• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Zero Problems of the Bergman Kernel Function on the First Type of Cartan-Hartogs Domain?

    2022-04-26 08:27:56XinZHAOAnWANG

    Xin ZHAO An WANG

    Abstract The authors give the condition that the Bergman kernel function on the first type of Cartan-Hartogs domain exists zeros.If the Bergman kernel function of this type of domain has zeros, the zero set is composed of several path-connected branches, and there exists a continuous curve to connect any two points in the non-zero set.

    Keywords Cartan-Hartogs domain, Zeros of Bergman kernel function, Path connectivity

    1 Introduction

    The biholomorphic equivalence classification of bounded domains is one of the central problems in the study of several complex variables.The Riemann mapping theorem resolves the problem about the biholomorphic equivalence classification of the simply connected bounded domains in C∞.At the beginning of 20th century, Poincarpointed out that the unit ball and the polydisc are not biholomorphically equivalent in Cn(n>1), which indicates that Riemann mapping theorem fails to hold in higher dimensional case.In 1936,Cartan gave the whole conclusion about the biholomorphic equivalence classification of the bounded symmetric domains in Cn, i.e., any bounded symmetric domain is the topological product of irreducible bounded symmetric domains, and irreducible bounded symmetric domains consist of domains of four classical types and two exceptional ones.However,the biholomorphic equivalence classification of general bounded domains has not been resolved.It is an important research direction of several complex variables.

    In 1930, Bergman introduced the concept of representative coordinates and representative domain when he studied the biholomorphic equivalence classification of bounded domains in Cn(see [5]).Let G be a bounded domain in Cn.K(z,)denotes the Bergman kernel function of G, and (Tjk(z,))denotes the Bergman metric matrix of G.For any fixed w0∈G and any z ∈G, ?w0maps z to ?w0(z):

    then ?w0is called the representative mapping, and ?w0(z)is the representative coordinates of z.If ?w0(G)is a domain, ?w0(G)is called the representative domain of G.Since domains which are biholomorphically equivalent have identical representative domain, the representative domain can be used as the representative element of biholomorphically equivalence class of domains.Moreover, two domains must not be biholomorphically equivalent if their representative domains are not identical.Therefore, the representative domain could be the tool for studying the biholomorphic equivalence classification of bounded domains.In 1966, when Lu was studying that bounded domain with complete Bergman metric of negative constant holomorphic sectional curvature is biholomorphically equivalent to the unit ball, he needed to define the representative mapping globally on the bounded domain.About the above definition of representative mapping, he pointed out that ?w0is well defined on a sufficiently small neighborhood U(w0)of w0and at the point where K(z,)≠ 0 for any z ∈G.However,defining representative mapping globally on a general bounded domain depends on that the Bergman kernel function of this domain is zero-free (see [15]).The Bergman kernel functions of some specific domains do not have zeros, such as unit ball, polydisc and bounded symmetric domains, but there is no definite conclusion as to whether the Bergman kernel functions of general bounded domains have zeros or not.Therefore, Lu raised an open question of whether the Bergman kernel functions of general bounded domains are zero-free.In 1969,Skwarczy′nski formally called the question raised by Lu as Lu Qi-Keng conjecture, i.e., the Bergman kernel function of a general bounded domain is zero-free.Moreover,he proved Lu Qi-Keng conjecture does not hold with counterexample: The Bergman kernel function of an annulus has zeros in the complex plane {z ∈C : r < |z| < 1,0 < r < e?2} (see [21]).It shows that the bounded domains on which Bergman kernel functions have zeros exist.

    Although Lu Qi-Keng conjecture fails, the problem of determining whether the Bergman kernel function of a bounded domain has zeros is of great significance to discuss the properties of Bergman kernel functions,the properties of bounded domains,the biholomorphic equivalence classification of bounded domains and so on.Therefore, this research has received extensive attention in the area of several complex variables, and the problem about studying whether the Bergman kernel function of a domain has zeros or not is called the Lu Qi-Keng problem.Since Skwarczy′nski, many scholars have studied Lu Qi-Keng problem and achieved fruitful results.In 1966, Rosenthal proved that the Bergman kernel function of an annulus in the complex plane has zeros, moreover there exists k (k > 2)connected domain whose Bergman kernel function has zeros in C (see [20]).In the same year, Bell showed that the Bergman kernel function of every bounded, homogeneous,complete circular domain is zero-free(see [4]).In 1976, Suita and Yamada proved that the Bergman kernel function of non-simply connected finite Riemann surface has zeros, and obtained a general conclusion, i.e., the Bergman kernel function of bounded, multiple connected, planar domain with smooth boundary has zeros (see[22]).In 1981, Greene and Krantz proved that the sufficiently small smooth perturbations of the ball has zero-free Bergman kernel function (see[14]).In 1986,Boas gave a specific example to show that the Bergman kernel function of a bounded, strongly pseudo-convex, contractible domain with C∞r(nóng)egular boundary has zeros (see [6]).In 1996, Boas proved that the bounded holomorphic domains whose Bergman kernel functions have no zeros,form a nowhere dense set in the topological space composed of all bounded holomorphic domains(see[7]).This conclusion indicates that it is a normal situation for the Bergman kernel function of a holomorphic domain to have zeros.In 1999, Boas, Fu and Straube further proved that the Bergman kernel function of the following domainhas zeros when p > 2, and gave concrete examples that the Bergman kernel functions of strongly convex domains have zeros in [9].In 2000,Boas obtained a more general conclusion that the Bergman kernel function of the domain defined as

    has zeros when p2+p3+···+pn> 2 (see [8]).In 1998, Pflug and Youssfi proved that the Bergman kernel function of the minimal ball exists zeros when n ≥4 in Cn(see [19]).In 2000, Engliˇs proved that the Bergman kernel function of a kind of Hartogs domain has zeros(see [13]).In 2005, Edigarian and Zwonek got that the Bergman kernel function of symmetric double-disc G2is zero-free(see [12]), while Nikolov and Zwonek later proved that the Bergman kernel function of symmetric polydisc Gn(n ≥3)has zeros (see [18]).In 2006, Chen studied the Lu Qi-Keng problem on a pseudo-convex domain applying the asymptotic behavior of the weighted Bergman kernel (see [10]).In 2009, Zhang and Yin discussed the conditions that the Bergman kernel function of the generalized Thullen domain has zeros (see [28]).In 2012, Ahn and Park presented the algorithmic procedure to determine the condition that the Bergman kernel function is zero-free on a type of generalized Cartan-Hartogs domain (see [1]).In 2016,Beberok investigated the Lu Qi-Keng problem of the intersection of two complex ellipsoids(see[3]).We refer to [2, 11, 16, 23–24, 27] for more research results about Lu Qi-Keng problem.

