• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Sufficiency of Kalman’s Rank Condition for the Approximate Boundary Controllability on an Annular Domain

    2022-04-26 08:27:30ChengxiaZU

    Chengxia ZU

    Abstract In this paper the author establishes the sufficiency of Kalman’s rank condition on the approximate boundary controllability at a finite time for diagonalizable systems on an annular domain in higher dimensional case.

    Keywords Kalman’s rank condition, Approximate boundary controllability, Diagonalizable systems of wave equations, Annular domain

    1 Introduction

    Let ? be a bounded domain in Rdwith smooth boundary Γ=Γ1∪Γ0such thatand mes(Γ1)>0.Let H0=L2(?), H1=H10(?), L=(0,+∞;L2(Γ1))and H?1=H?1(?)denotes the dual of H1.

    Let U = (u(1),··· ,u(N))T.Consider the following coupled system of wave equations with Dirichlet boundary controls:

    with the initial condition

    where “′” stands for the time derivative;is the Laplacian operator; the coupling matrix A=(aij)is of order N and the boundary control matrix D =(dpq)is a full column-rank matrix of order N×M (M ≤N), both with constant elements; H =(h(1),··· ,h(M))Tdenotes the boundary controls.

    From the approximate boundary null controllability of system (1.1)introduced by Li and Rao in [5–6], we have the following definition.

    Definition 1.1System(1.1)is approximately boundary null controllable at the timeT >0,if for any given initial datathere exists a sequence{Hn}ofboundary controls inLMwith compact support in[0,T], such that the corresponding sequence{Un}of solutions to problem(1.1)–(1.2)satisfies

    Let Φ=(φ(1),··· ,φ(N))T.The adjoint system of system (1.1)is given by

    with the initial data

    Definition 1.2(see [8–9])The adjoint system(1.4)is D-observable on the interval[0,T],if the following partial Neumann observation

    ?νbeing the outward normal derivative, implies that(Φ0,Φ1)=(0,0), thenΦ ≡0.

    The relationship between the approximate boundary null controllability of system(1.1)and the D-observability of the adjoint system(1.4)was also given by Li and Rao in [5–6]as follows.

    Theorem 1.1System(1.1)is approximately null controllable at the timeT >0if and only if the adjoint system(1.4)is D-observable on the interval[0,T].

    The necessity of Kalman’s rank condition to the D-observability of the adjoint system(1.4),proved by Li and Rao in [5–6], can be written as the following theorem.

    Theorem 1.2If the adjoint system(1.4)is D-observable, then we necessarily have the following Kalman’s rank condition:

    Kalman’s rank condition (1.7)is not sufficient for the approximate boundary null controllability of system (1.1)in general.Otherwise, noting that Kalman’s rank condition (1.7)is independent of the control (and observation)time T >0, if system (1.1)is approximately null controllable at the time T >0, then the approximate boundary null controllability can be realized almost immediately, which contradicts the finite speed of wave propagation.However, in some special cases,Kalman’s rank condition(1.7)is sufficient for the approximate boundary null controllability of system (1.1)on a finite time interval [0,T], when T > 0 is large enough (see[5–6, 9]).This paper as a continuation of [9] is to investigate the sufficiency of Kalman’s rank condition (1.7)for diagonalizable systems on an annular domain ? = {x : a < |x| < 1} ?Rdwith Γ0={x:|x|=a} and Γ1={x:|x|=1}, where a is a positive constant with a<1.

    In Section 2, we will investigate the eigenfunctions and eigenvalues of ??on the annular domain ?={x:a<|x|<1}based on the coordinate transformation,and give some properties of the eigenvalues.The uniqueness result for non-harmonic series on this annular domain will be established in Section 3.The sufficiency of Kalman’s rank condition (1.7)for diagonalizable systems on an annular domain will be given in Section 4 by a way similar to the one-spacedimensional case and to [9].

    2 Preliminaries

    In this section, we will give the eigenfunctions and eigenvalues of ??on an annular domain?={x:a<|x|<1} with 00 large enough for diagonalizable systems.For this purpose, we consider the eigenvalue problem

    in spherical coordinates.

    Let e(x)= R(r)Y(θ).Similarly to the spherical domain in [9], we get the corresponding eigenvalue problems for Y(θ)and R(r), respectively.

    For Y(θ), we have

    where m ∈N and ?θis the Laplacian operator on the unit sphere Sd?1with d ≥2 (see [1]).

    For R(r), we have

    Atkinson and Han introduced the eigenfunctions and eigenvalues of problem (2.2)in [1].In what follows, N and N+denote the set of natural numbers and the set of positive integers,respectively.

    Lemma 2.1(see[1])Let?θbe the Laplacian operator on the unit sphereSd?1withd ≥2.Then, we have

    (i)for any givenm ∈N,{Ym,j}1≤j≤jmare the eigenfunctions of??θ, corresponding to the eigenvaluem(m+d ?2), i.e., we have

    wherejm, the multiplicity of the eigenvaluem(m+d ?2), is given by

    (ii){Ym,j}m∈N,1≤j≤jmare orthonormal inL2(Sd?1), i.e., we have

    withm,m′∈N,1 ≤j ≤jmand1 ≤j′≤jm′, whereδm,m′stands for the Kronecker symbol;

    (iii){Ym,j}m∈N,1≤j≤jmare complete inL2(Sd?1).

