• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    On Fridman Invariants and Generalized Squeezing Functions?

    2022-04-26 08:27:06FengRONGShichaoYANG

    Feng RONG Shichao YANG

    Abstract In this paper,the authors introduce the notion of generalized squeezing function and study the basic properties of generalized squeezing functions and Fridman invariants.They also study the comparison of these two invariants, in terms of the so-called quotient invariant.

    Keywords Fridman invariant, Squeezing function, Quotient invariant

    1 Introduction

    Due to the lack of a Riemann mapping theorem in several complex variables, it is of fundamental importance to study the biholomorphic equivalence of various domains in Cn,n ≥2.For such a study, it is necessary to introduce different kinds of holomorphic invariants.In this paper, we study two such invariants, the Fridman invariants and the (generalized)squeezing functions.

    The Fridman invariant was defined by Fridman in [5] for Kobayashi hyperbolic domainsDin Cn,n ≥1, as follows.Denote by(z,r)thekD-ball inDcentered atz ∈Dwith radiusr >0, wherekDis the Kobayashi distance onD.For two domainsD1andD2in Cn, denote byOu(D1,D2)the set of injective holomorphic maps fromD1intoD2.

    Recall that a domain ??Cnis said to be homogeneous if the automorphism group of ? is transitive.For any bounded homogeneous domain ?, set

    For comparison purposes, we call(z):=tanh((z))?1the Fridman invariant (see [4, 9]).

    For any bounded domainD ?Cn, the squeezing function was introduced in [1] by Deng,Guan and Zhang as follows:

    sD(z)=sup{r:rBn ?f(D),f ∈Ou(D,Bn),f(z)=0}.

    Here Bndenotes the unit ball in Cn.Comparing with the Fridman invariant, it seems natural to consider more general squeezing functions, replacing Bnby other “model domains”.

    Recall that a domain ? is said to be balanced if for anyz ∈?,λz ∈? for all|λ|≤1.Let? be a bounded, balanced and convex domain in Cn.The Minkowski functionρΩis defined as(see e.g.[6])

    Note that ? = {z ∈Cn:ρΩ(z)<1}.Set ?(r)= {z ∈Cn:ρΩ(z)< r}, 0< r <1.Then for any bounded domainD ?Cn, we can define the generalized squeezing function as follows:

    It is clear from the definitions that both Fridman invariants and generalized squeezing functions are invariant under biholomorphisms,and both take values in (0,1].There have been much study on the Fridman invariant and the squeezing function in recent years, and we refer the readers to two recent survey articles (see [3, 13])and the references therein for various aspects of the current research on this subject.

    The main purpose of this paper is to study some basic properties of both Fridman invariants and generalized squeezing functions.Moreover,we will also discuss the comparison of these two invariants, for which we introduce the quotient invariant

    whereD ?Cnis bounded and ??Cnis bounded, balanced, homogeneous and convex.

    In Section 2, we study basic properties of Fridman invariants, in particular refining several results from Fridman’s original work (see [5]).In Section 3, we study basic properties of generalized squeezing functions, in particular extending various properties of the squeezing function given in [1–2] to the more general setting.In Section 4, we study the comparison of Fridman invariants and generalized squeezing functions, in particular generalizing previous results from [9–10].

    2 Fridman Invariants

    Throughout this section, we suppose thatDis a Kobayashi hyperbolic domain in Cnand? is a bounded homogeneous domain in Cn(unless otherwise stated).

    We say thatf ∈Ou(?,D)is an extremal map atz ∈Dif

    It is not known from Fridman’s original work (see [5])whether extremal maps exist.However,if we assumeDto be bounded or taut, then extremal maps do exist.

    Theorem 2.1If D is bounded or taut, then an extremal map exists at each z ∈D.

    For the proof of Theorem 2.1, we need two lemmas.The first is probably well-known, and we provide a short proof for completeness.

    Lemma 2.1For any domain D inCn,(z,r)is a subdomain of D.

    ProofSince the Kobayashi pseudodistance is continuous,(z,r)is an open subset ofD.Since the Kobayashi pseudodistance is inner, for any(z,r)there exists a piece-wiseC1-curves: [0,1]→Dsuch thats(0)=z,s(1)=wandwheredenotes the Kobayashi pseudometric.This implies thats([0,1])(z,r).Hence(z,r)is a subdomain ofD.

    The next lemma is known as the generalized Hurwitz’s theorem in several complex variables(see e.g.[11]).

    Lemma 2.2Let D be a domain inCn and {fi(z)} be a sequence of injective holomorphic maps from D toCn.Suppose that fi’s converge to a map f:D →Cn uniformly on compact subsets of D.Then either f is an injective holomorphic map ordet(z)≡0.

    Proof of Theorem 2.1Since the proof for the taut case is similar as (and simpler than)for the bounded case, we will assume thatDis bounded.

