吳劍梅 傅丹丹 李佳璇 邵穎 宋祥軍 涂健 祁克宗
摘要:為探究禽致病性大腸桿菌(Avian pathogenic Escherichia coli, APEC)中大腸桿菌Ⅲ型分泌系統(tǒng)(Escherichia coli Type Ⅲ secretion system2, ETT2)轉(zhuǎn)錄因子EivF的功能,通過透射電鏡觀察檢測(cè)野生株(AE81)、缺失株(AE81△eivF)和回復(fù)株(AE81△eivF-comp) Curli菌毛的合成能力,并探究3種菌株在不良環(huán)境中的存活情況,通過RT-qPCR檢測(cè)鞭毛和環(huán)境耐受相關(guān)基因的轉(zhuǎn)錄水平。結(jié)果表明,與野生株相比,缺失株的curli菌毛合成能力無明顯變化,在透射電鏡下缺失株鞭毛數(shù)量明顯減少,缺失株在強(qiáng)酸、強(qiáng)堿、氧化應(yīng)激、高溫、高滲環(huán)境中的存活率均顯著(P<0.05)或極顯著(P<0.01)降低,回復(fù)株上述表型基本恢復(fù)。轉(zhuǎn)錄組數(shù)據(jù)顯示,缺失株的flgB、flgC、flgE等鞭毛相關(guān)基因和proV、cadA等環(huán)境耐受相關(guān)基因的轉(zhuǎn)錄水平下調(diào)。RT-qPCR結(jié)果顯示,flgB、flgC、flgE、proV等基因的轉(zhuǎn)錄水平下調(diào)。綜上所述,ETT2轉(zhuǎn)錄因子EivF參與調(diào)控禽致病性大腸桿菌運(yùn)動(dòng)能力和在不良環(huán)境中的存活能力。
關(guān)鍵詞:禽致病性大腸桿菌;ETT2轉(zhuǎn)錄因子EivF;鞭毛;環(huán)境脅迫
中圖分類號(hào):S858.351+.2文獻(xiàn)標(biāo)識(shí)碼:A文章編號(hào):1000-4440(2022)02-0438-08
Regulation of ETT2 transcription factor EivF on avian pathogenic Escherichia coli motility and tolerance to environmental stress
WU Jian-mei, FU Dan-dan, LI Jia-xuan, SHAO Ying, SONG Xiang-jun, TU Jian, QI Ke-zong
Abstract:To investigate the function of transcription factor EivF of Escherichia coli Type Ⅲ secretion system2 (ETT2) in avian pathogenic E. coli (APEX), the synthetic ability for Curli pili of wild strain (AE81), deleted strain (AE81△eivF) and revertant strain (AE81△eivF-comp) were detected by transmission electron microscopy, and the survival condition of three strains in adverse environment was investigated. The transcriptional levels of flagella and environmental tolerance related genes were detected by RT-qPCR. The results showed that, there was no significant change in Curli pili synthetic ability of the deleted strain compared with the wild strain. The flagella number of deleted strain (AE81△eivF) decreased significantly under transmission electron microscope. The survival rates of deleted strain under the environments of strong acid, strong alkali, oxidative stress, high temperature and hyperosmotic pressure were significantly(P<0.05)or extremely significantly (P<0.01) decreased, and the above phenotype was basically restored in the revertant strain. Transcriptome data showed that, the transcriptional levels of flagellum-related genes such as flgB, flgC, flgE and environmental tolerance related genes such as proV, cadA were down-regulated in the deleted strains. The results of RT-qPCR showed that, the transcriptional levels of flgB, flgC, flgE, proV and other genes were down-regulated. In conclusion, the ETT2 transcriptional factor EivF is involved in the regulation of motor ability and survival ability of avian pathogenic E. coli in adverse environments.
