• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Cyanide-Bridged Bimetallic Active Site in Porous Carbon-Matrix for Oxygen Reduction Reaction

    2022-05-09 09:29:58LICongLingLUXiaoYu
    無機化學學報 2022年5期

    LI Cong?Ling LU Xiao?Yu

    (College of Chemistry and Chemical Engineering,Shanghai University of Engineering Science,Shanghai 201620,China)

    Abstract:Using special compound{[Co(bpy)2]3[Fe(CN)6]2}[Fe(CN)6]1/3as a precursor,an ordered mesoporous Fe?Co?N?doped graphite?based catalyst(Fe?Co?N?GC)with the embedding Fe—N,Co—N,and Fe—C≡N—Co active sites was prepared by a nano?casting technique.Together with the high surface area and graphitization degree,the catalytic performance of Fe?Co?N?GC for oxygen reduction reaction(ORR)was remarkably enhanced.This Fe?Co?based bimetallic catalyst also exhibited superior durability and good tolerance to methanol in ORR.

    Keywords:mesoporous material;bimetallic catalyst;synergistic effect;oxygen reduction reaction;fuel cells

    0 Introduction

    The synergistic effect of the multi?heteroatoms doped into the carbon nanomaterials can distinctly enhance the catalytic performance of the carbon?based electrocatalysts for oxygen reduction reaction(ORR)[1]and has been recognized as a viable strategy for devel?oping highly efficient non?precious metal catalyst to replace Pt?based electrocatalyst in the clean energy and energy?efficient devices such as polymer electro?lyte membrane fuel cell(PEMFC).

    Among the non?precious metal carbon?based cata?lysts reported for ORR,Fe?N?C and Co?N?C catalysts have been recognized as one of the most promising can?didates for replacing platinum?based catalysts to cata?lyze ORR[2?4].On the other hand,it has been found that Fe?N?C catalysts have higher ORR activity than Co?N?C catalysts,but the latter possessed higher catalytic stability[5?6].To combine the advantages of high electro?chemical stability and ORR activity,bimetallic cata?lysts using Fe and Co as the metal sources have been investigated, such as binary Fe/Co?TPTZ[7],FeCo?OMPC[8],and Fe/Co ?NpGr[9].All these studies indicated that the bimetallic catalysts possess enhanced electrochemical activity and stability towards ORR compared to the catalysts containing single metal,owing to the synergistic effect between Fe and Co active species.

    The bimetallic N?containing catalysts are usually prepared by two kinds of methods.One is directly pyro?lyzing the mixture of transition metal?containing macro?cycles[7,10],or the mixture of transition?metal inorganic salts and nitrogen ?containing organic compounds[11?13].The other is by nano?casting of ordered mesoporous sil?ica with the mixture of metal?containing macrocy?cles[14].However,the distribution of Fe—N and Co—N active sites in the catalysts prepared by these methods is uncontrollable and causes uneven load.The confir?mation for the structural character of the active sites and mutual contact pattern between Co and Fe atoms is very difficult or impossible because the bonding behav?ior of Co and Fe atoms in the pyrolysis products has the features of randomness as well as varieties.

    In this work,an efficient ordered mesoporous Fe?Co?N?doped graphite?based catalyst(Fe?Co?N?GC)has been successfully prepared by using a water?soluble Fe?Co bimetallic coordination compound as precursors and ordered mesoporous silica SBA?15 as a template(Fig.1).In the synthesis,the special molecule structure of the precursor can facilitate the formation of homoge?neous and concentrated active centers and provide the building block of active sites,which may enhance the synergistic effect of the different components and improve electrochemical stability and the catalytic activity of the prepared Fe?Co?based catalyst.As a result,the catalytic activity and stability of Fe?Co?N?GC were demonstrated to outperform the commercial Pt/C catalyst.

    Fig.1 Schematic illustration of the preparation of Fe?Co?N?GC

    1 Experimental

    1.1 Synthesis of SBA-15

    Typical,Pluronic P123 triblock copolymer(Mw=5 800,Aldrich,4.0 g)was added in the solution con?taining deionized water(144 g)and HCl(160 mL,1.6 mol·L-1),and allowed to stir at 40 ℃.Once the solu?tion became clear,tetraethyl orthosilicate (TEOS,Aldrich,8.3 g)was added in and kept being stirred at the same temperature for 24 h.Afterward,the obtained mixtures were transferred to a Teflon?lined autoclave,sealed,and heated at 150℃for 24 h in an oven.The resulting white product was filtered,washed with deion?ized water,and dried at 100℃.Finally,mesoporous silica SBA?15 was obtained by calcining the dried white product at 550 ℃ in the air for 4 h,with a heat?ing rate of 1℃·min-1.

    1.2 Synthesis of Fe-Co-N-GC

    The crystal of{[Co(bpy)2]3[Fe(CN)6]2}[Fe(CN)6]1/3was prepared according to the previously reported method[15]and used as the precursor.The filled?SBA?15 hard templates were achieved by alternate dipping and drying wet?filling techniques.In a typical proce?dure,1.0 g of{[Co(bpy)2]3[Fe(CN)6]2}[Fe(CN)6]1/3was added in 200 mL of deionized water and stirred for 1 h at 70℃ to form a homogeneous solution.Then the solu?tion was added into SBA?15(0.5 g)drop by drop while the mixtures were ground in mortar under an infrared lamp to evaporate the solvent.The obtained products were heat?treated at different temperatures ranging from 600 to 800℃under nitrogen flow with a ramping rate of 2 ℃·min-1for 4 h.The Fe?Co?N?doped mesopo?rous material was obtained by etching the silica templates in HF(5%)solution.The synthesized materi?als were designated as Fe?Co?N?GC?600,Fe?Co?N?GC?700,and Fe?Co?N?GC?800 according to the heat?treatment temperatures.

