• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Improved device performance of recessed-gate AlGaN/GaN HEMTs by using in-situ N2O radical treatment

    2022-05-16 07:11:28XinchuangZhang張新創(chuàng)MeiWu武玫BinHou侯斌XueruiNiu牛雪銳HaoLu蘆浩FuchunJia賈富春MengZhang張濛JialeDu杜佳樂LingYang楊凌XiaohuaMa馬曉華andYueHao郝躍
    Chinese Physics B 2022年5期
    關(guān)鍵詞:楊凌新創(chuàng)

    Xinchuang Zhang(張新創(chuàng)) Mei Wu(武玫) Bin Hou(侯斌) Xuerui Niu(牛雪銳) Hao Lu(蘆浩)Fuchun Jia(賈富春) Meng Zhang(張濛) Jiale Du(杜佳樂) Ling Yang(楊凌)Xiaohua Ma(馬曉華) and Yue Hao(郝躍)

    1School of Advanced Materials and Nanotechnology,Xidian University,Xi’an 710071,China

    2School of Microelectronics,Xidian University,Xi’an 710071,China

    Keywords: AlGaN/GaN, high-electron-mobility transistors, low gate leakage, radio frequency, radical treatment

    1. Introduction

    As a typical representative of the third generation semiconductors, gallium nitride(GaN)is widely used in high frequency, high voltage, high power, and many other fields due to its superior material characteristics.[1–5]For many years,recessed gate process has been widely used in the fabrication of GaN-based devices. However, in the process of plasma etching gate recess, it often suffers from either serious etching damage or large device leakage current.[6–8]In order to improve the device characteristics, different interface treatment methods after recess etching have been widely studied,such as annealing after recess etching,[9]plasma treatment,[10–12]solution treatment,[13,14]and so on.Miet al.used N2O plasma to treat the interface by plasma-enhanced chemical vapor deposition(PECVD).[15]Chiuet al.employed reactive ion etching(RIE)to produce N2O plasma for oxidizing the interface of the device.[16]Therefore,N2O has become popular for improving the interface quality in the fabrication process of GaN-based devices.[17,18]However,high temperature annealing could not only increase the complexity of the process, but also activate deep level defects and exacerbate current collapse.[19]Solution treatment also has to face the challenge of environmental problems. Moreover, physical bombardment resulting from negative self-bias voltage is inevitable in the process of PECVD and RIE plasma treatments, which will weaken the suppression of gate leakage current.[11,18]Therefore,an interface processing method with no or little physical bombardment is urgently needed to enhance the suppression effect of gate leakage current.

    The surface damage caused by physical bombardment can be effectively avoided in the process of interface treatment by inductively coupled plasma(ICP)plasma. The ICP etching system consists of two RF power sources with the frequency of 13.56 MHz. When only the ICP coil power is turned on and the ICP bias power is set to zero,there is no self-bias voltage, since the charged particles are not accelerated in the direction towards the wafer,in these conditions. This plasma is mainly composed of unionized molecules,various electrically neutral radicals and charged particles. Among them,the radicals have the most active chemical activities without bombardment effect, and the chemical reactions of plasma are mainly the contribution of these active radicals.[20]Therefore,radicals produced by ICP can be utilized as a new interface treatment method.

    In this work, we propose the N2O radicalsin-situtreatment (IST) on gate region to reduce the gate leakage current of gate recessed AlGaN/GaN high-electron-mobility transistors(HEMTs). After gate recess etching by chlorine,the sample were treated by N2O radicals in etcher. Compared with the sample without IST, the gate leakage current of the sample after IST processing decreased by more than one order of magnitude. The fabricated HEMTs with gate length of 0.6 μm after the IST process show a low reverse gate current of 2.4×10-9A/mm, high on/off current ratio of 3.6×108,and highfT×Lgof 13.44 GHz·μm. An oxide layer with a thickness of 1.8 nm exists on the AlGaN surface according to the transmission electron microscope (TEM) imaging.X-ray photoelectron spectroscopy(XPS)measurement shows that the content of the Al–O and Ga–O bonds increased after IST,indicating that the Al–N and Ga–N bonds on the surface were broken and meanwhile the Al–O and Ga–O bonds formed. The oxide formed by a chemical reaction between radicals and the surface of the AlGaN barrier layer is responsible for improved device characteristics.

    2. Device fabrication

    As illustrated in Fig.1(a),the HEMT in this work is composed of AlN nucleation layer, GaN buffer layer (1.5 μm),unintentionally doped GaN channel, AlN insert layer(1 nm),Al0.24Ga0.76N barrier layer(22 nm)and GaN cap layer(2 nm)grown by MOCVD on sapphire substrate. Room-temperature Hall measurements showed an electron sheet concentration of 8.16×1012cm-2and a mobility of 1937 cm2/V·s.

    Fig. 1. (a) Schematic cross section of the proposed AlGaN/GaN HEMTs and(b)Scanning transmission electron microscopy image on a cross-section from the IST sample in the gate interface region.

