• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Identification of EST-SSRs and molecular diversity analysis in Mentha piperita

    2015-11-18 01:23:27BirendrKumrUmeshKumrHemntKumrYdv
    The Crop Journal 2015年4期

    Birendr Kumr,Umesh Kumr,Hemnt Kumr Ydv,c,*

    aCSIR-Central Institute of Medicinal and Aromatic Plant Sciences,P.O.CIMAP,Near Kukrail Picnic Spot,Lucknow-226 015,India

    bCSIR-National Botanical Research Institute,Rana Pratap Marg,Lucknow-226 001,India

    cAcademy of Scientific and Innovative Research(AcSIR),New Delhi,India

    Identification of EST-SSRs and molecular diversity analysis in Mentha piperita

    Birendra Kumara,Umesh Kumarb,Hemant Kumar Yadavb,c,*

    aCSIR-Central Institute of Medicinal and Aromatic Plant Sciences,P.O.CIMAP,Near Kukrail Picnic Spot,Lucknow-226 015,India

    bCSIR-National Botanical Research Institute,Rana Pratap Marg,Lucknow-226 001,India

    cAcademy of Scientific and Innovative Research(AcSIR),New Delhi,India

    A R T I C L E I N F O

    Article history:

    Received 8 July 2014

    Received in revised form

    2 February 2015

    Accepted 16 February 2015

    Available online 28 February 2015

    EST-SSRs

    Genetic diversity

    Mentha piperita

    Polymorphic information content Transferability

    EST sequences of Mentha piperita available in the public domain(NCBI)were exploited to develop SSR markers.A total of 1316 ESTs were assembled into 155 contigs and 653 singletons and of these,110 sequences were found to contain 130 SSRs,with a frequency of 1 SSR/3.4 kb.Dinucleotide repeat SSRs were most frequent(72.3%)with the AG/CT(43.8%)repeat motif followed by AT/AT(16.2%).Primers were successfully designed for 68 SSR-containing sequences(62.0%).The 68 primers amplified 13 accessions of M.piperita and 54 produced clear amplicons of the expected size.Of these 54,33(61%)were found to be polymorphic among M.piperita accessions,showing from 2 to 4 alleles with an average of 2.33 alleles/SSR,and the polymorphic information content(PIC)value varied between 0.13 and 0.51(average 0.25).All the amplified SSRs showed transferability among four different species of Mentha,with a highest in Mentha arvensis(87.0%)and minimum in Mentha citrata(37.0%).The newly developed SSRs markers were found to be useful for diversity analysis,as they successfully differentiated among species and accessions of Mentha.

    ?2015 Crop Science Society of China and Institute of Crop Science,CAAS.Production and hosting by Elsevier B.V.This is an open access article under the CC BY-NC-ND license(http://creativecommons.org/licenses/by-nc-nd/4.0/).

    1.Introduction

    The genus Mentha(mint)is one of the most important taxa of the family Lamiaceae and comprises 25 to 30 species grown in different parts of the world.Only five of them,Japanese/menthol mint(Mentha arvensis L.var.piperascens forma Holmes),spearmint(Mentha spicata L.),peppermint(Mentha piperita L.),scotch spearmint(MenthacardiacaBaker.)andBergamotmint(Mentha citrata Ehrh.)are commercially grown in India and other countries[1,2].These five species are the major natural source of aroma compounds of industrial importance;namely-menthol,menthofuran,carvone,linalool,and linalyl acetate.Because of their cooling,pleasant aroma and flavor,essential oils of mint are used in perfumery,cosmetics,confectionery,and the pharmaceutical industries.The oil of M.piperita,known as peppermint oil,is widely used for headache,nerve pain,toothache,oral inflammation,joint conditions,itchiness,allergic rash,repelling mosquitoes,rheumatism,muscular pains,etc.[3,4].Menthol is the major constituent of the essential oil constituents of peppermint oil[5].Peppermint oil of globally accepted quality contains high amounts of menthol,moderate amounts of menthone,and very low amounts of pulegone and menthofuran[6,7].The presence and concentrations of certain chemical constituents of essential oils changeaccording to the season,soil,climate,and site of plant growth. Peppermint is cultivated in several parts of India and has great economic value and a strong export potential for its volatile oil extracts.

    DNA-based molecular markers have been shown to be an efficient tool to assist conventional plant breeding in various ways,such as by assessing the gene pool for diverse parental lines,hybridity testing,QTL mapping,gene tagging,and marker-assisted selection.Despite the importance of peppermint as an aromatic and medicinal plant,no comprehensive molecular marker systems are available.A few studies have assessed genetic diversity in species of Mentha based on RAPD[8-10]and AFLP fingerprinting[11].There is a complete lack of Mentha-specific molecular markers for use in genetic studies and genetic improvement programs.

    Simple sequence repeats(SSRs)also called microsatellites,are 1-6-base tandem repeats of DNA sequences,abundant in both prokaryotic and eukaryotic organisms in coding and noncoding regions[12].SSRs are a preferred marker system owing to their codominant inheritance,multiallelic nature,abundance in the genome,high reproducibility,hyperpolymorphism,and high rate of transferability across genera and species[13-15].Expressed sequence tags(ESTs)available in the public domain are the easiest and cheapest source for SSR development.EST-SSRs offer various advantages including ease of access,presence in gene-rich regions,and high transferability across species and genera[16],which enable them to serve as anchor markers for comparative mapping and evolutionary studies[15].Given that no SSR markers are reported in Mentha,the present study was undertaken to exploitthe ESTdatabase of M.piperita to(1)analyze the frequency and distribution of SSRs in ESTs,(2)develop and characterize EST-SSRs(3)test their transferability in related species and(4)detect polymorphism/diversity among accessions and species of Mentha.

    2.Materials and methods

    2.1.Plant materials and DNA isolation

    The plant material included 13 accessions of M.piperita,5 of M.arvensis,4 of M.spicata,and 1 each of Mentha longifolia and M.citrata.These accessions were previously evaluated for essential oil content and other components.The details of these plant materials are given in Table 1.M.piperita is characterized by moderate oil content and high menthofuran. M.arvensis,also known as menthol mint,contains comparatively high oil content rich in menthol.The accessions of M.spicata and M.longifolia contain carvone-rich essential oils and M.citrata is rich in linalool and linalyl acetate.These accessions were grown during the 2012-2013 crop season in the experimental field of the Central Institute of Medicinal and Aromatic Plants(CIMAP)Lucknow,Uttar Pradesh,India. Fresh leaves combined from five randomly chosen plants of each accession were used to isolate total genomic DNA with a Qiagen DNeasy Plant Mini Kit(Qiagen,Valencia,CA,USA)following the manufacturer's instructions.The quality of DNA was assessed on 0.8%agarose gel and quantity was checked with a NanoDrop spectrophotometer ND 1000(NanoDrop Products,USA).Finally,the DNA was normalized to 10 ng μL-1for PCR amplification.