    1.3 Electrochemical characterization

    The electrochemical activities of the catalysts for ORR were performed at room temperature by using a CHI?760C electrochemical analyzer with a three?elec?trode cell system.A glassy carbon disk electrode(5 mm in diameter,Pine Instrument Co.,USA)coated with as?synthesized Fe?Co?N?GC was employed as a working electrode,whereas an Ag/AgCl(KCl,3 mol·L-1)and Pt electrode were used as reference and coun?ter electrode in the measurement,respectively.For the preparation of the working electrode,the catalyst inks were prepared by dispersing 10 mg Fe?Co?N?GC or Pt/C catalyst(Johnson Matthey,20% Pt)in a mixture of 1.25 mL of ethanol and 0.03 mL of Nafion(5%),then the desired amount of such catalyst inks was deposited onto the polished glassy carbon electrode and dried at room temperature before measurement.

    Cyclic voltammetry(CV)and rotating disk elec?trode(RDE)techniques for ORR were carried out in an O2?saturated 0.1 mol·L-1KOH solution.The loadings of the catalysts on the working electrode were 0.36 and 0.60 mg·cm-2in O2?saturated 0.1 mol·L-1KOH,respectively.The loadings of Pt/C(20%)catalysts on the working electrode were 0.10 mg·cm-2in both elec?trolytes.For all the CV,linear sweep voltammetry(LSV),and chronoamperometric measurements,the scan rate was 10 mV·s-1.All potentials in this study were reported concerning the reversible hydrogen elec?trode(RHE).

    The onset ORR potential reported in this work was defined when ORR current density was 3 μA·cm-2in RDE polarization curves[16?17].The number(n)of elec?trons transferred during ORR was calculated by Koutecky?Levich(K?L)equations:

    Where J represents the measured current density on the glassy carbon disk,JLis the diffusion?limited cur?rent density,JKis the kinetic current density,ω is the angular velocity of the disk,B could be calculated from the slope of K?L plots,F is the Faraday constant(F=96 485 C·mol-1),k is the electron transfer rate con?stant,v is the kinematic viscosity of the electrolyte,c0is the bulk concentration of O2and D0is diffusion coef?ficient of O2.

    1.4 Characterization of the materials

    X?ray diffraction patterns(XRD)were recorded on a D8 advance diffractometer (Bruker,Germany)attached with a Cu Kα (λ=0.154 05 nm)as a radiation source,a tube voltage of 40 kV,a tube current of 40 mA,and a scanning range of 0°?140°.Scanning elec?tron microscopy(SEM)images were taken using ST?4800(Hitachi)scanning electron microscopes oper?ated at an accelerating voltage of 10 kV.Transmission electron microscopy(TEM)images,high?resolution TEM(HRTEM)images,selected area electron diffrac?tion(SAED)patterns,scanning transmission electron microscopy(STEM),and energy?dispersive X?ray spec?troscopy(EDS)line scan data were conducted on a JEM?2010 transmission electron microscope(JEOL,Japan)at an acceleration voltage of 200 kV.Nitrogen adsorption?desorption isotherms were performed on a Micromeritics ASAP 2020 analyzer at 77 K.The specif?ic surface area was calculated by using the adsorption data via the Brunauer?Emmett?Teller(BET)method.The pore size distribution and the total pore volume were derived from the related adsorption branch by using the Barrett?Joyner?Halenda(BJH)model.FT?IR spectra were recorded with an infrared spectrophotome?ter(Bruker Tensor 27)using KBr pellets in a range of 400?4 000 cm-1.X ?ray photoelectron spectroscopy(XPS)experiments were recorded on Axis Ultra DLD system using Al Kα radiation(1 486.6 eV).The XPS spectrum of the C peak was calibrated to 284.6 eV.

    2 Results and discussion

    As mentioned,the non?precious metal carbon?based catalysts with excellent catalytic activity for ORR could be prepared by doping with multi?heteroatoms and the heat?treatment methods.However,it is still a long way off from the practical application.Further improvement of the catalytic performance requires insight into the component,structural feature,morphol?ogy,and the surroundings of the active sites in the cata?lysts.At the same time,these are also the necessary prerequisite and foundation to design and fabricate surface species with well?defined composition and structure and the desired functions.Based on such consideration, bimetallic coordination compound{[Co(bpy)2]3[Fe(CN)6]2}[Fe(CN)6]1/3was chosen as a pre?cursor of the carbon?based catalysts.In the molecule structures,Co and Fe in a molar ratio of 9∶7 directly connect with N and C atoms,respectively,and are linked together by chain?link C≡N as shown in Fig.1.

    Some research results have illustrated that Fe(Co)—N(C)moieties were the highly active sites for ORR[18?21].Fe—C≡N—Co moieties contained two kinds of active sites(Fe—C and Co—N)(Fig.1),which were linked together by carbon?nitrogen triple bonds.Such structural features would be very helpful for investigating the synergistic effect of different active sites in the catalysts and creating highly efficient cata?lysts.To implant Fe—C≡N—Co moieties into the car?bon?based materials,the confinement effect of the mes?opore channels in the SBA?15 hard template is utilized to control the carbonization of{[Co(bpy)2]3[Fe(CN)6]2}[Fe(CN)6]1/3and limit the aggregation of the nanoparti?cles produced during the heating?treatment process(Fig.1).By this synthesis strategy,the multiple compo?nents of carbon?based materials(Fe?Co?N?GC)were obtained and effectively realized the integration of multi?model active sites and the mesopores,which has promising application in the field of electrocatalysis.