    In the study on Lu Qi-Keng problem, many research achievements show that the Bergman kernel functions of bounded domains have zeros.In fact, if the Bergman kernel function of a domain has zeros, these zeros are not isolated and form a lower dimensional manifolds.It is significant for discussing the geometry properties of domains and the properties of Bergman kernel functions to study the structure and topological properties of the zero-sets of the Bergman kernel functions on bounded domains.The aim of this present paper is to study the Lu Qi-Keng problem on the first type of Cartan-Hartogs domain, and discuss the topological properties of the zero set when the Bergman kernel function of this type of domain has zeros.The form of the first type of Cartan-Hartogs domain is as following (see [25]):

    where RI(m,n)denotes the first type of Cartan domain, NI(z,z)denotes the generic norm of RI(m,n)in Jordan triple system.By constructing a biholomorphic invariant x on ?×?,we write the Bergman kernel function of ? into the product of a polynomial F(x)and a nonvanishing function.Then the research on the zero problem of the Bergman kernel function with multidimensional complex variable is transformed into the research on the zero problem of a polynomial function with single complex variable.From the condition that F(x)has zeros in the unit disc,we obtain that there existsμ0(m,n)>0 such that the Bergman kernel function of? has zeros when the parameterμsatisfies 0<μ<μ0(m,n)for any m and n.Furthermore,we show that the zero set of the Bergman kernel function of ? is composed of some path-connected branches, and a continuous curve is constructed to connect any two points in the non-zero set.

    2 Preliminaries

    In this section, we are going to outline some basic conclusions about ?, and introduce a type of special self-reciprocal polynomial.

    Theorem 2.1(see [26])The transformsψ(ξ,z)= (ψ1(ξ,z),ψ2(ξ,z))constitute the holomorphic automorphism group of?, and the specific forms ofψ1andψ2are as below:

    whereθ ∈R,z0∈RI(m,n),z0= φ?1(0).Aut(?)denotes the holomorphic automorphism group of?.

    Now, we construct a complex value function x on ?×?, and it is a invariant under the holomorphic transformation of ?×?.

    Theorem 2.2Let

    for any((ξ,z),(η,w))∈?×?.Then

    x((ξ,z),(η,w))=x(ψ(ξ,z),ψ(η,w))for?ψ ∈Aut(?),

    and|x|<1.

    ProofFor any z = (z11,z12,··· ,z1n,··· ,zm1,zm2,··· ,zmn)∈RI(m,n), the components of z can be arranged into a matrix

    where z is corresponding to Z,and the first type of Cartan domain is represented as RI(m,n):={Z ∈Cmn:I ?>0}.So the point in RI(m,n)is denoted by Z in the proof of the theorem.

    For any ((ξ,Z),(η,W))∈?×?, (ξ,Z)and (η,W)are mapped to (ξ?,Z?)and (η?,W?)respectively by any ψ ∈Aut(?).Applying Theorem 2.1, we have

    where Z0=φ?1(0)(φ ∈Aut(RI(m,n))),

    Since

    and

    for any Z,W ∈RI(m,n), we obtain

    i.e., x is a invariant under the holomorphic transformation of ?×?.

    We can prove

    NI(Z,Z)NI(W,W)≤|NI(Z,W)|2

    for any ((ξ,Z),(η,W))∈?×? using the conclusion in [17].Then based on the inequality, we obtain

    A special kind of self-reciprocal polynomial plays an important role in investigating the Lu Qi-Keng problem on the first type of Cartan-Hartogs domain, here we give the definition of a general self-reciprocal polynomial and discuss the properties of the special kind of self-reciprocal polynomial.

    Definition 2.1Letfk(x)be a real coefficient polynomial of degreek.Iffk(0)≠ 0and, thenfk(x)is called self-reciprocal polynomial of degreek.

    Remark 2.1fk(x)=is a real coefficient self-reciprocal polynomial of degree k if and only if its coefficients satisfy a0≠0 and al=ak?l(l=0,1,··· ,k).

    Theorem 2.3Letfk(x)be a real coefficient self-reciprocal polynomial of degreek.Ifx0is a zero offk(x), thenis also its zero.

    ProofFrom Definition 2.1, this theorem can be proved straightforwardly.

    Lemma 2.1Let

    thenσr(α1,··· ,αl)>0 (r =1,2,··· ,l)if and only ifαj>0,j =1,··· ,l.

    ProofSince the sufficiency of the lemma is obvious, we need only to prove its necessity.

    We can construct an equation of degree l with roots of ?α1,?α2,··· ,?αl:

    Expand the left side of (2.1), it is changed into the following form

    Because αj(j = 1,··· ,l)are real numbers, and σr(α1,··· ,αl)> 0 (r = 1,2,··· ,l), the roots of (2.1)can not be 0 or positive real numbers, and they must be negative real numbers, i.e.,αj>0 (j =1,··· ,l).

    Theorem 2.4Let

    be a polynomial of degreekwith respect tox, whereak,ldenotes the coefficient of thel-th order term of the polynomial of degreek:

    S(k+1,j)denotes the Stirling number of the second kind, i.e.,

    Setak,l=0forl >kandl<0, thenfk(x)satisfies the following properties:

    (1)ak,l=(k+1 ?l)ak?1,l?1+(l+1)ak?1,l(k ≥1, 0 ≤l ≤k).

