董桑婕,姜小春,王羚羽,林銳,齊振宇,喻景權(quán),周艷虹
遠(yuǎn)紅光補(bǔ)光對(duì)辣椒幼苗生長(zhǎng)和非生物脅迫抗性的影響
董桑婕1,姜小春1,王羚羽1,林銳1,齊振宇2,喻景權(quán)1,周艷虹1*
1浙江大學(xué)農(nóng)業(yè)與生物技術(shù)學(xué)院/農(nóng)業(yè)部園藝植物生長(zhǎng)發(fā)育重點(diǎn)實(shí)驗(yàn)室,杭州 310058;2浙江大學(xué)農(nóng)業(yè)試驗(yàn)站,杭州 310058
【目的】研究補(bǔ)照適量遠(yuǎn)紅光(FR)對(duì)辣椒幼苗生長(zhǎng)發(fā)育和非生物脅迫抗性的調(diào)控作用,旨在為實(shí)際生產(chǎn)過(guò)程中利用精確的光環(huán)境調(diào)控手段培育壯苗提供理論依據(jù)。【方法】以辣椒‘博辣紅帥’品種為研究材料,將苗齡7 d的辣椒幼苗置于LED光源對(duì)照光譜(NL;紅R/藍(lán)B=3/1,光量子通量密度PPFD為150 μmol·m-2·s-1)及在此基礎(chǔ)上分別補(bǔ)充10 μmol·m-2·s-1遠(yuǎn)紅光(6% FR)、20 μmol·m-2·s-1遠(yuǎn)紅光(13% FR)和30 μmol·m-2·s-1遠(yuǎn)紅光(20% FR)的處理組光譜環(huán)境條件下培養(yǎng),并于苗齡21 d時(shí)進(jìn)行低溫和干旱處理。通過(guò)測(cè)定生物量、抗性相關(guān)基因表達(dá)、抗氧化酶活性、激素含量、葉綠素?zé)晒鈪?shù)以及葉片相對(duì)電導(dǎo)率等,探究補(bǔ)充6% FR對(duì)辣椒幼苗生長(zhǎng)和非生物脅迫抗性的影響。【結(jié)果】與對(duì)照光譜相比,補(bǔ)充6% FR顯著提高了辣椒幼苗株高、莖粗、干鮮重以及壯苗指數(shù)(<0.05)。低溫脅迫下,相比于對(duì)照光譜組,補(bǔ)充6% FR顯著提高了辣椒葉片冷響應(yīng)基因和抗氧化酶相關(guān)基因、、的表達(dá)水平,超氧化物歧化酶(SOD)、抗壞血酸過(guò)氧化物酶(APX)、脫氫抗壞血酸還原酶(DHAR)、過(guò)氧化氫酶(CAT)、谷胱甘肽還原酶(GR)活性比對(duì)照分別增加25.2%、53.6%、55.8%、72.7%和33.4%,抗逆相關(guān)激素脫落酸(ABA)的含量提高69.5%。同時(shí),低溫脅迫下補(bǔ)充6% FR后辣椒葉片PSII最大光化學(xué)效率(Fv/Fm)較對(duì)照光譜組顯著升高,而相對(duì)電導(dǎo)率(REL)顯著降低,表明補(bǔ)充6% FR緩解了低溫下PSII光抑制和葉片細(xì)胞的損傷,提高了辣椒幼苗的耐冷性。此外,干旱脅迫下,相比于對(duì)照光譜組,補(bǔ)充6% FR使辣椒幼苗的抗氧化酶SOD、GR、APX、CAT、DHAR活性分別增加13.7%、38.0%、37.2%、27.6%和23.7%,ABA含量和PSII實(shí)際光化學(xué)效率(ΦPSII)也顯著升高,而REL則明顯降低,表明補(bǔ)充6% FR減輕了干旱脅迫引起的PSII光抑制和膜脂過(guò)氧化,提高了辣椒幼苗的耐旱性。【結(jié)論】補(bǔ)充6% FR不僅可促使辣椒壯苗的形成,還可通過(guò)增加抗氧化酶活性和ABA含量提高辣椒幼苗對(duì)低溫脅迫和干旱脅迫的抗性。
辣椒;遠(yuǎn)紅光;壯苗指數(shù);低溫脅迫;干旱脅迫
【研究意義】光是維持植物生長(zhǎng)所必須的環(huán)境因子,它既能為植物提供光合作用所需能量,也能作為一種環(huán)境信號(hào)調(diào)控植物的生長(zhǎng)發(fā)育,其中,光質(zhì)作為光環(huán)境的重要特性對(duì)植物的生長(zhǎng)發(fā)育至關(guān)重要[1-3]。近年來(lái),利用全人工光照的植物工廠育苗技術(shù)實(shí)現(xiàn)了作物的大規(guī)模、標(biāo)準(zhǔn)化優(yōu)質(zhì)育苗生產(chǎn),極大地提高了作物的產(chǎn)量、品質(zhì)以及生產(chǎn)力[4]。其中,發(fā)光二極管(LED)作為補(bǔ)光光源不僅具有壽命長(zhǎng)、耗能低的特點(diǎn),還可實(shí)現(xiàn)對(duì)特定的功能光譜進(jìn)行組合,以滿足作物生長(zhǎng)發(fā)育對(duì)光的需求[5-7]。因此,基于植物需求的LED光源光譜構(gòu)成的優(yōu)化對(duì)于提高蔬菜作物生產(chǎn)效率具有重要意義。