    Without loss of generality, we assume that 0∈?.By definition, there exists a sequence of holomorphic embeddingsfi: ?→Dwithfi(0)=z, and a sequence of increasing positive numbersriconvergent to arctanh((z))such that(z,ri)?fi(?).SinceDis bounded, by Montel’s theorem, there exists a subsequence {fki} of {fi} which converges to a holomorphic mapf:?uniformly on compact subsets of ?.

    By Lemma 2.1,(z,ri)’s are increasing subdomains ofD.Denotegi:=(z,ri).Since ? is bounded, by Montel’s theorem, there exists a subsequence {gk’i} of {gki} which converges to a holomorphic mapg:(z,arctanh((z)))→uniformly on compact subsets of(z,arctanh((z))).

    Takes >0 such that Bn(z,s)(z,r1).By Cauchy inequality for anyi,|det(z)|< cfor some positive constantc.So we have|det(0)|>for anyi.Thus,we have|det(0)|>0 and|det(z)|>0.By Lemma 2.2, bothfandgare injective.In particular,f(?)?Dandg((z,arctanh((z))))??.Sincef ?g(w)=wfor all(z,arctanh((z))), it shows thatfis the desired extremal map.

    Based on Theorem 2.1, we can give another proof of [5, Theorem 1.3(2)] as follows.

    Theorem 2.2If there exists z ∈D such that(z)= 1, then D is biholomorphically equivalent to?.

    ProofSince ? is homogeneous,sΩ(z)≡cfor some positive numberc.Thus, by [1,Theorem 4.7], ? is Kobayashi complete, hence taut.

    Without loss of generality, we assume that 0∈?.Letfi’s andgi’s be as in the proof of Theorem 2.1.Since(z)=1, we have

    Since ? is taut, by [7, Theorem 5.1.5], there exists a subsequence {gki} of {gi} which converges to a holomorphic mapg:D →? uniformly on compact subsets ofD.By the decreasing property of the Kobayashi distance, forz1,z2∈Dsuch thatg(z1)=g(z2), we have forkilarge enough,

    kD(z1,z2)≤kfki(Ω)(fki ?gki(z1),fki ?gki(z2))=kΩ(gki(z1),gki(z2)).

    Lettingki →∞, by the continuity of the Kobayashi distance, we have

    kD(z1,z2)≤kΩ(g(z1),g(z2))=0.

    SinceDis Kobayashi hyperbolic, we havez1=z2.Thus,gis injective andDis biholomorphic to a bounded domain.

    Now Theorem 2.1 applies and shows thatDis biholomorphically equivalent to ?.

    It was shown in [5, Theorem 1.3(1)] that(z), hence(z), is continuous.For its proof,Fridman showed that forz1andz2sufficiently close,Our next result gives a “global” version of this estimate in terms of(z).

    Theorem 2.3For any z1and z2in D, we have

    For the proof of Theorem 2.3, we need the following basic fact, whose proof we provide for completeness.

    Lemma 2.3Suppose that ti ≥0, i=1,2,3, and t3≤t1+t2.Then,

    tanh(t3)≤tanh(t1)+tanh(t2).

    ProofSincet3≤t1+t2, we have

    Define

    To show that tanh(t3)≤tanh(t1)+ tanh(t2), it suffices to show thatf(t1,t2)≤0 for allt1,t2≥0.For any fixedt1≥0, consider

    Then,

    Proof of Theorem 2.3Fix 0(z1), by definition there exists a holomorphic embeddingf:?→Dsuch that(z1,arctanh[(z1)?ε])?f(?).

    Ifz2(z1,arctanh[(z1)?ε]), then obviously

    Ifz2(z1,arctanh[(z1)?ε]), by Lemma 2.3, we have for allzwith tanh[kD(z2,z)](z1)?ε ?tanh[kD(z1,z2)] that

    Thus,

    This implies that(z2)(z1)?ε ?tanh[kD(z2,z1)].

    Sinceεis arbitrary,we have(z2)(z1)?tanh[kD(z2,z1)].Similarly,(z1)(z2)?tanh[kD(z2,z1)].This proves the theorem.

    We say that a sequence of subdomains{Dj}j≥1ofDis a sequence of exhausting subdomains if for any compact subsetK ?D, there existsN >0 such thatK ?Djfor allj >N.In this case, we also say that {Dj}j≥1exhaustsD.

    Corollary 2.1Let {Dj}j≥1be a sequence of exhausting subdomains of D.(z)for all z ∈D, then the convergence is uniform on compact subsets of D.

    ProofLetKbe a compact subset ofD.Then there exists 0< r <1 such thatHence there existsN1>0 such thatfor allj > N1.Fix anyε>0 and takeSince {Bn(z,δ)}z∈Kis an open covering ofK, there is a finite setsuch thatFor anyz ∈K,there is somezisuch thatz ∈Bn(zi,δ).By Theorem 2.3 and the decreasing property of the Kobayashi distance, we have

    On the other hand, there existsN2>0 such that(zi)(zi)for allziandj >N2.TakeN=max{N1,N2}.Then for anyj >N, we have(z)(z)|<εfor allz ∈K.This completes the proof.