Key words:avian pathogenic Escherichia coli;ETT2 transcription factor EivF;flagella;environmental stress
禽致病性大腸桿菌(Avian pathogenic Escherichia coli, APEC)屬于腸外致病性大腸桿菌(Enterotoxigenic Escherichia coli, ExPEC),常與其他病原混合感染引起禽類細(xì)菌性疾病或死亡,主要臨床癥狀有腹膜炎、輸卵管炎、慢性呼吸道疾病和敗血癥等[1-2]。APEC血清型眾多,且不同血清型、不同菌株之間缺乏交叉免疫,給養(yǎng)殖業(yè)造成巨大的經(jīng)濟(jì)損失[3]。研究發(fā)現(xiàn),APEC與腦膜炎大腸桿菌(Necrotoxigenic Escherichia coli, NMEC)有相似的遺傳因子,是人源腸外致病性大腸桿菌毒力基因的貯存庫(kù)[4],因此開展APEC致病機(jī)制相關(guān)的研究對(duì)防控APEC引起的疾病具有重要的公共衛(wèi)生學(xué)意義。
大腸桿菌Ⅲ型分泌系統(tǒng)(Escherichia coli type Ⅲ secretion system2, ETT2)首次在腸出血性大腸桿菌(Enterohemorrhagic Escherichia coli,EHEC)O157:H7中發(fā)現(xiàn)[5]。ETT2的基因簇包含5個(gè)轉(zhuǎn)錄因子,分別是YqeI(ECs_3704)、YgeH(ECs_3709)、YgeK(ECs_3712)、EtrA(ECs_3720)和EivF(ECs_3734)[6]。轉(zhuǎn)錄因子YgeK直接與EHEC的ler調(diào)控區(qū)相互作用,激活腸細(xì)胞脫落位點(diǎn) LEE 毒力島表達(dá),促進(jìn)黏附及擦拭性損傷(Attaching and effacing lesions,A/E Lesions)形成[7]。在腸聚集菌株042中,轉(zhuǎn)錄因子YgeH誘導(dǎo)了invF的表達(dá)[8]。etrA基因缺失顯著降低了APEC菌毛的表達(dá)量、在巨噬細(xì)胞中的存活能力以及在鴨中的增殖能力和毒力[9]。同時(shí)ETT2轉(zhuǎn)錄因子還能夠參與調(diào)控細(xì)菌生物被膜形成、運(yùn)動(dòng)鞭毛組裝、抗血清殺菌、調(diào)節(jié)腸細(xì)胞脫落位點(diǎn)(LEE)毒力島分泌等致病過程[10-12]。轉(zhuǎn)錄因子EivF位于ETT2 eiv侵襲基因簇最末端[13],與沙門氏菌 SPI-1毒力島核心轉(zhuǎn)錄調(diào)控基因invF同源。研究發(fā)現(xiàn),在EHEC O157:H7中,缺失EivF導(dǎo)致細(xì)菌LEE毒力島編碼的蛋白質(zhì)分泌量大幅增加,細(xì)菌對(duì)人腸細(xì)胞的黏附力增加[14]。
鞭毛是APEC的毒力因子,是細(xì)菌蛋白質(zhì)輸出裝置,控制細(xì)菌的運(yùn)動(dòng)和行為[15]。研究發(fā)現(xiàn),KdpD/KdpE雙組分系統(tǒng)、轉(zhuǎn)錄調(diào)節(jié)因子ArcA、群體感應(yīng)系統(tǒng)等多種調(diào)控因子影響APEC鞭毛組裝過程[15-17]。APEC在入侵和定殖機(jī)體的過程中,會(huì)經(jīng)過機(jī)體的高氧、強(qiáng)酸等不良環(huán)境,細(xì)菌通過調(diào)節(jié)相關(guān)基因從而適應(yīng)不良環(huán)境,增強(qiáng)其存活能力[18-19]。PhoR/PhoB雙組分系統(tǒng)、轉(zhuǎn)錄因子IbeR等參與調(diào)控APEC對(duì)環(huán)境脅迫的耐受[18,20]。EivF是ETT2毒力島重要的轉(zhuǎn)錄因子,在鞭毛組裝和環(huán)境脅迫耐受等過程中扮演的作用尚未見報(bào)道。