【前人研究進(jìn)展】植物通過(guò)光受體光敏色素感知生長(zhǎng)環(huán)境中動(dòng)態(tài)變化的紅光(R)和遠(yuǎn)紅光(FR)光質(zhì)信號(hào),從而調(diào)控植物形態(tài)建成、逆境抗性等生理過(guò)程。在番茄中已發(fā)現(xiàn)有5種光敏色素(PHYA、PHYB1、PHYB2、PHYE和PHYF)參與光質(zhì)信號(hào)調(diào)控生長(zhǎng)發(fā)育進(jìn)程,其中,F(xiàn)R受體PHYA和R受體PHYB1/B2最為重要[8]。目前,利用光譜成分中R和FR比值(R/FR)的變化來(lái)調(diào)節(jié)設(shè)施作物生長(zhǎng)發(fā)育的研究備受關(guān)注。研究表明,高比例R/FR會(huì)導(dǎo)致植株節(jié)間距變小、植株矮化;低比例R/FR會(huì)導(dǎo)致植物節(jié)間伸長(zhǎng)、株高增加、葉面積增加、葉綠素含量降低[9-11]。此外,光質(zhì)對(duì)植物的抗逆生理也起到調(diào)控作用[12]。張曉梅等[13]的研究結(jié)果顯示,與其他單色光處理相比,R可以顯著降低干旱條件下黃瓜的失水率,同時(shí)增加SOD、CAT以及G-POD的活性,從而提高黃瓜的干旱抗性。在低溫脅迫響應(yīng)過(guò)程中,R可以提高草莓葉片可溶性糖含量,抑制丙二醛的積累,藍(lán)光(B)有助于脯氨酸和可溶性蛋白的增加,因此,適當(dāng)?shù)难a(bǔ)充R、B有利于草莓植株抗寒性的提高[14]。而在番茄中,低比例R/FR會(huì)促進(jìn)ABA和JA的生物合成,并激活CBF信號(hào)通路,從而提高番茄的低溫抗性[15]。辣椒是我國(guó)設(shè)施栽培的主要蔬菜種類,與番茄同屬于茄科,不耐低溫和旱澇,尤其對(duì)苗期的溫度和水分管理的要求較高,然而光質(zhì)對(duì)其生長(zhǎng)和逆境適應(yīng)性的調(diào)控作用尚不清晰?!颈狙芯壳腥朦c(diǎn)】盡管已有大量研究揭示紅藍(lán)光對(duì)植株生物量、產(chǎn)量以及品質(zhì)的調(diào)控作用[16-17],但關(guān)于光質(zhì)信號(hào)調(diào)控植物非生物逆境抗性方面的研究卻較少。光質(zhì)調(diào)控作物生長(zhǎng)-抗性平衡的作用機(jī)制是目前亟待解決的重要科學(xué)問(wèn)題,這對(duì)于保障作物優(yōu)質(zhì)高產(chǎn)具有重要意義?!緮M解決的關(guān)鍵問(wèn)題】本研究旨在探討辣椒苗期適宜的LED光譜構(gòu)成,以期利用光質(zhì)調(diào)控的方法提高辣椒幼苗的壯苗指數(shù),并增強(qiáng)其對(duì)低溫和干旱脅迫的抗性,為保障辣椒的優(yōu)質(zhì)高產(chǎn)奠定基礎(chǔ)。
試驗(yàn)于2019—2020年在浙江大學(xué)蔬菜研究所進(jìn)行。
供試?yán)苯菲贩N為‘博辣紅帥’(L.Bola Hongshuai)。將辣椒種子置于150 mL錐形瓶,55℃溫水浸泡20 min,然后放在200 r/min的搖床上28℃催芽4 d左右,其間每天更換2次水。催芽結(jié)束后選取出芽長(zhǎng)度基本一致的種子,播種于50孔穴盤中,每周澆3次Hoagland營(yíng)養(yǎng)液。
光質(zhì)處理:待辣椒子葉伸展,將7 d苗齡幼苗置于光質(zhì)生長(zhǎng)室進(jìn)行不同光質(zhì)處理,調(diào)節(jié)光源和幼苗之間的距離使光量子通量密度(PPFD)保持在150 μmol?m-2?s-1,設(shè)置如下:對(duì)照,不補(bǔ)光(NL;R﹕B=3﹕1),具體光譜圖見(jiàn)圖1;補(bǔ)充10 μmol?m-2?s-1遠(yuǎn)紅光(6% FR);補(bǔ)充20 μmol?m-2?s-1遠(yuǎn)紅光(13% FR);補(bǔ)充30 μmol?m-2?s-1遠(yuǎn)紅光(20% FR)。其中,R、B和FR的主波長(zhǎng)分別為660、450和730 nm。幼苗生長(zhǎng)光周期為8:00—20:00,溫度為25℃,相對(duì)濕度為70%。試驗(yàn)共3個(gè)處理組,每個(gè)處理組設(shè)3次重復(fù),每50株為一個(gè)重復(fù),共150株。
圖1 試驗(yàn)所用LED燈的相對(duì)光譜曲線
低溫處理:將苗齡為21 d的辣椒幼苗移至12孔穴盤(3×4)中,緩苗3 d后于人工氣候箱(浙江求是)內(nèi)進(jìn)行低溫和光質(zhì)共處理。溫度處理分別為25℃和6℃,光環(huán)境條件分別為自然光(NL)和補(bǔ)充6% FR。光周期為12 h,環(huán)境濕度為85%。低溫處理至幼苗出現(xiàn)明顯的脅迫表型(7 d)。試驗(yàn)共3個(gè)處理組,每個(gè)處理組設(shè)3次重復(fù),每12株為一個(gè)重復(fù),共36株。
