• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A Note on 3-Divisibility of Class Number of Quadratic Field?

    2022-04-26 08:28:16JianfengXIEKuokFaiCHAO

    Jianfeng XIE Kuok Fai CHAO

    Abstract In this paper, the authors show that there exists infinitely many family of pairs of quadratic fields with D,n ∈Z whose class numbers are both divisible by 3.

    Keywords Quadratic field, Class number, Hilbert class field

    1 Introduction

    The class number of algebraic number field is a classical topic being studied in a long history in number theory.Gauss proposed the following profound conjectures

    Conjecture 1.1There are infinitely many real quadratic fields with class number one.

    Conjecture 1.2There are only 9 imaginary quadratic fieldswith class number one, here D =?1,?2,?3,?7,?11,?19,?43,?67 and ?163.

    Conjecture 1.2 has been verified by Baker and Stark respectively in 1967.But Conjecture 1.1 is still an open problem so far.It seems that the case of real quadratic field is quite different to that of imaginary quadratic field.Due to this reason partly, some scholars think about the divisibility of class numbers of quadratic fields.Komatsu [5] gives an infinite family of pairs of quadratic fieldswith m,D ∈Z whose class numbers are multiple of 3.In[2], Iizuka, Konomi and Nakano construct an infinite family of pairs of quadratic fieldsandwith D ∈Q,m,n ∈Z whose class numbers are both divisible by 3 or 5 or 7.Recently Iizuka [1] proposes the following conjecture and proves that this conjecture holds for imaginary quadratic fields when p=3,n=1.

    Conjecture 1.3(see [1])For any prime number p and any positive integer n, there is an infinite family of n+1 successive real (or imaginary)quadratic fields

    with D ∈Z whose class numbers are divisible by p.

    Inspired by these results, one can consider such problem: For a given positive integer n,does there exist an infinite family of pairs of real (imaginary)quadratic fieldsandwith D ∈Z whose class numbers are both divisible by 3?

    From now on we call the real (resp.imaginary)case for the case of pairs of real (resp.imaginary)quadratic fields for short.In this paper,we give the positive answer for the problem above, More concretely, we have

    Theorem 1.1For arbitrary positive integern, there exist infinity many pairs of quadraticfieldswith someD ∈Zsuch that their class numbers can be divided by3for the real case and imaginary case, respectively.

    We note that our main result is for any positive number.In particular, taking n=1 in the imaginary case, it is the case studied by Iizuka.

    NotationThroughout this paper, Z,Q,Fpdenote the ring of rational integers, the field of rational numbers and the finite field of order p, respectively.For a prime number p and an integer a, vp(a)denotes the greatest exponent m such that pm|a, i.e., p-adic valuation.For a algebraic number field K, Kpdenotes its completion with respect to its nonzero prime ideal p.We denote the class group of K and the class number of K by ClKand h(K), respectively.

    2 The Local-Global Principle for xm ?d

    In this section, we would like discuss the reducibility of polynomial xm?d which will play a key role in our paper.At first, we recall a fact in algebraic number theory.

    Theorem 2.1(see [3])LetL/Kbe a finite extension of number fields andOL,OKdenote their rings of integers respectively.Suppose thatpis a nonzero prime ideal ofOKandq1,··· ,qgare all the distinct prime ideals ofOLthat lie abovep.Takeα ∈Lsuch thatL=K(α), and letf(T)be an irreducible polynomial overKwithf(α)=0.Factorf(x)into the productof irreducible polynomials with coefficients inKp.Then, we haveg =h.By changing the order off1,··· ,fg, we obtain isomorphisms of fields overKp,

    Next theorem is an immediate consequence of Chebotarev’s density theorem.Since we cannot find the proof in any literature, we give one for the sake of completeness.

    Theorem 2.2LetL/Kbe a cyclic extension of number fields, then there are infinitely many places ofKwhich do not split inL.

    ProofDenote G = Gal(L/K)and n = [L : K].Let q be a nonzero prime of OLand p=OK∩q.Indeed, there are only finitely many ramified nonzero prime ideals.Since we only focus on the existence of infinitely many places of K which do not split in L, we get rid of these

    finitely many prime ideals.From now on, we can assume that p is unramified in L.Denote β={nonzero prime ideals of OKwhich is unramified in L}.Then we have a fact that p does not split in L if and only if Gq= G, where Gqis the decomposition group of q.Since G is cyclic, we choose a generator σ of G.Letis the Artin symbol.Thus for each p ∈S, p does not split in L.By density theorem,where δ(S)is the Dirichlet density of S.This means S consists of infinitely many elements.

    Then we can investigate the irreducibility of the polynomials in the form of xm?d with m ∈Z+,d ∈Q.At first we deal with a general case.

    Theorem 2.3Suppose that the polynomialf(x)= xm?d ∈Q[x]is irreducible over the cyclotomic fieldQ(ζm),d ∈Q×.There are infinitely many prime placesqofQsuch thatf(x)is irreducible overQqand overFq.