    2.2.Data mining and EST-SSR identification

    A total of1316 raw EST sequences of M.piperita were downloaded from the National Center for Biotechnology Information(NCBI;http://www.ncbi.nlm.nih.gov/dbest/)on January 14,2013.The 5′or 3′end poly A or poly T stretches were removed from the raw EST sequences using EST-Trimmer software(http://pgrc.ipk-gatersleben.de/misa/download/est_trimmer.pl).EST sequences were then assembled using the CAP3 assembler[17]with criteria of 40 bp overlap and 90%identity.The assembled EST sequences were subjected to SSR search using MISA(http://pgrc.ipk-gatersleben.de/misa/)with criteria of minimum number of repeats of 5 for dinucleotide(DNR)and trinucleotide(TNR)and of 4 for tetra-,penta-,and hexanucleotide SSRs.

    Table 1-Details of cultivars and species of Mentha used in the study.

    2.3.Primer design and PCR amplification

    The SSR-containing sequences were used to design flanking primers with PRIMER3 software(http://frodo.wi.mit.edu/primer3)with major primer design parameters as follows:product length 100-300 bp,primer size 18-25 bp,and melting temperature 57-63°C(optimum 60°C).In some cases,where primers could not be designed,the criteria were relaxed. The primers were synthesized with an additional 18-base(5′-TGTAAAACGACGGCCAGT-3′)tag at the 5′end to all the forward primers[18].Additionally,four 18-base primer named as“M13 tag”was also synthesized labeled with either FAM,VIC,PET,or NED fluorescent dye.PCR amplification of genomic DNA was performed in a 10 μL reaction volume in an Veriti Thermal Cycler PCR(Applied Biosystems,F(xiàn)oster City,CA,USA)containing 10 ng genomic DNA,1×PCR Master Mix(AmpliTaq Gold 360),5 pmol forward primer(tailed with M 13 tag),15 pmol reverse primer,and 15 pmol“M13 tag”.The PCR programs employed initial denaturation for 5 min at 95°C followed by 35 cycles of denaturation for 1 min at 94°C,annealing for 45 s at 48-52°C(primer-specific)and extension for 1 min at 72°C.These were followed by 10 cycles of denaturation for 30 s at 95°C,annealing for 45 s at 53°C,and extension for 45 s at 72°C followed by a final extension for 12 min at 72°C.The PCR products were separated by capillary electrophoresis using the ABI 3730xl DNA Analyzer(Applied Biosystems,F(xiàn)oster City,CA,USA).After PCR amplification confirmation on 1.5%agarose gel,post-PCR multiplex sets were constructed based on fluorescence-labeled primer dyes.For post-PCR multiplexing,1 μL of FAM and 2 μL each of VIC,NED,and PET-labeled PCR products representing different SSRs were mixed with 60 μL water.The mixed product(2 μL)was then added to 8 μL of Hi-Di formamide containing 0.20 μL GeneScan 600 LIZas internalsize standard,denatured for 5 min at 95°C,quick-chilled on ice for 5 min,and loaded on the ABI3730xl DNA Analyzer for electrophoresis.SSR amplicon size was determined with GeneMapper 4.0 software(Applied Biosystems,USA).

    2.4.Data acquisition and statistical analyses

    The PCR-amplified SSR markers were scored by allele size as well as presence(1)or absence(0).Statistical analysis for the calculation of observed heterozygosity(Ho),gene diversity or expected heterozygosity(He),major allele frequency,and polymorphic information content(PIC)of EST-SSR markers was performed with Power Marker 3.25[19].PIC was calculated following Botstein et al.[20]:where Piand Pjare the frequencies of the i th and j th alleles. A pairwise similarity matrix among the accessions was calculated with the 0-1 data matrix using Jaccard's coefficient.This matrix was used to construct a dendrogram using the unweighted pair-group method with arithmetic mean(UPGMA)with NTSYS-pc 2.2[21].

    3.Results

    3.1.Frequency and distribution of EST-SSRs

    A total of 1316 raw EST sequences varying in length from 105 to 1147 bases(average 525)were downloaded,cleaned,and assembled(Table 2).The assembly resulted in 155 contigs and 653 singletons.The length of contigs varied between 409 and 2118 bp with an average of 743 bp.Of the 808 assembled sequences,110 were found to contain 130 SSRs,with a frequency of 1 SSR/3.4 kb of the available ESTs.Of the 110 SSR-containing ESTs,14(13%)contained more than one SSR,and 15 SSRs were found in compound form.Among the types of SSRs,the highest proportion was represented by dinucleotide repeat(DNR)(72.3%),followed by trinucleotide(TNR)(21.5),tetranucleotide(3.8%),and hexanucleotide(2.3%)repeats(Table 3).No pentanucleotide SSR was identified under the criteria used for the SSR search.The majority of the SSR motifs were of smaller repeat length and only 8 were found to contain 10 or more repeats(Table 3).The most common type of SSR motif was AG/CT(43.8%),followed by AT/AT(16.2%),AC/GT(12.3%),AAG/CTT(10.8%),and AAT/ATT(3.8%)(Table 3).

    3.2.Polymorphism analysis and cross-species transferability

    All of the 110 SSR-containing sequences were used to design primers flanking the SSR motif.We successfully designed primers for 68(62%)SSR-containing sequences(Table S1).The remaining 42(38%)SSR containing sequences were not found suitable for designing primers,owing either to marginal SSRs or inappropriate flanking sequences.All the 68 primer pairs were synthesized and characterized for various marker attributes with 13 accessions of M.piperita and also used to assess cross-species transferability in four species of Mentha. Of the 68,54 primer pairs produced clear amplicons of the expected sizes.The 54 EST-SSRs amplified with M.piperita accessions resulted in 33 polymorphic SSRs with a total of 77alleles and 21 monomorphic SSRs(Table 4,F(xiàn)ig.S1).The number of alleles varied from 2 to 4 with an average of 2.33 alleles/SSR.The PIC values of polymorphic SSRs ranged between 0.13 and 0.51 with an average of 0.325±0.09.The primer pair EMM_003 showed the highest PIC(0.51),followed by EMM_049(0.48),EMM_055(0.36),and EMM_41(0.36).The expected heterozygosity(He)varied from 0 to 0.69(EMM_026)with an average of 0.21(Table 4).The potential cross-species transferability of the 54 EST-SSRs was assessed in four species of Mentha including five accessions of M.arvensis,four of M.spicata,and one each of M.citrata and M.longifolia.Among these,M.arvensis showed the highest EST-SSR transferability(87.0%)followed by M.spicata(83.0%),M.longifolia(55.0%),and M.citrata(37.0%).