    Theorem 2.4Suppose that D is bounded or taut.Let {Dj}j≥1be a sequence of exhausting subdomains of D.Then for any z ∈D,

    To prove Theorem 2.4, we need the following lemma.

    Lemma 2.4Let {Dj}j≥1be a sequence of exhausting subdomains of D.Then for any z ∈D and r >0(z,r)}j≥1(z,r).

    ProofBy Lemma 2.1, we know that(z,r)is a subdomain ofDfor anyz ∈Dandr>0.Firstly, we show that

    Consider a sequence of subdomains {Gj}j≥1such that (i)GjD, (ii)Gj ?Gj+1, (iii)By [6, Proposition 3.3.5], we have

    For anyj ≥1, there existsNj >0 such thatGj ?Di, for alli > Nj.By the decreasing property of the Kobayashi distance, we get

    Now we prove that for anyK(z,r), there existsN >0 such that(z,r)for allj >N.

    SincekD(z,·)is continuous, there exists 00 such that.Hence,there existsN1>0 such thatfor allj >N1.

    Let 0< ε < r ?r0and takeδ1=δtanh.Since {Bn(z,δ1)}z∈Kis an open covering ofK, there is a finite setsuch thatIt is clear that there existsN2>0 such that|kDj(z,zl)?kD(z,zl)for anyj > N2and 1≤l ≤m.For anyw ∈K, there is somezlsuch thatw ∈Bn(zl,δ1).SetN=max{N1,N2}.Then for allj >N,by the decreasing property of the Kobayashi distance, we have

    Therefore,kDj(z,w)N.This completes the proof.

    Proof of Theorem 2.4Since the proof for the taut case is similar as (and simpler than)for the bounded case, we will assume thatDis bounded.

    For anyz ∈D, letbe a sequence such thatFor any 0<ε0 such thattanh(r ?ε)for allli >N1.

    Without loss of generality,we assume that 0∈?.By definition,for anyli >N1,there exists an open holomorphic embeddingfli:?→Dlisuch thatfli(0)=zand(z,r ?ε)?fli(?).SinceDis bounded, by Montel’s theorem, there exists a subsequence {fki} of {fli} which converges to a holomorphic mapf:?uniformly on compact subsets of ?.

    By Lemma 2.1,each(z,r?ε)is a domain.DefineBy Montel’s theorem and Lemma 2.4,we may assume that the sequencegkiconverges uniformly on compact subsets ofBkD(z,r ?ε)to a holomorphic mapg:(z,r ?ε)→

    Takes >0 such that Bn(z,s)(z,r ?ε).By Lemma 2.4, there existsN > N1such that Bn(z,s)(z,r ?ε)for allli > N.Considergli|Bn(z,s),by Cauchy inequality,|det(z)|< cfor allli > N, for some positive constantc.So we have|det(0)|>for allli > N.Thus, we have|det(0))|>0 and|det(z)|>0.By Lemma 2.2, bothfandgare injective.In particular,f(?)?Dwithf(0)=zandg((z,r ?ε))?? withg(z)=0.Sincef ?g(w)=wfor all(z,r ?ε), we get(z)≥tanh(r ?ε).Sinceεis arbitrary,we have

    Based on Corollary 2.1 and Theorem 2.4, we can slightly refine [5, Theorem2.1] as follows.

    Theorem 2.5Suppose that D is Kobayashi complete and {Dj}j≥1exhausts D.Thenuniformly on compact subsets of D.

    ProofSinceDis Kobayashi complete, thus taut, we havefor allz ∈D, by Theorem 2.4.

    Forz ∈Dand 0(z),by the definition of Fridman invariant and the completeness ofD, there exists an open holomorphic embeddingf:?→Dsuch that((z)?ε)f(?).Thus, there existsδ >0 such that((z)?ε)?f((1?δ)?)D.Hence, there existsN >0 such that((z)?ε)?f((1?δ)?)?Djfor allj > N.By the decreasing property of the Kobayashi distance, we have((z)?ε)((z)?ε).So we have((z)?ε)?f((1?δ)?)for allj > N, which implies thatSinceεis arbitrary,we getand henceBy Corollary 2.1, the convergence is uniform on compact subsets ofD.

    3 Generalized Squeezing Functions

    Throughout this section,we suppose thatDis a bounded domain in Cnand ? is a bounded,balanced and convex domain in Cn(unless otherwise stated).

    Denote bykΩandcΩthe Kobayashi and Carath′eodory distance on ?, respectively.The following Lempert’s theorem is well-known.

    Theorem 3.1(see [8, Theorem 1])On a convex domain?,kΩ=cΩ.

    Combining Theorem 3.1 with [6, Proposition 2.3.1(c)], we have the following key lemma.

    Lemma 3.1For any z ∈?, ρΩ(z)=tanh(kΩ(0,z))=tanh(cΩ(0,z)).