    2.1 Characterization of Fe-Co-N-GC

    The chemical compositions of the prepared sam?ples were evaluated by XPS analysis and their contents are shown in Table 1.For Fe?Co?N?GC?700,the con?tent(atomic fraction)of N(8.96%),Fe(0.67%),Co(0.86%)was relatively higher than others.In the Fe2pspectra in Fig.2a,three peaks at 711.2,724.3,and 717.7 eV are ascribed to the 2p3/2and 2p1/2of Fe(Ⅲ)in the Fe—N(C)xmoieties and the satellite peak respec?tively[22?23].Similarly,three peaks at 780.6,796.2,and 785.4 eV in Co2pspectra(Fig.2b)can be assigned to 2p3/2,2p1/2of Co(Ⅱ) in the Co—(C)Nxmoieties and shakeup satellite peak[24?25].It is important to note that no metallic iron or cobalt has been found by the XPS analysis.

    In the high?resolution N1sspectra(Fig.2c),the six de?convoluted peaks at around 398.2,398.4,399.3,399.9,401.1,and 404.3 eV can be attributed to C≡N,pyridinic?N,pyrrolic?N,metallic?N,graphitic?N,and pyridine N—O,respectively[26?27],which indicate that Fe—Nx,Co—Nx,and Fe—C≡N—Co moieties may exist in the catalysts.The surface composition of differ?ent types of nitrogen estimated from the XPS analyses can be seen in Table 1.The relative amount of metallic?N species increases in the following order:Fe?Co?N?GC?600(3.96%)< Fe?Co?N?GC?800(5.29%)< Fe?Co?N?GC?700(10.02%).This variation tendency can be ascribed to the balance of old bonds(C—N)break,the formation of new ones(Fe—N,Co—N),and the degra?dation of Fe(Co)—Nxspecies.To further prove the exis?tence of Fe—C≡N—Co moieties in the prepared ma?terials,the FT?IR spectrum of Fe?Co?N?GC?700 was measured and shown in Fig.2d.An absorption band corresponding to the stretching vibration of Fe—C≡N—Co species was observed at 2 137 cm-1in the spectra[15].The experimental fact testifies that Fe—C≡N—Co moiety has been successfully introduced into the Fe?Co?N?GC nanostructures.This remarkable fea?ture in Fe?Co?N?GC?700 differs from the others and is unprecedented in the N?doped carbon?based materials containing Fe and Co.

    Fig.2 XPS spectra of(a)Fe2p,(b)Co2p,and(c)N1s for Fe?Co?N?GC?600,Fe?Co?N?GC?700,and Fe?Co?N?GC?800;(d)Enlarged FT?IR spectra for{[Co(bpy)2]3[Fe(CN)6]2}[Fe(CN)6]1/3and Fe?Co?N?GC?700

    Table 1 Surface composition and relative content of the component elements in different catalysts evaluated from XPS analysis

    The morphology and crystal structure of the cata?lysts were characterized by XRD,TEM,and N2adsorp?tion?desorption analyses.The peaks with the higher intensity at 2θ=25°and 43°in Fig.3a indicate that thecarbons in pore?walls have higher graphitization degrees[28].The intensity of these two peaks increases at higher heat?treatment temperatures,suggesting a high?er graphitization degree of the catalyst frameworks.The low?angle X?ray diffraction of the catalysts in Fig.3b shows a remarkable diffraction peak at about 0.9°(2θ),which can be indexed to the(100)plane of hexagonal structures.

    Fig.3 (a)Large?angle and(b)small?angle XRD patterns of Fe?Co?N?GC?600,Fe?Co?N?GC?700,and Fe?Co?N?GC?800

    From the low?magnification TEM images in Fig.4a and 4b,ordered 2D hexagonal mesostructures with rod?like morphology were observed.These results certify that the prepared materials are well?reverse replicas of the SBA?15 hard template[29].

    Fig.4 (a,b)TEM and(c)HRTEM images of Fe?Co?N?GC?700 and(d)the corresponding SAED images;(e,f)TEM images of the catalyst prepared without using SBA?15 template

    N2?adsorption and desorption isotherms of Fe?Co?N?GC showed type Ⅳ isotherm and an H2?type hyster?esis loop,indicating the uniform mesoporous structure(Fig.5a)[30].A very narrow pore?size distribution was obtained by calculation from the adsorption branch based on the BJH model(Fig.5b).The detailed surface parameters are summarized in Table 2.Compared to the prepared materials at different temperatures,Fe?Co?N?GC?700 had a higher BET surface area(1 017 m2·g-1)than the others,which may be ascribed to the opti?mized structure of carbon framework and micropores at this heat?treating temperature.Mesopore sizes were found to increase(from 4.1 to 4.7 nm)due to the shrinkage of the pore walls while the heat?treatment temperature was from 600 to 800℃[31].An optimization between BET surface and pore structure will be a bene?fit for more active sites exposed to the reactants and rapid transportation of O2for ORR.