本研究以APEC ETT2轉(zhuǎn)錄因子eivF基因?yàn)檠芯繉?duì)象,基于轉(zhuǎn)錄組數(shù)據(jù)分析EivF參與調(diào)控的細(xì)菌信號(hào)通路,通過透射電鏡、環(huán)境耐受和熒光定量PCR等試驗(yàn),探究eivF基因調(diào)控APEC運(yùn)動(dòng)和響應(yīng)環(huán)境脅迫的能力,為深入研究禽致病性大腸桿菌致病機(jī)制提供研究基礎(chǔ)。
1材料與方法
1.1材料
1.1.1菌株禽致病性大腸桿菌AE81菌株為本實(shí)驗(yàn)室保存的臨床分離株,缺失株AE81△eivF和回復(fù)株AE81△eivF-comp由本實(shí)驗(yàn)室構(gòu)建和保存[12]。
1.1.2主要試劑和儀器酵母浸粉、胰蛋白胨、三羥甲基氨基甲烷(Tris)、剛果紅、考馬斯亮藍(lán)購(gòu)自生工生物工程(上海)股份有限公司,氯化鈉購(gòu)自國(guó)藥集團(tuán)化學(xué)試劑有限公司,瓊脂粉購(gòu)自索萊寶科技有限公司,RNA裂解液、HiScriptⅢ RT SuperMix for qPCR、AceQ qPCR SYBR Green Master PCR Master Mix購(gòu)自諾唯贊生物科技有限公司,超凈工作臺(tái)(型號(hào)SW-CJ-2F)購(gòu)自蘇州設(shè)備進(jìn)化有限公司,恒溫培養(yǎng)箱(型號(hào)DHP-9082)購(gòu)自上海一恒科技有限公司,ViiATM 7 Real-time PCR儀購(gòu)自賽默飛世爾科技公司。
1.2基于轉(zhuǎn)錄組學(xué)測(cè)序篩選差異基因
本實(shí)驗(yàn)室前期獲得AE81和AE81△eivF轉(zhuǎn)錄組數(shù)據(jù)[12]。使用Bowtie2比對(duì)軟件(http://bowtie-bio.sourceforge.net/Bowtie2/index.shtml)將clean reads與Escherichia coli O157:H7 str. Sakai參考基因進(jìn)行比對(duì),使用RSEM軟件包(http://deweylab.biostat.wisc.edu/RSEM)計(jì)算基因的表達(dá)水平。使用possionDis 差異分析方法檢測(cè)樣品之間的差異表達(dá)基因(DEGs),對(duì)差異表達(dá)基因進(jìn)行 GO 分析和KEGG通路分析。
1.3透射電鏡觀察
將野生株AE81、缺失株AE81△eivF和回復(fù)株AE81△eivF-comp培養(yǎng)至對(duì)數(shù)生長(zhǎng)期,取5 ml菌液,用無菌濾膜過濾,再用磷酸鹽緩沖液(PBS)洗滌2次,加入等體積PBS重懸。銅網(wǎng)正面覆蓋在菌液表面,靜置約2 min,滴加磷鎢酸負(fù)染液,用濾紙吸干銅網(wǎng)表面多余樣品,然后將銅網(wǎng)覆在負(fù)染液上,負(fù)染2~3 min,再用濾紙吸取多余的染液,烘干銅網(wǎng),用透射電鏡觀察拍照。
1.4紅色、干燥、粗糙(rdar)表型的觀察
將野生株AE81、缺失株AE81△eivF和回復(fù)株AE81△eivF-comp于37 ℃靜置培養(yǎng)至對(duì)數(shù)生長(zhǎng)期,用PBS洗滌菌液2次,再用PBS重懸,濃縮至OD600為3.0。按參考文獻(xiàn)[21],配制CR培養(yǎng)基(剛果紅 0.008 g,考馬斯亮藍(lán) 0.004 g,蛋白胨 2.000 g,酵母粉1.000 g,瓊脂粉 1.600 g,200 ml ddH2O)。取1 μl菌液滴于剛果紅(CR)培養(yǎng)基上,37 ℃培養(yǎng)48 h,觀察菌落形態(tài)。
1.5環(huán)境耐受試驗(yàn)
將野生株AE81、缺失株AE81△eivF和回復(fù)株AE81△eivF-comp培養(yǎng)至對(duì)數(shù)生長(zhǎng)期,用PBS洗滌2次,重懸備用。分別檢測(cè)野生株、缺失株及回復(fù)株在酸性、堿性、氧化、高滲透壓和高溫不利環(huán)境中的存活情況。
1.5.1耐酸試驗(yàn)用乙酸(HAC)溶液調(diào)節(jié)LB培養(yǎng)基pH至4.0。將菌液與酸性培養(yǎng)基等體積混合,37 ℃培養(yǎng)30 min。用PBS進(jìn)行10倍梯度稀釋,掛板于LB固體培養(yǎng)基平板上,37 ℃過夜培養(yǎng),次日進(jìn)行菌落計(jì)數(shù),比較3株菌存活情況。