    We will also need the following basic fact.

    Lemma 3.2ρΩis aC-norm.

    ProofFor anyz1,z2∈Cn, we want to show thatρΩ(z1+z2)≤ρΩ(z1)+ρΩ(z2).

    Fixε>0.Takec1=ρΩ(z1)+andc2=ρΩ(z2)+, thenandSince ? is convex, we get

    Hence,ρΩ(z1+z2)≤c1+c2≤ρΩ(z1)+ρΩ(z2)+ε.Sinceεis arbitrary,we obtainρΩ(z1+z2)≤ρΩ(z1)+ρΩ(z2).

    Since ? is bounded, it is obvious thatρΩ(z)>0 for allz /=0, which completes the proof.

    We say thatf ∈Ou(D,?)is an extremal map atz ∈Dif ?((z))?f(D).When ?=Bn,the existence of extremal maps was given in [1, Theorem 2.1].The proof of the next theorem is very similar to that of Theorem 2.1 and [1, Theorem 2.1], based on Montel’s theorem and the generalized Hurwitz theorem, so we omit the details.

    Theorem 3.2An extremal map exists at each z ∈D.

    As an immediate result, we have the following corollary.

    Corollary 3.1(z)= 1for some z ∈D if and only if D is biholomorphically equivalent to?.

    In [1, Theorem 3.1], it was shown thatsD(z)is continuous.Moreover, it was given in [1,Theorem 3.2] without details the following inequality:

    |sD(z1)?sD(z2)|≤2 tanh[kD(z1,z2)], z1,z2∈D.

    Our next theorem gives the same inequality for generalized squeezing functions,and in particular shows that they are also continuous.

    Theorem 3.3For any z1,z2∈D, we have

    (z)is continuous.

    ProofBy Theorem 3.2, there exists a holomorphic embeddingf:D →? such thatf(z1)=0 and ?((z1))?f(D).

    If tanh[kD(z1,z2)](z1), then it is obvious that

    Suppose now that tanh[kD(z1,z2)](z1).By the decreasing property of the Kobayashi distance and Lemma 3.1, we have

    ≥tanh[kΩ(f(z1),f(z2))]=tanh[kΩ(0,f(z2))]=ρΩ(f(z2)).

    Define

    and setg(z)=h ?f(z).Theng ∈Ou(D,?)andg(z2)=0.

    For anyw ∈? with

    we have

    SinceρΩ(z)is a C-norm by Lemma 3.2, we get

    This implies that

    So we have

    Hence,

    Similarly,

    Therefore,(z1)(z2)|≤2 tanh[kD(z1,z2)] for allz1,z2∈D.

    Since the Kobayashi distance is continuous (see e.g.[6]), we get that(z)is continuous.

    In case that ? is homogeneous, we have better estimates as follows.

    Theorem 3.4If?is bounded, balanced, convex and homogeneous, then for any z1,z2∈D,we have

    ProofBy Theorem 3.2, there exists a holomorphic embeddingf:D →? such thatf(z1)=0 and ?((z1))?f(D).

    If tanh[kD(z1,z2)](z1), then it is obvious that

    Suppose now that tanh[kD(z1,z2)](z1).Since ? is homogeneous, there existsψ ∈Aut(?)such thatψ ?f(z2)=0.

    For anyw ∈? with

    by the decreasing property of the Kobayashi distance and Lemma 2.3, we have

    By Lemma 3.1, this implies thatψ?1(w)∈?((z1)).Hence,

    Sinceψ ?f(z2)=0, again by Lemma 3.1, we have

    Thus,

    Similarly,

    Therefore,(z1)(z2)|≤tanh[kD(z1,z2)] for allz1,z2∈D.

    The following stability result generalizes and slightly refines [2, The orem2.1].

    Theorem 3.5If {Dl}l≥1exhausts D, thenuniformly on compactsubsets of D.

    ProofSince the proof of the convergence is similar to that of [2, Theorem2.1], we omit the details.

    Now suppose that the convergence is not uniform on compact subsets ofD.Then, there exists a compact subsetK ?D,ε>0, a subsequence {lj} andzlj ∈K ?Dljsuch that

    SinceKis compact, there exists a convergent subsequence, again denoted by {zlj}, withChooser >0 such that Bn(z,r)?D.Then, there isN1>0 such thatzlj ∈Bn(z,r)?Dljfor alllj > N1.By Theorem 3.3 and the decreasing property of the Kobayashi distance, for alllj >N1we have

    It is clear that there isN2>0 such that for alllj >N2we have

    SetN=max{N1,N2}.Then for alllj >Nwe have

    which is a contradiction.

    The notion of the squeezing function was originally introduced to study the“uniform squeezing” property.In this regard, we have the following theorem.

    Theorem 3.6For two bounded, balanced and convex domains?1and?2inCn,(z)has a positive lower bound if and only if(z)has a positive lower bound.