    (2)fk(x)(k ∈N)is a self-reciprocal polynomial, i.e.,ak,l= ak,k?l(0 ≤l ≤k), andak,0=ak,k=1.

    (3)ak,l>0 (0 ≤l ≤k).

    (4)ak,l?1

    (5)Whenkis odd number,fk(x)= (x+1)hk?1(x)(k ≥1), andhk?1(x)is also a selfreciprocal polynomial with positive real coefficients.

    (6)fk(x)= [(k ?1)2x2+(3k ?2)x+1]fk?2(x)+x(1 ?x)[(2k ?3)x+3](x)+(1 ?x)2x2(x)(k ≥2).

    (7)fk(x)(k ≥2)has at least one zero in the unit disc.

    Proof(1)According to (2.2)and the property of S(k+1,j), for any fixed l, we have

    Therefore, we obtain the recurrent formula about the coefficients of fk(x):

    About(2)–(4),these properties can be proved by applying(2.3)and mathematical induction.

    (5)Because fk(x)is a self-reciprocal polynomial, i.e., ak,l=ak,k?l(0 ≤l ≤k), ?1 must be the zero of fk(x)for odd number k, and

    fk(x)=(x+1)hk?1(x)(k ≥1).

    We are going to prove that hk?1(x)is also a self-reciprocal polynomial with positive real coefficients.

    Put hk?1(x):=, then

    By comparing the above expression with,we obtain the relationship between bk?1,land ak,las following:

    From (2.4)and property (2)of fk(x), it follows that

    which means that hk?1(x)is a self-reciprocal polynomial.

    Next, we will show that the coefficients of hk?1(x)are all positive.As hk?1(x)is a selfreciprocal polynomial, it suffices to prove bk?1,l>0 for l>.

    For ak,l+1>ak,l+2>···>ak,k(l>), if l is odd, then

    bk?1,l=(ak,l+1?ak,l+2)+···+(ak,k?1?ak,k)>0;

    if l is even, then

    bk?1,l=(ak,l+1?ak,l+2)+···+(ak,k?2?ak,k?1)+ak,k>0.

    In conclusion, when k is odd number, hk?1(x)is a self-reciprocal polynomial with positive real coefficients.

    (6)To prove the property (6)of fk(x), we first need to verify

    According to (2.5), if k ≥2, we have

    Differentiating the both sides of (2.6)with respect to x gives the following formula:

    By substituting (2.6)and (2.7)back into (2.5), it follows that

    (7)We first show that fk(x)has at least one zero in the unit disc for k = 2p (p ∈Z+)by negation.

    If the assertion fails to hold, f2p(x)would have no zeros in the unit disc.As f2p(x)is a self-reciprocal polynomial,according to Theorem 2.3,if x0is a zero of f2p(x),thenis also the zero of f2p(x).Thereby,based on the hypothesis,f2p(x)has no zeros out of the unit disk either,which means that all of the zeros of f2p(x)are on the boundary of the unit disc.Moreover,the reciprocal of every zero is just its conjugate zero.Set the zeros of f2p(x)as following:

    With the zeros of f2p(x), we can write f2p(x)as the product of 2p factors:

    In the above expression of f2p(x), we put

    where

    However,according to the property of fk(x)and Lemma 2.1,it can be inferred that αq>0(q =1,2,··· ,p)by showing that σp?r(α1,··· ,αp)>0 (0 ≤r ≤p ?1).

    In fact, because f2p(x)=xpGp(y)and y =x++2, we have

    By substituting f2p(x),into (2.8), it follows that

    Dividing both sides of the above equation by xp, and substituting y for x++2,we obtain

    Furthermore, by calculating the r-order derivative of Gp(y), we acquire

    From f2(x)=x2+4x+1,it follows that G1(y)=y+2,G1(0)=2 and G′1(0)=1.According to (2.11), we haveby recurrence method.From (2.9)and (2.10), it follows that

    Finally, we obtain αq> 0 (q = 1,2,··· ,p)from Lemma 2.1.But this conclusion is contrary to αq= ?2 cosθq?2 ≤0 (q = 1,2,··· ,p).Therefore, the zeros of f2p(x)are not all on the boundary of the unit disc.Based on Theorem 2.3, f2p(x)has at least one zero in the unit disk.

    For k =2p+1 (p ∈Z+), according to the property (5)of fk(x): f2p+1(x)=(x+1)h2p(x),because h2p(x)is also a self-reciprocal polynomial, we can prove that h2p(x)has at least one zero in the unit disc by the same method.

    Consequently, we infer that fk(x)(k ≥2)has at least one zero in the unit disc.

    3 Lu Qi-Keng Problem on ?

    In this section, we discuss that the Bergman kernel function of ? has zeros in ?×? if the parameter μ of ? satisfies certain condition, and obtain the following conclusion.

    Theorem 3.1Let the Bergman kernel function of?be

    where

    andB(α,β)denotes the Beta function(see [26, 28]).Then for anymandn, there existsμ0(m,n)>0such thatK((ξ,z),has zeros in?×?when0<μ<μ0(m,n).

    ProofIn the expression of the Bergman kernel function of ?, we have

    In (3.2), the part containing μ can be rewritten as following:

    where

    By substituting (3.3)into F(x), F(x)can be expressed as below:

    F(x)=fmn(x)+μgmn(x),

    where

    and

    By rearranging the expression of fmn(x), we get

    so it is exactly a real coefficient polynomial of degree mn as the one defined in Theorem 2.4.

    From Theorem 2.4(7), we have known that fmn(x)has at least one zero in the unit disc.According to the relationship between F(x)and fmn(x), we will prove that for any m and n,there exists μ0(m,n)>0 such that F(x)has zeros in the unit disc when 0<μ<μ0(m,n).