1.5.2耐堿試驗(yàn)菌液與Tris-HCl緩沖液(100 mmol/L,pH=10.0) 等體積混勻后,于37 ℃作用30 min。梯度稀釋后掛板于LB固體培養(yǎng)基平板上,于37 ℃過夜培養(yǎng)后,進(jìn)行菌落計(jì)數(shù)。
1.5.3氧化應(yīng)激試驗(yàn)菌液與10 mmol/L H2O2溶液等體積混合,37 ℃培養(yǎng)20 min。用PBS進(jìn)行10倍梯度稀釋,滴板于LB固體培養(yǎng)基平板上,37 ℃過夜培養(yǎng)后,進(jìn)行菌落計(jì)數(shù)。
1.5.4滲透壓試驗(yàn)菌液與等體積的NaCl溶液(4.8 mol/L)混勻后,37 ℃作用60 min。用PBS進(jìn)行10倍梯度稀釋,滴板于LB固體培養(yǎng)基平板上,37 ℃過夜培養(yǎng)后,進(jìn)行菌落計(jì)數(shù)。
1.5.5耐熱試驗(yàn)菌液于54 ℃作用3 min。用PBS稀釋到一定梯度后滴板于LB固體培養(yǎng)基平板上,37 ℃過夜培養(yǎng)后,進(jìn)行菌落計(jì)數(shù)。
1.6實(shí)時(shí)熒光定量PCR檢測(cè)鞭毛和環(huán)境脅迫相關(guān)基因轉(zhuǎn)錄量
1.6.1設(shè)計(jì)引物根據(jù)GenBank中已發(fā)布的內(nèi)參基因16S rRNA,選取環(huán)境耐受相關(guān)基因cadA、cadB、cadC、adiA、adiC、gadA、gadC、proV和鞭毛組裝相關(guān)基因flgB、flgC、flgE,用Primer Premier 5軟件分析并設(shè)計(jì)特異性引物,引物序列見表1。
1.6.2總RNA提取和cDNA合成將AE81、AE81△eivF和AE81△eivF-comp 3株菌培養(yǎng)至對(duì)數(shù)生長(zhǎng)期,取1 ml菌液于12 000 r/min離心15 min,棄上清液,加入1 ml RNA isolater吹打混勻,再加入200 μl三氯甲烷劇烈振蕩15 s,4 ℃靜置5 min,12 000 r/min離心15 min,吸取上清液,加入等體積的異丙醇,上下顛倒混勻,4 ℃靜置10 min,12 000 r/min離心10 min,棄上清液,加入1 ml 去RNA酶的75%乙醇,上下顛倒混勻并室溫靜置3~5 min,12 000 r/min離心5 min,棄上清液,開口干燥3~5 min,加入30 μl RNase-free H2O溶解,-80 ℃保存?zhèn)溆?。將AE81、AE81△eivF和AE81△eivF-comp 3株菌培養(yǎng)至對(duì)數(shù)生長(zhǎng)期,用PBS洗滌2次,加入等量的酸性LB培養(yǎng)基(pH=4.0),37 ℃靜置共培1 h。按上述方法提取細(xì)菌mRNA,-80 ℃保存?zhèn)溆?。使用反轉(zhuǎn)錄試劑HiScriptⅢ RT SuperMix for qPCR,按試劑盒說明書進(jìn)行反轉(zhuǎn)錄,-20 ℃保存?zhèn)溆谩?/p>
1.6.3熒光定量PCR以16S rRNA為內(nèi)參基因,用AceQ qPCR SYBR Green Master Mix熒光定量試劑盒檢測(cè)各菌株cadA、cadB、adiA、proV等基因的表達(dá)水平。RT-qPCR 反應(yīng)體系(10 μl):2×Taq PCR Master Mix 5.0 μl,cDNA 1.0 μl,上、下游引物(10 μmol/L)各0.2 μl,ddH2O 3.6 μl。PCR 反應(yīng)條件:預(yù)變性95 ℃ 5 min;95 ℃ 10 s,60 ℃ 30 s,40個(gè)循環(huán);熔解曲線95 ℃ 15 s,60 ℃ 60 s,95 ℃ 15 s。每株菌進(jìn)行3次重復(fù)。數(shù)據(jù)采用 2 -△△Ct 法計(jì)算上述基因的mRNA轉(zhuǎn)錄水平。
1.7數(shù)據(jù)統(tǒng)計(jì)分析