    Table 2 Texture parameters of Fe-Co-N-GC-600,Fe-Co-N-GC-700,and Fe-Co-N-GC-800

    Fig.5 (a)N2adsorption?desorption isotherms and(b)pore size distribution curves of Fe?Co?N?GC?600,Fe?Co?N?GC?700,and Fe?Co?N?GC?800

    Moreover,an interesting phenomenon is shown in Fig.4a and 4b was that some small nanoparticles were embedded in the surface of mesoporous frameworks in the prepared materials.For characterizing these nanoparticles,their microstructure,and chemical com?ponent and appearance had been investigated by HRTEM images(Fig.4c),TEM?EDS mapping(Fig.6)for Fe,Co and N elements,line?scanning EDS analysis(Fig.7)by using scanning?mode TEM,and the SAED analysis(Fig.4d).The EDS mapping images revealed that Fe,Co,and N atoms were well dispersed both on the surface of the carbon frame and carbon nanoparti?cles.Fig.7 further attested that the distribution of Fe,Co,and N atoms in the nanoparticles was the same as that in the mesoporous framework.The graphitic lattice fringes could be distinctly observed in the HRTEM images of the nanoparticles in Fig.4c.The correspond?ing SAED patterns in Fig.4d for Fe?Co?N?GC?700 showed clear diffraction rings and dots,which exhibit?ed a higher degree of graphitization in the nanoparti?cles.These facts above sufficiently verified that the nanoparticles and mesoporous frameworks of Fe?Co?N?GC?700 possessed the same component but a different degree of graphitization.To compare the superiority of the application of the hard template,a catalyst pre?pared without using the SBA?15 template was also pre?sented.TEM images(Fig.4e and 4f)showed agglomera?tion of carbon?coated nanoparticles,which mainly formed intra?particle pores.

    Fig.6 STEM image of Fe?Co?N?GC?700 and the corresponding EDS elemental mapping images

    Fig.7 STEM image of Fe?Co?N?GC?700 and the corresponding EDS line scan images

    2.2 Electrocatalytic activity for ORR

    The electrocatalytic activities of the prepared materials for ORR were studied by CVs and LSV mea?surements in O2?saturated 0.1 mol·L-1KOH electro?lyte.From the obtained results(Fig.8a and 8b),it is seen that the catalyst prepared at 700℃exhibited the highest peak?potential,half?wave potential(E1/2),and current density among the three prepared samples.This result testifies that 700℃was identified as the optimum annealing temperature.This excellent catalyt?ic performance of Fe?Co?N?GC?700 is mainly attribut?ed to the higher density of activity centers and the high?est surface area among these prepared materials.The voltammograms of Fe?Co?N?GC?700 with the loading of 0.36 mg·cm-2revealed an obvious ORR peak at 0.90 V in alkaline medium saturated with O2,which was 20 mV higher than that of Pt/C catalyst(0.88 V)with mass loading of 0.1 mg·cm-2(Fig.8a).Under the same conditions,the kinetics aspects of the ORR activity of Fe?Co?N?GC?700 were investigated by LSV using the RDE method at an electrode rotation rate of 1 600 r·min-1and the results are shown in Fig.8b.The polariza?tion curve of Fe?Co?N?GC?700 displayed an onset potential of 1.07 V and a half?wave potential of 0.88 V and a current density of 5.6 mA·cm-2,which was 80 mV,30 mV and 0.4 mA·cm-2higher than those over the commercial Pt/C(Fig.8b).These results indicated that the catalytic performance of Fe?Co?N?GC?700 was superior to that of Pt/C catalysts in 0.1 mol·L-1KOH.Following the relationship between catalytic perfor?mance and structure of the materials,this super advan?tage of Fe?Co?N?GC?700 should undoubtedly ascribe to the special Fe—C≡N—Co moieties containing the bimetallic active site.It illustrates that the C≡N between Co and Fe can distinctly enhance the synergis?tic effect of Co and Fe and creates a novel high activity site.We also compared the ORR performance of cata?lyst prepared without using the SBA?15 template,as shown in Fig.8a and 8b,the catalyst heat?treated at 700 ℃ exhibited the lowest peak?potential(0.82 V),half?wave potential(0.81 V),and current density(4.6 mA·cm-2)among the three prepared samples.It illus?trates that intra?particle pores instead of ordered meso?porous structure prevent active sites exposure to the reactants and rapid transportation of O2for ORR.

    Fig.8 (a)CV and(b)LSV polarization curves of(ⅰ)the sample without using SBA?15 as a template,(ⅱ)Pt/C,(ⅲ)Fe?Co?N?GC?700,(ⅳ)Fe?Co?N?GC?600,and(ⅴ)Fe?Co?N?GC?800;(c)RDE polarization curves of Fe?Co?N?GC?700 at different RDE rotation rates and(d)corresponding K?L plots(J-1vs ω-1)at different potentials;(e)Polarization curves of Fe?Co?N?GC?700 and Pt/C with an injection of methanol(wMeOH=2%)after 500 s;(f)Current density degradation of Fe?Co?N?GC?700 and Pt/C,where the corresponding current densities were recorded at 0.55 V

    For understanding the ORR kinetic process on Fe?Co?N?GC?700,polarization curves for ORR on Fe?Co?N?GC?700 electrode at various rotation speeds(between 400 and 2 500 r·min-1)were recorded with a scan rate of 10 mV·s-1in alkaline medium(Fig.8c).A diffusion?limited kinetic process over Fe?Co?N?GC?700 in 0.1 mol·L-1KOH electrolytes(Fig.8d)exhibited good linearity between 0.15 and 0.65 V,suggesting that the electron transfer numbers are consistent over different potentials.The electron transfer number in ORR was calculated to be 4.0 according to the K?L equations at 0.55 V(B=0.62nFc0D02/3v-1/6,c0=1.18×10-3mol·L-1,D0=1.9×10-5cm·s-1,v=0.089 3 cm2·s-1)[32],suggesting the ORR kinetic process on Fe?Co?N?GC follow a direct four?electron route.

    The electrocatalytic methanol crossover property and durability of Fe?Co?N?GC?700 were investigated by chronoamperometric measurements.There was no significant decrease in the ORR current density over Fe?Co?N?GC?700(Fig.8e)after the injection of methanol(wMeOH=2%).But after the injection of methanol,a sig?nificant current decrease in the ORR activity of the commercial Pt/C catalyst was observed,indicating the occurrence of methanol oxidation reaction[33].The experimental result demonstrates that Fe?Co?N?GC?700 has considerably better tolerance to methanol crossover than does Pt/C catalyst.