    Next, we consider problem(2.3)as a Sturm-Liouville problem(2.7)below.Some properties of the eigenfunctions of the Sturm-Liouville problem was introduced by Bagrov and Belov in[2] as follows.

    Lemma 2.2Consider the following Sturm-Liouville problem

    Assume thatφ′(r),q(r)andρ(r)are continuous, andφ(r)> 0,ρ(r)> 0andq(r)≥0on the interval[a,1].Then, we have

    (i)there exists a sequence of eigenvalues{λk}k∈N+and the corresponding sequence of eigenfunctions{xk(r)}k∈N+for Sturm-Liouville problem(2.7), and all eigenvalues can be ordered so that

    (ii)every eigenvalue corresponds to, up to a multiplier constant, only one eigenfunction;

    (iii)the eigenfunctions of Sturm-Liouville problem(2.7)corresponding to different eigenvalues are pairwisely orthogonal on the interval(a,1)with the weight functionρ(t), i.e., fork,k′∈N+, we have

    wherexk(r)andxk′(r)are eigenfunctions of(2.7)corresponding to the eigenvaluesλkandλk′withλk≠λk′, respectively;

    (iv)(Steklov’s expansion theorem)if a functionf(r)is twice continuously differentiable on[a,1]and satisfies the boundary conditions in(2.7), it can be expanded in a series of the eigenfunctionsxk(r)of Sturm-Liouville problem(2.7)absolutely and uniformly converging on[a,1].

    Remark 2.1Lemma 2.2 is also valid when the interval [a,1] is replaced by [r1,r2].

    By Wu [8], we have the following lemma.

    Lemma 2.3For any fixedm ∈N, let

    where(r)and(r)are the(m+?1)-th Bessel function and Neumann function,respectively, andμm,kis thek-th positive root of

    We have

    By Lemma 2.2(iii)and Lemma 2.3, for

    we have the following proposition.

    Proposition 2.1(i)For any givenm ∈N,{Rm,k(r)}k∈N+is a sequence of orthogonal functions with the weightrd?1inL2(a,1).

    (ii)(see [5])Ifd=2andm ∈N+, or ifd ≥3andm ∈N, we have

    while, ford=2andm=0, we have

    Proof(i)Since (2.10)is a Sturm-Liouville problem(2.7)with ρ(r)=r, by Lemma 2.2(iii),for any fixed m ∈N, we have

    where k,k′∈N+.Then, noting (2.13), for any fixed m ∈N, we have

    Namely, for any given m ∈N, {Rm,k(r)}k∈N+is a sequence of orthogonal functions with the weight rd?1in L2(a,1).

    (ii)By [4, Lemma 4(iv)], a direct computation gives (2.14)and (2.15).

    Remark 2.2(i)Let

    Then, for any given m ∈N, {cm,kRm,k(r)}k∈N+is a sequence of orthonormal functions with the weight rd?1in L2(a,1).

    (ii)Furthermore, let

    Then, by Proposition 2.1(ii), we have

    The inequality (2.18)will be useful to guarantee the convergence of the infinite series given in Section 4.We now give the eigenfunctions and eigenvalues of ??on ? = {x: a< |x| < 1}as follows.

    Lemma 2.4Let?={x:a<|x|<1}with0

    in whichRm,k(r)is given by(2.13),cm,kis given by(2.16), andYm,j(θ)is given by Lemma2.1(ii).We have

    (i)for any givenm ∈Nandk ∈N+,em,k,j(x)(1 ≤j ≤jm)are all the eigenfunctions of??, corresponding to the eigenvalue;

    (ii){em,k,j(x)}m∈N;k∈N+;1≤j≤jmis an orthonormal sequence inL2(?);

    (iii)?νem,k,j(x)|Γ1= ?2π?1cm,kYm,j(θ), where?νdenotes the outward normal derivative on the boundary.

    Proof(i)By the above discussion, it is easy to get (i).

    (ii)Let m,m′∈N, k,k′∈N+, 1 ≤j ≤jmand 1 ≤j′≤jm′.By Lemma 2.1(ii)–(iii)and Proposition 2.1, we have

    then we get (ii).

    (iii)Since

    by the boundary condition in (2.10), we have

    in which we used the fact that Jσ(x)(x)?Nσ(x)(x)=(see [2]).By (2.20), we have

    Now, we introduce some properties of the eigenvaluesof ??on ?={x:a<|x|<1}.Let ασ,kdenote the k-th zero point of the cross-product of the σ-th order Bessel function and Neumann function:

    where K is a positive constant with K > 1.The property of ασ,kis given in [3–4].By (2.12)and taking K =a?1, we get a·μm,k=ασ,kwith σ =m+?1.Then, we have the following peroposition.