    The process flow started with a Ti/Al/Ni/Au ohmic contact deposited by electron beam evaporation, followed by annealing at 840°C for 30 s in nitrogen ambient.Then the device isolation was achieved by BCl3/Cl2based etching with the etching depth of 140 nm. The measured ohmic contact resistance was 0.42 Ω·mm using transmission line model (TLM).A 60-nm SiN passivation layer was deposited with PECVD,and the gate foot was defined by photolithography. After the SiN layer under the gate electron was removed by CF4-based plasma,gate recess was performed by BCl3/Cl2-based plasma with ICP, of which total etching depth is 74.5 nm by atomic force microscope (AFM). Two control groups were set. The sample A without IST process served as a control group after gate recess etching,and the sample B was treated by N2O radical to react with the AlGaN surface in high vacuum reaction chamber of ICP for 20 minutes. The ICP source power and the bias power were applied by 200 W and 0 W,respectively. The chamber pressure was 15 mTorr(1 Torr=1.33322×102Pa)with the N2O flow rate of 60 sccm. And the temperature of chuck was 40°C. There was no DC-bias voltage in the entire IST process. In the gate region of sample B, a 1.8-nm oxide layer was obtained as shown in Fig. 1(b). An Ni/Au(45 nm/120 nm) gate metal was deposited by electron beam evaporation after gate head lithography. In the whole processes,the two samples have the same process conditions except the IST time. The two types of HEMTs have a gate width of 50 μm, gate–source spacing of 1.4 μm, gate length of 0.6 μm, and gate–drain spacing of 2.8 μm. In addition,a circular shape Schottky barrier diode (SBD) with an anode radius of 65.0 μm were used for the capacitance–voltage measurements.

    3. Results and discussion

    The surface morphology of two samples in gate region scanned by AFM is shown in the Fig. 2(a) (sample A) and 2(b)(sample B).After IST,the surface roughness in terms of root mean square(RMS)changes from 0.336 nm to 0.286 nm,which shows IST process does not deteriorate the surface morphology of AlGaN layer.

    Fig. 2. The morphology of recess gate with (a) no IST (sample A) and (b)IST(sample B)by AFM scanning(5 μm×5 μm).

    The transferI–Vand output characteristics of the two devices atVd=10 V are compared as illustrated in Figs. 3(a)and 3(b). Table 1 shows the threshold voltages (Vth), peak transconductance (Gmmax) andION/IOFFof the two kinds of HEMTs. TheVthis defined as the gate-bias intercept of the linear extrapolation of drain current at the peak transconductance.It is found that theVthof sample A is-1.6 V and that of sample B is-1.3 V which is floating forward by 0.3 V. This is because that the effective thickness of the barrier layer decreases due to the oxidation of 1.8-nm AlGaN on the surface of the barrier layer by IST (as shown in Fig. 1(b)).[21]AtVgof-6 V, the drain leakage currents for two types of HEMTs are 5.3×10-9and 1.7×10-7A/mm with and without IST respectively. The correspondingION/IOFFratio increases by more than one order of magnitude. Figure 3(b)compares the output characteristics of two types of HEMTs,at a gate voltage of-6 V~2 V and step of 1 V.It is found that the on-resistance of the devices are the same as 2.8 Ω·mm and 2.7 Ω·mm for samples A and B respectively. And the saturation output currents of two kind of HEMTs were 905 mA/mm and 875 mA/mm. After IST, the on-resistance decreases slightly.The on-resistance of HEMT can be expressed by the following expression:

    whereRon-total is the total on-resistance,Rconis the ohmic contact resistance determined by transfer line method,Rgsis the channel resistance between gate and source,Rgdis the channel resistance between gate and drain,andRrecessrefers to the channel resistance under the gate.Judging from the TLM analysis, the contact resistance (Rcon) and block resistance (R□)for the HEMTs without IST are the same as the ones for the HEMTs with IST.Thus,Rcon,Rgs,andRgdremain unchanged during IST because of the constantRconandR□. And the variation ofRon-total depends onRrecess. This means that the gate resistance of the HEMTs does not degenerate after IST. Figure 3(c)shows the gate Schottky characteristics of the two devices. WhenVg=-10 V, the gate leakage current decreases from 1.8×10-7A/mm before IST to 2.4×10-9A/mm,which reduces by more than one order of magnitude. The Schottky barrier height can be extracted by the CV ring on the same sheet.[22]And the barrier height are 1.02 eV and 0.86 eV,respectively,for the HEMTs with IST and without IST.The increase of Schottky barrier height not only suppresses the gate reverse leakage current,[23,24]but also promotes the positive drift of device threshold voltage.[21]Figure 3(d) shows the curve of channel electron field effect mobility(μFE)with gate bias in the linear region. TheμFEof the all HEMTs channel was extracted by fat field-effect transistors (FATFETs) withLsg,Lg,Lgd, andWGof 3 μm, 50 μm, 3 μm, and 100 μm to reduce the influence of source and drain resistances. The peakμFEof HEMT with IST is 1409 cm2/V·s, however, ones of HEMT without IST is 1349 cm2/V·s. It was probably due to the fact that N2O radicals repaired the etching damage of gate region to a certain extent and reduced the surface trap density of states.[25]

    Table 1. Comparison of Vth,Gmmax,Ion/Ioff,and Idmax of HEMTs without and with IST.

