧美在线观看| 国产单亲对白刺激| 色尼玛亚洲综合影院| 一个人观看的视频www高清免费观看| 亚洲av熟女| 天天躁日日操中文字幕| www.色视频.com| 麻豆av噜噜一区二区三区| 精品一区二区三区人妻视频| 中文字幕人妻熟人妻熟丝袜美| 九九爱精品视频在线观看| 波多野结衣巨乳人妻| 欧美日韩综合久久久久久| 黄色配什么色好看| 夫妻性生交免费视频一级片| 一个人看视频在线观看www免费| 欧美最新免费一区二区三区| 国产av在哪里看| 亚洲精品色激情综合| 综合色丁香网| 午夜福利在线观看吧| 国内精品宾馆在线| 久久久久久大精品| 亚洲国产欧洲综合997久久,| av在线观看视频网站免费| 1000部很黄的大片| 国产成人午夜福利电影在线观看| 啦啦啦观看免费观看视频高清| 成年免费大片在线观看| 亚洲人与动物交配视频| 国产真实伦视频高清在线观看| 成人二区视频| 国产精品嫩草影院av在线观看| 亚洲av不卡在线观看| 欧美色视频一区免费| av国产久精品久网站免费入址| 日本猛色少妇xxxxx猛交久久| 亚洲乱码一区二区免费版| av.在线天堂| 小说图片视频综合网站| 麻豆成人av视频| 国产日韩欧美在线精品| 国产在线一区二区三区精 | 国产一区有黄有色的免费视频 | 成人毛片a级毛片在线播放| 欧美激情在线99| 1000部很黄的大片| 国产精品人妻久久久影院| 午夜精品在线福利| 亚洲av熟女| 男插女下体视频免费在线播放| 亚洲高清免费不卡视频| 国模一区二区三区四区视频| 国产亚洲最大av| 精品午夜福利在线看| 欧美一区二区国产精品久久精品| 偷拍熟女少妇极品色| 欧美成人a在线观看| 久久综合国产亚洲精品| 欧美bdsm另类| 亚洲精品亚洲一区二区| 久久99精品国语久久久| 国产69精品久久久久777片| 2021少妇久久久久久久久久久| 69av精品久久久久久| av在线播放精品| 国产麻豆成人av免费视频| 99热这里只有是精品在线观看| 午夜激情福利司机影院| 国产探花极品一区二区| 日韩欧美三级三区| 精品午夜福利在线看| 一区二区三区免费毛片| 春色校园在线视频观看| 成年av动漫网址| 九九久久精品国产亚洲av麻豆| 成人特级av手机在线观看| 午夜老司机福利剧场| 99热全是精品| 性色avwww在线观看| a级毛片免费高清观看在线播放| 九九久久精品国产亚洲av麻豆| 日本猛色少妇xxxxx猛交久久| 婷婷色综合大香蕉| 久久久久久九九精品二区国产| 中文天堂在线官网| 亚洲伊人久久精品综合 | 婷婷色麻豆天堂久久 | 中文精品一卡2卡3卡4更新| 天天躁夜夜躁狠狠久久av| 国产免费一级a男人的天堂| 男人舔奶头视频| 国产乱人视频| 中国美白少妇内射xxxbb| 在现免费观看毛片| 午夜精品在线福利| 日韩欧美精品免费久久| 国语自产精品视频在线第100页| 两个人的视频大全免费| 国产成人91sexporn| 欧美精品国产亚洲| 能在线免费看毛片的网站| 久久久久久久久久久丰满| 91精品一卡2卡3卡4卡| 国内少妇人妻偷人精品xxx网站| 国产伦精品一区二区三区视频9| 成年女人永久免费观看视频| 乱人视频在线观看| 99九九线精品视频在线观看视频| 亚洲av一区综合| 亚洲伊人久久精品综合 | 亚洲国产欧美在线一区| 一级毛片电影观看 | 欧美成人一区二区免费高清观看| 国产精华一区二区三区| 在现免费观看毛片| 