    Proposition 2.2Letμm,kbe thek-th positive root of(2.12)withm ∈Nandk ∈N+.

    (i)Ford=2, we have

    while, for any fixedd>2, we have

    (ii)For any fixedd ≥2, whenk →+∞, we have

    (iii)For any fixedd ≥2, we have

    (iv)For any fixedd ≥2, we have

    3 A Uniquess Result

    Let Z?denote the set of all nonzero integers.We now give the following uniqueness result introduced by Zu,Li and Rao in[9],which will be useful for proving the sufficiency of Kalman’s rank condition (1.7)on the annular domain ?={x:a<|x|<1}.

    Lemma 3.1Assume that

    for any fixedm ∈N.Assume furthermore that for any givenm ∈N, there exist positive constantsγm,cmandτmsuch that

    and

    for all1 ≤l ≤sand allk ∈Z?with|k|large enough.

    Assume finally that

    with

    andT >2πD+, where

    in whichis the upper density of the sequenceThen, we have

    When ? is an annular domain, by Proposition 2.2(i), for d > 2 and d = 2, the uniform gap condition of sequence {μm,k}k∈N+starts from k = 2 for any given m ∈N and m ∈N+,respectively, which is different from the case that ? is a spherical domain.Hence, in order to use Lemma 3.1, we should add condition (3.10)below and rearrange 2s elements of sequenceto guarantee condition (3.1).

    Corollary 3.1Assume that

    For any fixedm ∈N, we define

    whereμm,kis thek-th positive root of(2.12)for any fixedm ∈N.Then, for?>0small enough and

    the sequencesatisfies(3.1)–(3.3)and(3.6)for any givenm ∈N.

    ProofFor any given m ∈N and k ∈N+, by the definition of μm,kand Proposition 2.2(ii),we have

    For d=2, by Proposition 2.2(ii), we have

    Let

    For any fixed d ≥2, by Proposition 2.2(i), we have

    On the other hand,for any fixed m ∈N,by Proposition 2.2(ii),a direct computation similar to that on a spherical domain gives that

    and

    Then it is easy to see that the sequencesatisfies (3.2)–(3.3)with

    Next, we will prove that the sequencesatisfies (3.6)in a way similar to the proof of that on a spherical domain.

    For any fixed m ∈N and k ∈N+, iffor 1 ≤l ≤s ?1, then we have

    By Proposition 2.2(ii), for each m ∈N, we have

    Thus, by (3.13)–(3.16), we get

    Since

    4 The Sufficiency of Kalman’s Rank Condition on an Annular Domain

    On the annular domain ?={x:a<|x|<1}, we consider the following system:

    with the initial condition

    The adjoint system of (4.1)is given by

    with the initial data

    In this section,we will prove the sufficiency of Kalman’s rank condition(1.7)for T >0 large enough to the approximate boundary null controllability of system(4.1)on the annular domain?.By Theorem 1.1, it is sufficient to prove the sufficiency of Kalman’s rank condition (1.7)to the D-observability of the corresponding adjoint system (4.3)on ?.The following necessary and sufficient condition of Kalman’s rank condition (1.7)given by Li and Rao in [5–6] is very useful to prove the sufficiency of Kalman’s rank condition (1.7)in this case.

    Lemma 4.1Assume thatk ≥0is an integer,Ais a matrix of orderNandDis a full column-rank matrix of orderN ×MwithM ≤N.Then Kalman’s rank condition

    holds if and only if the largest dimension of invariant subspaces ofAT, contained inKer(DT),is equal tok.

    Theorem 4.1Let

    with0 < a < 1and let the sequencebe defined by(3.9).Assume that thecoupling matrixAis diagonalizable with the real eigenvalues given by

    Assume furthermore that?> 0is small enough and(3.10)holds so that for eachm ∈N, thesequencesatisfies(3.1)–(3.3)and(3.6).

    Then Kalman’s rank condition(1.7)is sufficient for the approximate boundary null controllability of system(4.1), provided thatT >2s(1 ?a).

    ProofBy Theorem 1.1, it is sufficient to prove the sufficiency of Kalman’s rank condition(1.7)to the D-observability of the corresponding adjoint system (4.3).The proof is similar to that on a spherical domain in higher dimension case (see [9]).In this paper, we just give the essential differences.

    with

    Furthermore, let

    in which we define em,?k,j= em,k,jfor all m ∈N,k ∈N+and 1 ≤j ≤jm.Then, by [9,Theorem 3],forms a Riesz basis of ((?))N×(L2(?))N.

    Thus, for any given initial datathere existssuch that

    with

    Then the corresponding solution to problem (4.3)–(4.4)is given by

    where em,k,j(x)are given by (2.19).

    Using Lemma 2.4(iii), the observation (1.6)becomes

    Noting D =(dpq), we define

    and μm,?k=μm,kfor all m ∈N and k ∈N+.

    Then, for any fixed q with 1 ≤q ≤M, the observation (1.6)can be rewritten as

    The difference from the proof of that on a spherical domain is the verification of

    for any fixed q with 1 ≤q ≤M.