    Fig.3. (a)Transfer characteristics,(b)output characteristics,(c)gate Schottky characteristics,and(d)μFE as a function of Vg for HEMTs with and without IST.

    Figure 4 illustrates the capacitance–voltage characteristics of the two types of Schottky diodes with different treatment processes at 100 kHz. Compared with sample A, the turn-on voltage of sample B is floating by 0.3 V,which is consistent with the transfer characteristics shown in Fig.3(a).The depth profile calculated by theC–Vmeasurement shows that the peak concentrations of electrons for two samples are in the position of 9.5 nm,as shown in the inset of Fig.4. This shows that the chemical reaction between N2O radicals and AlGaN layer does not change the distance between gate electrode and two-dimensional electron gas(2DEG)channel. However,the 2DEG concentration(ns)of the channel after IST is reduced to 55%of that of the channel without IST,which may be because the IST process oxidizes the AlGaN surface layer and reduces the thickness of the remaining barrier layer.[26]The decrease ofnsleads to a slight decrease in the saturated output current of the device with IST, as shown in Fig. 3(b). What is more,the smaller thens, the more positive bias voltage is required to clamp off the channel, that is, the more positive the corresponding threshold voltage. Therefore,in this study,sample B(with IST)has a more positive threshold voltage.bonds are formed. Compared sample A, the significant enhancement of Al–O peak makes the core–level spectra of O 1s drift towards the Al–O peak with lower bond energy for sample B.These results are consistent with the corresponding spectral peaks of Al2O3prepared by physical vapor deposition method.[27]The IST process generates corresponding oxides,so as to improve the Schottky barrier height.[28,29]Therefore,the barrier height of the device with IST is higher than that of the device without IST.Moreover,it is found that the decrease of gate leakage current is related to the oxidation of the barrier layer,as figure 3(c)shows.

    Fig.4. The C–V characteristics of sample A and sample B.

    Fig.5. XPS spectra from(a)Al 2p and(b)O 1s core levels of AlGaN surface with and without IST.

    The XPS method is also adopted to investigate the surface chemical composition of two samples. The Al 2p and the O 1s core level spectra are illustrated in Figs. 5(a) and 5(b),respectively. As shown in Fig.5(a),the Al 2p core–level spectrum is a coupling of two components corresponding to Al–O and Al–N bonds. After IST, the intensity of Al–O bond was elevated, indicating that some Al–N bonds on the surface are broken and meanwhile some Al–O bonds are formed. Figure 5(b) demonstrates that the O 1s core–level spectrum is a coupling of two components corresponding to the Al–O and the Ga–O bonds. After IST,both intensity of Al–O and Ga–O bonds were elevated as well,illustrating that Al–N and Ga–N bonds on the surface are broken while some Al–O and Ga–O

    Figure 6 shows the pulse transfer characteristics of two types of HEMTs at a gate voltage of-6 V~2 V and the current collapse ratio can be expressed by the following expression:

    where ΔIdsis the variation of pulse drain current atVg=2 V before and after electrical stress, andIds0is the pulse drain current atVg=2 V before applying electric stress.

    Table 2. Comparison of pulse current collapse ratio of HEMTs with and without IST at(VGSQ,VDSQ=-4 V,0 V)and(VGSQ,VDSQ=-8 V,0 V).

    As the Table 2 shows, sample A shows current collapse ratios of 1.9%and 4.9%at gate quiescent voltages of-4 V and-8 V,respectively. Sample B shows current collapse ratios of 0.4%and 1.8%.This indicates that IST has a certain inhibition effect on current collapse. What is more,the HEMTs without IST exhibited a forward floating ofVthby 0.18 V,while that for the ones with IST is only 0.06 V.The drift ofVthmay be due to the damage induced trap introduced in the process of recess gate etching,which has the ability to capture electrons.[30]

    As demonstrated in Fig. 7, the current–gain cutoff frequencyfTand maximum oscillation frequencyfmaxof the two types of HEMTs were measured using network analyzer in a frequency ranging from 100 MHz to 40 GHz. The HEMTs with IST process deliver anfTof 22.4 GHz and anfmaxof 47.5 GHz(as shown in Fig.7(b)), resulting in a highfT×Lgof 13.4 GHz·μm. While the HEMTs without IST show anfTof 18.0 GHz and anfmaxof 38.8 GHz(as shown in Fig.7(a)).As shown in Fig.6,the IST process reduces the drift of threshold voltage, which shows its advantage in reducing the interface charge induced by trap. Because IST process could effectively reduce the interface charge,reduced the parasitic effect of the device,and then reduced the effective gate length of the device.[31]Therefore, the small signal characteristics of the device are improved.