干旱處理:在光環(huán)境條件分別為NL和補(bǔ)充6% FR的情況下,將苗齡為21 d的辣椒幼苗移至12孔穴盤(3×4)中,緩苗3 d后對(duì)每組光質(zhì)處理的辣椒幼苗進(jìn)行平均分組,分為正常澆水(Control)和干旱脅迫(Drought)。于干旱脅迫處理前澆透水,之后正常澆水的處理組每2—3 d澆水一次,干旱脅迫的處理組不再澆水,直至幼苗出現(xiàn)明顯的脅迫表型(7 d)。處理7 d后,對(duì)照組和處理組的基質(zhì)絕對(duì)含水量分別為35%和10%。干旱處理試驗(yàn)共3個(gè)處理組,每個(gè)處理組設(shè)3次重復(fù),每12株為一個(gè)重復(fù),共36株。
1.2.1 生物量測(cè)定 幼苗期不同光質(zhì)處理21 d后測(cè)
定各項(xiàng)生長(zhǎng)指標(biāo),包括株高、莖粗、第一節(jié)間距、下胚軸長(zhǎng)度、葉片數(shù)、鮮重、干重。對(duì)每個(gè)處理稱量鮮重后,用105℃殺青30 min,然后在65℃下烘干至恒重。計(jì)算幼苗壯苗指數(shù),計(jì)算公式為:
壯苗指數(shù)=(莖粗/株高+地下部干重/地上部干重)×全株干重
1.2.2 葉綠素?zé)晒鈪?shù)分析 低溫和干旱處理7 d后,將辣椒植株進(jìn)行30 min暗處理,選取相同葉位的功能葉,使用Imaging-PAM葉綠素?zé)晒鈨x(IMAGMAX1,Heinz Walz,Effeltrich,Germay)測(cè)定PSII最大光化學(xué)效率(Fv/Fm)和PSII實(shí)際光化學(xué)效率(ΦPSII),具體方法參考Jiang等[18]。
1.2.3 相對(duì)電導(dǎo)率(REL)測(cè)定 低溫和干旱處理7 d后,測(cè)定辣椒葉片的相對(duì)電導(dǎo)率,具體方法參考ZHANG等[19]。
1.2.4 抗氧化酶活性測(cè)定 低溫處理1 d和干旱處理3 d后,精確稱取0.5 g葉樣,測(cè)定根據(jù)XIA等[20]的具體方法。
1.2.5 ABA含量的測(cè)定 低溫處理1 d和干旱處理3 d后,精確稱取0.1 g的葉片于液氮中冷凍,具體測(cè)定參考王峰[21]的方法。
1.2.6 總RNA提取和實(shí)時(shí)熒光定量PCR(RT-qPCR)分析 低溫處理6 h后,取RNA樣存于-80℃中待用,具體參考JIANG等[18]的方法,使用辣椒泛素連接蛋白基因作為內(nèi)參基因,基因相對(duì)表達(dá)量的計(jì)算采用LIVAK等[22]的方法,引物見(jiàn)表1。
試驗(yàn)采取隨機(jī)區(qū)組設(shè)計(jì),隨機(jī)取樣,進(jìn)行3次重復(fù)。試驗(yàn)數(shù)據(jù)采用SPSS20進(jìn)行ANOVA分析,不同處理之間差異采用Tukey檢測(cè),不同的字母表示顯著性差異(<0.05)。
表1 實(shí)時(shí)熒光定量PCR引物
由圖2和表2可發(fā)現(xiàn),與對(duì)照光譜相比,補(bǔ)充6% FR顯著提高了辣椒幼苗的株高、莖粗、干/鮮重以及壯苗指數(shù)(<0.05),且對(duì)辣椒幼苗的第一節(jié)間距和下胚軸長(zhǎng)度沒(méi)有顯著影響;其中,總鮮重和總干重分別較對(duì)照組增加了26.2%和20.7%,壯苗指數(shù)較對(duì)照組增加41.5%。而補(bǔ)充13% FR以及20% FR則易造成幼苗的株高、節(jié)間距、下胚軸增長(zhǎng),產(chǎn)生幼苗徒長(zhǎng)現(xiàn)象,對(duì)于辣椒壯苗的形成具有抑制作用。因此,在辣椒幼苗期補(bǔ)充6% FR能夠在不影響辣椒幼苗下胚軸長(zhǎng)度的情況提高幼苗的生物量和壯苗指數(shù),有利于壯苗的培育。
圖2 補(bǔ)充6% FR對(duì)辣椒幼苗表型的影響
表2 補(bǔ)充FR對(duì)辣椒幼苗生長(zhǎng)和生物量的影響
不同小寫(xiě)字母代表顯著性差異(<0.05)。下同 Different lowercase letters indicate significant differences (<0.05).The same as below