    Using (2.18)and (4.8), we have

    In the present situation, by Proposition 2.2(iv), for any fixed l with 1 ≤l ≤s, we have

    Hence, there exists a positive constant c1such that

    By (4.12)and Cauchy-Schwartz inequality, we have

    Let

    By (4.10)and (4.13), for q =1,2,··· ,M, we have

    Applying Lemma 3.1 to each line of (4.9), we get

    By Lemma 4.1, it follows from Kalman’s rank condition (1.7)that Ker(DT)does not contain any non-trivial invariant subspace of AT, then we have

    Since {ω(l,μ)}1≤μ≤μlare linearly independent, noting that by (2.16), cm,k≠ 0 for any given m ∈N and any given k ∈N+, we have

    namely, Φ ≡0.The proof is complete.

    Example 4.1Let δ1,δ2be positive constants with δ1<δ2, and k1,k2be positive integers.Consider the adjoint system (4.3)with A =diag(δ1,δ2)and D = (1,?1)T.We will show that Kalman’s rank condition is not sufficient for the D-observability of adjoint system (4.3)at the infinite horizon for ?∈N, where

    For ?>0 with ?∈N, there exist m and k1,k2with 1 ≤k1

    where α>0.Let

    where Ym,1is given in Lemma 2.1 with j =1; Rm,k1(r)and Rm,k2(r)are given by (2.13)with k=k1and k =k2,respectively.Then by Lemma 2.4,Φ is a non-trivial solution of system(4.3)and satisfies the observation.

    Example 4.1 shows that Kalman’s rank condition (1.7)is not sufficient in general for the approximate boundary null controllability of system (1.2)even at the infinite horizon.Hence,it is essential to add condition (3.10)to guarantee the sufficiency of Kalman’s rank condition(1.7).

    We now indicate the relationship between the controllability time T and the rank of D.

    Theorem 4.2Let? = {x : a < |x| < 1}with0 < a < 1.Assume thatrank(D)= N ?kwith0 ≤k ≤N ?1and the coupling matrixAis diagonalizable with the real eigenvalues given by(4.6).Then, Kalman’s rank condition(1.7)is sufficient for the approximate boundary null controllability of system(4.1)on the interval[0,T], provided thatT >2(k+1)(1 ?a)and?>0is small enough.

    ProofThe proof is same as that of Theorem 4 given by Zu, Li and Rao in [9].

    Remark 4.1Let ? = {x : r1< |x| < r2} with 0 < r1< r2.Assume that the coupling matrix A is diagonalizable with the real eigenvalues given by (4.6).Assume furthermore that?>0 is so small that for each m ∈N, the sequencedefined by (3.9)satisfies(3.1)–(3.3)and (3.6).

    Then, Kalman’s rank condition (1.7)is sufficient for the approximate boundary null controllability of system (4.1)on the interval [0,T], provided that T >2s(r2?r1).

    ProofWhen ? ={x: a<|x| <1} is changed to {x:r1<|x| < r2}, a, μm,kand D+are replaced byand r2D+, respectively.Thus, by Lemma 3.1, the controllability time T is replaced by r2T, i.e., 2s(r2?r1).

    Similarly, we have the following remark.

    Remark 4.2Let ?={x:r1<|x| 0 is small enough and condition (3.10)holds.Then,Kalman’s rank condition (1.7)is sufficient for the approximate boundary null controllability of system (4.1)on the interval [0,T], provided that T >2(k+1)(r2?r1).

    Remark 4.3The controllability time T given by Theorems 4.1 or 4.2 is not optimal.

    AcknowledgementThe author would like to thank Professors Tatsien Li and Bopeng Rao for their valuable advices.