    Fig.6.Pulsed I–V characteristics of HEMTs with(a)no IST and(b)IST at a drain voltage of 10 V for(VGSQ,VDSQ=0 V,0 V),(VGSQ,VDSQ=-4 V,0 V),and(VGSQ,VDSQ=-8 V,0 V).

    Fig.7. Small-signal characteristics of the fabricated HEMTs at VDS=10 V for the HEMTs(a)without and(b)with IST.

    4. Conclusion

    In conclusion,we proposed a method to reduce gate leakage of devices and investigated the effect of different processing time of IST on the surface of barrier layer under gate metal.The fabricated HEMTs with the IST process show a low reverse gate current of 10-9A/mm, high on/off current ratio of 3.6×108, and highfT×Lgof 13.44 GHz·μm. Energy spectrum analysis of XPS shows the surface of AlGaN barrier layer is transformed into gallium oxide and alumina oxide,which proved by the cross-sectional TEM.These excellent results depict the great potential of the IST process applied for high frequency and high power operation. Especially, for RF devices with small gate length used in millimeter wave band,IST process can reduce the gate length extension of the device and significantly improve the high-frequency characteristics of the device and promote the development of RF devices.

    Acknowledgments

    Project supported by the National Key Research and Development Program of China(Grant No.2018YFB1802100),the National Natural Science Foundation of China (Grant Nos. 62104184, 62090014, 62104178, and 62104179), the Fundamental Research Funds for the Central Universities of China(Grant Nos.XJS201102,XJS211101,XJS211106,and ZDRC2002), and the Natural Science Foundation of Shaanxi Province, China (Grant Nos. 2020JM-191 and 2018HJCG-20).