    The long?term stability of the electrocatalytic activity for ORR over Fe?Co?N?GC?700 was measured.From the chronoamperometry,it was seen that the cur?rent density of Fe?Co?N?GC?700 showed insignificant decay of about 2.7% after running for 10 000 s.In con?trast,as shown in Fig.8f,the ORR current on Pt/C cata?lyst suffered from a 16.0% loss after running for 10 000 s.Fe?Co?N?GC?700 exhibited excellent stability com?pared to the commercial Pt/C catalyst.

    3 Conclusions

    In summary,Fe?Co?N?doped mesoporous graphite catalyst(Fe?Co?N?GC)can be successfully prepared by using the water?soluble Fe?Co bimetallic coordination compound{[Co(bpy)2]3[Fe(CN)6]2}[Fe(CN)6]1/3as precur?sors and ordered mesoporous silica SBA?15 as tem?plates.The ORR onset potential,half?wave potential,and current density over Fe?Co?N?GC?700 prepared at a heat?treatment temperature of 700 ℃ reached 1.07 V,0.88 V,and 5.6 mA·cm-2,which were 80 mV,30 mV,and 0.4 mA·cm-2higher than those over Pt/C catalyst,respectively.The investigation results indicate that such super advantage of Fe?Co?N?GC?700 should ascribe to the special Fe—C≡N—Co activity site.Moreover,Fe?Co?N?GC?700 exhibited long?time stabili?ty toward ORR as well as excellent methanol resistance and may serve as a promising alternative to Pt/C cata?lysts for the ORR in the widespread implementation of PEFCs.