    ProofLet L be the splitting field of f(x)in C.Consider the finite extension L/Q(ζm).Since f(x)is irreducible over Q(ζm), this is a cyclic extension of degree m.By Theorem 2.2,there exists infinitely many prime places of Q(ζm)which do not split in L.We denote M the set of all such prime places.For any q ∈M, we factor f(x)into the product of irreducible polynomials with coefficients in Q(ζm)q, i.e.,.According to Theorem 2.1 and the fact that q does not split in L, we know that h=1, which means that f(x)is irreducible over Q(ζm)q.

    Let q be the prime place of Q which lies under q.It is immediate to know that Qqis a subfield of Q(ζm)q.Since f(x)is irreducible over Q(ζm)q, then is also irreducible over Qq.

    It may not be easy to determine whether a polynomial in the form of xm?d is irreducible over Q(ζm)or not.However, when m is odd, we can just consider this problem over Q.Let us recall a result in [7] which is needed in the proof of Lemma 2.2.

    Lemma 2.1(see [7])Ifmis odd and the polynomialxm?d,d ∈Q×has no root inQ,then it has no root inQ(ζm).

    Lemma 2.2Ifmis odd and the polynomialxm?d,d ∈Q×is irreducible overQ, then it is also irreducible overQ(ζm).

    ProofLet α=∈R.Firstly we show that if 1 ≤i

    It is clear that the splitting field of xm?d is Q(ζm)(α).Assume that xm?d is reducible over Q(ζm), then the degree of the minimal polynomial f(x)of α over Q(ζm)is less than m, namely,deg f(x)=h.So f(x)can be written in the form of1 ≤ij< m, 1 ≤j ≤h ?1.Hence the constant term ofThis means αh∈Q(ζm), which leads a contradiction.Therefore xm?d is irreducible over Q(ζm).

    Combining Lemma 2.2 and Theorem 2.3, we get the following result.

    Theorem 2.4Ifmis odd and the polynomialf(x)= xm?d,d ∈Q×is irreducible overQ, then there are infinitely many placesqofQsuch thatf(x)is irreducible overQqand then overFq.

    Now we can get an equivalent statement,which can be seen as a kind of local-global principle.

    Theorem 2.5Assume thatmis odd andf(x)=xm?d, d ∈Q×.Thenf(x)is reducible overQif and only iff(x)is reducible overFqexcept finitely many placesqofQ.

    Remark 2.1There do exist polynomials f(x)=xm?d with m being even such that f(x)is irreducible over Q but is reducible over every Fq, where q runs through all prime places of Q.For example, x4+1 and x10?5 are the cases.

    3 A Construction of Quadratic Fields

    In this section, we discuss how we can construct a pair of fieldswhose class numbers can be divided by 3.Recall that Hilbert class field H of a number field K is the maximal unramified abelian extension of K, and there is a canonical isomorphic Gal(H/K)ClK.It is clear that the class number of K can be divided by 3 if and only if there exists a cyclic unramified cubic extension of K.It is a hint for a construction.Kishi and Miyake [4] give the following characterization of all quadratic fields which admits a cyclic unramified cubic extension.

    Theorem 3.1(see [4])Choose(u,w)∈Z×Z, and letg(Z)=Z3?uwZ ?u2.If

    then the normal closure ofQ(θ), whereθis a root ofg(Z), is a cyclic, cubic, unramified extension of;in particular, thenK =has class number divisible by3.Conversely,every quadratic number fieldKwith class number divisible by3and every unramified, cyclic,cubic extension ofKis given by a suitable choice of integersuandw.

    Remark 3.1The condition (1)in (3.1)is critical.The reason why we develop the story of irreducibility of xm?d in Section 2 is to serve for the condition (3)in (3.1).

    To achieve our goals, a natural idea is to find integer pairs (u1,w1)and (u2,w2)such that both of them satisfy all the conditions in (3.1), and

    In order to find such integer pairs(u1,w1)and(u2,w2),we consider the integer pairs(x1,y1)and (x2,y2)such that

    If so, let u1=,w1=y1andfor some k ∈Z{0}.Then we have

    From (3.3)–(3.4), we get

    Thus we are back to the situation (3.2).Clearly we only need to find integer pairs (x1,y1)and (x2,y2)satisfying equation (3.3).Furthermore, we mention that

    3.1 First step

    Now we start to construct some solutions for equation(3.3).Assume that there exist integer pairs (x1,y1)and (x2,y2)satisfying equation (3.3)and let

    It follows that

    Put

    One can check that 4(k3?c2)=nc2.Then we can simplify the right-hand side of (3.6)

    In order to ensure this equality holds, we can put

    here p is a prime number and l is a positive integer.We will explain why these two integers are introduced.Solving this equation by regarding x1and x2as variables, we get

    It is clear that (3.3)holds if we set (x1,y1)and (x2,y2)as in (3.5)and (3.8).We note that we can ensure x1,x2are integers by choosing proper integer t.This will be discussed in Theorem 3.2.

    where

    It is clear that the leading coefficient of f(t)is 4 ?27α2.Since α ∈Q, 4 ?27α2≠ 0.It is clear that there exist infinitely many integers t0such that f(t0)> 0 (resp.f(t0)< 0)when 4 ?27α2>0 (resp.4 ?27α2<0).Based on this fact, we always can choose proper t to ensure that both quadratic fieldsare real or imaginary.For the imaginary case, we should require 4 ?27α2< 0.It is easy to be achieved by choosingNow we consider the real case.We realize that 4 ?27α2> 0 if and only ifIt is equivalent toThe following lemma asserts that the condition 4 ?27α2> 0 can be achieved as well.This is the reason why we introduce the integer l above.