    猜你喜歡
    楊凌新創(chuàng)
    陜西楊凌成立彩色小麥團隊
    楊凌推出穩(wěn)農(nóng)助農(nóng)“定心丸”
    解碼楊凌:不老的農(nóng)業(yè)
    楊凌深耕服務(wù)“田園”
    新創(chuàng)企業(yè)網(wǎng)絡(luò)導(dǎo)向?qū)ζ髽I(yè)績效的影響:戰(zhàn)略能力的中介效應(yīng)
    陜西青年作家采風(fēng)團走進陜西楊凌
    2017山西省新春新創(chuàng)優(yōu)秀劇目展演
    戲友(2017年1期)2017-06-19 19:33:43
    藏戲表演舞臺調(diào)度傳承與發(fā)展的點滴思考——以新創(chuàng)藏戲劇目《圖蘭朵》為例
    結(jié)句的新創(chuàng)(外一題)——李清照《武陵春》
    中華詩詞(2017年9期)2017-04-18 14:04:37
    新創(chuàng)企業(yè)的滯漲
    久久人人爽av亚洲精品天堂| av片东京热男人的天堂| 成人手机av| 51午夜福利影视在线观看| 国产成人系列免费观看| 国产精品久久久av美女十八| 国产亚洲精品第一综合不卡| 亚洲少妇的诱惑av| 欧美日韩黄片免| 不卡一级毛片| 新久久久久国产一级毛片| 日韩中文字幕欧美一区二区| 国产欧美日韩一区二区三区在线| 自拍欧美九色日韩亚洲蝌蚪91| 亚洲精品自拍成人| 国产亚洲精品久久久久5区| 在线亚洲精品国产二区图片欧美| 日本五十路高清| 精品人妻在线不人妻| 亚洲av美国av| 女人久久www免费人成看片| 亚洲九九香蕉| 嫩草影视91久久| 97在线人人人人妻| 少妇被粗大的猛进出69影院| 日本91视频免费播放| 狠狠精品人妻久久久久久综合| 下体分泌物呈黄色| 日韩中文字幕欧美一区二区| 亚洲国产欧美日韩在线播放| 老司机深夜福利视频在线观看 | 美女高潮喷水抽搐中文字幕| 黄片小视频在线播放| 欧美日本中文国产一区发布| 国产一区二区激情短视频 | 啦啦啦在线免费观看视频4| 久久 成人 亚洲| www日本在线高清视频| 亚洲欧美清纯卡通| 精品久久久精品久久久| 国产成+人综合+亚洲专区| 色老头精品视频在线观看| 精品福利观看| 欧美日韩黄片免| av天堂在线播放| 热99久久久久精品小说推荐| 欧美黄色片欧美黄色片| 免费少妇av软件| 国产在线观看jvid| 国产av一区二区精品久久| videos熟女内射| 考比视频在线观看| 在线精品无人区一区二区三| 精品国产一区二区三区久久久樱花| 黄色视频,在线免费观看| 99精国产麻豆久久婷婷| 中亚洲国语对白在线视频| 日本av免费视频播放| 成年女人毛片免费观看观看9 | 热re99久久精品国产66热6| 伊人久久大香线蕉亚洲五| 亚洲精品国产av蜜桃| 丁香六月天网| 亚洲精品久久成人aⅴ小说| 深夜精品福利| 日韩视频一区二区在线观看| 亚洲精华国产精华精| 国产成人av教育| 亚洲情色 制服丝袜| 国精品久久久久久国模美| 亚洲精品国产av成人精品| 黄网站色视频无遮挡免费观看| 国产野战对白在线观看| 日韩欧美一区二区三区在线观看 | 成年美女黄网站色视频大全免费| 国产成人精品久久二区二区91| 如日韩欧美国产精品一区二区三区| 国产精品秋霞免费鲁丝片| 久久久国产一区二区| 精品少妇久久久久久888优播| 精品高清国产在线一区| 亚洲国产精品成人久久小说| 久久久久久久大尺度免费视频| 国产成人系列免费观看| 一区二区日韩欧美中文字幕| 久久久久精品人妻al黑| 狠狠婷婷综合久久久久久88av| 精品国产乱码久久久久久男人| 国产av又大| 国产极品粉嫩免费观看在线| 午夜福利在线观看吧| 国产精品秋霞免费鲁丝片| 国产精品亚洲av一区麻豆| 国产男人的电影天堂91| 中文字幕最新亚洲高清| 99久久99久久久精品蜜桃| 午夜两性在线视频| 每晚都被弄得嗷嗷叫到高潮| 日韩视频在线欧美| 日韩,欧美,国产一区二区三区| 国产亚洲欧美在线一区二区| 免费观看人在逋| 一区二区三区精品91| 操美女的视频在线观看| 国产精品 欧美亚洲| 久久人人爽av亚洲精品天堂| 在线 av 中文字幕| 黄色 视频免费看| 精品国产一区二区三区四区第35| 五月开心婷婷网| 国产精品久久久久久人妻精品电影 | 亚洲国产av影院在线观看| 国产男女内射视频| 欧美日韩亚洲国产一区二区在线观看 | 久久亚洲国产成人精品v| 成在线人永久免费视频| 色精品久久人妻99蜜桃| 美女主播在线视频| 夫妻午夜视频| 国产亚洲精品一区二区www | 最新在线观看一区二区三区| 青青草视频在线视频观看| 免费日韩欧美在线观看| 精品人妻1区二区| 一二三四社区在线视频社区8| 