    ProofIt suffices to prove the equivalence when ?2= Bn.By Lemma 3.2,ρΩ1(z)is a C-norm.Thus,it is continuous and there existsM ≥m>0 such thatm‖z‖≤ρΩ1(z)≤M‖z‖.Then, one readily checks using the definition that

    Combining Theorem 3.6 with [1, Theorems 4.5 and 4.7], we have the following theorem.

    Theorem 3.7(z)has a positive lower bound, then D is complete with respect to the Carath′eodory distance, the Kobayashi distance and the Bergman distance of D.

    4 Comparison of Fridman Invariants and Generalized Squeezing Functions

    Since Fridman invariants and generalized squeezing functions are similar in spirit to the Kobayashi-Eisenman volume formKDand the Carath′eodory volume formCD, respectively, it is natural to study the comparison of them.For this purpose, we will always assume thatDis a bounded domain in Cnand ? is a bounded, balanced, convex and homogeneous domain in Cn.

    Similar to the classical quotient invariantwe introduce the quotientwhich is also a biholomorphic invariant.When ? = Bn, we simply write

    In [9], Nikolov and Verma have shown thatmD(z)is always less than or equal to one.The next result shows that the same is true for(z).

    Theorem 4.1For any z ∈D, we have(z)≤1.

    ProofFor anyz ∈D, by Theorem 3.2, there exists a holomorphic embeddingf:D →?such thatf(z)=0 and ?((z))?f(D).

    Defineg(w):=f?1((z)w), which is an injective holomorphic mapping from ? toDwithg(0)=z.By the decreasing property of the Kobayashi distance and Lemma 3.1, we have

    Thus,

    This implies that(z)(z), i.e.,(z)≤1.

    A classical result of Bun Wong(see[12,Theorem E])says that if there is a pointz ∈Dsuch thatMD(z)= 1, thenDis biholomorphic to the unit ball Bn.In [10, Theorem 3], we showed that an analogous result formD(z)does not hold.The next result is a generalized version of[10, Theorem 3] for(z).

    Theorem 4.2If D is bounded, balanced and convex, then(0)=1.

    ProofBy Theorem 2.1, there exists a holomorphic embeddingf: ?→Dsuch thatf(0)=0 and(0(0))?f(?).

    Defineg(w):=f?1((0)w), which is an injective holomorphic mapping fromDto ? withg(0)=0.By the decreasing property of the Kobayashi distance and Lemma 3.1, we have

    Thus,

    This implies that(0)(0).By Theorem 4.1, we always have(0)(0).This completes the proof.

    Corollary 4.1Let?i,i=1,2,be two bounded,balanced, convex and homogeneous domains inCn.Thenfor all z1∈?1and z2∈?2.

    ProofSince both ?1and ?2are homogeneous, it suffices to show that

    By Lemma 3.1,we have(0,arctanh(r))=?2(r)forr >0.Then,by definition,By Theorem 4.1, we get

    We can also compare generalized squeezing functions for different model domains as follows.

    Theorem 4.3Let?i, i=1,2,be two bounded, balanced, convex and homogeneous domains inCn.Then, for any z ∈D, we have

    ProofFor anyz ∈D, by Theorem 3.2,there exists a holomorphic embeddingf:D →?1such thatf(z)= 0 and ?1((z))?f(D).And there exists a holomorphic embeddingg:?1→?2such thatg(0)=0 and

    SetF=g ?f, thenF ∈Ou(D,?2)withF(z)= 0.Denotethen ? is a bounded, balanced and convex domain withBy the decreasing property of the Kobayashi distance and Lemma 3.1, we have

    On the other hand, by Lemma 3.1, we have

    We finish our study by computing explicitly some generalized squeezing functions in the next result, which generalizes [1, Corollary 7.3].

    Theorem 4.4For any z ∈?{0(z)=ρΩ(z).

    ProofSince ? is homogeneous, for anyz ∈?{0}, there existsψ ∈Aut(?)such thatψ(z)=0.Then, by Lemma 3.1,

    ρΩ(ψ(0))=tanh[kΩ(ψ(0),0)]=tanh[kΩ(ψ(0),ψ(z))]=tanh[kΩ(0,z)]=ρΩ(z).

    Next, we show that(z)≤ρΩ(z).By Theorem 3.2, there exists a holomorphic embeddingf:?{0}→? such thatf(z)=0 and ?((z))?f(?{0}).

    Defineg(w):=f?1((z)w), which is an injective holomorphic mapping from ? to?{0} withg(0)=z.By the decreasing property of the Carath′eodory distance and Lemma 3.1, we have

    By Riemann’s removable singularity theorem,we havecΩ{0}(z1,z2)=cΩ(z1,z2)for allz1,z2∈?{0}.Thus,

    Hence,(z)≤ρΩ(z), which completes the proof.