能在线免费看毛片的网站| 一区二区三区免费毛片| 日韩一区二区三区影片| 亚洲人成网站高清观看| 啦啦啦韩国在线观看视频| 国产伦在线观看视频一区| 国产成人a区在线观看| 长腿黑丝高跟| 久久99热这里只有精品18| 在线免费观看的www视频| 亚洲国产精品专区欧美| 久久久成人免费电影| 亚洲欧美精品专区久久| 成人毛片a级毛片在线播放| 看非洲黑人一级黄片| 亚洲怡红院男人天堂| 我要看日韩黄色一级片| av国产久精品久网站免费入址| 一个人观看的视频www高清免费观看| 国产亚洲最大av| 黄色日韩在线| 夫妻性生交免费视频一级片| 亚洲第一区二区三区不卡| 亚洲成人精品中文字幕电影| 男女边吃奶边做爰视频| 青春草亚洲视频在线观看| 久久6这里有精品| 亚洲五月天丁香| 麻豆精品久久久久久蜜桃| 久久精品国产亚洲av天美| 秋霞伦理黄片| 免费无遮挡裸体视频| 亚洲中文字幕日韩| 最新中文字幕久久久久| 日韩成人av中文字幕在线观看| 2021少妇久久久久久久久久久| 亚洲综合精品二区| 狂野欧美激情性xxxx在线观看| 一个人免费在线观看电影| 国产亚洲精品久久久com| 成人av在线播放网站| 国产精品国产三级国产专区5o | 国产成人freesex在线| 天堂中文最新版在线下载 | 真实男女啪啪啪动态图| 国产精品国产三级国产专区5o | 日韩av不卡免费在线播放| 欧美又色又爽又黄视频| 日本午夜av视频| 久久久久久国产a免费观看| 人妻系列 视频| 精品国内亚洲2022精品成人| 久久鲁丝午夜福利片| 日本五十路高清| or卡值多少钱| 久久人人爽人人片av| 99热这里只有精品一区| 精品99又大又爽又粗少妇毛片| 老师上课跳d突然被开到最大视频| 亚洲人成网站在线观看播放| 最近中文字幕2019免费版| 美女大奶头视频| 青春草视频在线免费观看| 亚洲色图av天堂| 亚洲成人精品中文字幕电影| 热99在线观看视频| 最近视频中文字幕2019在线8| 最近中文字幕高清免费大全6| 嫩草影院精品99| 日韩人妻高清精品专区| 黄片wwwwww| 国产精品精品国产色婷婷| 男人和女人高潮做爰伦理| 国产高清三级在线| 天天躁夜夜躁狠狠久久av| 国产精品爽爽va在线观看网站| 亚洲欧美日韩高清专用| 国产精品蜜桃在线观看| 亚洲精华国产精华液的使用体验| 国产三级中文精品| 日本免费a在线| 欧美成人精品欧美一级黄| 黄色配什么色好看| 黄片wwwwww| 国产一区二区在线av高清观看| 国产在视频线精品| 又黄又爽又刺激的免费视频.| 国内精品美女久久久久久| 变态另类丝袜制服| 亚洲欧美日韩高清专用| 欧美成人精品欧美一级黄| 成人一区二区视频在线观看| 一区二区三区高清视频在线| 日本wwww免费看| 99在线人妻在线中文字幕| 好男人视频免费观看在线| 亚洲久久久久久中文字幕| 国产精品一区二区在线观看99 | 日韩欧美三级三区| 国产亚洲5aaaaa淫片| 亚洲综合色惰| 免费观看性生交大片5| 桃色一区二区三区在线观看| 国产伦精品一区二区三区四那| 永久网站在线| 亚洲精品色激情综合| av免费在线看不卡| 亚洲经典国产精华液单| 神马国产精品三级电影在线观看| 亚洲欧洲日产国产| 毛片一级片免费看久久久久| 亚洲精品一区蜜桃| 国产黄片美女视频| 国产不卡一卡二| av卡一久久| 老司机福利观看| 国产精品1区2区在线观看.