性色av乱码一区二区三区2| 免费在线观看黄色视频的| 国产人伦9x9x在线观看| 丝袜脚勾引网站| 婷婷色av中文字幕| 黑人猛操日本美女一级片| 少妇猛男粗大的猛烈进出视频| 国产无遮挡羞羞视频在线观看| 午夜免费观看性视频| 国产伦人伦偷精品视频| av片东京热男人的天堂| 中文字幕高清在线视频| 老司机靠b影院| 一区二区日韩欧美中文字幕| 黄频高清免费视频| 三级毛片av免费| 啦啦啦中文免费视频观看日本| 亚洲午夜精品一区,二区,三区| 午夜影院在线不卡| 叶爱在线成人免费视频播放| 色婷婷av一区二区三区视频| 精品一区二区三区av网在线观看 | 夫妻午夜视频| 热99国产精品久久久久久7| 蜜桃国产av成人99| 精品视频人人做人人爽| 人成视频在线观看免费观看| 在线av久久热| 一本久久精品| 日韩制服丝袜自拍偷拍| 欧美激情极品国产一区二区三区| 免费人妻精品一区二区三区视频| 极品人妻少妇av视频| 国产日韩一区二区三区精品不卡| 久久久久网色| 天天躁狠狠躁夜夜躁狠狠躁| 精品少妇黑人巨大在线播放| 又大又爽又粗| 国产成人啪精品午夜网站| 欧美乱码精品一区二区三区| 不卡一级毛片| 国产免费av片在线观看野外av| 国产精品二区激情视频| 国产免费福利视频在线观看| 亚洲欧美成人综合另类久久久| 亚洲色图综合在线观看| 亚洲自偷自拍图片 自拍| 亚洲全国av大片| 国产欧美日韩一区二区三 | 亚洲精品国产色婷婷电影| 久久久久网色| 国产精品影院久久| 久久久水蜜桃国产精品网| av网站免费在线观看视频| 大片电影免费在线观看免费| 咕卡用的链子| 亚洲全国av大片| 欧美激情极品国产一区二区三区| 免费高清在线观看视频在线观看| 多毛熟女@视频| 国产精品亚洲av一区麻豆| 狠狠狠狠99中文字幕| 老司机影院成人| 精品国产一区二区三区久久久樱花| 国产精品自产拍在线观看55亚洲 | 精品一区在线观看国产| 精品熟女少妇八av免费久了| av福利片在线| 亚洲精品久久午夜乱码| 女人爽到高潮嗷嗷叫在线视频| www.自偷自拍.com| 亚洲久久久国产精品| 久久天躁狠狠躁夜夜2o2o| 777米奇影视久久| 99国产精品一区二区三区| 男女午夜视频在线观看| 日韩视频一区二区在线观看| 三级毛片av免费| 窝窝影院91人妻| 女人被躁到高潮嗷嗷叫费观| 美女高潮到喷水免费观看| 大香蕉久久成人网| 久久午夜综合久久蜜桃| 亚洲欧美日韩另类电影网站| 人妻 亚洲 视频| 久久久久久久久久久久大奶| 久久香蕉激情| 日日爽夜夜爽网站| 好男人电影高清在线观看| 久久久国产精品麻豆| 精品久久久久久电影网| 午夜成年电影在线免费观看| 一边摸一边做爽爽视频免费| h视频一区二区三区| 亚洲精品日韩在线中文字幕| 国产男人的电影天堂91| 久久久久国产精品人妻一区二区| 精品一区二区三卡| 视频在线观看一区二区三区| 可以免费在线观看a视频的电影网站| 免费av中文字幕在线| av不卡在线播放| 在线观看免费视频网站a站| 精品福利永久在线观看| 亚洲精品国产一区二区精华液| 亚洲自偷自拍图片 自拍| 精品视频人人做人人爽| 亚洲一码二码三码区别大吗| 国产成人欧美在线观看 | 午夜福利在线观看吧| 丰满迷人的少妇在线观看| 丰满饥渴人妻一区二区三| 国产真人三级小视频在线观看| 最近最新中文字幕大全免费视频| 在线av久久热| 成年人午夜在线观看视频| 18禁国产床啪视频网站| 麻豆国产av国片精品| 亚洲国产中文字幕在线视频| 亚洲专区中文字幕在线| 欧美日韩中文字幕国产精品一区二区三区 | 久久热在线av| 亚洲午夜精品一区,二区,三区| 国产日韩欧美在线精品| 亚洲国产精品一区二区三区在线| 久久久久视频综合| 国产精品熟女久久久久浪| 无遮挡黄片免费观看| 亚洲欧美精品自产自拍| 777米奇影视久久| 丝袜脚勾引网站| 久久久精品免费免费高清| 最近最新中文字幕大全免费视频| 首页视频小说图片口味搜索| 我要看黄色一级片免费的| 欧美在线黄色| 最近最新中文字幕大全免费视频| av又黄又爽大尺度在线免费看| 久久人人爽人人片av| 人人妻人人爽人人添夜夜欢视频| 又大又爽又粗| 国产人伦9x9x在线观看| 超碰97精品在线观看| 精品乱码久久久久久99久播| 国产av又大| 99国产精品99久久久久| 亚洲成人免费av在线播放| 亚洲性夜色夜夜综合| 国产黄频视频在线观看| 91大片在线观看| 动漫黄色视频在线观看| 人妻一区二区av| 香蕉国产在线看| 人妻人人澡人人爽人人| 国产淫语在线视频| 久久久久国内视频| 日日夜夜操网爽| 搡老岳熟女国产| 亚洲精华国产精华精| 久久热在线av| 999久久久国产精品视频| 久久精品人人爽人人爽视色| 中文精品一卡2卡3卡4更新| 