    999久久久国产精品视频| 动漫黄色视频在线观看| 免费在线观看视频国产中文字幕亚洲| 黄片播放在线免费| 色婷婷久久久亚洲欧美| 啦啦啦免费观看视频1| 19禁男女啪啪无遮挡网站| 亚洲五月天丁香| 视频在线观看一区二区三区| 久久久久久亚洲精品国产蜜桃av| 成人永久免费在线观看视频| 免费看a级黄色片| 国产欧美亚洲国产| 99香蕉大伊视频| 最近最新中文字幕大全电影3 | 777米奇影视久久| 三级毛片av免费| 欧美精品人与动牲交sv欧美| 欧美黑人欧美精品刺激| 欧美日本中文国产一区发布| 久久香蕉国产精品| 老司机影院毛片| 大型av网站在线播放| x7x7x7水蜜桃| 91九色精品人成在线观看| 身体一侧抽搐| www.999成人在线观看| 18在线观看网站| 色综合欧美亚洲国产小说| 大香蕉久久成人网| 欧美色视频一区免费| 91av网站免费观看| netflix在线观看网站| 大码成人一级视频| 亚洲欧美激情综合另类| 精品国产一区二区久久| 久久久久久久午夜电影 | 欧美性长视频在线观看| 国产精品亚洲一级av第二区| 高清欧美精品videossex| 搡老熟女国产l中国老女人| 少妇猛男粗大的猛烈进出视频| 黄片播放在线免费| 丝袜美足系列| 亚洲一区中文字幕在线| 黄网站色视频无遮挡免费观看| 好男人电影高清在线观看| 国产xxxxx性猛交| 少妇裸体淫交视频免费看高清 | 很黄的视频免费| 啦啦啦在线免费观看视频4| 精品一区二区三区视频在线观看免费 | 人成视频在线观看免费观看| 亚洲综合色网址| 欧美乱色亚洲激情| 一边摸一边做爽爽视频免费| 777久久人妻少妇嫩草av网站| 老司机靠b影院| 国产视频一区二区在线看| 午夜精品国产一区二区电影| 亚洲欧美色中文字幕在线| 亚洲第一青青草原| 中文字幕另类日韩欧美亚洲嫩草| 国产单亲对白刺激| 无限看片的www在线观看| 极品少妇高潮喷水抽搐| 男女免费视频国产| 久久久久精品国产欧美久久久| 精品福利观看| 亚洲av美国av| 国产熟女午夜一区二区三区| 国产亚洲精品一区二区www | 精品久久久久久电影网| 黑人操中国人逼视频| 国产精品影院久久| 亚洲av第一区精品v没综合| 少妇的丰满在线观看| 超碰成人久久| 精品人妻在线不人妻| 亚洲av欧美aⅴ国产| 大片电影免费在线观看免费| 成年人午夜在线观看视频| 在线观看一区二区三区激情| 天天操日日干夜夜撸| 亚洲综合色网址| 亚洲午夜精品一区,二区,三区| av在线播放免费不卡| 久久久久久久久久久久大奶| av天堂久久9| 一区二区三区激情视频| 成年人免费黄色播放视频| 欧美人与性动交α欧美精品济南到| 精品一区二区三区av网在线观看| 日韩中文字幕欧美一区二区| 国产成人精品在线电影| 一级片'在线观看视频| 色老头精品视频在线观看| 99re在线观看精品视频| 人成视频在线观看免费观看| 免费av中文字幕在线| 757午夜福利合集在线观看| 精品国产一区二区三区四区第35| 母亲3免费完整高清在线观看| 成人18禁在线播放| 国产无遮挡羞羞视频在线观看| 亚洲熟妇中文字幕五十中出 | 啦啦啦在线免费观看视频4| 18禁观看日本| 狠狠婷婷综合久久久久久88av| 国产成人欧美在线观看 | 久久午夜亚洲精品久久| 精品卡一卡二卡四卡免费| 精品人妻1区二区| 人人妻人人澡人人爽人人夜夜| 操出白浆在线播放| 亚洲人成电影免费在线| 丝袜美腿诱惑在线| 婷婷丁香在线五月| 自拍欧美九色日韩亚洲蝌蚪91| 欧洲精品卡2卡3卡4卡5卡区| 亚洲精品av麻豆狂野| 黄色成人免费大全| 老司机靠b影院| 大型黄色视频在线免费观看| 国产欧美日韩一区二区三| 91av网站免费观看| 亚洲人成电影免费在线| 午夜免费鲁丝| 国产乱人伦免费视频| 无遮挡黄片免费观看| videosex国产| 麻豆av在线久日| 久久久久国产一级毛片高清牌| 香蕉久久夜色| 波多野结衣av一区二区av| 亚洲av电影在线进入| 麻豆国产av国片精品| 久久久久精品国产欧美久久久| 国产精品99久久99久久久不卡| 女人被躁到高潮嗷嗷叫费观| 精品熟女少妇八av免费久了| 国产国语露脸激情在线看| 国产精品免费大片| 