利用GraphPad Prism 5軟件分析數(shù)據(jù),采用t檢驗(yàn)法對(duì)試驗(yàn)數(shù)據(jù)進(jìn)行分析。
2結(jié)果與分析
2.1轉(zhuǎn)錄組學(xué)差異基因分析
以差異倍數(shù)(Fold Change)≥2為篩選標(biāo)準(zhǔn),分析顯著差異表達(dá)基因。與AE81相比,缺失株AE81△eivF有576個(gè)基因差異表達(dá),其中上調(diào)表達(dá)基因368個(gè),下調(diào)表達(dá)基因208個(gè)。KEGG信號(hào)通路分析發(fā)現(xiàn)EivF參與調(diào)控細(xì)菌多個(gè)信號(hào)通路,其中參與鞭毛組裝和微生物在不良環(huán)境中代謝這2條信號(hào)通路的基因表達(dá)差異顯著。篩選轉(zhuǎn)錄組數(shù)據(jù)中與之相關(guān)的差異表達(dá)基因,發(fā)現(xiàn)與鞭毛組裝相關(guān)基因均下調(diào)表達(dá),在不良環(huán)境中微生物代謝相關(guān)基因以下調(diào)表達(dá)為主(表2)。
2.2eivF基因?qū)η葜虏⌒源竽c桿菌AE81鞭毛微觀形態(tài)的影響
透射電鏡觀察結(jié)果(圖1)顯示,野生株(AE81)鞭毛數(shù)量多且長(zhǎng),結(jié)構(gòu)完整;而缺失株(AE81△eivF)鞭毛數(shù)量明顯減少,只有幾根;回復(fù)株(AE81△eivF-comp)鞭毛數(shù)量基本恢復(fù)至野生株水平。表明轉(zhuǎn)錄因子EivF參與APEC鞭毛的形成。
2.3禽致病性大腸桿菌AE81的rdar(紅色、干燥、粗糙)形態(tài)
如圖2所示,在CR培養(yǎng)基上,AE81、AE81△eivF和AE81△eivF-comp 3種菌株菌落形態(tài)均無差異,均呈現(xiàn)rdar(紅色、干燥、粗糙)表型,說明這3株菌產(chǎn)生Curli菌毛和纖維素[22],缺失eivF基因不會(huì)影響AE81菌毛和纖維素合成的能力。
2.4轉(zhuǎn)錄因子EivF對(duì)禽致病性大腸桿菌AE81環(huán)境耐受能力的影響
如圖3所示,在堿性(pH=10)、氧化應(yīng)激(10 mmol/L H2O2)、高滲透壓(4.8 mol/L NaCl)、高熱(54 ℃)環(huán)境中AE81的存活率顯著(P<0.05)或極顯著(P<0.01)低于野生株,堿性、高熱環(huán)境下回復(fù)株的存活率有所回升,表明轉(zhuǎn)錄因子EivF影響APEC的環(huán)境耐受能力。
2.5轉(zhuǎn)錄因子EivF對(duì) APEC抗酸能力的影響
在酸脅迫下,與野生株AE81比較,缺失株AE81△eivF存活率(活菌數(shù))極顯著降低(P<0.001),回復(fù)株有所回升;RT-qPCR結(jié)果顯示,在酸脅迫下耐酸基因adiA、adiC、cadA、cadB均下調(diào)表達(dá),cadC、gadA、gadC均上調(diào)表達(dá)(圖4)。表明轉(zhuǎn)錄因子EivF影響APEC的耐酸能力。
2.6轉(zhuǎn)錄因子EivF的缺失對(duì)AE81鞭毛和環(huán)境耐受基因轉(zhuǎn)錄水平的影響
3討論
APEC作為典型的腸道外致病菌,具有促使細(xì)菌遠(yuǎn)離外界不利環(huán)境的運(yùn)動(dòng)系統(tǒng),還具備抵抗外界不良環(huán)境的能力。ETT2是大腸桿菌重要的毒力島,其轉(zhuǎn)錄因子參與調(diào)控LEE毒力島基因的表達(dá)[7,14],目前還未見ETT2轉(zhuǎn)錄因子EivF對(duì)APEC鞭毛組裝和不良環(huán)境存活影響的報(bào)道。本研究結(jié)果表明,缺失ETT2毒力島的轉(zhuǎn)錄因子eivF基因?qū)p弱APEC鞭毛的形成能力,降低其在不良環(huán)境中的存活率。本研究初步探討了轉(zhuǎn)錄因子EivF對(duì)APEC運(yùn)動(dòng)能力及環(huán)境耐受的影響,研究結(jié)果可以為深入研究禽致病性大腸桿菌致病機(jī)制和禽大腸桿菌病的防治提供參考。