    Table 2-Details of ESTs and SSRs identified in M.piperatai.

    Table 3-SSR frequencies by repeat type and motif in M.piperita.

    3.3.Genetic diversity analysis

    Jaccard's similarity coefficients for 24 mint accessions were calculated based on the genotypic data for 54 ESTSSRs and used to prepare a dendrogram(Fig.1).The genetic similarity coefficient varied from 0.32 to 0.87 with an average of 0.57±0.12.The maximum similarity was found between CIM-Indus and CIMAP-Patra(0.87)followed by Kosi and MAS-10-11-45(0.84),MPS-16 and MPS-20(0.83),and MPS-21 and MPS-20(0.81).The minimum similarity or maximum dissimilarity was found between M.citrata and MPS-16(0.32)and between M.longifolia and MPS-20(0.32). UPGMA clustering classified all the accessions into three major clusters(Fig.1).Cluster I was the largest,containing all the accessions of M.piperita and M.arvensis.This cluster could be further subdivided into two subclusters,one containing all the accessions of M.piperita and other all the accessions of M.arvensis.The main cluster II contained all four accessions of M.spicata.The species M.citrata and M. longifolia grouped together as an outgroup(cluster III)in the dendrogram.

    4.Discussion

    Among various molecular markers,SSR markers have been widely exploited for several plant genetics and breeding studies and applications,including evaluation of genetic relationship between individuals,tagging useful genes/alleles,linkage/QTL mapping,and phylogenetic analyses. Their features including hypervariability,multiallelic nature,wide genome coverage,relative abundance,and amenability to automation and high-throughput genotyping make SSRs preferential markers[22].In the present investigation,we exploited the publically available EST database of M.piperita to develop EST-SSRs for various genetic studies.A total of 110(8.4%) of the M.piperita EST sequences contained microsatellites,yielding 130 SSRs.This was a relatively high abundance of SSRs as compared to those reported earlier for maize(1.4%),barley(3.4%),sorghum (3.6%),and rice(4.7%)[23].However,it was lower than those reported for tea(15.5%)[24],castor bean(28.4%)[25],and opium poppy(18.8%)[26]. The relative frequency of EST-SSRs was found to be 1/3.4 kb,comparable to those reported for pepper(1/3.8 kb)[27],and tea(1/3.5 kb)[28]and much higher than those reported for lotus(1/13.0 kb)[29],wheat(1/15.6 kb)[23],tomato(1/11.1 kb)[30],and lily(1/15.9 kb)[31].However,comparing the frequency and abundance of SSRs reported in different plant species may not give conclusive information,as these values are dependent on SSR search criteria,size of data set,database mining tools,and EST sequence redundancy[15].DNR and TNR have been reported to be the predominant types of repeat motif in EST-SSRs in several plants,but the most abundant motif varied with species[15].In M.piperita EST-SSRs,DNR was the most dominant motif(72.3%)followed by TNR(21.5%),with both accounting for 93.8%of EST-SSRs.A high proportion of DNR was also reported in EST-SSRs in coffee[32],lotus[29],cassava[33],and Jatropha[34].However,TNR was reported as the most common repeat motif in EST-SSRs in citrus[35],Hawaiian mint[36],peanut[37],and lily[31].The EST dataset used in the present investigation was small,and accordingly various features of EST-SSRs such as frequency,abundance,and motif type might vary if a larger dataset were used.AG/CT(43.8%)and AAG/CTT(10.8%)were the most common DNR and TNR respectively.Similar findings have also been reported earlier by Cardle et al.[30],Kantety et al.[23],Raji et al.[33],Pan et al.[29],Zhang et al.[38],Akash and Myers[39].In the present study no GC/GC repeat motif SSRs were identified. The GC/GC motif was also not reported in EST-SSRs of Medicago truncatula[40],cassava[33],coffee[32],peanut[37],sesame[37],or alfalfa[41].

    The 68 SSR flanking primers developed in the present study showed a higher rate of successful primer design(62.0%)than reported for alfalfa(14.0%)[41],sesame(49%)[38],or faba bean(29.0%)[39],but lower than reported for opium poppy(86.4%)[26].Of 54 primers,33 amplified across 13 accessions of M.piperita,showing 61.0%of polymorphism. The percent polymorphism in the present investigation wasfound to be higher than that observed across 24 accessions of sesame(11.6%)[38]but lower than that reported among 28 alfalfa accessions(97.0%)[41]and among 37 accessions of opium poppy[26].The polymorphism found in the EST-SSRs of M.piperita suggested the potential of these markers for use in future genetic studies.However,most of the SSRs showedlow PIC values,with an average of 0.25±0.09.The low average PIC value may reflect the small number of accessions surveyed or low allelic polymorphism.The utility of the SSRs could be expanded by studying their transferability to closely associated genera/species.Transferability of EST-SSRs has been reported in many crop plants,including sugarcane[42],pear[43],Prunus[44],lettuce[45],alfalfa[41],faba bean[39],and opium poppy[26].M.arvensis and M spicata showed the highest transferability,indicating the closeness of their relationship to M.piperita.This close relationship has also been previously established and reported by Khanuja et al.[8],Gobert et al.[11],and Shiran et al.[10]based on RAPD and AFLP analysis.Reports of the interspecific hybrids M.arvensis×M.spicata[2]and M.arvensis×M.piperita[46]also support these findings.The EST-SSRs developed in the present study were also used to evaluate genetic relatedness among accessions and species of Mentha.The EST-SSRs were able to distinguish different accessions within and among Mentha species.All 13 accessions of M.piperita were grouped in one cluster and accessions of M.arvensis clustered together. The adjacent clustering of M.arvensis with M.piperita further supports their close relatedness.Likewise,4 accessions of M.spicata clustered together and M.citrata and M.longifolia did not group with any cluster.This result indicates that the EST-SSRs reported here have potential for various genetic studies in Mentha.The dendrogram clustering of M.citrata and M.longifolia close to M.spicata and M.arvensis indicates some common ancestry.Gobert et al.[11]showed high similarity between M.spicata and M.longifolia based on AFLP analysis.

    Table 4-Details of 54 EST-SSRs of M.piperita and their cross-species transferability among four other species of Mentha.