    Let x0be a zero of fmn(x)in the unit disc, because the zero of a non-constant holomorphic function with a single complex variable is isolated, there exists 0 < ρ < 1 such that x0is the unique zero of fmn(x)in the closed disc

    According to (3.5), for 0<μ<1, we get

    It follows from (3.4)that

    Therefore,

    Taking μ0(m,n)=when 0<μ<μ0(m,n), we have

    Thereby, F(x)= fmn(x)+μgmn(x)has one zero in D(x0,ρ)from Rouch′e theorem.Namely,F(x)has at least one zero in the unit disc when μ satisfies the above condition.

    Consequently, for any fixed m,n, when 0 < μ < μ0(m,n), the Bergman kernel function of? has zeros in ?×?.

    4 The Topological Properties of the Zero Set of the Bergman Kernel Function on ?

    According to Theorem 3.1, there exists μ0(m,n)> 0 such that F(x)as (3.2)has zeros in the unit disc when 0<μ<μ0(m,n), and the set of these zeros is denoted by

    Under the same condition, the Bergman kernel function of ? has zeros in ?×?.Put

    j = 1,2,··· ,M, M < mn, then the zero set of the Bergman kernel function of ? is the union of these sets.

    We are going to discuss the topological properties of the zero set of the Bergman kernel function on ?, and give the main results and proofs about the connectivity of the zero set.

    Theorem 4.1If the Bergman kernel function of?has zeros, and the zero set is denoted by, where the form ofΛjis as(4.2), thenΛj(j = 1,2,··· ,M,M < mn)is apath-connected subset.

    ProofWithout loss of generality, we may prove Λ1is a path-connected subset.Set Q?=because |λ1| < 1 and x(Q?)= λ1, it is easy to see that Q?is a fixed point in Λ1.Let P = ((ξ,z),(η,w))be any point in Λ1, by proving that there exists a continuous curve to connect P and Q?, we can obtain that any two points can be connected with a continuous curve in Λ1, i.e., Λ1is a path-connected subset.

    According to Theorem 2.1, we select ψz0,θ∈Aut(?), where z0= z and θ = ?arg ξ, such that

    Since x is an invariant under the action of holomorphic transformation Ψ of ?×?, i.e., x(P)=x(P?)=λ1, it follows P?∈Λ1, and

    Furthermore, putting Q:=Ψ?1(Q?), we have Q ∈Λ1from x(Q?)=x(Q)=λ1, and

    Because P and Q are respectively mapped to P?and Q?by Ψ, we will show that P and Q can be connected with a continuous curve by proving that P?and Q?can be connected with a continuous curve in Λ1.Then, a continuous curve can be constructed to connect Q and Q?.So there is a continuous curve to join P and Q?in Λ1.

    Firstly, there exists

    corresponding to P?in Λ1.We can construct a continuous curve as following to connect P?and:

    In fact,

    so ?1(s)?Λ1, and ?1(0)=,?1(1)=P?.

    Next, we construct a continuous curve

    Summarizing the above discussion, ?1is a continuous curve connecting P?and, and ?2is a continuous curve connecting Q?and, therefore there exists a continuous curve to connect P?and Q?, which is denoted by ?.Obviously, we obtain that

    is a continuous curve connecting P and Q, which is denoted by γ1.

    Furthermore, we construct a continuous curve

    We have

    Moreover,γ2(0)=Q?,γ2(1)=Q.Hence,γ2(s)?Λ1and γ2(s)is a continuous curve connecting Q and Q?.

    In conclusion, γ1is a continuous curve connecting P and Q, and γ2is a continuous curve connecting Q and Q?, so there exists a continuous curve connecting any point P and the fixed point Q?.So Λ1is a path-connected subset.Using the same method, we can show that every Λj(j = 2,··· ,M,M < mn)is a path-connected subset of the zero set of the Bergman kernel function on ?.

    Theorem 4.2If the Bergman kernel function of?has zeros, let the zero set bewhere the form ofΛjis as(4.2), then for anyP ∈ΛlandQ ∈Λk(l ≠ k), there is not a continuous curve to connectPandQinΛ.

    ProofWe will prove the theorem by negation.

    For any P ∈Λland Q ∈Λk(l ≠ k), suppose that there is ?(s)(s ∈[0,1])?Λ to connect P and Q, ?(0)=P, ?(1)=Q, then x(?(0))=λl, x(?(1))=λk, and λl≠λk.Because x(?(s))is uniformly continuous on [0,1], for any s0∈[0,1] and for ε =min{|λ′?λ′′|,?λ′,λ′′∈A},where A is defined as (4.1), there exists δ >0 such that

    |x(?(s))?x(?(s0))|<ε, s ∈U(s0,δ)∩[0,1].

    If s0takes all the values in [0,1], there is a set of open intervals {U(s0,δ),s0∈[0,1]} covering[0,1].Moreover, there are following finite open intervals to cover [0,1] in the set of open intervals:

    Uα(sα,δ0), α=1,2,··· ,q.

    Without loss of generality, let s1

    |x(?(s))?x(?(sα))|<ε for any s ∈U(sα,δ)∩[0,1].

    Because 0 ∈U(s1,δ0), x(?(0))= λland |x(?(s1))?x(?(0))| < ε, we have x(?(s1))= λl.Next, as any s ∈U(s1,δ)∩[0,1], |x(?(s))?x(?(s1))| < ε, we acquire x(?(s))= λlfor any s ∈U(s1,δ).Since any s ∈U(s1,δ)∩U(s2,δ), |x(?(s))?x(?(s2))| < ε, it is turned out that x(?(s2))= λl.Moreover, any s ∈U(s2,δ)∩[0,1], |x(?(s))?x(?(s2))| < ε, we can show that x(?(s))= λlfor any s ∈U(s2,δ).Proceeding the derivation in a similar manner, it follows that x(?(1))=λl, which is contrary to x(?(1))=λk.

    Consequently, the hypothesis fails to hold, i.e., P and Q which belong to different subset Λland Λkrespectively, can not be joined with a continuous curve in Λ.