2.2.1 對(duì)辣椒幼苗低溫脅迫相關(guān)基因表達(dá)的影響 研究表明,冷響應(yīng)基因顯著受低溫脅迫誘導(dǎo)表達(dá),從而在提高植物的低溫脅迫抗性中發(fā)揮重要作用[23]。本試驗(yàn)結(jié)果顯示,低溫處理6 h后,在對(duì)照光譜條件下低溫顯著誘導(dǎo)了冷響應(yīng)基因及抗氧化酶相關(guān)基因、、、、的表達(dá),而在補(bǔ)充6% FR條件下低溫對(duì)這些基因表達(dá)
水平的誘導(dǎo)效果更加顯著(圖3)。
2.2.2 對(duì)低溫脅迫下辣椒幼苗抗氧化酶活性及ABA含量的影響 與低溫脅迫相關(guān)基因表達(dá)結(jié)果相一致,補(bǔ)充6% FR能顯著提高抗氧化酶SOD、APX、DHAR、CAT和GR的活性,與低溫對(duì)照光譜組相比,它們的活性分別增加約25.2%、53.6%、55.8%、72.7%和33.4%(圖4)(<0.05)。此外,與植物抗逆密切相關(guān)的內(nèi)源激素ABA也在低溫伴隨補(bǔ)充6% FR條件下被誘導(dǎo)出更高的積累水平(圖4),比低溫對(duì)照光譜組高69.5%;而在常溫條件下,補(bǔ)充6% FR則不能引起這些參數(shù)的顯著變化。
圖3 補(bǔ)充6% FR對(duì)低溫脅迫下辣椒幼苗CBF1及抗氧化酶相關(guān)基因表達(dá)的影響
圖4 補(bǔ)充6% FR對(duì)低溫脅迫下辣椒幼苗抗氧化酶活性和ABA含量的影響
2.2.3 對(duì)低溫脅迫下辣椒幼苗表型、Fv/Fm和REL的影響 低溫耦合正常光譜下生長(zhǎng)的辣椒幼苗葉片萎焉且邊緣卷曲,表現(xiàn)出明顯的冷害癥狀,而補(bǔ)充6% FR的辣椒幼苗的冷害癥狀則明顯得到緩解(圖5-A、B)。進(jìn)一步分析辣椒植株葉片的Fv/Fm與REL發(fā)現(xiàn),補(bǔ)充6% FR不僅能有效抑制低溫脅迫引起的辣椒葉片F(xiàn)v/Fm的下降,還能顯著抑制低溫脅迫引起REL的升高(圖5-C、D)。以上結(jié)果表明,適當(dāng)補(bǔ)充FR能有效提高辣椒幼苗對(duì)低溫脅迫的耐受性。
圖5 補(bǔ)充6% FR對(duì)低溫脅迫下辣椒幼苗表型、Fv/Fm及REL的影響
2.3.1 對(duì)干旱脅迫下辣椒幼苗抗氧化酶活性和ABA含量的影響 為了探明補(bǔ)充6% FR對(duì)辣椒幼苗干旱脅迫抗性的調(diào)控作用,本試驗(yàn)對(duì)辣椒幼苗進(jìn)行了干旱和光質(zhì)共同處理7 d。由圖6可見(jiàn),在正常供水條件下,補(bǔ)充6% FR對(duì)辣椒幼苗的抗氧化酶活性沒(méi)有顯著影響,但在干旱條件下,與正常光譜組相比,補(bǔ)照6% FR后辣椒葉片中SOD、GR、APX、CAT和DHAR的活性分別增加約13.7%、38.0%、37.2%、27.6%和23.7%,表明補(bǔ)充6% FR顯著增強(qiáng)了辣椒葉片中抗氧化酶的活性(圖6)(<0.05)。此外,ABA作為參與調(diào)控植物干旱脅迫抗性的重要激素,在干旱條件下,補(bǔ)照6% FR也能顯著增加其在辣椒葉片中的積累(圖6)。
2.3.2 對(duì)干旱脅迫下辣椒幼苗表型、ΦPSII及REL的影響 進(jìn)一步分析干旱脅迫7 d后植株的抗性,與正常光譜組相比,補(bǔ)照6% FR能顯著緩解干旱脅迫引起的辣椒葉片干枯卷曲等干旱癥狀,表現(xiàn)出更強(qiáng)的干旱脅迫抗性(圖7-A、B)。同時(shí),干旱脅迫下,補(bǔ)充6% FR的辣椒葉片ΦPSII顯著高于正常光譜組對(duì)照,而REL則顯著低于正常光譜組對(duì)照(圖7-C、D)。因此,適當(dāng)補(bǔ)充FR能有效提高辣椒植株耐旱性。
圖6 補(bǔ)充6% FR對(duì)干旱脅迫下辣椒幼苗抗氧化酶活性和ABA含量的影響
圖7 補(bǔ)充6% FR對(duì)干旱脅迫下辣椒幼苗表型、ΦPSII及REL的影響
近年來(lái),隨著光生物學(xué)的不斷發(fā)展,不可見(jiàn)光中FR對(duì)植物生長(zhǎng)發(fā)育的調(diào)節(jié)作用逐漸被揭示,它已被證明可以參與調(diào)控植物去黃化、伸長(zhǎng)生長(zhǎng)、光周期和開(kāi)花等光形態(tài)建成,還能調(diào)節(jié)植物株高、節(jié)間長(zhǎng)度、冠層幅度等植株形態(tài)建成[24-26]。此外,在自然界環(huán)境中,由于冠層樹(shù)木的相互遮擋,冠層下層的R/FR比例較低,低R/FR通過(guò)調(diào)節(jié)避蔭植物體內(nèi)激素水平來(lái)誘導(dǎo)莖和葉快速伸長(zhǎng),以獲得更好的可利用光[27]。FR誘導(dǎo)的這些生理效應(yīng)部分或全部依賴于細(xì)胞擴(kuò)張,是包括赤霉素、生長(zhǎng)素、油菜素內(nèi)酯和乙烯在內(nèi)的多種植物激素的共同作用[28]。