    Fig.1-UPGMAdendrogramof Mentha species/accessions.Genetic distance was based on Jaccard's similarity coefficientcalculated from EST-SSR data.

    In the present study,we have developed EST-SSRs using the M.piperita EST database.The EST-SSRs showed a high level of polymorphism and were transferable across several species of Mentha.Genetic relatedness among different accessions and species of Mentha was established using the EST-SSRs.The present study demonstrates the potential of EST-SSRs for genetic and phylogenetic studies in Mentha.

    Supplementary material

    Supplementary material related to this article can be found online at http://dx.doi.org/10.1016/j.cj.2015.0x.00x.

    [1]N.K.Patra,H.Tanveer,N.K.Tyagi,S.Kumar,Cyto-taxonomical status and genetical and breeding perspectives of Mentha,J.Med.Arom.Plant Sci.22(2000)419-430.

    [2]N.K.Patra,H.Tanveer,S.P.S.Khanuja,A.K.Shasany,H.P.Singh,V.R.Singh,S.Kumar,A unique interspecific hybrid spearmint clone with growth properties of Mentha arvensis L.and oil qualities of Mentha spicata L,Theor.Appl.Genet.102(2001)471-476.

    [3]S.Behnam,M.Farzaneh,M.Ahmadzadeh,A.S.Tehrani,Composition and antifungal activity of essential oils of Mentha piperita and Lavendula angustifolia on post-harvest phytopathogens,Commun.Agric.Appl.Biol.Sci.71(2006)1321-1326.

    [4]S.Kizil,N.Hasimi,V.Tolan,E.Kilinc,U.Yuksel,Mineral content,essential oil components and biological activity of two mentha species(M.piperita L.,M.spicata L.),Turk.J.Field Crops.15(2010)148-153.

    [5]W.A.Court,R.C.Roy,R.Pocs,Effect of harvest date on the yield and quality of the essential oil of peppermint,Can.J. Plant Sci.73(1993)815-824.

    [6]S.S.Mahmoud,R.B.Croteau,Menthofuran regulates essential oil biosynthesis in peppermint by controlling a downstream monoterpene reductase,Proc.Natl.Acad.Sci.U.S.A.100(2003)14481-14486.

    [7]R.B.Croteau,E.M.Davis,K.L.Ringer,M.R.Wildung,Menthol biosynthesis and molecular genetics,Naturwissenschaften 92(2005)562-577.

    [8]S.P.S.Khanuja,A.K.Shasany,A.Srivastava,S.Kumar,Assessment of genetic relationships in Mentha species,Euphytica 111(2000)121-125.

    [9]A.L.Fenwick,S.M.Ward,Use ofrandomamplified polymorphic DNA markers for cultivar identification in mint,Hort.Sci.36(2001)761-764.

    [10]B.Shiran,M.Soheila,R.Khorshid,Assessment of genetic diversity among Iranian mints using RAPD markers,in:J. Vollmann,H.Grausgruber,P.Ruckenbauer(Eds.),Genetic Variation for Plant Breeding.Proceedings of the 17th EUCARPIA General Congress,Tulln,Austria,8-11 September,2004,2004,pp.121-125.

    [11]V.Gobert,S.Moja,M.Colson,P.Taberlet,Hybridization in the section Mentha(Lamiaceae)inferred from AFLP markers,Am. J.Bot.89(2002)2017-2023.

    [12]D.Field,C.Wills,Abundant microsatellite polymorphism in Saccharomyces cerevisiae,and the different distributions of microsatellites in eight prokaryotes and S.cerevisiae,result from strong mutation pressures and a variety of selective forces,Proc.Natl.Acad.Sci.U.S.A.95(1998)1647-1652.

    [13]W.Powell,G.Machray,J.Provan,Polymorphism revealed by simple sequence repeats,Trends Plant Sci.1(1996)215-222.[14]P.K.Gupta,S.Rustgi,S.Sharma,R.Singh,N.Kumar,H.S. Balyan,Transferable EST-SSR markers for the study of polymorphism and genetic diversity in bread wheat,Mol. Gen.Genomics.270(2003)315-323.

    [15]R.K.Varshney,A.Graner,M.E.Sorrells,Genic microsatellite markers:features and applications,Trends Biotechnol.23(2005)48-55.

    [16]T.Thiel,W.Michalek,R.K.Varshney,A.Graner,Exploiting EST database for the development and characterization of gen-derived SSR-markers in barley(Hordeum vulgare L.),Theor.Appl.Genet.10(2003)6411-6422.

    [17]X.Huang,A.Madan,CAP3:a DNA sequence assembly program,Genome Res.9(1999)868-877.

    [18]M.Schuelke,An economic method for the fluorescent labeling of PCR fragments,Nat.Biotechnol.18(2000)233-234.[19]K.Liu,S.V.Muse,Power marker:integrated analysis environment for genetic marker data,Bioinformatics 21(2005)2128-2129.

    [20]D.Botstein,R.L.White,M.Skolnick,R.W.Davis,Construction of genetic linkage map in man using restriction fragment length polymorphisms,Am.J.Hum.Genet.32(1980)314-331.[21]F.J.Rohlf,NTSYS-pc Version 2.2:Numerical Taxonomy and Multivariate Analysis System,Exeter Software,New York,2000.

    [22]R.K.Kalia,M.K.Rai,S.Kalia,R.Singh,A.K.Dhawan,Microsatellite markers:an overview of the recent progress in plants,Euphytica 177(2011)309-334.

    [23]R.V.Kantety,M.L.Rota,D.E.Mathews,M.E.Sorrells,Data mining for simple sequence repeats in expressed sequence tags from barely,maize,rice,sorghum and wheat,Plant Mol. Biol.48(2002)501-510.

    [24]J.Q.Ma,Y.H.Zhou,C.L.Ma,M.Z.Yao,J.Q.Jin,Identification and characterization of 74 novel polymorphic EST-SSR markers in the tea plant,Camellia sinensis(Theaceae),Am.J. Bot.97(2010)153-156.

    [25]L.Qui,C.Yang,B.Tian,J.B.Yang,A.Liu,Exploiting EST databases for the development and characterization of EST-SSR markers in castor bean(Ricinus communis L.),BMC Plant Biol.10(2010)278.

    [26]H.Selale,I.Celik,V.Gultekin,J.Allmer,S.Doganlar,A. Frary,Development of EST-SSR markers for diversity and breeding studies in opium poppy,Plant Breed.132(2013)344-351.

    [27]G.Yi,J.M.Lee,S.Lee,D.Choi,B.D.Kim,Exploitation of pepper EST-SSRs and an SSR-based linkage map,Theor.Appl.Genet. 114(2006)113-130.