    日韩欧美在线二视频| 好男人在线观看高清免费视频 | 久久亚洲精品不卡| 久久热在线av| av福利片在线| 亚洲真实伦在线观看| 国产成人精品久久二区二区免费| 一卡2卡三卡四卡精品乱码亚洲| 国产色视频综合| 亚洲精品国产精品久久久不卡| 人人妻,人人澡人人爽秒播| 777久久人妻少妇嫩草av网站| 一区二区三区国产精品乱码| 久久久国产成人精品二区| 久9热在线精品视频| 国产精品久久视频播放| 亚洲九九香蕉| 亚洲精品色激情综合| 男女下面进入的视频免费午夜 | 久久亚洲精品不卡| 天天躁狠狠躁夜夜躁狠狠躁| 久久久久亚洲av毛片大全| 欧美不卡视频在线免费观看 | 国产精品电影一区二区三区| 黄色丝袜av网址大全| 亚洲精品国产一区二区精华液| 国产成人一区二区三区免费视频网站| 久久天躁狠狠躁夜夜2o2o| 欧美性猛交黑人性爽| 黄色女人牲交| 日韩欧美国产一区二区入口| 久久精品人妻少妇| 国语自产精品视频在线第100页| 亚洲五月色婷婷综合| 成人18禁高潮啪啪吃奶动态图| 级片在线观看| aaaaa片日本免费| 亚洲五月天丁香| 国产成人精品久久二区二区91| 国产av不卡久久| 99热只有精品国产| 亚洲精品久久成人aⅴ小说| 欧美+亚洲+日韩+国产| 国产精品综合久久久久久久免费| 午夜两性在线视频| 午夜激情av网站| 看黄色毛片网站| xxx96com| 可以免费在线观看a视频的电影网站| 在线观看免费日韩欧美大片| 久久精品国产亚洲av高清一级| 久久久久久大精品| 香蕉av资源在线| 成人三级黄色视频| 每晚都被弄得嗷嗷叫到高潮| 国产黄片美女视频| 欧美精品啪啪一区二区三区| 免费在线观看日本一区| 亚洲欧洲精品一区二区精品久久久| 欧美黄色淫秽网站| 99精品久久久久人妻精品| 日日干狠狠操夜夜爽| 69av精品久久久久久| 日日干狠狠操夜夜爽| a级毛片在线看网站| 叶爱在线成人免费视频播放| 亚洲九九香蕉| 精品久久久久久久毛片微露脸| 一个人免费在线观看的高清视频| 香蕉av资源在线| 美女大奶头视频| 天天躁狠狠躁夜夜躁狠狠躁| 亚洲成人久久性| 精品国产超薄肉色丝袜足j| 一本大道久久a久久精品| 午夜激情av网站| 美女国产高潮福利片在线看| 国产精品亚洲美女久久久| 韩国av一区二区三区四区| 波多野结衣巨乳人妻| 淫妇啪啪啪对白视频| 最新在线观看一区二区三区| 黄片大片在线免费观看| 国产成人精品久久二区二区91| 免费观看人在逋| 成在线人永久免费视频| 亚洲av日韩精品久久久久久密| 亚洲熟妇中文字幕五十中出| a级毛片a级免费在线| 国产成年人精品一区二区| 一进一出好大好爽视频| 精品午夜福利视频在线观看一区| 很黄的视频免费| 国产97色在线日韩免费| 午夜激情福利司机影院| 中国美女看黄片| 99国产精品一区二区蜜桃av| 国产伦人伦偷精品视频| 99久久无色码亚洲精品果冻| а√天堂www在线а√下载| 制服丝袜大香蕉在线| 免费高清在线观看日韩| 久久久久久大精品| 国产精品一区二区三区四区久久 | 99热只有精品国产| 午夜福利一区二区在线看| 日本精品一区二区三区蜜桃| 免费高清视频大片| 一进一出抽搐gif免费好疼| 老汉色av国产亚洲站长工具| 免费看十八禁软件| 99在线人妻在线中文字幕| 欧美性猛交黑人性爽| 两个人视频免费观看高清| 好男人在线观看高清免费视频 | 日日夜夜操网爽| 欧美日韩精品网址| 成人国产一区最新在线观看| 日韩欧美一区二区三区在线观看| 极品教师在线免费播放| 欧美色视频一区免费| 日韩欧美在线二视频| 欧美 亚洲 国产 日韩一| 少妇粗大呻吟视频| 亚洲 欧美 日韩 在线 免费| 超碰成人久久| 亚洲美女黄片视频| 露出奶头的视频| 日韩大码丰满熟妇| 色尼玛亚洲综合影院| 国产精品亚洲美女久久久| 久久久久久九九精品二区国产 | tocl精华| 50天的宝宝边吃奶边哭怎么回事| 亚洲专区国产一区二区| 国产真人三级小视频在线观看| 亚洲九九香蕉| 久久久国产成人精品二区| 亚洲国产日韩欧美精品在线观看 | 成人一区二区视频在线观看| 亚洲精品中文字幕在线视频| 宅男免费午夜| 禁无遮挡网站| 精品久久久久久久久久免费视频| 国产亚洲av高清不卡| 两个人免费观看高清视频| 国产成人精品久久二区二区91| 性欧美人与动物交配| 久久精品亚洲精品国产色婷小说| 免费看a级黄色片| 欧美性猛交╳xxx乱大交人| 精品无人区乱码1区二区| 麻豆一二三区av精品| 神马国产精品三级电影在线观看 | 