辣椒是我國(guó)設(shè)施生產(chǎn)中最為重要的蔬菜作物之一,光源波長(zhǎng)組成中FR比例的變化對(duì)其生長(zhǎng)發(fā)育和抗逆性的影響尚不清晰。本研究發(fā)現(xiàn),在150 μmol?m-2?s-1紅藍(lán)光基礎(chǔ)上補(bǔ)充10 μmol?m-2?s-1遠(yuǎn)紅光(R/FR=3),能在不顯著改變下胚軸長(zhǎng)度的情況下增加辣椒幼苗的干鮮重,提高壯苗指數(shù),促進(jìn)壯苗的形成,這與LI等[17]研究認(rèn)為補(bǔ)充FR可以顯著促進(jìn)作物干/鮮重、葉長(zhǎng)和葉寬增加的結(jié)論基本一致。另外,在本試驗(yàn)中補(bǔ)充13% FR和20% FR會(huì)導(dǎo)致幼苗第一節(jié)間距顯著增加,莖粗降低,壯苗指數(shù)顯著減小,不利于其生長(zhǎng),這表明在苗期進(jìn)行過(guò)量的FR處理會(huì)導(dǎo)致植株徒長(zhǎng),在實(shí)際生產(chǎn)中利用補(bǔ)照適量FR的方式提高辣椒幼苗質(zhì)量是一種具有一定可行性的環(huán)境調(diào)控手段。已有研究表明,在菊花生殖生長(zhǎng)階段,低比例的FR(R/FR=2.5)處理顯著促進(jìn)菊花株高、莖粗、葉面積、葉片數(shù)、總干重、花干物質(zhì)分配指數(shù)等的增加;而增加FR成分使R/FR降至0.5時(shí),則顯著增加植株的節(jié)間長(zhǎng)度,且不利于花干物質(zhì)分配[29]。該結(jié)論與本試驗(yàn)研究結(jié)果相似,但本研究主要集中于辣椒幼苗期的生物量以及形態(tài)指標(biāo)等方面,考慮到不同發(fā)育階段植株對(duì)于光調(diào)控的響應(yīng)可能存在差異[30],可以進(jìn)一步研究補(bǔ)充FR對(duì)辣椒整個(gè)發(fā)育進(jìn)程的影響變化。
FR不僅對(duì)植物的生長(zhǎng)發(fā)育具有調(diào)控作用,在植物的逆境抗性中也發(fā)揮著重要作用。在低溫脅迫中,F(xiàn)R激活光受體PHYA,從而誘導(dǎo)ABA依賴的JA信號(hào)轉(zhuǎn)導(dǎo),進(jìn)而激活番茄CBF途徑,提高番茄植株的低溫抗性[15]。干旱脅迫下,在棉花進(jìn)入黑暗前補(bǔ)照30 min遠(yuǎn)紅光,會(huì)導(dǎo)致其氣孔阻力增大,蒸騰速率降低,進(jìn)而促進(jìn)植株抗旱性[31]。在對(duì)病原菌抗性的調(diào)控中,F(xiàn)R激活PHYA參與植物晝夜節(jié)律的調(diào)節(jié),進(jìn)而調(diào)控病原相關(guān)分子模式誘導(dǎo)的免疫反應(yīng)[32]。與番茄中的研究結(jié)果一致,本研究發(fā)現(xiàn),補(bǔ)充6% FR也可以激活辣椒中的CBF抗冷途徑,提高辣椒葉片的ABA含量以及抗氧化酶的活性,從而緩解光系統(tǒng)中光抑制的發(fā)生以及葉片細(xì)胞的損傷,增強(qiáng)辣椒幼苗的低溫脅迫抗性。前人研究表明,在番茄中,F(xiàn)R借助HY5和PIF4等光信號(hào)轉(zhuǎn)錄因子轉(zhuǎn)錄激活下游激素信號(hào)相關(guān)基因,從而調(diào)節(jié)番茄體內(nèi)激素水平,增強(qiáng)低溫脅迫抗性[21],這一調(diào)控機(jī)制是否也存在于辣椒中還有待進(jìn)一步探究。此外,本研究還發(fā)現(xiàn),與低溫脅迫相似,在干旱脅迫中,補(bǔ)充6% FR也能有效增強(qiáng)辣椒葉片抗氧化酶的活性以及ABA的含量,從而緩解光抑制的發(fā)生以及葉片細(xì)胞的損傷,增強(qiáng)辣椒幼苗對(duì)干旱脅迫的抗性,這表明在不同的逆境脅迫中,F(xiàn)R對(duì)于加強(qiáng)有害活性氧的清除以及ABA的積累可能具有普適性。
在紅藍(lán)組合光基礎(chǔ)上補(bǔ)充6%遠(yuǎn)紅光(FR),可以有效提高辣椒幼苗的生物量及壯苗指數(shù),促進(jìn)壯苗的形成;另外,補(bǔ)充6% FR可通過(guò)增強(qiáng)抗氧化酶活性和ABA的含量提高辣椒幼苗的低溫脅迫和干旱脅迫抗性。
[1] JIAO Y L, LAU O S, DENG X W.Light-regulated transcriptional networks in higher plants.Nature Reviews Genetics, 2007, 8(3): 217-230.doi:10.1038/nrg2049.