    [28]R.K.Sharma,P.Bhardwaj,R.Negi,T.Mohapatra,P.S.Ahuja,Identification,characterization and utilization of unigene derived microsatellite markers in tea(Camellia sinensis L.),BMC Plant Biol.9(2009)53.

    [29]L.Pan,Q.Xia,Z.Quan,H.Liu,W.Ke,Y.Ding,Development of novel EST-SSRs from sacred lotus(Nelumbo nucifera Gaertn)and their utilization for the genetic diversity analysis of N.nucifera,J.Hered.101(2010)71-82.

    [30]L.Cardle,L.Ramsay,D.Milbourne,M.Macaulay,D.Marshall,R.Waugh,Computational and experimental characterization of physically clustered simple sequence repeats in plants,Genetics 156(2000)847-854.

    [31]S.Yuan,G.Liang,C.Liu,J.Ming,The development of EST-SSR markers in Lilium regale and their cross-amplification in related species,Euphytica 189(2013)393-419.

    [32]R.K.Aggarwal,P.S.Hendre,R.K.Varshney,P.K.Bhat,V. Krishnakumar,L.Singh,Identification,characterization and utilization of EST-derived genic microsatellite markers for genome analyses of coffee and related species,Theor.Appl. Genet.114(2007)359-372.

    [33]A.A.Raji,J.V.Anderson,O.A.Kolade,C.D.Ugwu,A.G. Dixon,I.L.Ingelbrecht,Gene-based microsatellites for cassava(Manihot esculenta Crantz):prevalence,polymorphisms,and cross-taxa utility,BMC Plant Biol.9(2009)118.

    [34]H.K.Yadav,A.Ranjan,M.H.Asif,S.Mantri,S.V.Sawant,R. Tuli,EST-derived SSR markers in Jatropha curcas development,characterization,polymorphism,and transferability across the species/genera,Tree Genet. Genomes 7(2011)207-219.

    [35]C.Chen,P.Zhou,Y.Choi,S.Huang,F(xiàn).Gmitter,Mining and characterizing microsatellites from citrus ESTs,Theor.Appl. Genet.112(2006)1248-1257.

    [36]C.Lindqvist,A.C.Scheen,M.J.Yoo,P.Grey,D.G. Oppenheimer,J.H.L.Mack,D.E.Soltis,P.S.Soltis,V.A.Albert,An expressed sequence tag(EST)library from developing fruits of an Hawaiian endemic mint(Stenogyne rugosa,Lamiaceae):characterization and microsatellite markers,BMC Plant Biol.6(2006)16.

    [37]X.Liang,X.Chen,Y.Hong,H.Liu,G.Zhou,S.Li,B.Gu,Utility of EST-derived SSR in cultivated peanut(Arachis hypogaea L.)and Arachis wild species,BMC Plant Biol.9(2009)35.

    [38]H.Zhang,W.Libin,M.Hongmei,Z.Tide,W.Cuiying,Development and validation of genic-SSR markers in sesame by RNA-seq,BMC Genomics 13(2012)316.

    [39]M.W.Akash,G.O.Myers,The development of faba bean expressed sequence tag-simple sequence repeats(EST-SSRs)and their validity in diversity analysis,Plant Breed.131(2012)522-530.

    [40]I.M.Eujayl,K.Sledge,L.Wang,G.D.May,K.Chekhovskiy,Medicago truncatula EST-SSRs reveal cross-species genetic markers for Medicago spp,Theor.Appl.Genet.108(2004)414-422.

    [41]Z.Wang,Y.Hongwei,F(xiàn).Xinnian,L.Xuehui,G.Hongwen,Development of simple sequence repeat markers and diversity analysis in alfalfa(Medicago sativa L.),Mol.Biol.Rep. 40(2013)3291-3298.

    [42]G.M.Cordeiro,R.Casu,C.L.McIntyre,J.M.Manners,R.J.Henry,Microsatellite markers from sugarcane(Saccharum spp.)ESTs cross transferable to Erianthus and Sorghum,Plant Sci.160(2001)1115-1123.

    [43]L.Fan,M.Y.Zhang,Q.Z.Liu,T.L.Li,Y.Song,L.F.Wang,S.L. Zhang,J.Wu,Transferability of newly developed pear ssr markers to other rosaceae species,Plant Mol.Biol.Report.31(2013)1271-1282.

    [44]M.Mnejja,M.J.Garcia,J.M.Audergon,P.Arús,Prunus microsatellite marker transferability across rosaceous crops,Tree Genet.Genomes 6(2010)689-700.

    [45]I.Simko,Development of EST-SSR markers for the study of population structure in lettuce(Lactuca sativa L.),J.Hered.100(2009)256-262.

    [46]B.Kumar,A.K.Shukla,A.Samad,Development and characterization of menthofuran-rich inter-specific hybrid peppermint variety CIMAP-Patra,Mol.Breed.34(2014)717-724.

    *Corresponding author at:CSIR-National Botanical Research Institute,Rana Pratap Marg,Lucknow-226 001,India.Tel.:+91 522 2297938.

    E-mail address:h.yadav@nbri.res.in(H.K.Yadav).

    Peer review under responsibility of Crop Science Society of China and Institute of Crop Science,CAAS.

    http://dx.doi.org/10.1016/j.cj.2015.02.002

    2214-5141/?2015 Crop Science Society of China and Institute of Crop Science,CAAS.Production and hosting by Elsevier B.V.This is an open access article under the CC BY-NC-ND license(http://creativecommons.org/licenses/by-nc-nd/4.0/).