| 午夜福利在线在线| av卡一久久| av黄色大香蕉| 中文亚洲av片在线观看爽| 欧美日韩精品成人综合77777| 综合色av麻豆| 久久精品夜色国产| 天堂影院成人在线观看| 免费看光身美女| 美女大奶头视频| 亚洲国产精品成人综合色| 亚洲人与动物交配视频| 色尼玛亚洲综合影院| 熟女电影av网| 久久精品影院6| 免费黄色在线免费观看| 国产探花极品一区二区| 国产精品久久久久久精品电影| 午夜老司机福利剧场| 丝袜喷水一区| 成年版毛片免费区| 国产精品国产三级国产av玫瑰| 色噜噜av男人的天堂激情| av在线观看视频网站免费| 舔av片在线| 在线免费十八禁| 国产午夜精品一二区理论片| 热99在线观看视频| 日韩 亚洲 欧美在线| 色综合色国产| 一级毛片电影观看 | 久久这里有精品视频免费| 成人高潮视频无遮挡免费网站| 久久国产乱子免费精品| 精品一区二区免费观看| 少妇猛男粗大的猛烈进出视频 | av在线观看视频网站免费| 天天躁日日操中文字幕| 国产精品电影一区二区三区| www日本黄色视频网| 禁无遮挡网站| 午夜视频国产福利| 国产 一区精品| 久久久色成人| 国产伦在线观看视频一区| 精品国产三级普通话版| 亚洲欧美中文字幕日韩二区| 国产伦精品一区二区三区四那| 成人毛片a级毛片在线播放| 成年女人永久免费观看视频| 精品无人区乱码1区二区| 国产午夜精品论理片| 日本午夜av视频| 国产亚洲av嫩草精品影院| 秋霞伦理黄片| 亚洲精品自拍成人| 69av精品久久久久久| 蜜桃久久精品国产亚洲av| 欧美日韩综合久久久久久| 日本猛色少妇xxxxx猛交久久| 水蜜桃什么品种好| 国产精品人妻久久久久久| 亚洲精品久久久久久婷婷小说 | 国产精品.久久久| 韩国av在线不卡| 国产大屁股一区二区在线视频| 国产精品1区2区在线观看.| av又黄又爽大尺度在线免费看 | 国产视频内射| 麻豆成人av视频| 亚洲经典国产精华液单| 欧美潮喷喷水| 身体一侧抽搐| 国产高清国产精品国产三级 | 秋霞在线观看毛片| 天堂网av新在线| 国产精品乱码一区二三区的特点| 一级av片app| 国产色爽女视频免费观看| 久久精品91蜜桃| 亚洲最大成人av| 国产视频内射| 全区人妻精品视频| 日韩大片免费观看网站 | 午夜爱爱视频在线播放| av卡一久久| 久久久久久久午夜电影| 国产亚洲一区二区精品| 成人高潮视频无遮挡免费网站| 国产一区二区在线观看日韩| 亚洲欧美日韩卡通动漫| 国产成人精品一,二区| 天天躁夜夜躁狠狠久久av| 国产视频首页在线观看| 少妇熟女欧美另类| 日本熟妇午夜| 国产伦精品一区二区三区视频9| 久久久久九九精品影院| 小蜜桃在线观看免费完整版高清| 少妇高潮的动态图| 青春草视频在线免费观看| 99视频精品全部免费 在线| 国产成人精品婷婷| 中文字幕亚洲精品专区| 国产女主播在线喷水免费视频网站 | 欧美3d第一页| 久久精品国产亚洲av涩爱| 1000部很黄的大片| 91狼人影院| 国产三级在线视频| 最近手机中文字幕大全| 一个人看视频在线观看www免费| 国产高清视频在线观看网站| 麻豆av噜噜一区二区三区| 在线天堂最新版资源| 综合色av麻豆| 久久人人爽人人片av| 亚洲最大成人中文| eeuss影院久久| 好男人在线观看高清免费视频| 色5月婷婷丁香| 久久精品夜夜夜夜夜久久蜜豆| 午夜老司机福利剧场| 欧美一级a爱片免费观看看| 男的添女的下面高潮视频| 一个人免费在线观看电影| 中文字幕制服av| 精品国产一区二区三区久久久樱花 | 成人鲁丝片一二三区免费| 国产精品.