[2] YAVARI N, TRIPATHI R, WU B S, MACPHERSON S, SINGH J, LEFSRUD M.The effect of light quality on plant physiology, photosynthetic, and stress response inleaves.PLoS ONE, 2021, 16(3): e0247380.doi: 10.1371/journal.pone.0247380.
[3] MUNEER S, KIM E J, PARK J S, LEE J H.Influence of green, red and blue light emitting diodes on multiprotein complex proteins and photosynthetic activity under different light intensities in lettuce leaves (L.).International Journal of Molecular Sciences, 2014, 15(3): 4657-4670.
[4] JOSHI J, ZHANG G, SHEN S Q, SUPAIBULWATANA K, WATANABE C K A, YAMORI W.A combination of downward lighting and supplemental upward lighting improves plant growth in a closed plant factory with artificial lighting.Hortscience, 2017, 52(6): 831-835.
[5] KWON S Y, RYU S H, LIM J H.Design and implementation of an integrated management system in a plant factory to save energy.Cluster Computing, 2014, 17(3): 727-740.doi: 10.1007/s10586-013- 0295-2.
[6] ZHENG L, HE H M, SONG W T.Application of light-emitting diodes and the effect of light quality on horticultural crops: A Review.Hortscience, 2019, 54(10): 1656-1661.
[7] WU B S, HITTI Y, MACPHERSON S, ORSAT V, LEFSRUD M G.Comparison and perspective of converntional and LED lighting for photobiology and industry applications.Environmental and Experimental Botany, 2020, 171: 103953.
[8] PRATT L H, CORDONNIERPRATT M M, KELMENSON P M, LAZAROVA G I, KUBOTA T, ALBA R M.The phytochrome gene family in tomato (L.).Plant Cell and Environment, 1997, 20(6): 672-677.
[9] JUAN I C, EDMUNDO P, TOMáS B A, SCOTT A.F, JORGE J C.Stem transcriptome reveals mechanisms to reduce the energetic cost of shade-avoidance responses in tomato.Plant Physiology, 2012, 160(2): 1110-1119.
[10] DIEGO A M, JAVIER F B.Manipulation of light environment to produce high-quality poinsettia plants.Hortscience, 2009, 44(3): 702-706.
[11] KUREPIN L V, EMERY R J N, PHARIS R P, REID D M.Uncoupling light quality from light irradiance effects inshoots: putative roles for plant hormones in leaf and internode growth.Journal of Experimental Botany, 2007, 58(8): 2145-2157.doi: 10.1093/jxb/ erm068.
[12] 楊有新, 王峰, 蔡加星, 喻景權(quán), 周艷虹.光質(zhì)和光敏色素在植物逆境響應(yīng)中的作用研究進(jìn)展.園藝學(xué)報(bào), 2014, 41(9): 1861-1872.
YANG Y X, WANG F, CAI J X, YU J Q, ZHOU Y H.Recent advances in the role of light quality and phytochrome in plant defense resistance against environmental stresses.Acta Horticulturae Sinica, 2014, 41(9): 1861-1872.(in Chinese)
[13] 張曉梅, 胡超軼, 劉濤, 周艷虹.不同光質(zhì)對(duì)黃瓜幼苗抗旱性的影響.浙江農(nóng)業(yè)學(xué)報(bào), 2017, 29(1): 58-63.doi: 10.3969/j.issn.1004-1524.2017.01.09.
ZHANG X M, HU C Y, LIU T, ZHOU Y H.Effects of light quality on drought resistance of cucumber seedlings.Acta Agriculturae Zhejiangensis, 2017, 29(1): 58-63.doi: 10.3969/j.issn.1004-1524.2017.01.09.(in Chinese)
[14] 張?jiān)奇? 宋霞, 葉云天, 馮琛, 孫勃, 王小蓉, 湯浩茹.光質(zhì)對(duì)低溫脅迫下草莓葉片生理生化特性的影響.浙江農(nóng)業(yè)學(xué)報(bào), 2016, 28(5): 790-796.doi:10.3969/j.issn.1004-1524.2016.05.13.