    Lemma 3.1Letn,k,pbe positive integers such that.Then there exists integerlsuch that

    ProofLetNote that 0 ≤d<1.We have

    3.2 Second step

    Set (x1,y1)and (x2,y2)as in (3.5)and (3.8).Let u1=,w1= y1,Here we mention that w1=w2=t2.Consider the polynomials

    respectively.We will show that (u1,w)and (u2,w)satisfy all the conditions in Theorem 3.1 under a suitable choice of t.If so, let

    then

    Thus we get two quadratic fieldswhose class numbers are divisible by 3.

    Now the aim is to ensure the polynomials F(Z)and G(Z)are irreducible by choosing suitable t.Recall

    and let

    We require that p is a prime number and is coprime to 6nkl.Then it is easy to check thatwhich means f1(Z)and f2(Z)are irreducible over Q.By Theorem 2.4, there exist two primes q1and q2(not necessary to be different)such that f1(Z)is irreducible over Fq1and f2(Z)is irreducible over Fq2, respectively.Thus we get the following lemma.

    Lemma 3.2Ift ≡0(mod q1q2), thenF1(Z)andF2(Z)are both irreducible overQ.

    ProofSince w =t2in the setting above and t ≡0(mod q1q2),it is clear that w ≡0(mod q1).From(3.8), we can see that(mod q1), then F1(Z)≡f1(Z)(mod q1), which means F1(Z)is irreducible over Fq1.Hence we know that F1(Z)is irreducible over Q.The irreducibility of F2(Z)follows in a similar way.

    Remark 3.2In the proof of Lemma 3.2 above, we abuse the notation of congruence and hence consider the congruence of a rational numbermodulus prime p.Indeed if we restrict n not having any p factor,can be viewed as the reciprocal (or inverse)of n modulus p and it still makes sense under this restriction.

    For convenience, recall that

    and denote g =18k2(p ?1)(3nk2(p ?1)2+l2p2)|(3nk2(p ?1)2?l2p2)|.By Theorem 2.3, there exist infinitely many primes q such that ?3 is quadratic non-residue in Fq.Choose such a prime number q0.Applying Theorem 3.1, we have

    Theorem 3.2Choose a prime numberpsuch thatp ≡1(mod 18nlk)and let

    hereq0is prime to integersg,p,q2,q2.Then pairs(u1,w1)and(u2,w2)satisfy the conditions of Theorem3.1, soboth admit an unramified cyclic cubic extension.In particular, their class numbers are both divisible by3.

    Remark 3.3We should ensure g,p,q0,q1,q2are all coprime mutually.We claim that this can be done.Firstly, once n is given, so k = n+4 and then we can get l as in Lemma 3.1.According to Dirichlet’s Prime Number theorem, we can choose a prime number p such that

    ? p ≡1(mod 18lnk)and

    ProofAccording to the congruence conditions(3.9),one can check that x1,x2are integers,and k2| x2.At first we show x1,x2are integers.Indeed, since p ?18lk(p ?1), it suffices to show that

    Due to t ≡?1(mod p), we have p|t3+1, then

    Since 18l|(p?1),we have 18lk(p?1)|3nk2(p?1)2(t3+1).Because t ≡1(mod 18k(p?1)),we have 18k(p ?1)|t3?1 and then 18lk(p ?1)|l2p2(t3?1).Now it is clear that

    18lk(p ?1)|3nk2(p ?1)2(t3+1)±l2p2(t3?1).

    Now we turn to check that k2| x2.Since a = 2k, it suffices to show that 9lp(p ?1)k2|3nk2(p ?1)2(t3+1)and 9lp(p ?1)k2|l2p2(t3?1).We realize that p|3nk2(p ?1)2(t3+1)and p|l2p2(t3?1)have been proved already.Since 9l|(p?1),we get 9l(p?1)k2|3nk2(p?1)2(t3+1).Because t ≡1(mod 9l(p ?1)k2), we have 9l(p ?1)k2|l2p2(t3?1).