    国产v大片淫在线免费观看| 18禁黄网站禁片免费观看直播| 久久久久久久久久黄片| 一区二区三区免费毛片| 中文字幕人妻熟人妻熟丝袜美 | 女人十人毛片免费观看3o分钟| 操出白浆在线播放| 国产精品电影一区二区三区| 国产高清视频在线播放一区| 国产精品一及| 久久性视频一级片| 午夜精品一区二区三区免费看| 一个人看的www免费观看视频| 精品久久久久久,| 成年女人永久免费观看视频| 狂野欧美白嫩少妇大欣赏| 日本一本二区三区精品| 99视频精品全部免费 在线| av欧美777| 性色av乱码一区二区三区2| 久久久久性生活片| 脱女人内裤的视频| 亚洲 国产 在线| 美女高潮喷水抽搐中文字幕| 美女cb高潮喷水在线观看| svipshipincom国产片| 国产精品亚洲美女久久久| 嫩草影视91久久| 成年女人永久免费观看视频| 一级作爱视频免费观看| 波多野结衣巨乳人妻| 一区二区三区高清视频在线| 久久久久久大精品| 在线免费观看不下载黄p国产 | 国产精品永久免费网站| 精品不卡国产一区二区三区| 男女床上黄色一级片免费看| 久久久色成人| 啦啦啦观看免费观看视频高清| 久久香蕉精品热| 高清日韩中文字幕在线| 最后的刺客免费高清国语| 亚洲不卡免费看| 成人国产综合亚洲| 久久精品国产清高在天天线| 欧美色视频一区免费| 久久国产精品人妻蜜桃| 久久久久久九九精品二区国产| 天堂√8在线中文| 久久久色成人| 亚洲午夜理论影院| 午夜影院日韩av| 叶爱在线成人免费视频播放| 亚洲av电影不卡..在线观看| 欧美精品啪啪一区二区三区| 99久久精品热视频| 亚洲欧美日韩高清专用| 色综合婷婷激情| 欧美+亚洲+日韩+国产| 欧美日韩中文字幕国产精品一区二区三区| av片东京热男人的天堂| 特级一级黄色大片| 国产真人三级小视频在线观看| 性色av乱码一区二区三区2| 老司机午夜福利在线观看视频| 国产成+人综合+亚洲专区| 亚洲精品一区av在线观看| 亚洲av电影在线进入| 三级毛片av免费| 一级毛片高清免费大全| 国产午夜精品久久久久久一区二区三区 | 亚洲精品影视一区二区三区av| 亚洲男人的天堂狠狠| 99久久九九国产精品国产免费| 久久精品夜夜夜夜夜久久蜜豆| 日韩av在线大香蕉| 国产精品久久电影中文字幕| 99视频精品全部免费 在线| 丰满人妻一区二区三区视频av | 成人国产综合亚洲| 岛国视频午夜一区免费看| 免费观看的影片在线观看| 两个人看的免费小视频| 伊人久久大香线蕉亚洲五| 欧美性猛交黑人性爽| 在线免费观看不下载黄p国产 | 国产激情欧美一区二区| 欧美av亚洲av综合av国产av| а√天堂www在线а√下载| 男人和女人高潮做爰伦理| 欧美中文综合在线视频| 特级一级黄色大片| 女人高潮潮喷娇喘18禁视频| 国产精品三级大全| 成年人黄色毛片网站| 欧洲精品卡2卡3卡4卡5卡区| 波多野结衣巨乳人妻| 久久久久久人人人人人| 色综合亚洲欧美另类图片| 精品免费久久久久久久清纯| av片东京热男人的天堂| 亚洲av中文字字幕乱码综合| 亚洲av二区三区四区| 人人妻人人澡欧美一区二区| 日韩欧美一区二区三区在线观看| 日本一二三区视频观看| 日韩欧美在线乱码| 最好的美女福利视频网| 天天躁日日操中文字幕| 最近最新中文字幕大全电影3| 999久久久精品免费观看国产| 国产精品一区二区三区四区久久| xxxwww97欧美| 日韩精品中文字幕看吧| 亚洲精品色激情综合| 99在线视频只有这里精品首页| 少妇的逼水好多| 亚洲美女黄片视频| 在线观看午夜福利视频| 免费一级毛片在线播放高清视频| 亚洲精品日韩av片在线观看 | 日韩欧美 国产精品| 久久精品综合一区二区三区| 老司机福利观看| 变态另类成人亚洲欧美熟女| 午夜福利免费观看在线| 一卡2卡三卡四卡精品乱码亚洲| 婷婷亚洲欧美| 美女高潮喷水抽搐中文字幕| 色视频www国产| 天天一区二区日本电影三级| 五月玫瑰六月丁香| 国产97色在线日韩免费| 久久国产精品影院| 九九热线精品视视频播放| 色视频www国产| 免费无遮挡裸体视频| 久久亚洲精品不卡| 亚洲人成电影免费在线| 激情在线观看视频在线高清| 亚洲精品美女久久久久99蜜臀| 热99re8久久精品国产| 熟妇人妻久久中文字幕3abv| 丰满人妻一区二区三区视频av | 亚洲中文字幕日韩| 国产精品三级大全| 国产精品 欧美亚洲| 亚洲中文字幕日韩| 听说在线观看完整版免费高清| 婷婷丁香在线五月| 不卡一级毛片| 男女之事视频高清在线观看| 精品人妻一区二区三区麻豆 | 成人无遮挡网站| 淫妇啪啪啪对白视频| 97碰自拍视频| 精品久久久久久久末码| 欧美高清成人免费视频www| 国产一区二区在线观看日韩 | 手机成人av网站| 亚洲精品色激情综合| 国内精品久久久久久久电影| 一级黄色大片毛片| 丰满乱子伦码专区| 亚洲第一电影网av| 国内少妇人妻偷人精品xxx网站| 九九热线精品视视频播放| 特大巨黑吊av在线直播| 精品一区二区三区人妻视频| 亚洲av第一区精品v没综合| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 亚洲自拍偷在线| 欧美xxxx黑人xx丫x性爽| 一级毛片女人18水好多| www日本黄色视频网| 高清毛片免费观看视频网站| 久久精品亚洲精品国产色婷小说| 亚洲国产欧洲综合997久久,| 国产69精品久久久久777片| 欧美最新免费一区二区三区 | 制服丝袜大香蕉在线| 久久久久精品国产欧美久久久| 在线观看av片永久免费下载| 免费看十八禁软件| 91九色精品人成在线观看| 亚洲片人在线观看| 免费在线观看亚洲国产| 日本黄色视频三级网站网址| 国产伦人伦偷精品视频| 精品国内亚洲2022精品成人| 精品国产三级普通话版| 桃色一区二区三区在线观看| 99久久久亚洲精品蜜臀av| 日韩欧美免费精品| 精品国内亚洲2022精品成人| 精品国产美女av久久久久小说| 亚洲成人久久爱视频| 婷婷亚洲欧美| 国产精品精品国产色婷婷| 在线播放国产精品三级| 