    According to Theorems 4.1–4.2, if the Bergman kernel function of ? has zeros, the zero set is composed of M (M

    Theorem 4.3If the Bergman kernel function of?has zeros, let the zero set bewhere the form ofΛjis as(4.2), and?×?Λdenote the complement set ofΛin?×?, then for anyP,Q ∈?×?Λ, there exists a continuous curve to connect the two points.

    ProofLet O = ((0,0),(0,0)).Since x(O)= 0 and 0A, where A is defined as (4.1), we have O ∈?×?Λ.For any P = ((ξ,z),(η,w))∈?×?Λ, if we show that P and O can be joined with a continuous curve in ?×?Λ, the continuous curve can be constructed to connect P and another any point Q.

    We are going to prove that there exists a continuous curve to connect P and O according to the character of P in two cases:

    (i)Let P =((ξ,z),(η,w))∈?×?Λ.If x(P)= 0A, then ξ = 0 or η =0.Construct a continuous curve

    γ0(s)={((sξ,sz),(sη,sw)), s ∈[0,1]}.

    It is easy to verify that γ0(s)??×? for ?s ∈[0,1].Moreover, x(γ0(s))= 0, and γ0(0)= O,γ0(1)=P.Thereby, γ0(s)is a continuous curve connecting P and O in ?×?Λ.

    (ii)Let P = ((ξ,z),(η,w))∈?×?Λ, if x(P)A and x(P)≠ 0, then ξ ≠ 0 and η ≠ 0.There is=((0,z),(η,w))corresponding to P in ?×?Λ.We are going to first prove that P andcan be joined with a continuous curve in ?×?Λ.

    Construct a cluster of curves, which are disjoint curves with P andas endpoints:

    where a,b ∈R,a≠0 and b≠0.Because

    we have γk(s)??×?, and γk(0)=, γk(1)=P.Moreover,

    so x(γ1(s)),x(γ2(s)),··· ,x(γM+1(s))are disjoint continuous curves connecting x(P)and origin in C.Since A is a finite set containing M elements at most, there exists k0such that x(γk0(s))∩A = ?.Namely, there exists at least one continuous curve γk0(s)to join P andin ?×?Λ.

    Next, from (i), γ0(s)= {((0,sz),(sη,sw)), s ∈[0,1]} is a continuous curve to joinand O in ?×?Λ.Hence, joining γk0(s)and γ0(s), we get a continuous curve to connect P =((ξ,z),(η,w))(ξ ≠0,η≠0)and O.

    In the same way, for another Q ∈?×?Λ, we also get a continuous curve to connect Q and O.So by connecting P and Q with O, we construct a continuous curve to connect any two points in ?×?Λ.