    Moreover, we have

    We clarify that the conditions(3.1)in Theorem 3.1 are satisfied in the settings of u1,u2,w1and w2above.We note that (t,a)= 1.Then we have (w1,u1)= 1 and (w2,u2)= 1 immediately.By the assumption t ≡0(mod q0q1q2), it implies that t ≡0(mod q1q2).By Lemma 3.2, we know that F1(Z)and F2(Z)are both irreducible.It is clear that conditions(2)and(3)in (3.1)are fulfilled.Then we check that the condition (I)in (3.1)is satisfied.We recall t ≡1(mod g),and it implies (3,t)=1.Then 3w1and 3w2follow by w1=w2=t2.

    It remains to show that condition(1)in Theorem 3.1 is satisfied as well,namely,4u1w3?and 4u2w3?are not squares in Z.By the choice of q0, 4u1w3?≡?m2(mod q0), here m can be any integer.This means 4u1w3?is not a square.Similarly we can show that 4u2w3?is not a square as well.By Theorem 3.1,admit an unramified cyclic cubic extension, respectively.

    4 The Proof of Theorem 1.1

    To show that our construction can generate infinitely many pairswith their class numbers being divisible by 3, we recall a celebrated result on integral points by Siegel [6].Let MQbe the set of all standard absolute values on Q.

    Theorem 4.1(see [6])LetSbe a finite set such that{∞}?S ?MQandf(x)∈Q[x]be a polynomial of degreed ≥3with distinct roots inC.Then

    ?{(x,y)∈RS×RS|y2=f(x)}<∞,

    whereRSis the ring ofS-integers ofQ, i.e.,RS={x ∈Q|vp(x)≥0for allp ∈MQS}.

    Lemma 4.1Suppose thatf(x)∈Q[x]is a polynomial of degreed ≥3with distinct roots inC, andT ?Zconsists of infinitely many integers and put, thenEcontains infinitely quadratic fields.

    ProofWe assume that f(x)∈Z[x].Otherwise we choose an integer d such that d2f(x)∈Z[x] and consider the polynomial d2f(x)instead sinceBecause T is a countable set, we can denote this ordered set by T = {ti| i ∈I} with a countable set I.Assume E is a finite set, then there exist finitely many primes p1,p2,··· ,pN(N ∈Z+)such that for any i ∈I, we have

    Furthermore, there exists a integerfor a specific i such that there are infinitely many i′∈I,

    Let S ={∞}.Then RS=Z.Consider the set

    It follows that there exist infinitely many pairs of(ti′,ai′)in A.But by Siegel’s theorem 4.1, A is a finite set, which leads to a contradiction.Hence E is a set with infinite many elements.

    Proof of Theorem 1.1For the real case, we choose a proper l in Lemma 3.1.Set

    are real quadratic fields.

    For the imaginary case,choose an integerWhen t>0, we have<0.This means the quadratic fields

    are imaginary.

    Let

    Chinese Remainder theorem implies that the set T consists of infinite elements.Let f(t)=?and

    Since f(t)has no repeated roots which is in the form ofwith α,β ∈Q×, Lemma 4.1 implies that E contains infinitely many quadratic fields.Moreover, let Dt= f(t), t ∈T, Theorem 3.2 implies thatThen we complete our proof.

    AcknowledgementWe thank the anonymous referees for the valuable comments on our manuscript.