    欧美zozozo另类| 国产精品久久久久久精品电影小说 | 国产成人aa在线观看| 亚洲美女搞黄在线观看| 国产成人精品福利久久| 少妇人妻 视频| 青青草视频在线视频观看| 色婷婷久久久亚洲欧美| 日韩一区二区三区影片| 国产片特级美女逼逼视频| 精品人妻偷拍中文字幕| 制服丝袜香蕉在线| 三级经典国产精品| 22中文网久久字幕| 亚洲欧洲国产日韩| 欧美少妇被猛烈插入视频| 亚洲国产精品一区三区| 亚洲一级一片aⅴ在线观看| kizo精华| 建设人人有责人人尽责人人享有的 | 99热国产这里只有精品6| 亚洲一区二区三区欧美精品| 多毛熟女@视频| 国产精品嫩草影院av在线观看| 久久精品国产鲁丝片午夜精品| 伦精品一区二区三区| 亚洲精品亚洲一区二区| 激情五月婷婷亚洲| 99热全是精品| 国产伦精品一区二区三区四那| 欧美三级亚洲精品| 一级片'在线观看视频| 99久久精品国产国产毛片| 久久久久久久久久久丰满| 麻豆成人av视频| 婷婷色麻豆天堂久久| 国产精品人妻久久久影院| videossex国产| 国产91av在线免费观看| 看免费成人av毛片| 男女下面进入的视频免费午夜| 欧美性感艳星| 女的被弄到高潮叫床怎么办| 亚洲国产精品999| 欧美精品人与动牲交sv欧美| 有码 亚洲区| 国产精品熟女久久久久浪| 免费黄频网站在线观看国产| 国产高潮美女av| 亚洲av男天堂| av女优亚洲男人天堂| 国产免费又黄又爽又色| 国产乱人视频| 亚洲精品国产成人久久av| 国产 精品1| 亚洲三级黄色毛片| 国产乱人视频| 国产精品一区二区在线不卡| 嘟嘟电影网在线观看| 中文资源天堂在线| av在线观看视频网站免费| 777米奇影视久久| 春色校园在线视频观看| 精品久久久噜噜| 国产精品久久久久久久电影| 免费久久久久久久精品成人欧美视频 | 日韩 亚洲 欧美在线| 欧美97在线视频| 国产成人精品久久久久久| 黑人高潮一二区| 国产精品嫩草影院av在线观看| 黄色欧美视频在线观看| freevideosex欧美| 一区二区三区四区激情视频| 欧美成人精品欧美一级黄| 国产探花极品一区二区| 亚洲国产av新网站| 成年人午夜在线观看视频| 国产淫语在线视频| 天天躁夜夜躁狠狠久久av| 亚洲国产欧美人成| 日韩一区二区三区影片| 成人亚洲精品一区在线观看 | 免费在线观看成人毛片| 不卡视频在线观看欧美| 国产成人免费观看mmmm| 精品人妻熟女av久视频| 久久亚洲国产成人精品v| 国产亚洲5aaaaa淫片| 亚洲国产精品一区三区| 蜜桃久久精品国产亚洲av| 人人妻人人澡人人爽人人夜夜| 搡女人真爽免费视频火全软件| 久久国产亚洲av麻豆专区| 成年av动漫网址| 黄色日韩在线| 少妇的逼好多水| 黄色视频在线播放观看不卡| 国产精品国产av在线观看| 中文天堂在线官网| 午夜免费鲁丝| 又爽又黄a免费视频| 国产熟女欧美一区二区| 精品久久久久久久久av| 国产无遮挡羞羞视频在线观看| 精品少妇黑人巨大在线播放| 国产一区二区在线观看日韩| 性色avwww在线观看| 伊人久久国产一区二区| 日韩欧美 国产精品| 欧美精品国产亚洲| 亚洲精品第二区| 午夜免费观看性视频| 在线观看av片永久免费下载| 欧美一区二区亚洲| 精品99又大又爽又粗少妇毛片| 免费看光身美女| 成人黄色视频免费在线看| 亚洲欧美日韩卡通动漫| 亚洲不卡免费看| 夫妻性生交免费视频一级片| 国产亚洲午夜精品一区二区久久| 国产精品蜜桃在线观看| 永久网站在线| 久久久精品94久久精品| 亚洲人成网站在线播| 久久久久久久久久人人人人人人| 2018国产大陆天天弄谢| 久久精品国产亚洲网站| 免费大片黄手机在线观看| 日韩中字成人| 午夜老司机福利剧场| 亚洲av成人精品一区久久| 国产女主播在线喷水免费视频网站| 国产精品欧美亚洲77777| 色视频www国产| 国产成人精品福利久久| 国产精品免费大片| 内地一区二区视频在线| 久久久久久九九精品二区国产| 青春草亚洲视频在线观看| 亚洲成人一二三区av| 亚洲经典国产精华液单| 色哟哟·www| 欧美丝袜亚洲另类| 岛国毛片在线播放| 18禁裸乳无遮挡动漫免费视频| 成年人午夜在线观看视频| 久久久久久久大尺度免费视频| av福利片在线观看| 亚洲怡红院男人天堂| 毛片女人毛片| 欧美人与善性xxx| 免费播放大片免费观看视频在线观看| 国产淫片久久久久久久久| 国产精品不卡视频一区二区| 草草在线视频免费看| 性色avwww在线观看| 国产伦精品一区二区三区四那| 街头女战士在线观看网站| 国产成人a∨麻豆精品| 一级爰片在线观看| 国产精品一区二区性色av| 伦理电影免费视频| 中文字幕人妻熟人妻熟丝袜美| 1000部很黄的大片| 人人妻人人添人人爽欧美一区卜 | 街头女战士在线观看网站| 天天躁日日操中文字幕| 久久久精品免费免费高清| 亚洲天堂av无毛| 97热精品久久久久久| 美女中出高潮动态图| 蜜臀久久99精品久久宅男| 国产av国产精品国产| 在线观看人妻少妇| 精品人妻视频免费看| 美女内射精品一级片tv| 国产伦精品一区二区三区四那| 亚洲精品日韩av片在线观看| a 毛片基地| 99re6热这里在线精品视频| 日韩制服骚丝袜av| 天堂俺去俺来也www色官网| 人人妻人人澡人人爽人人夜夜| 大片电影免费在线观看免费| 久久久久久久国产电影| freevideosex欧美| 99久国产av精品国产电影| 久久亚洲国产成人精品v| 日韩伦理黄色片| 亚洲欧美清纯卡通| 国产探花极品一区二区| 精品久久国产蜜桃| 亚洲国产成人一精品久久久| 日韩一本色道免费dvd| 91精品国产国语对白视频| 成人综合一区亚洲| 免费播放大片免费观看视频在线观看| 人妻系列 视频| h日本视频在线播放| 大片电影免费在线观看免费| 久久精品国产鲁丝片午夜精品| 男女边摸边吃奶| 久久韩国三级中文字幕| 