ZHANG Y T, SONG X, YE Y T, FENG C, SUN B, WANG X R, TANG H R.Effects of light quality on physiological and biochemical indexes in strawberry leaves under low temperature stress.Acta Agriculturae Zhejiangensis, 2016, 28(5): 790-796.doi:10.3969/j.issn.1004-1524.2016.05.13.(in Chinese)
[15] WANG F, GUO Z X, LI H Z, WANG M M, ONAC E, ZHOU J, XIA X J, SHI K, YU J Q, ZHOU Y H.Phytochrome A and B function antagonistically to regulate cold tolerance via abscisic acid-dependent jasmonate signaling.Plant Physiology, 2015, 170(1): 459-471.doi: 10.1104/pp.15.01171.
[16] 劉曉英, 常濤濤, 郭世榮, 徐志剛, 陳文昊.紅藍(lán)LED光全生育期照射對(duì)櫻桃番茄果實(shí)品質(zhì)的影響.中國(guó)蔬菜, 2010(22): 21-27.
LIU X Y, CHANG T T, GUO S R, XU Z G, CHEN W H.Effect of irradiation with blue and red LED on fruit quality of cherry tomato during growth period.China Vegetables, 2010(22): 21-27.(in Chinese)
[17] LI Q, KUBOTA C.Effects of supplemental light quality on growth and phytochemicals of baby leaf lettuce.Environmental and Experimental Botany, 2009, 67(1): 59-64.
[18] JIANG X C, XU J, LIN R, SONG J N, SHAO S J, YU J Q, ZHOU Y H.Light-induced HY5 functions as a systemic signal to coordinate the photoprotective response to light fluctuation.Plant Physiology, 2020, 184(2): 1181-1193.doi: 10.1104/pp.20.00294.
[19] ZHANG L, JIANG X, LIU Q, AHAMMED G J, LIN R, WANG L, SHAO S, YU J, ZHOU Y.The HY5 and MYB15 transcription factors positively regulate cold tolerance in tomato via the CBF pathway.Plant, Cell & Environment, 2020, 43(11): 2712-2726.doi: 10.1111/ pce.13868.
[20] XIA X J, HUANG L F, ZHOU Y H, MAO W H, SHI K, WU J X, ASAMI T, CHEN Z X, YU J Q.Brassinosteroids promote photosynthesis and growth by enhancing activation of Rubisco and expression of photosynthetic genes in.Planta, 2009, 230(6): 1185-1196.doi: 10.1007/s00425-009-1016-1.
[21] 王峰.PhyA、HY5和PIF4在光質(zhì)調(diào)控番茄低溫抗性中的機(jī)制研究[D].杭州: 浙江大學(xué), 2017.
WANG F.Roles and mechanisms of PhyA-, HY5-, and PIF4- mediated light quality-regulated cold tolerance in tomato [D].Hangzhou: Zhejiang University.2017.(in Chinese)
[22] LIVAK K J, SCHMITTGEN T D.Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCTMethod.Methods (San Diego, Calif), 2001, 25(4): 402-408.doi: 10.1006/meth.2001.1262.
[23] PARK S, LEE C M, DOHERTY C J, GILMOUR S J, KIM Y, THOMASHOW M F.Regulation of theCBF regulon by a complex low-temperature regulatory network.The Plant Journal, 2015, 82(2): 193-207.doi: 10.1111/tpj.12796.
[24] HANYU H, SHOJI K.Combined effects of blue light and supplemental far-red light and effects of increasing red light with constant far-red light on growth of kidney bean under mixtures of narrow-band light sources.Environment Control in Biology, 2000, 38: 25-32.
[25] DEMOTES M S, PéRON T, COROT A, BERTHELOOT J, GOURRIEREC J L, PELLESCHI T S, CRESPEL L, MOREL P, HUCHé T L, BOUMAZA R, VIAN A, GUéRIN V, LEDUC N, SAKR S.Plant responses to red and far-red lights, applications in horticulture.Environmental and Experimental Botany, 2016, 121: 4-21.
[26] PARK Y, RUNKLE E S.Far-red radiation promotes growth of seedlings by increasing leaf expansion and whole-plant net assimilation.Environmental and Experimental Botany, 2017, 136: 41-49.
[27] KUREPIN L V, JOO S H, KIM S K, PHARIS R P, BACK T G.Interaction of brassinosteroids with light quality and plant hormones in regulating shoot growth of young sunflower andseedlings.Journal of Plant Growth Regulation, 2012, 31(2): 156-164.doi: 10.1007/s00344-011-9227-7.
[28] CASAL J J.Photoreceptor signaling networks in plant responses to shade.Annual Review of Plant Biology, 2013, 64: 403-427.doi: 10.1146/annurev-arplant-050312-120221.
[29] 楊再?gòu)?qiáng), 張繼波, 李永秀, 彭曉丹, 張婷華, 張靜.紅光與遠(yuǎn)紅光比值對(duì)溫室切花菊形態(tài)指標(biāo)、葉面積及干物質(zhì)分配的影響.生態(tài)學(xué)報(bào), 2012, 32(8): 2498-2505.