    亚洲色图av天堂| 国产精品免费一区二区三区在线| 村上凉子中文字幕在线| 欧美黄色片欧美黄色片| 精品久久久久久久毛片微露脸| 最近最新中文字幕大全免费视频| 热99re8久久精品国产| 午夜福利成人在线免费观看| 99精品在免费线老司机午夜| 免费人成在线观看视频色| 少妇熟女aⅴ在线视频| 精品一区二区三区视频在线观看免费| 美女免费视频网站| 国产主播在线观看一区二区| 久久香蕉国产精品| 国产高清有码在线观看视频| 午夜老司机福利剧场| 一级黄片播放器| 首页视频小说图片口味搜索| 亚洲av成人精品一区久久| 亚洲国产日韩欧美精品在线观看 | 国产成人福利小说| 免费看十八禁软件| 中出人妻视频一区二区| 在线观看舔阴道视频| 午夜福利在线观看免费完整高清在 | 男女那种视频在线观看| h日本视频在线播放| 97碰自拍视频| 亚洲熟妇熟女久久| 一本久久中文字幕| 欧美极品一区二区三区四区| 欧美最黄视频在线播放免费| 一个人看的www免费观看视频| 伊人久久大香线蕉亚洲五| 婷婷六月久久综合丁香| 国产伦人伦偷精品视频| 在线免费观看不下载黄p国产 | 亚洲国产精品成人综合色| 最近在线观看免费完整版| 99热这里只有是精品50| 又黄又爽又免费观看的视频| 又粗又爽又猛毛片免费看| 色吧在线观看| 中文字幕熟女人妻在线| 1024手机看黄色片| 中文在线观看免费www的网站| 国产精品99久久久久久久久| 免费看a级黄色片| 美女高潮喷水抽搐中文字幕| 女人十人毛片免费观看3o分钟| 黄色片一级片一级黄色片| x7x7x7水蜜桃| 精品国内亚洲2022精品成人| 精品一区二区三区视频在线观看免费| 国产免费av片在线观看野外av| 免费看美女性在线毛片视频| 很黄的视频免费| 国产精品一区二区免费欧美| 国产精品亚洲一级av第二区| 草草在线视频免费看| 日本免费a在线| 久9热在线精品视频| 亚洲人成网站在线播| 人人妻人人看人人澡| 国产精品久久久久久久电影 | 亚洲成av人片免费观看| 久久久久精品国产欧美久久久| 国产免费男女视频| 国内精品美女久久久久久| 在线观看av片永久免费下载| 女生性感内裤真人,穿戴方法视频| 午夜免费激情av| 婷婷丁香在线五月| 国产伦一二天堂av在线观看| 国产乱人视频| 国产精品日韩av在线免费观看| 乱人视频在线观看| 非洲黑人性xxxx精品又粗又长| 观看免费一级毛片| 小说图片视频综合网站| 国产高清激情床上av| 日韩欧美免费精品| 精品一区二区三区视频在线 | 高清日韩中文字幕在线| 69av精品久久久久久| 免费在线观看成人毛片| 啦啦啦观看免费观看视频高清| 婷婷精品国产亚洲av| 在线视频色国产色| 亚洲欧美日韩卡通动漫| 1024手机看黄色片| 欧美国产日韩亚洲一区| 亚洲国产精品合色在线| 啦啦啦免费观看视频1| 久久久久久大精品| 一级黄片播放器| 99久久精品一区二区三区| 国产极品精品免费视频能看的| 男女做爰动态图高潮gif福利片| 国产黄色小视频在线观看| 精品无人区乱码1区二区| 国产成人a区在线观看| 亚洲色图av天堂| 久久国产乱子伦精品免费另类| АⅤ资源中文在线天堂| 桃红色精品国产亚洲av| 午夜久久久久精精品| 国产毛片a区久久久久| 成人三级黄色视频| 我要搜黄色片| 国产精品亚洲av一区麻豆| 中文字幕高清在线视频| 日韩欧美国产一区二区入口| 亚洲狠狠婷婷综合久久图片| 在线免费观看不下载黄p国产 | 三级毛片av免费| 亚洲欧美日韩高清在线视频| 悠悠久久av| 国产精品免费一区二区三区在线| 最近视频中文字幕2019在线8| 日韩有码中文字幕| 亚洲成av人片在线播放无| 精品电影一区二区在线| 久久久久久大精品| 中文字幕精品亚洲无线码一区| 亚洲av中文字字幕乱码综合| 午夜福利在线在线| 男女之事视频高清在线观看| 亚洲成人久久爱视频| 精品一区二区三区av网在线观看| 亚洲一区二区三区色噜噜| 精品乱码久久久久久99久播| 1024手机看黄色片| 看黄色毛片网站| 91字幕亚洲| 变态另类丝袜制服| 精品熟女少妇八av免费久了| 在线播放无遮挡| 亚洲精品亚洲一区二区| 久久久国产精品麻豆| 欧美日韩福利视频一区二区| 在线播放无遮挡| 日韩精品青青久久久久久| 国产三级黄色录像| 午夜激情欧美在线| 国产熟女xx| 精品一区二区三区视频在线观看免费| 哪里可以看免费的av片| 免费在线观看亚洲国产| 国内精品一区二区在线观看| 亚洲精品成人久久久久久| 国产黄色小视频在线观看| 少妇的丰满在线观看| 国产伦一二天堂av在线观看| 国内揄拍国产精品人妻在线| 十八禁人妻一区二区| 午夜久久久久精精品| 麻豆成人av在线观看| 国产主播在线观看一区二区| 久久性视频一级片| 波多野结衣巨乳人妻| 欧美又色又爽又黄视频| 一夜夜www| 最新在线观看一区二区三区| 久久精品亚洲精品国产色婷小说| 久久婷婷人人爽人人干人人爱| 欧美xxxx黑人xx丫x性爽| av黄色大香蕉| 麻豆成人av在线观看| 国产精品一及| 午夜激情福利司机影院| 国产成+人综合+亚洲专区| 亚洲成人精品中文字幕电影| 99国产综合亚洲精品| 美女高潮的动态| 国产午夜精品论理片| 久久人人精品亚洲av| 欧美日韩乱码在线| 午夜福利成人在线免费观看| 精品一区二区三区视频在线观看免费| 免费av毛片视频| 最后的刺客免费高清国语| 两个人看的免费小视频| 国产三级中文精品| 免费观看人在逋| 免费看日本二区| 欧美日韩瑟瑟在线播放| 草草在线视频免费看| 十八禁人妻一区二区| 夜夜躁狠狠躁天天躁| 一区二区三区高清视频在线| 少妇裸体淫交视频免费看高清| 性欧美人与动物交配| 又黄又粗又硬又大视频| 香蕉av资源在线| 日本一二三区视频观看| 日韩大尺度精品在线看网址| 久久久久亚洲av毛片大全| or卡值多少钱| 日本黄色片子视频| 亚洲精品一卡2卡三卡4卡5卡| 丰满的人妻完整版| 日本a在线网址| 色av中文字幕| 