亚洲自拍偷在线| 免费观看的影片在线观看| 一本综合久久免费| 亚洲国产欧美人成| 两个人看的免费小视频| 国产主播在线观看一区二区| 最近在线观看免费完整版| 日韩国内少妇激情av| 国产成年人精品一区二区| 日本黄色片子视频| 成人av一区二区三区在线看| 国产精品久久视频播放| 欧美绝顶高潮抽搐喷水| 亚洲av日韩精品久久久久久密| 国产单亲对白刺激| 精品福利观看| 97人妻精品一区二区三区麻豆| 亚洲av熟女| 亚洲不卡免费看| 欧美激情久久久久久爽电影| eeuss影院久久| 在线观看美女被高潮喷水网站 | 看黄色毛片网站| 久久这里只有精品中国| 欧美丝袜亚洲另类 | 在线十欧美十亚洲十日本专区| 亚洲国产欧洲综合997久久,| 精品久久久久久久久久久久久| 亚洲精品亚洲一区二区| 亚洲最大成人手机在线| 变态另类成人亚洲欧美熟女| 国产精品精品国产色婷婷| 九色国产91popny在线| 亚洲自拍偷在线| 久久久色成人| 国产精品亚洲一级av第二区| 69av精品久久久久久| 一区二区三区国产精品乱码| 久久久成人免费电影| 国产日本99.免费观看| 全区人妻精品视频| 日韩av在线大香蕉| 欧美绝顶高潮抽搐喷水| 淫秽高清视频在线观看| 99热这里只有是精品50| 婷婷六月久久综合丁香| 成年女人毛片免费观看观看9| 三级国产精品欧美在线观看| 岛国在线免费视频观看| 国产亚洲精品av在线| 88av欧美| 精品99又大又爽又粗少妇毛片 | 亚洲中文字幕一区二区三区有码在线看| 观看美女的网站| 日韩大尺度精品在线看网址| 香蕉av资源在线| 免费在线观看亚洲国产| 搞女人的毛片| 久久这里只有精品中国| 两个人视频免费观看高清| av片东京热男人的天堂| 搡老熟女国产l中国老女人| 国产乱人视频| 亚洲av电影在线进入| 国产精品亚洲av一区麻豆| 少妇高潮的动态图| 色综合亚洲欧美另类图片| 99riav亚洲国产免费| 黑人欧美特级aaaaaa片| 搡老熟女国产l中国老女人| 欧美又色又爽又黄视频| 嫁个100分男人电影在线观看| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 久久人妻av系列| 国产男靠女视频免费网站| 好男人在线观看高清免费视频| 亚洲精品一卡2卡三卡4卡5卡| 免费看美女性在线毛片视频| 免费观看精品视频网站| 日本精品一区二区三区蜜桃| 亚洲avbb在线观看| 欧美在线黄色| 最新在线观看一区二区三区| 欧美一区二区精品小视频在线| 成人无遮挡网站| 亚洲欧美日韩东京热| 欧美性猛交黑人性爽| 国产在线精品亚洲第一网站| 久久久久久久久大av| 精品午夜福利视频在线观看一区| 97碰自拍视频| 51国产日韩欧美| 一区二区三区激情视频| 一边摸一边抽搐一进一小说| 国产黄片美女视频| 精品免费久久久久久久清纯| 国产精品99久久久久久久久| 国产精品女同一区二区软件 | 男女那种视频在线观看| 91麻豆精品激情在线观看国产| 特大巨黑吊av在线直播| av国产免费在线观看| 非洲黑人性xxxx精品又粗又长| 午夜福利在线观看免费完整高清在 | 中亚洲国语对白在线视频| 久久精品亚洲精品国产色婷小说| 18禁在线播放成人免费| 国产亚洲精品一区二区www| 哪里可以看免费的av片| 精品国内亚洲2022精品成人| 99在线人妻在线中文字幕| 久久人妻av系列| 热99在线观看视频| 日韩欧美在线二视频| 精华霜和精华液先用哪个| 久久久久性生活片| 国产av在哪里看| 在线观看日韩欧美| 国内少妇人妻偷人精品xxx网站| 毛片女人毛片| 国产极品精品免费视频能看的| 18美女黄网站色大片免费观看| 天天一区二区日本电影三级| 狠狠狠狠99中文字幕| 免费av观看视频| 麻豆国产97在线/欧美| 亚洲在线观看片| 久久久久久久久大av| 亚洲不卡免费看| 色噜噜av男人的天堂激情| 性欧美人与动物交配| 国产三级中文精品| 国产日本99.免费观看| 欧美+亚洲+日韩+国产| 一级作爱视频免费观看| 久久久久久九九精品二区国产| 久久午夜亚洲精品久久| 99视频精品全部免费 在线| 一区二区三区免费毛片| 老司机在亚洲福利影院| 国产精品久久视频播放| 99视频精品全部免费 在线| 中亚洲国语对白在线视频| 欧美不卡视频在线免费观看| 成人午夜高清在线视频| 亚洲国产精品合色在线| 日本a在线网址| 香蕉久久夜色| 极品教师在线免费播放| 特级一级黄色大片| 国产高清有码在线观看视频| 成人高潮视频无遮挡免费网站| 免费观看人在逋| 国产伦一二天堂av在线观看| 观看美女的网站| 国产成+人综合+亚洲专区| av在线天堂中文字幕| 日韩欧美在线乱码| 极品教师在线免费播放| 欧美绝顶高潮抽搐喷水| 欧美zozozo另类| 99国产精品一区二区三区| 超碰av人人做人人爽久久 | 19禁男女啪啪无遮挡网站| 天堂网av新在线| 中文字幕人妻丝袜一区二区| 啦啦啦观看免费观看视频高清| www.999成人在线观看| 欧美一级a爱片免费观看看| 国产精品久久久久久精品电影| 国产av一区在线观看免费| 久久精品夜夜夜夜夜久久蜜豆| 欧美另类亚洲清纯唯美| av欧美777| 亚洲精品乱码久久久v下载方式 | 波多野结衣巨乳人妻| 成人特级av手机在线观看| 国产精品野战在线观看| 舔av片在线| 亚洲无线观看免费| 男女之事视频高清在线观看| 激情在线观看视频在线高清| 在线观看午夜福利视频| 日本黄大片高清| 亚洲av免费高清在线观看| av在线蜜桃| 亚洲人成电影免费在线| 日本五十路高清| 日本黄色片子视频| 欧美bdsm另类| 国内久久婷婷六月综合欲色啪| 国产高清激情床上av| 欧洲精品卡2卡3卡4卡5卡区| www.