中文资源天堂在线| 少妇的逼好多水| 国产欧美日韩一区二区三区在线 | 精品酒店卫生间| 国产亚洲91精品色在线| 国产久久久一区二区三区| 在线观看av片永久免费下载| 最后的刺客免费高清国语| 成人午夜精彩视频在线观看| 中国三级夫妇交换| 麻豆乱淫一区二区| 制服丝袜香蕉在线| 欧美zozozo另类| 秋霞伦理黄片| 黄片wwwwww| 性色avwww在线观看| 日韩在线高清观看一区二区三区| 国产精品人妻久久久影院| 日本黄色片子视频| 亚洲中文av在线| 色哟哟·www| 在线亚洲精品国产二区图片欧美 | 久久精品国产亚洲av涩爱| 亚洲一级一片aⅴ在线观看| 热re99久久精品国产66热6| 欧美最新免费一区二区三区| 夫妻午夜视频| 久久久久久久久久久丰满| 国产极品天堂在线| 国产精品久久久久成人av| 久久久久久久久久成人| 各种免费的搞黄视频| 国产 精品1| 国产欧美亚洲国产| 舔av片在线| 乱码一卡2卡4卡精品| 中文天堂在线官网| 亚洲精品国产av成人精品| 蜜桃在线观看..| 七月丁香在线播放| 晚上一个人看的免费电影| 五月开心婷婷网| 多毛熟女@视频| 晚上一个人看的免费电影| 制服丝袜香蕉在线| 欧美日韩国产mv在线观看视频 | 最近中文字幕高清免费大全6| av在线老鸭窝| 国产精品av视频在线免费观看| 亚洲欧美一区二区三区国产| 午夜福利在线观看免费完整高清在| 搡老乐熟女国产| 国产欧美日韩一区二区三区在线 | tube8黄色片| 亚洲精品乱码久久久久久按摩| 国产成人a∨麻豆精品| 日韩视频在线欧美| 久久精品久久久久久噜噜老黄| 欧美精品亚洲一区二区| 国产av精品麻豆| 有码 亚洲区| 欧美极品一区二区三区四区| 精品人妻偷拍中文字幕| 99久久综合免费| 欧美变态另类bdsm刘玥| 亚洲美女视频黄频| 成年免费大片在线观看| 成人亚洲欧美一区二区av| 国产男女内射视频| 国产色爽女视频免费观看| 国产精品无大码| 成年人午夜在线观看视频| 国产精品一区二区三区四区免费观看| 久久影院123| 免费少妇av软件| 国产伦精品一区二区三区视频9| 亚洲欧美日韩另类电影网站 | 人人妻人人添人人爽欧美一区卜 | 高清日韩中文字幕在线| 久久久久久久国产电影| 欧美日韩精品成人综合77777| 水蜜桃什么品种好| 亚洲精品aⅴ在线观看| 亚洲高清免费不卡视频| 黄色一级大片看看| 久久久久久久精品精品| 亚洲精华国产精华液的使用体验| 免费av中文字幕在线| 日日啪夜夜爽| 精品一区二区免费观看| 欧美成人精品欧美一级黄| 久久精品人妻少妇| 国产片特级美女逼逼视频| 一个人看的www免费观看视频| 在线观看国产h片| videos熟女内射| 日韩精品有码人妻一区| 色视频www国产| 日韩人妻高清精品专区| 热99国产精品久久久久久7| 欧美+日韩+精品| 2018国产大陆天天弄谢| 精品久久久噜噜| 日韩精品有码人妻一区| 国产精品久久久久久久久免| 街头女战士在线观看网站| 久久久久精品性色| 日本黄大片高清| 久久午夜福利片| 亚洲国产日韩一区二区| 男女边吃奶边做爰视频| 亚洲人成网站高清观看| 精华霜和精华液先用哪个| 三级国产精品片| 高清黄色对白视频在线免费看 | 纯流量卡能插随身wifi吗| 亚洲激情五月婷婷啪啪| 水蜜桃什么品种好| 国产乱人视频| 国产淫片久久久久久久久| 国产av码专区亚洲av| 一二三四中文在线观看免费高清| 欧美高清成人免费视频www| 丰满人妻一区二区三区视频av| 建设人人有责人人尽责人人享有的 | 99久久精品热视频| 国产精品蜜桃在线观看| av免费观看日本| 久久精品久久久久久久性| 欧美精品人与动牲交sv欧美| 国产精品嫩草影院av在线观看| 久久国产精品大桥未久av | 国产无遮挡羞羞视频在线观看| 边亲边吃奶的免费视频| 最后的刺客免费高清国语| 成人高潮视频无遮挡免费网站| 91久久精品国产一区二区三区| 精品一区二区三卡| 大片电影免费在线观看免费| 最近最新中文字幕大全电影3| 哪个播放器可以免费观看大片| 天堂俺去俺来也www色官网| 亚洲精品aⅴ在线观看| 中文字幕精品免费在线观看视频 | 成人无遮挡网站| 国产欧美亚洲国产| 女人十人毛片免费观看3o分钟| 伦精品一区二区三区| 国产精品精品国产色婷婷| 午夜免费观看性视频| 精品午夜福利在线看| 国产日韩欧美亚洲二区| 亚洲伊人久久精品综合| 亚洲国产精品国产精品| 国产伦精品一区二区三区视频9| 纯流量卡能插随身wifi吗| 国产真实伦视频高清在线观看| 狂野欧美激情性bbbbbb| 日韩人妻高清精品专区| 少妇 在线观看| 91午夜精品亚洲一区二区三区| 亚洲国产精品成人久久小说| 纵有疾风起免费观看全集完整版| 老司机影院成人| 在线看a的网站| 国产精品久久久久成人av| 精品国产露脸久久av麻豆| 99久久综合免费| 国产精品一区二区在线观看99| 亚洲色图综合在线观看| www.av在线官网国产| 校园人妻丝袜中文字幕| 免费大片黄手机在线观看| 校园人妻丝袜中文字幕| 黄色配什么色好看| 好男人视频免费观看在线| 亚洲色图av天堂| 少妇猛男粗大的猛烈进出视频| 少妇高潮的动态图| 日日摸夜夜添夜夜爱| 黄色配什么色好看| videossex国产| 人人妻人人澡人人爽人人夜夜| 亚洲成人手机| 熟女电影av网| 久久久色成人| 日韩一本色道免费dvd| 国产美女午夜福利| 日本与韩国留学比较| 99热全是精品| 一区在线观看完整版| 嘟嘟电影网在线观看| 亚洲熟女精品中文字幕| 九九爱精品视频在线观看| 亚洲欧洲国产日韩| 国产色爽女视频免费观看| 一本色道久久久久久精品综合| 观看免费一级毛片| 国产亚洲欧美精品永久| 成人午夜精彩视频在线观看| 一级毛片久久久久久久久女| 国产精品人妻久久久久久| 深爱激情五月婷婷| 色5月婷婷丁香| 成人特级av手机在线观看| 