久久久| 嘟嘟电影网在线观看| 别揉我奶头 嗯啊视频| 日韩av在线免费看完整版不卡| 欧美性猛交╳xxx乱大交人| 内地一区二区视频在线| 日韩精品青青久久久久久| 国产成人a∨麻豆精品| 欧美潮喷喷水| 久久久亚洲精品成人影院| 卡戴珊不雅视频在线播放| 久久久久久久久久久丰满| 1000部很黄的大片| 嫩草影院新地址| 亚洲美女搞黄在线观看| 午夜日本视频在线| 观看美女的网站| 色尼玛亚洲综合影院| 日韩精品青青久久久久久| videossex国产| 熟妇人妻久久中文字幕3abv| av在线观看视频网站免费| 天美传媒精品一区二区| 国产麻豆成人av免费视频| 亚洲丝袜综合中文字幕| 美女脱内裤让男人舔精品视频| 最近最新中文字幕免费大全7| 一区二区三区四区激情视频| 日韩视频在线欧美| 91aial.com中文字幕在线观看| 午夜亚洲福利在线播放| 精品久久久噜噜| 在线观看av片永久免费下载| a级毛片免费高清观看在线播放| 晚上一个人看的免费电影| 身体一侧抽搐| 女人十人毛片免费观看3o分钟| 成人一区二区视频在线观看| 美女国产视频在线观看| 麻豆av噜噜一区二区三区| 国内精品美女久久久久久| 国产免费视频播放在线视频 | 午夜福利成人在线免费观看| 九九在线视频观看精品| 99久久精品国产国产毛片| 国产麻豆成人av免费视频| 久久鲁丝午夜福利片| 美女黄网站色视频| 一级av片app| 亚洲精品自拍成人| 国产美女午夜福利| 日韩av不卡免费在线播放| 欧美色视频一区免费| 亚洲av日韩在线播放| 麻豆成人午夜福利视频| 永久网站在线| 国产亚洲av嫩草精品影院| 欧美日韩综合久久久久久| 99国产精品一区二区蜜桃av| 国产美女午夜福利| .国产精品久久| 亚洲av一区综合| 亚洲天堂国产精品一区在线| 热99在线观看视频| 九九爱精品视频在线观看| 婷婷色综合大香蕉| 国产精品久久久久久久久免| 亚洲成人精品中文字幕电影| 嘟嘟电影网在线观看| 欧美日韩精品成人综合77777| 极品教师在线视频| 婷婷色综合大香蕉| 国产精品久久久久久久久免| 成人三级黄色视频| 国产一级毛片在线| 国产免费福利视频在线观看| 色播亚洲综合网| 禁无遮挡网站| 日韩高清综合在线| 国产欧美日韩精品一区二区| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 成人午夜精彩视频在线观看| 青春草视频在线免费观看| 波多野结衣高清无吗| 1024手机看黄色片| 欧美高清成人免费视频www| 99久久人妻综合| 大话2 男鬼变身卡| 国产精华一区二区三区| 欧美日韩综合久久久久久| 99国产精品一区二区蜜桃av| 日韩成人伦理影院| 国产av不卡久久| 日韩欧美国产在线观看| 久久99蜜桃精品久久| 午夜激情福利司机影院| 永久免费av网站大全| 最近手机中文字幕大全| 伦理电影大哥的女人| 色综合站精品国产| 亚洲在线自拍视频| 色噜噜av男人的天堂激情| 免费黄色在线免费观看| 国产熟女欧美一区二区| 免费看美女性在线毛片视频| 亚洲在线观看片| 最新中文字幕久久久久| 国产亚洲一区二区精品| 亚洲精品自拍成人| 麻豆成人午夜福利视频| 