    av免费在线观看网站| 久久人人爽av亚洲精品天堂| 精品久久久久久电影网| 久久久久国内视频| 女生性感内裤真人,穿戴方法视频| 性色av乱码一区二区三区2| 婷婷六月久久综合丁香| 国产精品亚洲一级av第二区| 91老司机精品| 精品无人区乱码1区二区| 在线天堂中文资源库| 99国产极品粉嫩在线观看| 在线观看舔阴道视频| 精品久久久久久成人av| 91国产中文字幕| 在线免费观看的www视频| 亚洲国产欧美日韩在线播放| 9191精品国产免费久久| 欧美一级毛片孕妇| 日韩大码丰满熟妇| 亚洲精品美女久久av网站| 一进一出抽搐gif免费好疼 | 国产av又大| 亚洲精品国产精品久久久不卡| 国产精品亚洲一级av第二区| 国产精品野战在线观看 | 亚洲一区二区三区色噜噜 | 水蜜桃什么品种好| 法律面前人人平等表现在哪些方面| 中文欧美无线码| 高清毛片免费观看视频网站 | 长腿黑丝高跟| 亚洲第一av免费看| 免费少妇av软件| 国产视频一区二区在线看| 窝窝影院91人妻| 亚洲人成伊人成综合网2020| 亚洲国产欧美一区二区综合| 精品国产乱码久久久久久男人| 欧美+亚洲+日韩+国产| 国产精品亚洲一级av第二区| 亚洲va日本ⅴa欧美va伊人久久| 黄片播放在线免费| 久久精品国产99精品国产亚洲性色 | 午夜亚洲福利在线播放| 亚洲av美国av| www.999成人在线观看| 男人舔女人下体高潮全视频| 老熟妇仑乱视频hdxx| 一级黄色大片毛片| 欧美日韩瑟瑟在线播放| 高清欧美精品videossex| 久久草成人影院| 免费看十八禁软件| 美女高潮到喷水免费观看| 巨乳人妻的诱惑在线观看| 精品国产亚洲在线| 久久久久国产精品人妻aⅴ院| 欧美丝袜亚洲另类 | 黄网站色视频无遮挡免费观看| www国产在线视频色| 国内毛片毛片毛片毛片毛片| 婷婷六月久久综合丁香| 神马国产精品三级电影在线观看 | 99国产精品免费福利视频| 亚洲人成网站在线播放欧美日韩| 国产av一区在线观看免费| 18禁裸乳无遮挡免费网站照片 | 亚洲视频免费观看视频| 亚洲精品在线美女| 精品国产乱子伦一区二区三区| 99国产精品一区二区蜜桃av| 亚洲精品久久成人aⅴ小说| 国产亚洲精品久久久久久毛片| 午夜成年电影在线免费观看| 久久精品亚洲av国产电影网| 老汉色av国产亚洲站长工具| av天堂在线播放| 老司机深夜福利视频在线观看| 国产国语露脸激情在线看| 免费高清在线观看日韩| 国产高清国产精品国产三级| 国产欧美日韩一区二区精品| 五月开心婷婷网| 一区福利在线观看| 国产亚洲av高清不卡| 可以在线观看毛片的网站| 两人在一起打扑克的视频| 欧美在线一区亚洲| 99精品欧美一区二区三区四区| 午夜福利影视在线免费观看| 国产成人欧美在线观看| 日韩av在线大香蕉| 深夜精品福利| 一区二区日韩欧美中文字幕| 一进一出抽搐gif免费好疼 | 午夜两性在线视频| 99精品在免费线老司机午夜| 免费av中文字幕在线| 免费在线观看黄色视频的| 久久精品国产亚洲av高清一级| 在线视频色国产色| 亚洲精品一卡2卡三卡4卡5卡| 欧美日韩亚洲国产一区二区在线观看| 精品免费久久久久久久清纯| 两个人免费观看高清视频| 亚洲精品国产区一区二| netflix在线观看网站| 可以免费在线观看a视频的电影网站| 久久中文字幕人妻熟女| 欧美一区二区精品小视频在线| 99久久综合精品五月天人人| 99精品欧美一区二区三区四区| 每晚都被弄得嗷嗷叫到高潮| 亚洲自偷自拍图片 自拍| 成人18禁高潮啪啪吃奶动态图| 超色免费av| 91成年电影在线观看| 亚洲精品久久成人aⅴ小说| 免费在线观看影片大全网站| 国产免费男女视频| 精品久久久久久久久久免费视频 | aaaaa片日本免费| 日韩高清综合在线| 亚洲精品国产精品久久久不卡| 国产野战对白在线观看| 亚洲国产欧美日韩在线播放| 国产精品久久久久成人av| av天堂久久9| 欧美中文日本在线观看视频| 高清毛片免费观看视频网站 | 成人免费观看视频高清| 村上凉子中文字幕在线| 亚洲五月色婷婷综合| 日日夜夜操网爽| 在线av久久热| 在线观看午夜福利视频| 叶爱在线成人免费视频播放| 在线观看免费视频网站a站| 老汉色∧v一级毛片| 亚洲中文日韩欧美视频| 国产亚洲欧美精品永久| 国产av又大| 国产有黄有色有爽视频| 欧美激情 高清一区二区三区| 国产亚洲精品久久久久久毛片| 欧美乱妇无乱码| 日日干狠狠操夜夜爽| 日韩精品免费视频一区二区三区| 国产乱人伦免费视频| 