欧美乱码精品一区二区三区| 女性被躁到高潮视频| 亚洲成人免费电影在线观看| 欧美日韩精品网址| 欧美日韩黄片免| 午夜福利视频在线观看免费| 他把我摸到了高潮在线观看| 高清黄色对白视频在线免费看| bbb黄色大片| svipshipincom国产片| 一本综合久久免费| 国产成人欧美| 国产精品国产av在线观看| 叶爱在线成人免费视频播放| 色精品久久人妻99蜜桃| 久久久久视频综合| 韩国av一区二区三区四区| 午夜精品国产一区二区电影| 亚洲成人国产一区在线观看| 99国产精品一区二区蜜桃av | 老司机亚洲免费影院| 丝瓜视频免费看黄片| 国产91精品成人一区二区三区| 91国产中文字幕| 最新美女视频免费是黄的| 欧美日韩av久久| 亚洲第一av免费看| 一个人免费在线观看的高清视频| 精品久久久久久久毛片微露脸| 五月开心婷婷网| 交换朋友夫妻互换小说| 午夜精品久久久久久毛片777| a在线观看视频网站| 久久性视频一级片| 精品午夜福利视频在线观看一区| 亚洲av片天天在线观看| av不卡在线播放| 精品国产亚洲在线| 日韩成人在线观看一区二区三区| 亚洲精品一二三| 欧美激情高清一区二区三区| 亚洲国产欧美一区二区综合| 国产欧美日韩综合在线一区二区| 欧美精品av麻豆av| 免费日韩欧美在线观看| 黑人巨大精品欧美一区二区蜜桃| 亚洲精品在线观看二区| 国产成人系列免费观看| 亚洲精品一二三| 日本黄色日本黄色录像| 国产成人精品在线电影| 亚洲七黄色美女视频| 免费高清在线观看日韩| 日本黄色日本黄色录像| 国产91精品成人一区二区三区| 精品免费久久久久久久清纯 | 精品国产乱子伦一区二区三区| 亚洲av片天天在线观看| 老熟妇仑乱视频hdxx| 99re6热这里在线精品视频| 欧美精品人与动牲交sv欧美| 啪啪无遮挡十八禁网站| 精品国产一区二区久久| 色婷婷av一区二区三区视频| 久久久精品国产亚洲av高清涩受| 国产精华一区二区三区| 99久久国产精品久久久| 无限看片的www在线观看| 波多野结衣av一区二区av| 精品一品国产午夜福利视频| 中文字幕人妻丝袜一区二区| 国产精品.久久久| 天堂中文最新版在线下载| 亚洲五月天丁香| 免费观看a级毛片全部| 桃红色精品国产亚洲av| 日本一区二区免费在线视频| 免费观看a级毛片全部| 国产亚洲欧美在线一区二区| 亚洲精品国产精品久久久不卡| 90打野战视频偷拍视频| tocl精华| 国产精品亚洲av一区麻豆| www.熟女人妻精品国产| 亚洲色图av天堂| 久久久精品区二区三区| 欧美av亚洲av综合av国产av| 亚洲精品美女久久av网站| 国产色视频综合| 免费久久久久久久精品成人欧美视频| 99精品在免费线老司机午夜| 悠悠久久av| 啦啦啦免费观看视频1| 国产91精品成人一区二区三区| 啦啦啦 在线观看视频| 国产有黄有色有爽视频| 天天操日日干夜夜撸| 中文欧美无线码| 日本一区二区免费在线视频| 成年女人毛片免费观看观看9 | 亚洲精品久久午夜乱码| 亚洲欧美一区二区三区久久| 久久精品国产综合久久久| 久久久久国产精品人妻aⅴ院 | avwww免费| 国内久久婷婷六月综合欲色啪| bbb黄色大片| 高潮久久久久久久久久久不卡| 又黄又粗又硬又大视频| 窝窝影院91人妻| 看免费av毛片| 黄色怎么调成土黄色| 丰满迷人的少妇在线观看| 在线播放国产精品三级| 欧美另类亚洲清纯唯美| 国产男女内射视频| 欧美成人免费av一区二区三区 | 午夜福利乱码中文字幕| 精品视频人人做人人爽| 欧美在线黄色| 日韩制服丝袜自拍偷拍| 丝袜在线中文字幕| 国产精品影院久久| 久久久久久久国产电影| ponron亚洲| 三上悠亚av全集在线观看| 在线观看舔阴道视频| 在线国产一区二区在线| 久久久久国产一级毛片高清牌| 精品国产乱码久久久久久男人| 人人妻,人人澡人人爽秒播| 国产精品1区2区在线观看. | 亚洲av美国av| 亚洲九九香蕉| 视频区图区小说| 国产精品免费大片| 日日爽夜夜爽网站| 王馨瑶露胸无遮挡在线观看| 在线观看66精品国产| 国产精品综合久久久久久久免费 | 亚洲av成人av| 18禁美女被吸乳视频| 国产av又大| 