国内精品一区二区在线观看| 久久亚洲精品不卡| 久久久久九九精品影院| 一级毛片女人18水好多| 欧美一区二区精品小视频在线| 淫秽高清视频在线观看| 国产亚洲欧美98| 岛国在线观看网站| 黄片小视频在线播放| 性色avwww在线观看| 国产高清三级在线| 老熟妇仑乱视频hdxx| 午夜福利免费观看在线| 免费看日本二区| 久久国产精品影院| АⅤ资源中文在线天堂| 国产视频内射| 亚洲专区国产一区二区| 亚洲精品国产精品久久久不卡| 午夜老司机福利剧场| 99热这里只有是精品50| 波多野结衣高清无吗| 波多野结衣高清作品| 在线观看免费午夜福利视频| 成人国产综合亚洲| 国产不卡一卡二| 亚洲五月婷婷丁香| 色综合婷婷激情| 男女午夜视频在线观看| 最后的刺客免费高清国语| 免费观看精品视频网站| 2021天堂中文幕一二区在线观| 99国产精品一区二区蜜桃av| 国产成人啪精品午夜网站| 日韩中文字幕欧美一区二区| АⅤ资源中文在线天堂| 一卡2卡三卡四卡精品乱码亚洲| 在线a可以看的网站| 哪里可以看免费的av片| 中文字幕精品亚洲无线码一区| 99国产精品一区二区三区| 草草在线视频免费看| 亚洲欧美日韩高清专用| 一本综合久久免费| 欧美黄色片欧美黄色片| 亚洲第一欧美日韩一区二区三区| 日韩中文字幕欧美一区二区| 国产精品女同一区二区软件 | 91在线精品国自产拍蜜月 | 真人做人爱边吃奶动态| 亚洲成人中文字幕在线播放| 久久婷婷人人爽人人干人人爱| av女优亚洲男人天堂| 在线免费观看的www视频| 色老头精品视频在线观看| 精品久久久久久成人av| 黄色视频,在线免费观看| 亚洲成人中文字幕在线播放| 最新美女视频免费是黄的| 给我免费播放毛片高清在线观看| 国产高清有码在线观看视频| 亚洲乱码一区二区免费版| 国产aⅴ精品一区二区三区波| x7x7x7水蜜桃| 亚洲av熟女| eeuss影院久久| 悠悠久久av| 国产探花在线观看一区二区| 高潮久久久久久久久久久不卡| 亚洲成av人片在线播放无| 免费在线观看日本一区| 香蕉久久夜色| 757午夜福利合集在线观看| 欧美日韩黄片免| 天堂动漫精品| 亚洲精华国产精华精| 国产亚洲av嫩草精品影院| 热99re8久久精品国产| 最近最新中文字幕大全免费视频| 男女做爰动态图高潮gif福利片| 最好的美女福利视频网| 精品国产亚洲在线| 亚洲成人免费电影在线观看| 中文亚洲av片在线观看爽| 午夜免费男女啪啪视频观看 | 欧美最黄视频在线播放免费| 国产欧美日韩一区二区精品| 亚洲不卡免费看| 亚洲天堂国产精品一区在线| 亚洲在线观看片| 亚洲男人的天堂狠狠| 日本一本二区三区精品| 在线播放国产精品三级| 蜜桃亚洲精品一区二区三区| av女优亚洲男人天堂| 久久久久性生活片| 色综合欧美亚洲国产小说| 亚洲五月婷婷丁香| 真人一进一出gif抽搐免费| a在线观看视频网站| 一区二区三区免费毛片| 搡老妇女老女人老熟妇| 99精品久久久久人妻精品| 精品一区二区三区av网在线观看| 高清在线国产一区| 搞女人的毛片| 免费av不卡在线播放| 国产一区二区三区视频了| 亚洲真实伦在线观看| 国产高清激情床上av| 久久久久久久久大av| 波多野结衣高清无吗| 欧美+亚洲+日韩+国产| 无遮挡黄片免费观看| 97人妻精品一区二区三区麻豆| 村上凉子中文字幕在线| 国产精品影院久久| 日韩 欧美 亚洲 中文字幕| 久久这里只有精品中国| 欧美黑人欧美精品刺激| 有码 亚洲区| 欧美一区二区亚洲| 在线观看午夜福利视频| 18禁黄网站禁片午夜丰满| aaaaa片日本免费| 国产精品久久久久久久久免 | 亚洲熟妇熟女久久| 国产精品免费一区二区三区在线| 99热只有精品国产| 亚洲性夜色夜夜综合| 日本a在线网址| 啪啪无遮挡十八禁网站| 免费看十八禁软件| 午夜免费激情av| 久久6这里有精品| 最近最新免费中文字幕在线| 亚洲精华国产精华精| 嫁个100分男人电影在线观看| 久久亚洲真实| 男女视频在线观看网站免费| 中亚洲国语对白在线视频| 亚洲成人久久爱视频| e午夜精品久久久久久久| 老司机午夜十八禁免费视频| 老司机福利观看| 久久国产精品人妻蜜桃| 内射极品少妇av片p| 身体一侧抽搐| 中文字幕人成人乱码亚洲影| 麻豆国产97在线/欧美| 中亚洲国语对白在线视频| 亚洲精品久久国产高清桃花| 久久精品国产99精品国产亚洲性色| 国产精品久久久久久久久免 | 老司机深夜福利视频在线观看| 欧美三级亚洲精品| 久久精品国产自在天天线| 午夜a级毛片| 无遮挡黄片免费观看| 国产av不卡久久| 黄色视频,在线免费观看| 欧美日韩一级在线毛片| 亚洲av电影不卡..在线观看| 亚洲av成人精品一区久久| 国产伦一二天堂av在线观看| 国产99白浆流出| 欧美在线黄色| 宅男免费午夜| 精品免费久久久久久久清纯| 久久久久九九精品影院| 蜜桃久久精品国产亚洲av| 日韩欧美在线二视频| 色av中文字幕| 最近最新中文字幕大全电影3| 人人妻人人看人人澡| 国产精品1区2区在线观看.| 久久久久国产精品人妻aⅴ院| 白带黄色成豆腐渣| 欧美又色又爽又黄视频| 男女做爰动态图高潮gif福利片| 成年女人永久免费观看视频| 久久久久国内视频| 午夜福利成人在线免费观看| 99久久精品国产亚洲精品| 美女高潮的动态| 成熟少妇高潮喷水视频| 国产精品久久电影中文字幕| 制服人妻中文乱码| 看免费av毛片| 99国产精品一区二区三区| 少妇熟女aⅴ在线视频| 免费在线观看影片大全网站| 国产蜜桃级精品一区二区三区| 欧美性猛交╳xxx乱大交人| 俺也久久电影网| 欧美日韩一级在线毛片| www国产在线视频色| 99热这里只有是精品50| 久久欧美精品欧美久久欧美| 亚洲av电影在线进入| 国产精品久久久久久精品电影| 日韩高清综合在线| 日本撒尿小便嘘嘘汇集6| 国产午夜精品论理片| 18禁国产床啪视频网站| e午夜精品久久久久久久| 日本黄色视频三级网站网址| 午夜亚洲福利在线播放| 