鞭毛是細(xì)菌的運(yùn)動(dòng)裝置,當(dāng)細(xì)菌受到外界刺激時(shí),鞭毛驅(qū)使細(xì)菌躲避不良環(huán)境,同時(shí)還能定植于宿主細(xì)胞引起感染[23]。ETT2轉(zhuǎn)錄因子YqeI影響APEC鞭毛形成能力[15],eivC的缺失導(dǎo)致APEC鞭毛減少[24]。在本研究中,eivF基因不影響細(xì)菌rdar形態(tài),影響APEC鞭毛的形態(tài)。flgB和flgE基因參與細(xì)菌鞭毛組成。flgB是鞭毛復(fù)合體MS環(huán)上亞基,介導(dǎo)從MS環(huán)到桿的扭矩傳遞,可克服電機(jī)旋轉(zhuǎn)結(jié)構(gòu)和螺旋結(jié)構(gòu)之間的對(duì)稱不匹配[25];flgE參與編碼鞭毛環(huán)蛋白[26]。轉(zhuǎn)錄組數(shù)據(jù)中與鞭毛組裝相關(guān)的基因flgB、flgE、flgH、flgC等的表達(dá)量均下調(diào)。RT-qPCR結(jié)果顯示,基因flgB、flgE、flgC也表現(xiàn)出明顯下調(diào)表達(dá),猜測(cè)轉(zhuǎn)錄因子EivF可能通過調(diào)控flgB、flgE、flgC等基因,進(jìn)而影響細(xì)菌鞭毛組裝過程。
細(xì)菌在感染過程中,除通過鞭毛運(yùn)動(dòng)遠(yuǎn)離不良環(huán)境、定植機(jī)體外,還必須快速響應(yīng)外界環(huán)境變化,以促進(jìn)其在局部微環(huán)境或宿主細(xì)胞中的適應(yīng)和生存。本研究結(jié)果表明,eivF基因參與APEC在酸性、堿性、氧化應(yīng)激、滲透壓和高溫等不良環(huán)境中存活情況的調(diào)控。轉(zhuǎn)錄組數(shù)據(jù)顯示,hybO、wzxE、proV、rseC等均下調(diào)表達(dá)。hybO基因參與還原型輔酶Ⅱ(NADPH)合成,NADPH在細(xì)胞代謝、生物合成和氧化應(yīng)激反應(yīng)中起著至關(guān)重要的作用[27-28]。proV編碼脯氨酸運(yùn)輸系統(tǒng)ATP結(jié)合蛋白以應(yīng)對(duì)高滲透條件,增強(qiáng)細(xì)菌的存活能力[29-30]。猜測(cè)轉(zhuǎn)錄因子EivF正調(diào)控hybO、wzxE、proV等基因的表達(dá),從而促進(jìn)APEC在不良環(huán)境中存活。
細(xì)菌引起機(jī)體感染,需要突破機(jī)體免疫系統(tǒng),而這會(huì)使細(xì)菌暴露在酸性環(huán)境中。細(xì)菌主要依賴氨酸脫羧酶系統(tǒng)來中和細(xì)胞內(nèi)酸性,快速適應(yīng)酸性環(huán)境[31]。相關(guān)研究結(jié)果表明,精氨酸/胍丁胺和賴氨酸/1,5-戊二胺系統(tǒng)有助于沙門氏菌適應(yīng)酸性環(huán)境,細(xì)菌通過逆向轉(zhuǎn)運(yùn)體(adiC和cadB)將精氨酸脫羧成胍丁胺和賴氨酸,這個(gè)過程消耗細(xì)胞中質(zhì)子,從而調(diào)節(jié)胞內(nèi)pH[32]。RT-qPCR結(jié)果顯示,在酸脅迫條件下,缺失株AE81△eivF的基因adiA、adiC、cadA、cadB表達(dá)量下調(diào),而gadA、gadC表達(dá)量上調(diào),猜測(cè)原因可能是轉(zhuǎn)錄因子EivF能夠正向調(diào)控adiA、adiC、cadA、cadB,進(jìn)而促進(jìn)細(xì)菌適應(yīng)酸性環(huán)境。本研究初步探討了轉(zhuǎn)錄因子EivF對(duì)APEC的鞭毛組裝和環(huán)境耐受能力的影響,eivF的缺失使得細(xì)菌鞭毛數(shù)量減少,對(duì)不良環(huán)境的耐受力減弱。
參考文獻(xiàn):
[1]JOHNSON J R, RUSSO T A. Extraintestinal pathogenic Escherichia coli: “The other bad E.coli” [J]. Journal of Laboratory & Clinical Medicine, 2002, 139(3): 155-162.