黑人巨大精品欧美一区二区mp4| 亚洲精品久久午夜乱码| 少妇的丰满在线观看| 久久精品成人免费网站| 免费观看人在逋| 啦啦啦 在线观看视频| 搡老岳熟女国产| 亚洲精品久久成人aⅴ小说| 婷婷六月久久综合丁香| 18禁国产床啪视频网站| www.999成人在线观看| 久久人妻熟女aⅴ| 人成视频在线观看免费观看| 亚洲九九香蕉| 久久久久久久精品吃奶| 久久国产乱子伦精品免费另类| 欧美性长视频在线观看| 欧美国产精品va在线观看不卡| 亚洲自偷自拍图片 自拍| 757午夜福利合集在线观看| 国产精品国产高清国产av| 亚洲av五月六月丁香网| 国产精品98久久久久久宅男小说| 日韩免费高清中文字幕av| 欧美乱色亚洲激情| 欧美日韩精品网址| 亚洲熟女毛片儿| 国产av在哪里看| 久久人人97超碰香蕉20202| 一a级毛片在线观看| 亚洲精品美女久久久久99蜜臀| 在线观看一区二区三区| 两个人免费观看高清视频| 国产一区二区三区综合在线观看| 天堂动漫精品| 亚洲国产精品一区二区三区在线| 亚洲aⅴ乱码一区二区在线播放 | 久久中文字幕一级| 久久久久久久久久久久大奶| 美女 人体艺术 gogo| 久久午夜综合久久蜜桃| 欧美日韩精品网址| 久久久国产欧美日韩av| 欧美日韩中文字幕国产精品一区二区三区 | 久久国产精品影院| 在线观看免费视频网站a站| 男女之事视频高清在线观看| 99久久精品国产亚洲精品| 美女福利国产在线| 久久婷婷成人综合色麻豆| 国产精品免费一区二区三区在线| 国产有黄有色有爽视频| 色婷婷av一区二区三区视频| 精品高清国产在线一区| 老司机靠b影院| 亚洲av成人av| 久久香蕉激情| 一区二区三区精品91| 丝袜美腿诱惑在线| 免费在线观看亚洲国产| 两个人看的免费小视频| 欧美乱码精品一区二区三区| 午夜两性在线视频| 国产精品久久久av美女十八| 午夜福利免费观看在线| 久久亚洲真实| 丰满人妻熟妇乱又伦精品不卡| av国产精品久久久久影院| 久久婷婷成人综合色麻豆| 欧美激情 高清一区二区三区| 久久99一区二区三区| 操美女的视频在线观看| 搡老熟女国产l中国老女人| 97碰自拍视频| 亚洲人成77777在线视频| 精品久久久久久电影网| 色综合婷婷激情| 亚洲自拍偷在线| 大型av网站在线播放| 50天的宝宝边吃奶边哭怎么回事| 三上悠亚av全集在线观看| 性色av乱码一区二区三区2| 欧美久久黑人一区二区| 在线观看免费视频网站a站| av福利片在线| 亚洲欧美激情在线| 欧美在线一区亚洲| 日韩免费高清中文字幕av| 亚洲熟妇中文字幕五十中出 | 99久久久亚洲精品蜜臀av| 亚洲国产精品一区二区三区在线| 亚洲 欧美一区二区三区| 亚洲自拍偷在线| 久久午夜亚洲精品久久| 在线观看免费视频日本深夜| 大型av网站在线播放| 看黄色毛片网站| 欧美日本亚洲视频在线播放| 亚洲精品一二三| 亚洲成人免费电影在线观看| 天天躁狠狠躁夜夜躁狠狠躁| 视频区欧美日本亚洲| 极品人妻少妇av视频| 欧美激情 高清一区二区三区| 老熟妇乱子伦视频在线观看| 久热爱精品视频在线9| 久久久久久人人人人人| 无遮挡黄片免费观看| 男女床上黄色一级片免费看| 中文字幕人妻丝袜一区二区| 国产精品 国内视频| 三级毛片av免费| 中文字幕色久视频| 校园春色视频在线观看| 高潮久久久久久久久久久不卡| www.精华液| 一级毛片女人18水好多| 91九色精品人成在线观看| 欧美性长视频在线观看| 又紧又爽又黄一区二区| 国产无遮挡羞羞视频在线观看| 久久国产精品影院| 亚洲成人久久性| 欧美日本亚洲视频在线播放| 久久精品aⅴ一区二区三区四区| 久久国产乱子伦精品免费另类| 极品教师在线免费播放| 国产精品偷伦视频观看了| 亚洲欧美激情综合另类| 女人被狂操c到高潮| 夫妻午夜视频| 国产亚洲精品综合一区在线观看 | 久久九九热精品免费| 久久久精品国产亚洲av高清涩受| x7x7x7水蜜桃| 亚洲精品国产色婷婷电影| 麻豆一二三区av精品| 亚洲成人免费电影在线观看| 亚洲国产精品sss在线观看 | 久久久国产欧美日韩av| 在线观看免费视频网站a站| www.999成人在线观看| 欧美在线一区亚洲| 国内久久婷婷六月综合欲色啪| 亚洲一区中文字幕在线| 热re99久久精品国产66热6| 搡老岳熟女国产| 亚洲狠狠婷婷综合久久图片| 母亲3免费完整高清在线观看| 日韩有码中文字幕| 免费观看精品视频网站| 女性被躁到高潮视频| 日本免费一区二区三区高清不卡 | a级毛片黄视频| 精品一区二区三区视频在线观看免费 | 国产aⅴ精品一区二区三区波| 精品国内亚洲2022精品成人| 国产免费男女视频| 一边摸一边做爽爽视频免费| 免费看a级黄色片| 亚洲精品国产精品久久久不卡| 亚洲aⅴ乱码一区二区在线播放 | 亚洲精品中文字幕一二三四区| 午夜精品在线福利| 国产成人免费无遮挡视频| 午夜激情av网站| 久久久久久人人人人人| av视频免费观看在线观看| 国产精品自产拍在线观看55亚洲| 狠狠狠狠99中文字幕| 桃色一区二区三区在线观看| 久久人人爽av亚洲精品天堂| 两性午夜刺激爽爽歪歪视频在线观看 | 成年人黄色毛片网站| 欧美一级毛片孕妇| 欧美日韩国产mv在线观看视频| 麻豆成人av在线观看| 一区福利在线观看| av网站免费在线观看视频| 国产精品 欧美亚洲| www日本在线高清视频| 国产三级在线视频| 国产av精品麻豆| 大码成人一级视频| 色婷婷久久久亚洲欧美| 精品人妻1区二区| 国产一区二区在线av高清观看| 丝袜美腿诱惑在线| 亚洲成a人片在线一区二区| 咕卡用的链子| 亚洲中文字幕日韩| 亚洲,欧美精品.| 日韩大码丰满熟妇| 成年女人毛片免费观看观看9| 中文字幕av电影在线播放| 麻豆久久精品国产亚洲av | 精品一区二区三区四区五区乱码| 黄片播放在线免费| 免费在线观看影片大全网站| 十八禁网站免费在线| 中亚洲国语对白在线视频| 人妻久久中文字幕网| 9热在线视频观看99| 色在线成人网| 叶爱在线成人免费视频播放| 欧美乱妇无乱码| 久久国产精品人妻蜜桃| 手机成人av网站| 国产蜜桃级精品一区二区三区| 久久香蕉国产精品| 国产极品粉嫩免费观看在线| 黑人欧美特级aaaaaa片| 亚洲全国av大片| 91成年电影在线观看| 18禁黄网站禁片午夜丰满| 又黄又粗又硬又大视频| 午夜福利一区二区在线看| 国产成人影院久久av| 最新美女视频免费是黄的| 在线观看免费视频日本深夜| 亚洲男人天堂网一区| 欧美精品一区二区免费开放| 日韩大尺度精品在线看网址 | 国产亚洲精品综合一区在线观看 | 欧美不卡视频在线免费观看 | 成人av一区二区三区在线看| 在线天堂中文资源库| 三级毛片av免费| 国产亚洲精品一区二区www| 91国产中文字幕| 国产精品久久电影中文字幕| 999久久久精品免费观看国产| 国产蜜桃级精品一区二区三区| 成人亚洲精品一区在线观看| 久久精品亚洲av国产电影网| 成人影院久久| 亚洲av五月六月丁香网| 精品一区二区三卡| 国产成人精品久久二区二区91| 真人一进一出gif抽搐免费| 免费在线观看日本一区| 亚洲一区二区三区色噜噜 | 亚洲全国av大片| 一区福利在线观看| 性色av乱码一区二区三区2| 国产亚洲欧美98| 在线国产一区二区在线| 国产精品影院久久| 久久精品人人爽人人爽视色| 亚洲一卡2卡3卡4卡5卡精品中文| 亚洲欧美精品综合久久99| 精品久久久精品久久久| 国产亚洲精品第一综合不卡| 香蕉丝袜av| 日韩一卡2卡3卡4卡2021年| 一区二区三区国产精品乱码| 纯流量卡能插随身wifi吗| 免费av毛片视频| 又大又爽又粗| 国产片内射在线| 国产精品免费视频内射| 免费av毛片视频| 午夜免费激情av| 久久久久久久久免费视频了| 色哟哟哟哟哟哟| 美女高潮到喷水免费观看| 成人黄色视频免费在线看| 久久 成人 亚洲| 午夜精品国产一区二区电影| 国产精品日韩av在线免费观看 | 精品国产一区二区三区四区第35| 五月开心婷婷网| 国产极品粉嫩免费观看在线| 制服人妻中文乱码| 一区二区三区国产精品乱码| 欧美成人午夜精品| 亚洲一区二区三区色噜噜 | 久久精品人人爽人人爽视色| 一级作爱视频免费观看| 亚洲中文日韩欧美视频| 亚洲自拍偷在线| 国产精品av久久久久免费| 久久久精品国产亚洲av高清涩受| 在线播放国产精品三级| 97人妻天天添夜夜摸| 婷婷六月久久综合丁香| 这个男人来自地球电影免费观看| 色综合欧美亚洲国产小说| 日日爽夜夜爽网站| 亚洲少妇的诱惑av| 亚洲狠狠婷婷综合久久图片| 久久香蕉激情| 美国免费a级毛片| 国产一卡二卡三卡精品| 精品无人区乱码1区二区| 999久久久精品免费观看国产| 啦啦啦 在线观看视频| 成熟少妇高潮喷水视频| 欧美日韩黄片免| 99国产综合亚洲精品| 在线av久久热| 国产无遮挡羞羞视频在线观看| 午夜福利免费观看在线| 精品久久久久久成人av| 日本免费一区二区三区高清不卡 | 99久久人妻综合| 亚洲av第一区精品v没综合| 男女高潮啪啪啪动态图| 国产99白浆流出| 嫩草影院精品99| 