秋霞在线观看毛片| 99国产精品免费福利视频| 久久精品久久久久久噜噜老黄| 91九色精品人成在线观看| 天天躁狠狠躁夜夜躁狠狠躁| 亚洲一区二区三区欧美精品| 精品一区二区三区av网在线观看 | 欧美乱码精品一区二区三区| 国产精品麻豆人妻色哟哟久久| 视频区欧美日本亚洲| 亚洲精品乱久久久久久| 黄色视频在线播放观看不卡| 亚洲视频免费观看视频| 亚洲一区二区三区欧美精品| 久久99热这里只频精品6学生| 免费黄频网站在线观看国产| 久久精品国产亚洲av高清一级| 欧美大码av| 午夜精品国产一区二区电影| 最近中文字幕2019免费版| 亚洲综合色网址| 老司机靠b影院| 精品人妻熟女毛片av久久网站| 男女免费视频国产| 欧美一级毛片孕妇| 国产1区2区3区精品| 久久久精品区二区三区| 啦啦啦 在线观看视频| 国产一区二区在线观看av| 免费在线观看视频国产中文字幕亚洲 | 国产精品av久久久久免费| 亚洲国产欧美在线一区| 激情视频va一区二区三区| 久久中文字幕一级| 免费av中文字幕在线| 亚洲专区国产一区二区| 国产欧美日韩精品亚洲av| 午夜激情久久久久久久| 蜜桃国产av成人99| 亚洲欧美一区二区三区黑人| 久久午夜综合久久蜜桃| 好男人电影高清在线观看| 精品免费久久久久久久清纯 | 久久精品人人爽人人爽视色| 91麻豆av在线| 侵犯人妻中文字幕一二三四区| 国产成人精品在线电影| √禁漫天堂资源中文www| 热re99久久精品国产66热6| 午夜福利,免费看| 久久这里只有精品19| 老司机亚洲免费影院| 80岁老熟妇乱子伦牲交| 别揉我奶头~嗯~啊~动态视频 | 免费高清在线观看日韩| 午夜激情久久久久久久| 午夜两性在线视频| 亚洲av日韩精品久久久久久密| 一级片'在线观看视频| 欧美亚洲日本最大视频资源| 美女脱内裤让男人舔精品视频| 亚洲精品乱久久久久久| 日韩 亚洲 欧美在线| 1024香蕉在线观看| 最新的欧美精品一区二区| 正在播放国产对白刺激| 悠悠久久av| 99国产综合亚洲精品| 伦理电影免费视频| 日韩制服丝袜自拍偷拍| 国产亚洲欧美在线一区二区| 中文字幕色久视频| 婷婷色av中文字幕| 国内毛片毛片毛片毛片毛片| 亚洲国产中文字幕在线视频| 在线亚洲精品国产二区图片欧美| 国产一区二区三区综合在线观看| 一级片'在线观看视频| 国产无遮挡羞羞视频在线观看| 香蕉丝袜av| 搡老乐熟女国产| 新久久久久国产一级毛片| 中文欧美无线码| netflix在线观看网站| 另类亚洲欧美激情| 亚洲色图 男人天堂 中文字幕| 99国产精品一区二区三区| 日本黄色日本黄色录像| 2018国产大陆天天弄谢| 欧美97在线视频| 男女边摸边吃奶| 久久 成人 亚洲| 国产xxxxx性猛交| 18在线观看网站| 午夜91福利影院| 两个人免费观看高清视频| 国产成人一区二区三区免费视频网站| a级毛片黄视频| 久久女婷五月综合色啪小说| 免费不卡黄色视频| 丰满饥渴人妻一区二区三| 99精国产麻豆久久婷婷| 亚洲国产精品一区三区| 亚洲少妇的诱惑av| 免费看十八禁软件| 一区二区三区乱码不卡18| 深夜精品福利| 久久久久视频综合| 999精品在线视频| 亚洲av日韩在线播放| 国产av国产精品国产| 日韩电影二区| 国产成人av教育| 国产亚洲一区二区精品| 精品久久久久久久毛片微露脸 | a级毛片黄视频| 人人妻人人澡人人爽人人夜夜| 国产人伦9x9x在线观看| 少妇精品久久久久久久| 国产黄频视频在线观看| 亚洲一区中文字幕在线| 亚洲久久久国产精品| 午夜成年电影在线免费观看| 国产在线一区二区三区精| a在线观看视频网站| 男男h啪啪无遮挡| 亚洲第一av免费看| 大香蕉久久成人网| 亚洲专区字幕在线| 久久久水蜜桃国产精品网| 中文精品一卡2卡3卡4更新| 纯流量卡能插随身wifi吗| 99国产综合亚洲精品| 美女扒开内裤让男人捅视频| www.自偷自拍.com| 亚洲五月婷婷丁香| 热99国产精品久久久久久7| av有码第一页| 亚洲欧洲日产国产| 亚洲精品一区蜜桃| 桃红色精品国产亚洲av| 国产在视频线精品| 欧美激情极品国产一区二区三区| 亚洲精品国产色婷婷电影| 精品人妻一区二区三区麻豆| 两性夫妻黄色片| 黄色视频在线播放观看不卡| 叶爱在线成人免费视频播放| 亚洲 欧美一区二区三区| 他把我摸到了高潮在线观看 | 亚洲伊人久久精品综合| 一级黄色大片毛片| 亚洲人成77777在线视频| 黄色a级毛片大全视频| 他把我摸到了高潮在线观看 | 涩涩av久久男人的天堂| 亚洲全国av大片| 中国美女看黄片| 美国免费a级毛片| 蜜桃在线观看..