[2]WANG S, NIU C, SHI Z, et al. Effects of ibeA deletion on virulence and biofilm formation of avian pathogenic Escherichia coli[J]. Infect Immun,2011,79(1):279-287.
[3]馬興樹,范翠蝶,夏玉龍. 禽致病性大腸桿菌研究進(jìn)展[J]. 中國(guó)畜牧獸醫(yī), 2013, 40(2):169-174.
[4]TIVENDALE K A, LOGUE C M, KARIYAWASAM S, et al. Avian-pathogenic Escherichia coli strains are similar to neonatal meningitis E. coli strains and are able to cause meningitis in the rat model of human disease[J]. Infect Immun, 2010,78(8):3412-3419.
[5]PERNA N T, PLUNKETT G, BURLAND V, et al. Genome sequence of enterohaemorrhagic Escherichia coli O157:H7[J]. Nature, 2001,409(6819):529-533.
[6]尹磊,祁克宗,宋祥軍,等. 大腸桿菌Ⅲ型分泌系統(tǒng)2毒力島研究進(jìn)展[J]. 微生物學(xué)通報(bào), 2017, 44(12):3031-3037.
[7]LUZADER D H, WILLSEY G G, WARGO M J, et al. The type three secretion system 2-encoded regulator EtrB modulates enterohemorrhagic Escherichia coli virulence gene expression[J]. Infection & Immunity, 2016, 84(9):2555-2565.
[8]HTTENER M, DIETRICH M, PAYTUBI S, et al. HilA-like regulators in Escherichia coli pathotypes: the YgeH protein from the enteroaggregative strain 042[J]. Bmc Microbiology, 2014, 14(1):268.
[9]SHAOHUI W, XUAN X, XIN L, et al. Escherichia coli type Ⅲ secretion system 2 regulator EtrA promotes virulence of avian pathogenic Escherichia coli[J]. Microbiology, 2017, 163(10):1515-1524.
[10]肖亞婷,傅丹丹, MUHAMMAD A R,等. Ⅲ型分泌系統(tǒng)2轉(zhuǎn)錄因子YqeI對(duì)禽致病性大腸桿菌生物被膜調(diào)控機(jī)制的研究[J]. 畜牧獸醫(yī)學(xué)報(bào), 2019, 50(12):2488-2497.
[11]王澤平,李倩文,尹磊,等. 大腸桿菌三型分泌系統(tǒng)2轉(zhuǎn)錄調(diào)節(jié)子EtrA對(duì)禽致病性大腸桿菌致病性的影響[J]. 微生物學(xué)通報(bào), 2020(5):1515-1523.
[12]傅丹丹,肖亞婷,薛媚,等. 禽致病性大腸桿菌ETT2轉(zhuǎn)錄因子eivF缺失株的生物學(xué)特性及轉(zhuǎn)錄組學(xué)分析[J]. 西北農(nóng)林科技大學(xué)學(xué)報(bào)(自然科學(xué)版), 2020,48(8):28-36.
[13]PRAGER R, BAUERFEIND R, TIETZE E, et al. Prevalence and deletion types of the pathogenicity island ETT2 among Escherichia coli strains from oedema disease and colibacillosis in pigs[J]. Veterinary Microbiology, 2004, 99(3/4):287-294.
[14]ZHANG L, CHAUDHURI R R, CONSTANTINIDOU C, et al. Regulators encoded in the Escherichia coli Type Ⅲ secretion system 2 gene cluster influence expression of genes within the locus for enterocyte effacement in enterohemorrhagic E. coli O157:H7[J]. Infection and Immunity, 2004, 72(12):7282-7293.
[15]XUE M, RAHEEM M A, GU Y, et al. The KdpD/KdpE two-component system contributes to the motility and virulence of avian pathogenic Escherichia coli[J]. Research in Veterinary Science, 2020, 131:24-30.
[16]HELMY Y A,DEBLAIS L,KASSEM I I,et al. Novel small mole- cule modulators of quorum sensing in avian pathogenic Escherichia coli (APEC)[J].Virulence,2018,9: 1640-1657.