一级a爱视频在线免费观看| 国产高清激情床上av| 久久精品91无色码中文字幕| 久久草成人影院| 少妇熟女aⅴ在线视频| 国产又色又爽无遮挡免费看| 欧美黑人巨大hd| 最新美女视频免费是黄的| 在线观看www视频免费| 久久精品国产综合久久久| 一本综合久久免费| 一区二区三区国产精品乱码| 日日夜夜操网爽| 可以在线观看毛片的网站| 国产99久久九九免费精品| 国产精品野战在线观看| 精品高清国产在线一区| 精品国产乱子伦一区二区三区| 最近最新中文字幕大全电影3 | 免费无遮挡裸体视频| 欧美精品啪啪一区二区三区| 精品国产国语对白av| 精品国产国语对白av| 色综合婷婷激情| 成人欧美大片| 99精品在免费线老司机午夜| 50天的宝宝边吃奶边哭怎么回事| 夜夜躁狠狠躁天天躁| 午夜福利成人在线免费观看| xxxwww97欧美| 久久久国产成人免费| 欧美黑人巨大hd| a级毛片在线看网站| 久久久久久国产a免费观看| 一进一出好大好爽视频| 精品久久久久久久久久久久久 | 中文字幕人妻熟女乱码| 欧美日韩亚洲国产一区二区在线观看| 久久草成人影院| 两性午夜刺激爽爽歪歪视频在线观看 | 听说在线观看完整版免费高清| 欧美性猛交╳xxx乱大交人| av视频在线观看入口| 国产精品久久久久久人妻精品电影| 日韩高清综合在线| 桃红色精品国产亚洲av| 99精品久久久久人妻精品| 国产97色在线日韩免费| 亚洲男人的天堂狠狠| 中文在线观看免费www的网站 | 免费观看精品视频网站| 人人妻人人看人人澡| 不卡av一区二区三区| 亚洲精品一卡2卡三卡4卡5卡| 一区二区三区激情视频| 亚洲专区中文字幕在线| 一个人免费在线观看的高清视频| 亚洲av日韩精品久久久久久密| 国产黄色小视频在线观看| 女生性感内裤真人,穿戴方法视频| 88av欧美| 国产一卡二卡三卡精品| 欧美黄色片欧美黄色片| 69av精品久久久久久| av福利片在线| 欧美黄色淫秽网站| 精品久久久久久成人av| 国产人伦9x9x在线观看| 久久精品国产综合久久久| 搞女人的毛片| 黑人巨大精品欧美一区二区mp4| 又紧又爽又黄一区二区| 侵犯人妻中文字幕一二三四区| 亚洲av五月六月丁香网| 超碰成人久久| 久久久久国产精品人妻aⅴ院| 成人国产综合亚洲| 成人特级黄色片久久久久久久| 少妇粗大呻吟视频| 美女大奶头视频| 午夜福利一区二区在线看| 亚洲成人国产一区在线观看| 久久久久久国产a免费观看| 久久人妻福利社区极品人妻图片| 亚洲一码二码三码区别大吗| 男人的好看免费观看在线视频 | 99久久精品国产亚洲精品| 色尼玛亚洲综合影院| 婷婷亚洲欧美| 两个人免费观看高清视频| 嫁个100分男人电影在线观看| 精品久久久久久久人妻蜜臀av| 一级a爱视频在线免费观看| 国产又爽黄色视频| 国产亚洲精品久久久久5区| 亚洲欧洲精品一区二区精品久久久| 久久国产精品人妻蜜桃| 日本一本二区三区精品| 怎么达到女性高潮| 99精品在免费线老司机午夜| 在线国产一区二区在线| 韩国av一区二区三区四区| 无限看片的www在线观看| 又黄又爽又免费观看的视频| 动漫黄色视频在线观看| 自线自在国产av| 国产亚洲精品第一综合不卡| 日韩精品免费视频一区二区三区| 国产精品,欧美在线| 一二三四社区在线视频社区8| 成在线人永久免费视频| 日本免费a在线| 色精品久久人妻99蜜桃| 黄片大片在线免费观看| 久久久国产成人免费| 日本撒尿小便嘘嘘汇集6| 亚洲欧美精品综合久久99| 正在播放国产对白刺激| 看片在线看免费视频| 日韩精品中文字幕看吧| 身体一侧抽搐| 国产在线观看jvid| 亚洲成av片中文字幕在线观看| 亚洲无线在线观看| 免费搜索国产男女视频| 亚洲一卡2卡3卡4卡5卡精品中文| 十分钟在线观看高清视频www| 国产aⅴ精品一区二区三区波| 中文字幕高清在线视频| 国产精品98久久久久久宅男小说| 国产精品综合久久久久久久免费| 亚洲欧美日韩无卡精品| 18禁国产床啪视频网站| 美女高潮到喷水免费观看| www.www免费av| 国产亚洲欧美98| 日韩大尺度精品在线看网址| 国产精品乱码一区二三区的特点| 老司机靠b影院| 日韩欧美一区视频在线观看| 久久久久久大精品| 免费看十八禁软件| 99久久综合精品五月天人人| 成人永久免费在线观看视频| 一区二区三区高清视频在线| 亚洲精品国产精品久久久不卡| 久久香蕉激情| 精品久久久久久久人妻蜜臀av| 成人国产一区最新在线观看| 露出奶头的视频| 女人被狂操c到高潮| 