| 夜夜夜夜夜久久久久| 美女视频免费永久观看网站| 亚洲一区二区三区欧美精品| 欧美性长视频在线观看| 性高湖久久久久久久久免费观看| 久久国产精品人妻蜜桃| 精品视频人人做人人爽| 成人国产av品久久久| 人妻人人澡人人爽人人| 精品少妇黑人巨大在线播放| 黑人猛操日本美女一级片| 欧美在线黄色| 亚洲免费av在线视频| 成年av动漫网址| 亚洲色图 男人天堂 中文字幕| 亚洲专区国产一区二区| cao死你这个sao货| 亚洲专区字幕在线| 国产一区二区激情短视频 | 亚洲成人国产一区在线观看| 中文精品一卡2卡3卡4更新| 精品亚洲成国产av| 国产精品秋霞免费鲁丝片| 悠悠久久av| 十八禁人妻一区二区| 欧美国产精品va在线观看不卡| 宅男免费午夜| 日本猛色少妇xxxxx猛交久久| 在线观看人妻少妇| 视频区图区小说| 成人av一区二区三区在线看 | 美国免费a级毛片| 性高湖久久久久久久久免费观看| 国产精品一区二区免费欧美 | 男女高潮啪啪啪动态图| 亚洲欧美色中文字幕在线| 国产精品亚洲av一区麻豆| 精品人妻一区二区三区麻豆| 女警被强在线播放| 91字幕亚洲| 日本av免费视频播放| 一边摸一边做爽爽视频免费| cao死你这个sao货| 久久精品亚洲熟妇少妇任你| 亚洲人成77777在线视频| 日本av手机在线免费观看| 国产一卡二卡三卡精品| 菩萨蛮人人尽说江南好唐韦庄| 韩国精品一区二区三区| 人人妻人人澡人人看| 欧美成人午夜精品| 国产精品偷伦视频观看了| 亚洲精品中文字幕在线视频| 免费人妻精品一区二区三区视频| 天堂俺去俺来也www色官网| 中文欧美无线码| 妹子高潮喷水视频| 国产欧美日韩一区二区精品| 少妇粗大呻吟视频| 后天国语完整版免费观看| 五月天丁香电影| 永久免费av网站大全| 色婷婷久久久亚洲欧美| 99国产精品免费福利视频| 中国国产av一级| 国产又色又爽无遮挡免| 国产高清国产精品国产三级| 欧美黑人精品巨大| 高清av免费在线| 99热全是精品| 国产黄色免费在线视频| 亚洲精品国产av成人精品| 啦啦啦 在线观看视频| 日日夜夜操网爽| 人妻 亚洲 视频| 中文字幕最新亚洲高清| 日韩中文字幕欧美一区二区| 岛国毛片在线播放| 看免费av毛片| 在线天堂中文资源库| 在线观看免费高清a一片| 91成年电影在线观看| 黑人操中国人逼视频| 免费高清在线观看日韩| 国产成人精品久久二区二区免费| 日本黄色日本黄色录像| av在线播放精品| 日本精品一区二区三区蜜桃| 青春草亚洲视频在线观看| 欧美老熟妇乱子伦牲交| 丰满人妻熟妇乱又伦精品不卡| 少妇被粗大的猛进出69影院| 成人影院久久| 国产91精品成人一区二区三区 | 精品一区在线观看国产| 91麻豆精品激情在线观看国产 | 成年人午夜在线观看视频| 男女下面插进去视频免费观看| 老司机在亚洲福利影院| 天堂中文最新版在线下载| 在线十欧美十亚洲十日本专区| av超薄肉色丝袜交足视频| 亚洲欧美日韩另类电影网站| 美女高潮喷水抽搐中文字幕| 夫妻午夜视频| 久久亚洲精品不卡| 日本猛色少妇xxxxx猛交久久| 亚洲精品一二三| 两个人看的免费小视频| 亚洲成av片中文字幕在线观看| 人人妻人人添人人爽欧美一区卜| 亚洲成av片中文字幕在线观看| 欧美久久黑人一区二区| 国产伦理片在线播放av一区| 黄片播放在线免费| 国产欧美亚洲国产| 国产av国产精品国产| 国产精品一区二区在线观看99| 国产成+人综合+亚洲专区| 交换朋友夫妻互换小说| 一边摸一边做爽爽视频免费| 如日韩欧美国产精品一区二区三区| 每晚都被弄得嗷嗷叫到高潮| 99热国产这里只有精品6| 999久久久国产精品视频| 日本撒尿小便嘘嘘汇集6| 国产亚洲av片在线观看秒播厂| 成人三级做爰电影| 久久精品aⅴ一区二区三区四区| 成人影院久久| 成年人免费黄色播放视频| 国产在视频线精品| 久久免费观看电影| 亚洲精品中文字幕在线视频| 亚洲伊人久久精品综合| 91字幕亚洲| 精品欧美一区二区三区在线| 少妇被粗大的猛进出69影院| 脱女人内裤的视频| 叶爱在线成人免费视频播放| 美女国产高潮福利片在线看| 久久精品成人免费网站| 蜜桃国产av成人99| 菩萨蛮人人尽说江南好唐韦庄| 国产日韩欧美在线精品| 久久ye,这里只有精品| 亚洲久久久国产精品| 精品国产国语对白av| 亚洲黑人精品在线| 天堂俺去俺来也www色官网| 久久精品久久久久久噜噜老黄| 免费黄频网站在线观看国产| 久久久久精品国产欧美久久久 | 69精品国产乱码久久久| 亚洲 国产 在线| 国产成人欧美在线观看 | 在线观看舔阴道视频| 69av精品久久久久久 | 在线亚洲精品国产二区图片欧美| 日韩中文字幕视频在线看片| 1024香蕉在线观看| 欧美大码av| 91成年电影在线观看| 色老头精品视频在线观看| 久久精品亚洲av国产电影网| 乱人伦中国视频| 国产精品亚洲av一区麻豆|