[17]JIANG F, AN C, BAO Y, et al. ArcA controls metabolism, chemotaxis, and motility contributing to the pathogenicity of avian pathogenic Escherichia coli[J]. Infection & Immunity, 2015, 83(9):3545-3554.
[18]CRPIN S, LAMARCHE M G, GARNEAU P, et al. Genome-wide transcriptional response of an avian pathogenic Escherichia coli (APEC) pst mutant[J]. BMC Genomics, 2008,9:568.
[19]FLECHARD M, CORTES M, REPERANT M, et al. New role for the ibeA gene in H2O2 stress resistance of Escherichia coli[J]. Journal of bacteriology, 2012, 194(17):4550-4560.
[20]WANG S, BAO Y, MENG Q, et al. IbeR facilitates stress-resistance, invasion and pathogenicity of avian pathogenic Escherichia coli[J]. PLoS One, 2015, 10(3):e0119698.
[21]RMLING U. Characterization of the rdar morphotype, a multicellular behaviour in Enterobacteriaceae[J]. Cellular & Molecular Life Sciences Cmls, 2005, 62(11):1234-1246.
[22]CIMDINS A, SIMM R. Semiquantitative analysis of the red, dry, and rough colony morphology of Salmonella enterica serovar typhimurium and Escherichia coli using Congo Red[J]. Methods Mol Biol, 2017,1657: 225-241.
[23]PR B M. Involvement of two-component signaling on bacterial motility and biofilm development[J]. Bacteriol, 2017,199(18):e00259-17.
[24]WANG S, LIU X, XU X, et al. Escherichia coli Type III secretion system 2 ATPase EivC is involved in the motility and virulence of avian pathogenic Escherichia coli[J]. Front Microbiol,2016,31:1387.
[25]TAN J X, ZHANG X, WANG X F, et al. Structural basis of assembly and torque transmission of the bacterial flagellar motor[J]. Cell, 2021,184(10):2665-2679.
[26]KOMEDA Y, ONO N, KAGAWA H. Synthesis of flagellin and hook subunit protein in flagellar mutants of Escherichia coli K12[J]. Molecular & General Genetics Mgg, 1984, 194(1/2):49-51.
[27]PINSKE C, KRGER S, SOBOH B, et al. Efficient electron transfer from hydrogen to benzyl viologen by the [NiFe]-hydrogenases of Escherichia coli is dependent on the coexpression of the iron-sulfur cluster-containing small subunit[J]. Archives of Microbiology, 2011, 193(12):893-903.
[28]SPIELMANN A, BAUMGART M, BOTT M. NADPH-related processes studied with a SoxR-based biosensor in Escherichia coli[J]. Microbiologyopen,2018,25:e785.
[29]MAY G, FAATZ E, LUCHT J M, et al. Characterization of the osmoregulated Escherichia coli proU promoter and identification of ProV as a membrane-associated protein[J].Molecular Microbiology, 2010, 3(11):1521-1531.
[30]SCHIEFNER A, BREED J, BOSSER L, et al. Cation-π interactions as determinants for binding of the compatible solutes glycine betaine and proline betaine by the periplasmic ligand-binding protein ProX from Escherichia coli[J]. Journal of Biological Chemistry, 2004, 279(7):5588-5596.
[31]SEN H, AGGARWAL N, ISHIONWU C,et al. Structural and functional analysis of the Escherichia coli acid-sensing histidine kinase EvgS[J]. Journal of Bacteriol,2017,22:e00310-17.
[32]GAVRIIL A, PARAMITHIOTIS S, SKORDAKI A,et al . Prior exposure to different combinations of pH and undissociated acetic acid can affect the induced resistance of Salmonella spp. strains in mayonnaise stored under refrigeration and the regulation of acid-resistance related genes[J]. Food Microbiol,2021,95:103680.
(責(zé)任編輯:張震林)
收稿日期:2021-06-21
基金項(xiàng)目:國(guó)家自然科學(xué)基金項(xiàng)目(31772707);安徽農(nóng)業(yè)大學(xué)2019年度研究生創(chuàng)新基金項(xiàng)目(2019ysj-24)
作者簡(jiǎn)介:吳劍梅(1998-),女,安徽安慶人,碩士研究生,主要從事動(dòng)物性食品安全研究。(E-mail)1916679282@qq.com
通訊作者:祁克宗,(E-mail)qkz@ahau.edu.cn