亚洲最大成人中文| 草草在线视频免费看| 男人的好看免费观看在线视频 | 亚洲中文日韩欧美视频| 一区二区三区激情视频| 久久99热这里只有精品18| 少妇裸体淫交视频免费看高清 | 日本免费a在线| 亚洲成a人片在线一区二区| 日韩大尺度精品在线看网址| 999精品在线视频| 美女高潮喷水抽搐中文字幕| 啪啪无遮挡十八禁网站| 欧美黄色淫秽网站| 免费在线观看视频国产中文字幕亚洲| 亚洲美女黄片视频| 日本免费a在线| 国产v大片淫在线免费观看| 国产免费男女视频| 波多野结衣av一区二区av| 欧美日韩亚洲综合一区二区三区_| 国内精品久久久久久久电影| 国产1区2区3区精品| 成人特级黄色片久久久久久久| 深夜精品福利| 国产av不卡久久| 亚洲成人精品中文字幕电影| 嫩草影院精品99| 人人妻人人澡人人看| 一级毛片女人18水好多| 一区二区三区激情视频| 午夜免费观看网址| 这个男人来自地球电影免费观看| www.熟女人妻精品国产| 久久人妻av系列| 手机成人av网站| avwww免费| 亚洲黑人精品在线| 国产精品久久电影中文字幕| 亚洲va日本ⅴa欧美va伊人久久| 久久人人精品亚洲av| 亚洲九九香蕉| 国产97色在线日韩免费| 国产伦在线观看视频一区| 亚洲精品一区av在线观看| 听说在线观看完整版免费高清| 很黄的视频免费| 9191精品国产免费久久| 午夜免费成人在线视频| or卡值多少钱| 两人在一起打扑克的视频| av电影中文网址| 国产亚洲精品第一综合不卡| 欧美激情高清一区二区三区| 成人国语在线视频| 超碰成人久久| 国产不卡一卡二| 18禁裸乳无遮挡免费网站照片 | 欧美午夜高清在线| 中文字幕精品亚洲无线码一区 | 成人免费观看视频高清| 成人亚洲精品av一区二区| 亚洲国产高清在线一区二区三 | 亚洲人成电影免费在线| 搞女人的毛片| avwww免费| 日韩三级视频一区二区三区| 丰满人妻熟妇乱又伦精品不卡| 亚洲午夜精品一区,二区,三区| 日韩欧美三级三区| 真人一进一出gif抽搐免费| 精品高清国产在线一区| 神马国产精品三级电影在线观看 | 欧美激情高清一区二区三区| 日韩欧美国产在线观看| 熟妇人妻久久中文字幕3abv| 免费电影在线观看免费观看| 亚洲人成电影免费在线| 精品国内亚洲2022精品成人| 12—13女人毛片做爰片一| 中文字幕人妻丝袜一区二区| 国产极品粉嫩免费观看在线| 国产激情欧美一区二区| 老熟妇仑乱视频hdxx| 在线观看午夜福利视频| 亚洲欧洲精品一区二区精品久久久| 久久香蕉精品热| 亚洲国产欧洲综合997久久, | 97人妻精品一区二区三区麻豆 | 99久久综合精品五月天人人| av免费在线观看网站| 极品教师在线免费播放| 国产精品永久免费网站| 国产精品一区二区精品视频观看| 国产午夜精品久久久久久| 国产精品亚洲av一区麻豆| 又紧又爽又黄一区二区| 啦啦啦 在线观看视频| 欧美丝袜亚洲另类 | 亚洲自拍偷在线| 禁无遮挡网站| 黑人操中国人逼视频| 亚洲第一av免费看| 久久久久国内视频| 午夜久久久在线观看| 亚洲熟女毛片儿| 欧美性猛交黑人性爽| 国产又黄又爽又无遮挡在线| 99久久久亚洲精品蜜臀av| 国产精品九九99| 久99久视频精品免费| 脱女人内裤的视频| 亚洲第一av免费看| 视频在线观看一区二区三区| 亚洲午夜精品一区,二区,三区| 国产蜜桃级精品一区二区三区| 1024视频免费在线观看| 99久久国产精品久久久| 九色国产91popny在线| 91字幕亚洲| 90打野战视频偷拍视频| 18禁黄网站禁片午夜丰满| 在线观看舔阴道视频| 久久精品影院6| 怎么达到女性高潮| 日韩欧美三级三区| 中文在线观看免费www的网站 | 久久天堂一区二区三区四区| 99久久精品国产亚洲精品| 黄网站色视频无遮挡免费观看| 日本撒尿小便嘘嘘汇集6| 久久久久国产精品人妻aⅴ院| 久久香蕉国产精品| 免费看十八禁软件| 欧美国产精品va在线观看不卡| 一二三四社区在线视频社区8| 亚洲精品中文字幕一二三四区| 成年人黄色毛片网站| 桃红色精品国产亚洲av| 99久久99久久久精品蜜桃| 在线天堂中文资源库| 成人亚洲精品av一区二区| 久久精品91蜜桃| 久久中文字幕人妻熟女| 午夜福利成人在线免费观看| 国产三级在线视频| 久9热在线精品视频| 亚洲熟女毛片儿| av视频在线观看入口| 色综合婷婷激情| 国产精品九九99| 国产精品电影一区二区三区| 免费电影在线观看免费观看| 中出人妻视频一区二区| 18禁观看日本| 成人午夜高清在线视频 | av天堂在线播放| 亚洲黑人精品在线| 50天的宝宝边吃奶边哭怎么回事| 日本免费一区二区三区高清不卡| 听说在线观看完整版免费高清| 人妻久久中文字幕网| 国产精品1区2区在线观看.