黄色丝袜av网址大全| 999久久久国产精品视频| 免费观看人在逋| 成人18禁在线播放| 久久人人97超碰香蕉20202| 99精国产麻豆久久婷婷| 国产激情久久老熟女| 国产精品综合久久久久久久免费 | 亚洲色图av天堂| 岛国视频午夜一区免费看| 操美女的视频在线观看| 欧美日韩瑟瑟在线播放| 精品国产美女av久久久久小说| 人成视频在线观看免费观看| 夫妻午夜视频| 国产深夜福利视频在线观看| 18美女黄网站色大片免费观看| 日日夜夜操网爽| 日韩 欧美 亚洲 中文字幕| 99riav亚洲国产免费| 日日摸夜夜添夜夜添小说| 一a级毛片在线观看| 黄片大片在线免费观看| 国产免费男女视频| 天堂动漫精品| 欧美日韩福利视频一区二区| 欧美人与性动交α欧美软件| 国产成年人精品一区二区 | 老司机深夜福利视频在线观看| 午夜a级毛片| 99在线视频只有这里精品首页| 久久精品国产综合久久久| 国产成年人精品一区二区 | 99久久人妻综合| 国产成人一区二区三区免费视频网站| 老司机亚洲免费影院| 国产精品爽爽va在线观看网站 | 精品国产国语对白av| www.自偷自拍.com| 亚洲九九香蕉| 国产人伦9x9x在线观看| 国产亚洲精品第一综合不卡| 国产熟女午夜一区二区三区| 久久久久国产精品人妻aⅴ院| 国产真人三级小视频在线观看| 午夜福利在线观看吧| 久久久久久久久中文| 亚洲男人天堂网一区| 久久久久国产一级毛片高清牌| 国产精品99久久99久久久不卡| 18禁国产床啪视频网站| 国产麻豆69| 欧美精品亚洲一区二区| 淫秽高清视频在线观看| 午夜久久久在线观看| 男人舔女人的私密视频| a级毛片在线看网站| 欧美精品啪啪一区二区三区| 叶爱在线成人免费视频播放| 国产高清videossex| 91成人精品电影| 视频区图区小说| 不卡一级毛片| 国产精华一区二区三区| 亚洲 欧美 日韩 在线 免费| 黄片大片在线免费观看| 久久香蕉精品热| 十八禁人妻一区二区| 久久香蕉精品热| 久久精品亚洲av国产电影网| 成人特级黄色片久久久久久久| 日本免费a在线| 亚洲自偷自拍图片 自拍| 精品免费久久久久久久清纯| 欧美 亚洲 国产 日韩一| 欧美成人性av电影在线观看| 99国产精品一区二区三区| 天堂中文最新版在线下载| 女性被躁到高潮视频| 69av精品久久久久久| 午夜激情av网站| 1024视频免费在线观看| 天堂俺去俺来也www色官网| 国产精品成人在线| 999久久久精品免费观看国产| 久99久视频精品免费| 国产不卡一卡二| 午夜免费鲁丝| 亚洲性夜色夜夜综合| 97人妻天天添夜夜摸| 国产精品美女特级片免费视频播放器 | 国产精品亚洲一级av第二区| а√天堂www在线а√下载| 无限看片的www在线观看| 免费高清在线观看日韩| 夜夜躁狠狠躁天天躁| 欧美激情 高清一区二区三区| 精品国产一区二区久久| 精品国产亚洲在线| 亚洲一区二区三区欧美精品| 色婷婷久久久亚洲欧美| 国产av精品麻豆| 国产伦一二天堂av在线观看| 叶爱在线成人免费视频播放| 看免费av毛片| 免费在线观看完整版高清| 法律面前人人平等表现在哪些方面| 午夜视频精品福利| 99riav亚洲国产免费| 亚洲av五月六月丁香网| 免费观看人在逋| 9191精品国产免费久久| 国产黄a三级三级三级人| 国产高清videossex| 日韩欧美一区视频在线观看| 在线av久久热| av中文乱码字幕在线| 18禁黄网站禁片午夜丰满| 99久久久亚洲精品蜜臀av| 国产精品成人在线| 中文亚洲av片在线观看爽| 最近最新免费中文字幕在线| 亚洲色图av天堂| 高清黄色对白视频在线免费看| 国产精品一区二区在线不卡| 午夜a级毛片| 国产精品久久电影中文字幕| 日本欧美视频一区| 亚洲欧美精品综合久久99| 亚洲国产看品久久| 精品欧美一区二区三区在线| 日本欧美视频一区| 国产成人啪精品午夜网站| 亚洲激情在线av| 免费在线观看日本一区| 淫秽高清视频在线观看| 高清欧美精品videossex| 欧美在线一区亚洲| 亚洲成人免费电影在线观看| 一级作爱视频免费观看| 国产男靠女视频免费网站| 校园春色视频在线观看| 欧美黄色片欧美黄色片| 真人做人爱边吃奶动态| 淫秽高清视频在线观看| 亚洲自偷自拍图片 自拍| 少妇裸体淫交视频免费看高清 | 色在线成人网| 在线av久久热| 午夜福利一区二区在线看| 免费一级毛片在线播放高清视频 | 黑人巨大精品欧美一区二区mp4| 欧美黄色片欧美黄色片| 91精品国产国语对白视频| 天堂中文最新版在线下载|