YANG Z Q, ZHANG J B, LI Y X, PENG X D, ZHANG T H, ZHANG J.Effects of red/far-red ratio on morphological index, leaf area and dry matter partitioning of cut chrysanthemum flower.Acta Ecologica Sinica, 2012, 32(8): 2498-2505.(in Chinese)
[30] 彭曉丹, 楊再?gòu)?qiáng), 李伶俐, 張繼波.紅光與遠(yuǎn)紅光比值對(duì)溫室切花菊花‘神馬’花芽分化進(jìn)程的影響.生態(tài)學(xué)雜志, 2013, 32(6): 1471-1475.
PENG X D, YANG Z Q, LI L L, ZHANG J B.Effects of red and far-red light ratio on the flower bud differentiation of greenhouse cut chrysanthemum cultivar ‘Jingba’.Chinese Journal of Ecology, 2013, 32(6): 1471-1475.(in Chinese)
[31] OUEDRAOGO M, HUBAC C.Effect of far red light on drought resistance of cotton.Plant and Cell Physiology, 1982, 23(7): 1297-1303.doi: 10.1093/oxfordjournals.pcp.a076474.
[32] ZHANG C, XIE Q G, ANDERSON R G, NG G, SEITZ N C, PETERSON T, MCCLUNG C R, MCDOWELL J M, KONG D D, KWAK J M, LU H, AUSUBEL F M.Crosstalk between the circadian clock and innate immunity in.PLOS Pathogens, 2013, 9(6): e1003370.
Effects of Supplemental Far-Red Light on Growth and Abiotic Stress Tolerance of Pepper Seedlings
DONG SangJie1, JIANG XiaoChun1, WANG LingYu1, LIN Rui1, QI ZhenYu2, YU JingQuan1, ZHOU YanHong1*
1Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University/State Agriculture Ministry Key Laboratory of Horticultural Plant Growth and Development, Hangzhou 310058;2Agricultural Experimental Station, Zhejiang University, Hangzhou 310058
【Objective】This study analyzed the effects of supplementary far-red light (FR) on the growth and abiotic stress tolerance of pepper seedlings, aiming to provide a theoretical basis on precise light environments for cultivating high quality vegetable seedlings.【Method】In this study, Bola Hongshuai pepper cultivar was used as the research material.The 7-day-old seedlings were cultivated under two LED light environments, including the control spectrum (NL; R/B = 3/1, 150 μmol?m-2?s-1PPFD) and the NL with an extra 10 μmol?m-2?s-1far-red light (6% FR), 20 μmol?m-2?s-1far-red light (13% FR), and 30 μmol?m-2?s-1far-red light (20% FR).Chilling and drought were imposed when the seedlings were 21 days old.Biomass, resistance-related gene expression, antioxidant enzyme activity, hormone content, chlorophyll fluorescence parameters, and leaf relative electrolyte leakage (REL) were analyzed to explore the effects of supplemental FR on growth and abiotic stress tolerance of pepper seedlings.【Result】Compared with the control, the supplementation of 6% FR was beneficial to increase the height, stem thickness, dry weight, fresh weight and seedling indexes of pepper seedlings.Moreover, the supplementation of 6% FR significantly increased the expression of the cold response geneand antioxidant enzyme-related genes, such as-,,,andunder chilling stress.The activity of SOD, APX, DHAR, CAT and GR as well as the ABA content of pepper seedlings under low temperature increased by 25.2%, 53.6%, 55.8%, 72.7%, 33.4% and 69.5%, respectively, following the treatment with supplemental FR.The PSII maximum photochemical efficiency (Fv/Fm) of pepper leaves after supplementation of 6% FR under low temperature stress significantly increased compared with the control, while REL decreased obviously, indicating that supplementation of 6% FR alleviated the low temperature-induced PSII photoinhibition and damage in leaves and enhanced the cold tolerance of pepper seedlings.Under the drought stress condition, compared with the control, the supplementation of 6% FR improved the activity of SOD, GR, APX, CAT and DHAR by 13.7%, 38.0%, 37.2%, 27.6% and 23.7%, respectively.The ABA content and PSII actual photochemical efficiency (ΦPSII) were both increased while REL was decreased significantly.The results showed that the supplementation of 6% FR reduced the degree of PSII photoinhibition and membrane lipid peroxidation caused by drought stress, and improved the drought tolerance of pepper seedlings.【Conclusion】The study found that supplementation of 6% FR could not only improve the quality of pepper seedlings, but also enhance the resistance of pepper seedlings to low temperature and drought stresses by improving antioxidant defense and ABA homeostasis.
pepper (L.); far-red light; seedling index; low temperature stress; drought stress
2021-06-23;
2021-09-09
浙江省重點(diǎn)研發(fā)計(jì)劃(2018C02010)、國(guó)家現(xiàn)代農(nóng)業(yè)產(chǎn)業(yè)技術(shù)體系(CARS-24-B-01)
董桑婕,E-mail:dongsangjie@zju.edu.cn。通信作者周艷虹,E-mail:yanhongzhou@zju.edu.cn
(責(zé)任編輯 趙伶俐)