高潮久久久久久久久久久不卡| 日韩精品青青久久久久久| 观看美女的网站| 性欧美人与动物交配| 欧美激情久久久久久爽电影| 91av网一区二区| 丰满乱子伦码专区| 老司机午夜十八禁免费视频| 亚洲va日本ⅴa欧美va伊人久久| 国内揄拍国产精品人妻在线| 男女视频在线观看网站免费| 久久久精品大字幕| 午夜福利在线在线| 最近最新免费中文字幕在线| 韩国av一区二区三区四区| 欧美在线黄色| 亚洲最大成人手机在线| 国产av麻豆久久久久久久| av中文乱码字幕在线| 狠狠狠狠99中文字幕| 国产aⅴ精品一区二区三区波| 中文字幕av成人在线电影| 亚洲五月天丁香| 日本一本二区三区精品| 精品人妻1区二区| 母亲3免费完整高清在线观看| 亚洲欧美日韩高清在线视频| 男人舔女人下体高潮全视频| 亚洲精品影视一区二区三区av| 精品一区二区三区av网在线观看| 亚洲专区中文字幕在线| www.www免费av| 日日摸夜夜添夜夜添小说| 一级黄色大片毛片| 久久精品国产清高在天天线| 欧美色视频一区免费| 久久久久久久久中文| 日韩欧美精品免费久久 | 国产精品亚洲一级av第二区| 国产精品精品国产色婷婷| 久久久久久久亚洲中文字幕 | 神马国产精品三级电影在线观看| www.www免费av| 亚洲无线观看免费| 日本精品一区二区三区蜜桃| 狂野欧美激情性xxxx| netflix在线观看网站| 久久亚洲精品不卡| 国产单亲对白刺激| 日韩欧美国产一区二区入口| 精品欧美国产一区二区三| 在线十欧美十亚洲十日本专区| 黄片小视频在线播放| 日韩有码中文字幕| 一级黄色大片毛片| 香蕉丝袜av| 亚洲在线观看片| 国产伦精品一区二区三区视频9 | 国产成人a区在线观看| 欧美午夜高清在线| 婷婷丁香在线五月| 亚洲专区中文字幕在线| 精品一区二区三区视频在线 | 日本a在线网址| 波多野结衣巨乳人妻| 99热只有精品国产| 老司机福利观看| 好男人电影高清在线观看| 亚洲狠狠婷婷综合久久图片| 亚洲人成网站在线播| 在线视频色国产色| aaaaa片日本免费| 我的老师免费观看完整版| www.www免费av| 手机成人av网站| 国产精品精品国产色婷婷| 一区二区三区国产精品乱码| 色综合亚洲欧美另类图片| 国产精品久久久久久久久免 | 美女被艹到高潮喷水动态| 他把我摸到了高潮在线观看| 一级作爱视频免费观看| 成人永久免费在线观看视频| 99热只有精品国产| 国产精品久久久久久久久免 | 一本精品99久久精品77| 好男人电影高清在线观看| 免费搜索国产男女视频| 成人永久免费在线观看视频| 久久精品国产清高在天天线| 亚洲av不卡在线观看| 神马国产精品三级电影在线观看| 热99re8久久精品国产| 小说图片视频综合网站| 国产伦人伦偷精品视频| 国产午夜精品论理片| 久久久国产精品麻豆| 国产色爽女视频免费观看| avwww免费| 成年免费大片在线观看| 欧美最新免费一区二区三区 | 亚洲专区国产一区二区| 午夜福利免费观看在线| 人妻丰满熟妇av一区二区三区| 国产精品久久久人人做人人爽| 亚洲男人的天堂狠狠| 搡老岳熟女国产| 桃色一区二区三区在线观看| 日本与韩国留学比较| 三级毛片av免费| ponron亚洲| tocl精华| 人妻夜夜爽99麻豆av| 久久久国产成人免费| 国产一级毛片七仙女欲春2| 十八禁人妻一区二区| 国产精品久久久久久久电影 | 久久精品国产亚洲av涩爱 | 久久精品国产清高在天天线| 蜜桃亚洲精品一区二区三区| 日韩人妻高清精品专区| 国产麻豆成人av免费视频| 亚洲专区中文字幕在线| 久9热在线精品视频| av在线蜜桃| 午夜精品久久久久久毛片777| 日韩精品中文字幕看吧| 国产精品久久久人人做人人爽| 精品日产1卡2卡| 日韩成人在线观看一区二区三区| 成年免费大片在线观看| 精品人妻偷拍中文字幕| 俺也久久电影网| 中文字幕高清在线视频| 日韩欧美三级三区| 欧美国产日韩亚洲一区| 亚洲精品一区av在线观看| 国模一区二区三区四区视频| 特级一级黄色大片| 女生性感内裤真人,穿戴方法视频| 国内久久婷婷六月综合欲色啪| 久久久久亚洲av毛片大全| 99riav亚洲国产免费| 国产伦一二天堂av在线观看| 搡老妇女老女人老熟妇| 搡老熟女国产l中国老女人| 一个人免费在线观看的高清视频| 天堂av国产一区二区熟女人妻| 亚洲熟妇熟女久久| 欧美一级a爱片免费观看看| 精品国产美女av久久久久小说| 一卡2卡三卡四卡精品乱码亚洲| 亚洲国产精品999在线| 国产69精品久久久久777片| 欧美+亚洲+日韩+国产| 狂野欧美白嫩少妇大欣赏| 久久精品人妻少妇| 国产成人aa在线观看| 亚洲专区中文字幕在线| 国产真实乱freesex| 91久久精品电影网| 欧美色视频一区免费| 国内少妇人妻偷人精品xxx网站| 国产成人av教育| 中文字幕av成人在线电影| 国产麻豆成人av免费视频| 亚洲av成人不卡在线观看播放网| 最近在线观看免费完整版| 国产精品亚洲一级av第二区| 欧美乱妇无乱码| 免费在线观看影片大全网站| 别揉我奶头~嗯~啊~动态视频| 大型黄色视频在线免费观看| 很黄的视频免费| 97碰自拍视频| 桃色一区二区三区在线观看| 国产av在哪里看| av片东京热男人的天堂| 日韩人妻高清精品专区| bbb黄色大片| 在线观看av片永久免费下载| 亚洲成人久久爱视频| 2021天堂中文幕一二区在线观| 91麻豆av在线| 国产一区在线观看成人免费| 校园春色视频在线观看| 欧美bdsm另类| 亚洲avbb在线观看| 国产精品av视频在线免费观看| 婷婷丁香在线五月| 亚洲成人精品中文字幕电影| 免费在线观看亚洲国产| 国内少妇人妻偷人精品xxx网站| 国产美女午夜福利| 91久久精品电影网| 成人av在线播放网站| 欧美日韩黄片免| 亚洲欧美一区二区三区黑人| 无限看片的www在线观看| 午夜福利免费观看在线| 午夜免费男女啪啪视频观看 | 男女下面进入的视频免费午夜|