秋霞伦理黄片| 青春草亚洲视频在线观看| 欧美人与善性xxx| 欧美一区二区亚洲| 亚洲色图av天堂| av国产精品久久久久影院| 在线精品无人区一区二区三 | 最近中文字幕2019免费版| 一区二区三区免费毛片| 免费观看在线日韩| 国产精品久久久久久精品电影小说 | 大片免费播放器 马上看| av福利片在线观看| 中文乱码字字幕精品一区二区三区| 国产高潮美女av| 午夜激情福利司机影院| 精品人妻视频免费看| 欧美 日韩 精品 国产| 欧美bdsm另类| 直男gayav资源| 一级毛片 在线播放| 中文字幕久久专区| 久久久久视频综合| 欧美一级a爱片免费观看看| 亚洲国产欧美在线一区| 欧美97在线视频| 伦理电影免费视频| 国产伦在线观看视频一区| 久久99热这里只频精品6学生| 伦精品一区二区三区| 国产成人免费无遮挡视频| 成人免费观看视频高清| 亚洲国产最新在线播放| 日本-黄色视频高清免费观看| 国产精品久久久久成人av| 人体艺术视频欧美日本| 一本久久精品| 免费观看在线日韩| 男人爽女人下面视频在线观看| 精品人妻偷拍中文字幕| 国产精品伦人一区二区| 又大又黄又爽视频免费| 新久久久久国产一级毛片| 亚洲自偷自拍三级| a级一级毛片免费在线观看| av一本久久久久| 国产在线视频一区二区| 欧美日韩国产mv在线观看视频 | 久久人人爽人人爽人人片va| 成年女人在线观看亚洲视频| 少妇裸体淫交视频免费看高清| 国产精品一区二区三区四区免费观看| 国产精品久久久久成人av| av网站免费在线观看视频| a级毛色黄片| 少妇人妻一区二区三区视频| av黄色大香蕉| 日本猛色少妇xxxxx猛交久久| 少妇的逼水好多| 成人漫画全彩无遮挡| 国产成人精品福利久久| 99久久精品国产国产毛片| 男人舔奶头视频| 国产亚洲一区二区精品| 国产精品无大码| 国产精品伦人一区二区| 亚洲av成人精品一二三区| 亚洲人成网站高清观看| 亚洲精品国产成人久久av| 99re6热这里在线精品视频| 亚洲高清免费不卡视频| 高清黄色对白视频在线免费看 | 免费观看在线日韩| 欧美xxxx性猛交bbbb| 日本av免费视频播放| 亚洲国产精品国产精品| 欧美国产精品一级二级三级 | 日韩,欧美,国产一区二区三区| av在线播放精品| 美女脱内裤让男人舔精品视频| 男人和女人高潮做爰伦理| 男人舔奶头视频| 国产精品蜜桃在线观看| 在线观看三级黄色| 91狼人影院| 丰满少妇做爰视频| 国产高潮美女av| 啦啦啦啦在线视频资源| 少妇人妻久久综合中文| 精品亚洲成国产av| 男女边吃奶边做爰视频| 亚洲国产日韩一区二区| 久久久色成人| 亚洲美女黄色视频免费看| 久久精品国产鲁丝片午夜精品| 国产亚洲欧美精品永久| 内射极品少妇av片p| 欧美xxxx黑人xx丫x性爽| 边亲边吃奶的免费视频| 美女视频免费永久观看网站| 日韩三级伦理在线观看| 中文资源天堂在线| 国产免费一区二区三区四区乱码| 日韩av不卡免费在线播放| 婷婷色av中文字幕| 中国三级夫妇交换| 欧美高清成人免费视频www| 一二三四中文在线观看免费高清| 边亲边吃奶的免费视频| 久久精品久久久久久久性| 99久久精品热视频| 久久久欧美国产精品| 国产av国产精品国产| 免费观看在线日韩| 国产精品久久久久久精品古装| 亚洲怡红院男人天堂| 一级毛片aaaaaa免费看小| 黄色怎么调成土黄色| 国产av精品麻豆| 少妇 在线观看| 国产精品秋霞免费鲁丝片| 一级毛片aaaaaa免费看小| 最近中文字幕高清免费大全6| 永久网站在线| 免费看av在线观看网站| 国产精品人妻久久久影院| 久久av网站| 精品久久久久久久末码| freevideosex欧美| 久久久久久久久久久丰满| 激情五月婷婷亚洲| 成人亚洲精品一区在线观看 | 久久女婷五月综合色啪小说| 乱系列少妇在线播放| 黄片wwwwww| 亚洲丝袜综合中文字幕| 免费观看性生交大片5| 亚洲第一区二区三区不卡| 国产精品国产三级国产专区5o| 久久久成人免费电影| 少妇的逼水好多| av国产久精品久网站免费入址| 天天躁夜夜躁狠狠久久av| 亚洲图色成人| 亚洲国产欧美人成| av福利片在线观看| 最近的中文字幕免费完整| 精品久久久久久电影网| 国产成人午夜福利电影在线观看| 性色avwww在线观看| 日产精品乱码卡一卡2卡三| 欧美成人午夜免费资源| 免费av中文字幕在线| 国产白丝娇喘喷水9色精品| 精品一区二区三区视频在线| 26uuu在线亚洲综合色| 久久婷婷青草| 亚洲高清免费不卡视频| 2022亚洲国产成人精品| 国产高清三级在线| 国产高清有码在线观看视频| 国产免费福利视频在线观看| 午夜精品国产一区二区电影| 黑人高潮一二区| 尾随美女入室| 我要看黄色一级片免费的| 免费观看a级毛片全部| 中文字幕久久专区| 美女福利国产在线 | 国产成人a∨麻豆精品| 日韩人妻高清精品专区| 直男gayav资源| 欧美性感艳星| 欧美xxⅹ黑人| 中文字幕免费在线视频6| 亚洲内射少妇av| 国产成人精品福利久久| 亚洲欧美日韩另类电影网站 | 建设人人有责人人尽责人人享有的 | 丰满少妇做爰视频| 亚洲精品,欧美精品| 国产色爽女视频免费观看| av在线播放精品| 亚洲精品亚洲一区二区| av黄色大香蕉| 精品少妇久久久久久888优播| 中文天堂在线官网| 丝瓜视频免费看黄片| 久久久久人妻精品一区果冻| 欧美xxⅹ黑人| 蜜桃久久精品国产亚洲av| 青春草亚洲视频在线观看| 欧美三级亚洲精品| 中文字幕免费在线视频6| 自拍欧美九色日韩亚洲蝌蚪91 | 国产一区二区三区综合在线观看 | 又黄又爽又刺激的免费视频.| 777米奇影视久久| 欧美人与善性xxx| 丰满少妇做爰视频| 亚洲激情五月婷婷啪啪| 国产精品一二三区在线看| 国内揄拍国产精品人妻在线| 国产 一区 欧美 日韩| 国产男女内射视频|