亚洲欧美精品自产自拍| 国产精品久久视频播放| 亚洲欧美日韩东京热| 国产精品女同一区二区软件| 欧美高清成人免费视频www| 九九热线精品视视频播放| 成人午夜精彩视频在线观看| 国产一区二区在线av高清观看| 可以在线观看毛片的网站| 亚洲av成人av| 99热精品在线国产| 久久人人爽人人爽人人片va| 99热精品在线国产| 床上黄色一级片| 国产欧美日韩精品一区二区| 中文精品一卡2卡3卡4更新| 啦啦啦观看免费观看视频高清| 久久久久久久久久黄片| 国产精品麻豆人妻色哟哟久久 | 美女黄网站色视频| 久久久a久久爽久久v久久| 爱豆传媒免费全集在线观看| 观看免费一级毛片| 亚洲综合色惰| 久久精品国产亚洲av天美| 久久精品人妻少妇| 久久精品91蜜桃| 99国产精品一区二区蜜桃av| 不卡视频在线观看欧美| 校园人妻丝袜中文字幕| 国产精品99久久久久久久久| 国产黄色小视频在线观看| 亚洲av中文字字幕乱码综合| 麻豆国产97在线/欧美| 秋霞伦理黄片| 又粗又硬又长又爽又黄的视频| 国产大屁股一区二区在线视频| 亚洲国产精品专区欧美| 特大巨黑吊av在线直播| 日本色播在线视频| 国产精品伦人一区二区| 亚洲自拍偷在线| 国产亚洲一区二区精品| 免费看a级黄色片| 麻豆精品久久久久久蜜桃| 2022亚洲国产成人精品| 久久精品国产亚洲网站| 国产亚洲5aaaaa淫片| 国产亚洲一区二区精品| 国产 一区精品| 中文字幕免费在线视频6| 欧美bdsm另类| 尤物成人国产欧美一区二区三区| 亚洲av.av天堂| 夜夜爽夜夜爽视频| 亚洲欧洲日产国产| 亚洲欧美中文字幕日韩二区| 建设人人有责人人尽责人人享有的 | 久久草成人影院| 亚洲成人精品中文字幕电影| 晚上一个人看的免费电影| 色吧在线观看| 啦啦啦韩国在线观看视频| 久久久久久国产a免费观看| 国产又色又爽无遮挡免| 激情 狠狠 欧美| 国产伦一二天堂av在线观看| 两个人视频免费观看高清| 免费无遮挡裸体视频| av卡一久久| 精品国产露脸久久av麻豆 | 男人舔奶头视频| 中文字幕亚洲精品专区| www.色视频.com| 久久久精品大字幕| 亚洲av免费在线观看| 91精品一卡2卡3卡4卡| 最近中文字幕高清免费大全6| 全区人妻精品视频| 亚洲欧美一区二区三区国产| 91av网一区二区| 午夜久久久久精精品| 久久久久久大精品| 免费看光身美女| 成人无遮挡网站| 国产老妇女一区| 国产精品嫩草影院av在线观看| 国产av在哪里看| 亚洲不卡免费看| 国产国拍精品亚洲av在线观看| 免费av观看视频| 六月丁香七月| 国产爱豆传媒在线观看| 嘟嘟电影网在线观看| 国产成人免费观看mmmm| 中文字幕av在线有码专区| 一区二区三区四区激情视频| 永久网站在线| 亚洲一区高清亚洲精品| 久久亚洲精品不卡| 亚洲在线观看片| 免费观看人在逋| 日本免费在线观看一区| 国产麻豆成人av免费视频| 97人妻精品一区二区三区麻豆| 欧美成人午夜免费资源| 免费av毛片视频| av在线亚洲专区| 日日干狠狠操夜夜爽| 国产av码专区亚洲av| 国语对白做爰xxxⅹ性视频网站| 成人毛片60女人毛片免费| 水蜜桃什么品种好| 国产av在哪里看| 男人狂女人下面高潮的视频| 日本色播在线视频| 内地一区二区视频在线| 亚洲综合色惰| 国产伦精品一区二区三区四那| 精品国产三级普通话版| 国产色婷婷99|