| 亚洲男人天堂网一区| 女警被强在线播放| 一本综合久久免费| 黄色女人牲交| 青草久久国产| 中文字幕久久专区| 波多野结衣高清无吗| 叶爱在线成人免费视频播放| 国产成人一区二区三区免费视频网站| 国产1区2区3区精品| 国产精品久久久久久亚洲av鲁大| 国产午夜精品久久久久久| 精品熟女少妇八av免费久了| 看免费av毛片| 人人妻,人人澡人人爽秒播| 日本免费a在线| 欧美另类亚洲清纯唯美| 日本成人三级电影网站| 搡老妇女老女人老熟妇| 国产激情偷乱视频一区二区| 国产久久久一区二区三区| 成人三级黄色视频| 特大巨黑吊av在线直播 | 精品久久蜜臀av无| 18禁黄网站禁片免费观看直播| 国产av又大| 黄色成人免费大全| av在线天堂中文字幕| 亚洲av中文字字幕乱码综合 | 国产精华一区二区三区| 波多野结衣巨乳人妻| 国内揄拍国产精品人妻在线 | 免费在线观看日本一区| 最好的美女福利视频网| 成人午夜高清在线视频 | 久久欧美精品欧美久久欧美| 成人午夜高清在线视频 | 亚洲精品色激情综合| 久久久国产成人免费| 无限看片的www在线观看| 男女床上黄色一级片免费看| 亚洲欧美激情综合另类| 亚洲专区国产一区二区| 国产亚洲欧美在线一区二区| 可以免费在线观看a视频的电影网站| 亚洲自偷自拍图片 自拍| 国产成年人精品一区二区| 老司机午夜十八禁免费视频| 一本大道久久a久久精品| 欧美激情 高清一区二区三区| www.精华液| 午夜福利在线在线| 老司机午夜十八禁免费视频| 日韩欧美国产一区二区入口| x7x7x7水蜜桃| 亚洲精品在线观看二区| 十分钟在线观看高清视频www| 欧美在线黄色| 在线播放国产精品三级| 亚洲精品色激情综合| 人人澡人人妻人| 天堂√8在线中文| 亚洲av片天天在线观看| 俄罗斯特黄特色一大片| 欧美性长视频在线观看| 亚洲精华国产精华精| 亚洲成人免费电影在线观看| 一级作爱视频免费观看| 一进一出抽搐gif免费好疼| tocl精华| 12—13女人毛片做爰片一| 日本一区二区免费在线视频| 一区二区三区高清视频在线| 国产欧美日韩一区二区精品| 一级a爱视频在线免费观看| 最近最新免费中文字幕在线| 变态另类成人亚洲欧美熟女| 国内毛片毛片毛片毛片毛片| 搡老熟女国产l中国老女人| 亚洲av第一区精品v没综合| 午夜激情av网站| 国产精华一区二区三区| 999久久久国产精品视频| 欧美色欧美亚洲另类二区| 啦啦啦免费观看视频1| 色尼玛亚洲综合影院| 亚洲国产欧洲综合997久久, | 久久久久久大精品| 中文字幕精品免费在线观看视频| 69av精品久久久久久| 成人特级黄色片久久久久久久| 99精品久久久久人妻精品| 国产三级在线视频| 亚洲avbb在线观看| 国产91精品成人一区二区三区| 成人一区二区视频在线观看| 丝袜美腿诱惑在线| 亚洲精品一卡2卡三卡4卡5卡| 久久精品91无色码中文字幕| 在线观看66精品国产| 99riav亚洲国产免费| 999精品在线视频| 久久久国产成人免费| 18禁观看日本| 99久久精品国产亚洲精品| 巨乳人妻的诱惑在线观看| 国产久久久一区二区三区| 亚洲,欧美精品.| 脱女人内裤的视频| 日韩视频一区二区在线观看| 搞女人的毛片| 欧美黑人巨大hd| 不卡一级毛片| 国内精品久久久久久久电影| 精华霜和精华液先用哪个| 级片在线观看| 久久香蕉国产精品| 一本大道久久a久久精品| av超薄肉色丝袜交足视频| 国产一区二区三区视频了| 无人区码免费观看不卡| 91成人精品电影| 午夜福利成人在线免费观看| 精品乱码久久久久久99久播| 成人欧美大片| 性色av乱码一区二区三区2| 一二三四在线观看免费中文在| 99在线视频只有这里精品首页| 午夜免费成人在线视频| 国产片内射在线| 日韩欧美免费精品| 老熟妇仑乱视频hdxx| 一本精品99久久精品77| 51午夜福利影视在线观看| 久久久久久人人人人人| 亚洲天堂国产精品一区在线| 欧美成人性av电影在线观看| 亚洲 国产 在线| 亚洲人成网站高清观看| 夜夜爽天天搞| 久久国产乱子伦精品免费另类| 国产激情欧美一区二区| a在线观看视频网站| 999久久久国产精品视频| 精品午夜福利视频在线观看一区| 久久精品国产清高在天天线| 成人精品一区二区免费|