色视频.com| 亚洲第一电影网av| 男女床上黄色一级片免费看| 99久久精品一区二区三区| 国产一区二区在线av高清观看| 国产精品野战在线观看| 18禁在线播放成人免费| 国产精品国产高清国产av| 天天躁日日操中文字幕| 在线天堂最新版资源| 男人的好看免费观看在线视频| 中文亚洲av片在线观看爽| 欧美乱妇无乱码| 国产免费一级a男人的天堂| 操出白浆在线播放| 亚洲真实伦在线观看| 亚洲人成伊人成综合网2020| 婷婷精品国产亚洲av在线| 亚洲一区高清亚洲精品| 欧美bdsm另类| 高清在线国产一区| 美女黄网站色视频| 欧美最黄视频在线播放免费| 午夜福利免费观看在线| 国产伦在线观看视频一区| 午夜亚洲福利在线播放| 亚洲av二区三区四区| 桃红色精品国产亚洲av| 亚洲 国产 在线| 日本黄色片子视频| 精品国产三级普通话版| 精品久久久久久久久久免费视频| 成人特级av手机在线观看| 国产亚洲精品一区二区www| 国产高清有码在线观看视频| 国产视频一区二区在线看| 毛片女人毛片| 中文字幕av成人在线电影| 亚洲成人久久爱视频| 精品人妻1区二区| 国产视频内射| 色噜噜av男人的天堂激情| 欧洲精品卡2卡3卡4卡5卡区| 午夜激情欧美在线| 1000部很黄的大片| 两人在一起打扑克的视频| av国产免费在线观看| 色尼玛亚洲综合影院| 免费电影在线观看免费观看| 真人做人爱边吃奶动态| 制服丝袜大香蕉在线| h日本视频在线播放| 18禁裸乳无遮挡免费网站照片| 精品一区二区三区人妻视频| xxxwww97欧美| avwww免费| 午夜久久久久精精品| 中文字幕人妻丝袜一区二区| 久久精品国产综合久久久| 精品免费久久久久久久清纯| 亚洲天堂国产精品一区在线| 九色成人免费人妻av| 日韩欧美在线乱码| 亚洲黑人精品在线| 国产一级毛片七仙女欲春2| 成人性生交大片免费视频hd| 日本与韩国留学比较| 色综合欧美亚洲国产小说| 午夜免费观看网址| a级一级毛片免费在线观看| 超碰av人人做人人爽久久 | 国产精品精品国产色婷婷| 婷婷亚洲欧美| 国产精品嫩草影院av在线观看 | 久久精品亚洲精品国产色婷小说| 国产精品久久视频播放| 日韩免费av在线播放| 国产成人av教育| 亚洲欧美日韩无卡精品| 中文在线观看免费www的网站| 少妇的逼好多水| 国产亚洲精品一区二区www| 欧美黑人巨大hd| 国产免费一级a男人的天堂| 桃色一区二区三区在线观看| 国产免费av片在线观看野外av| 精品国内亚洲2022精品成人| 男女之事视频高清在线观看| 一区二区三区激情视频| 欧美色欧美亚洲另类二区| 一区福利在线观看| 日日夜夜操网爽| 偷拍熟女少妇极品色| av福利片在线观看| 一进一出抽搐动态| 美女免费视频网站| 男女那种视频在线观看| 欧美性猛交╳xxx乱大交人| 亚洲av五月六月丁香网| 精品欧美国产一区二区三| 国产野战对白在线观看| 欧美大码av| 露出奶头的视频| 精品福利观看| 日韩有码中文字幕| 亚洲精品成人久久久久久| 国产在线精品亚洲第一网站| 免费大片18禁| 欧美区成人在线视频| 精品熟女少妇八av免费久了| 3wmmmm亚洲av在线观看| 中文字幕久久专区| а√天堂www在线а√下载| 动漫黄色视频在线观看| xxxwww97欧美| 18禁国产床啪视频网站| 在线观看舔阴道视频| 欧美xxxx黑人xx丫x性爽| 91字幕亚洲| 精品久久久久久成人av| 国产国拍精品亚洲av在线观看 | 亚洲av电影在线进入| 国语自产精品视频在线第100页| 久久久色成人| 18禁黄网站禁片免费观看直播| 日本一本二区三区精品| 观看美女的网站| 日本黄色视频三级网站网址| 国产69精品久久久久777片| 国产精品,欧美在线| 日韩欧美在线乱码| 一边摸一边抽搐一进一小说| 婷婷精品国产亚洲av在线| 黄色丝袜av网址大全| 国产一区二区亚洲精品在线观看| 欧美精品啪啪一区二区三区| 久久久国产成人免费| www日本黄色视频网| 啦啦啦观看免费观看视频高清| 18禁美女被吸乳视频| 国产一区二区三区视频了| 欧美中文日本在线观看视频| 亚洲18禁久久av| 99国产精品一区二区三区| 国产精品嫩草影院av在线观看 | 老司机在亚洲福利影院| 国产麻豆成人av免费视频| 精品国产三级普通话版| 亚洲中文日韩欧美视频| 午夜老司机福利剧场| 人人妻人人澡欧美一区二区| 日本一本二区三区精品| а√天堂www在线а√下载| av在线蜜桃| 欧美极品一区二区三区四区| 九色成人免费人妻av| 白带黄色成豆腐渣| 51国产日韩欧美| 丰满的人妻完整版| 国产熟女xx| 母亲3免费完整高清在线观看| 成人国产一区最新在线观看| av黄色大香蕉| 亚洲av一区综合| 精品一区二区三区人妻视频| 亚洲av电影不卡..在线观看| 久久精品综合一区二区三区| 小说图片视频综合网站| 美女高潮的动态| 免费av毛片视频| 国产亚洲精品av在线| 午夜福利视频1000在线观看| 无遮挡黄片免费观看| 高潮久久久久久久久久久不卡| 欧美激情在线99| 久久精品人妻少妇| 中文在线观看免费www的网站| 香蕉丝袜av| 人妻夜夜爽99麻豆av| 亚洲久久久久久中文字幕| 九九热线精品视视频播放| 亚洲人成网站在线播放欧美日韩| 女人被狂操c到高潮| 老汉色av国产亚洲站长工具| 少妇高潮的动态图| 亚洲人成伊人成综合网2020| 亚洲av美国av| 日本熟妇午夜| 无人区码免费观看不卡| 一进一出好大好爽视频| 久久精品国产亚洲av涩爱 | 日韩欧美在线乱码| 桃红色精品国产亚洲av| www日本黄色视频网| 一级毛片高清免费大全| 午夜免费激情av| 亚洲精品成人久久久久久| 波多野结衣巨乳人妻| 午夜免费激情av| 3wmmmm亚洲av在线观看| 中文字幕av在线有码专区| 日本一二三区视频观看| 国产一区二区在线观看日韩 | 国产av不卡久久| 国产精品1区2区在线观看.| 成年免费大片在线观看| 免费高清视频大片| 国语自产精品视频在线第100页| 成年免费大片在线观看| 99在线人妻在线中文字幕| 又紧又爽又黄一区二区| 狂野欧美激情性xxxx| 久久久久久久午夜电影| 国产视频一区二区在线看| 99久久综合精品五月天人人| 成年女人永久免费观看视频| 亚洲中文字幕日韩| 校园春色视频在线观看| 舔av片在线| 每晚都被弄得嗷嗷叫到高潮| 国产高清videossex| 欧美成人性av电影在线观看|