大片电影免费在线观看免费| xxxhd国产人妻xxx| 欧美国产精品va在线观看不卡| 亚洲精品在线美女| 村上凉子中文字幕在线| 欧美激情 高清一区二区三区| 久久久久久久午夜电影 | 国产欧美亚洲国产| 久久亚洲真实| 在线观看免费午夜福利视频| 大片电影免费在线观看免费| 国产1区2区3区精品| 在线观看66精品国产| 久久精品国产a三级三级三级| 国产主播在线观看一区二区| 久久精品人人爽人人爽视色| 母亲3免费完整高清在线观看| 黄色片一级片一级黄色片| 欧美国产精品一级二级三级| 成人精品一区二区免费| 在线观看免费视频日本深夜| 乱人伦中国视频| 精品国产美女av久久久久小说| 国产成人精品在线电影| 最新的欧美精品一区二区| av福利片在线| 黑人猛操日本美女一级片| av电影中文网址| 身体一侧抽搐| 一区福利在线观看| 国产一区二区三区在线臀色熟女 | 国产一区二区三区在线臀色熟女 | 久久中文字幕一级| 亚洲熟女精品中文字幕| 成熟少妇高潮喷水视频| 色播在线永久视频| 久久香蕉精品热| 日本欧美视频一区| 午夜福利免费观看在线| 久久性视频一级片| 国产精品久久电影中文字幕 | 丝袜在线中文字幕| 人妻 亚洲 视频| 精品国产乱码久久久久久男人| 午夜精品久久久久久毛片777| 免费av中文字幕在线| 又黄又粗又硬又大视频| 大型黄色视频在线免费观看| 精品乱码久久久久久99久播| 51午夜福利影视在线观看| 国产麻豆69| 淫妇啪啪啪对白视频| 亚洲专区国产一区二区| 搡老岳熟女国产| 99精国产麻豆久久婷婷| 91国产中文字幕| 欧美国产精品一级二级三级| 亚洲va日本ⅴa欧美va伊人久久| 韩国精品一区二区三区| 日本精品一区二区三区蜜桃| 久久精品91无色码中文字幕| 99国产精品99久久久久| 亚洲精品成人av观看孕妇| 国产一区在线观看成人免费| 岛国毛片在线播放| 91国产中文字幕| 国内久久婷婷六月综合欲色啪| 亚洲自偷自拍图片 自拍| 人人妻,人人澡人人爽秒播| 亚洲欧美一区二区三区黑人| 大码成人一级视频| 黑人操中国人逼视频| 国产精品综合久久久久久久免费 | 男女之事视频高清在线观看| 免费在线观看亚洲国产| 国产精品一区二区免费欧美| 亚洲欧美日韩另类电影网站| 国产淫语在线视频| 51午夜福利影视在线观看| 两人在一起打扑克的视频| 男男h啪啪无遮挡| 天堂俺去俺来也www色官网| 人妻 亚洲 视频| 欧美在线一区亚洲| 狂野欧美激情性xxxx| 咕卡用的链子| 免费看a级黄色片| 露出奶头的视频| 99久久国产精品久久久| 91精品国产国语对白视频| 国产成人欧美| 国产欧美日韩精品亚洲av| 久久九九热精品免费| 欧美精品av麻豆av| 国产亚洲av高清不卡| 另类亚洲欧美激情| 母亲3免费完整高清在线观看| av网站在线播放免费| 老司机亚洲免费影院| 国产又爽黄色视频| 18禁美女被吸乳视频| 婷婷丁香在线五月| 女性被躁到高潮视频| 啦啦啦免费观看视频1| 男女免费视频国产| 狂野欧美激情性xxxx| 99国产精品一区二区三区| 在线观看一区二区三区激情| 国产不卡av网站在线观看| 久久国产精品大桥未久av| 日韩大码丰满熟妇| 性少妇av在线| 亚洲一区二区三区不卡视频| 久久国产乱子伦精品免费另类| 狠狠婷婷综合久久久久久88av| 中文字幕色久视频| 高清欧美精品videossex| 亚洲第一av免费看| 国产成人精品无人区| 多毛熟女@视频| 又紧又爽又黄一区二区| 国产精品免费一区二区三区在线 | 欧美国产精品一级二级三级| 国产精品1区2区在线观看. | 日本a在线网址| 99久久综合精品五月天人人| 岛国在线观看网站| 国产淫语在线视频| 一边摸一边抽搐一进一小说 | 久久国产精品男人的天堂亚洲| 亚洲黑人精品在线| 黑人猛操日本美女一级片| 午夜两性在线视频| 深夜精品福利| av福利片在线| 在线观看舔阴道视频| 国产精品久久久av美女十八| 免费人成视频x8x8入口观看| 国产成人啪精品午夜网站| 在线观看免费视频日本深夜| 美女高潮喷水抽搐中文字幕| 午夜精品久久久久久毛片777| 亚洲成人手机| 国产在线观看jvid| 一级片免费观看大全| 久久人妻av系列| 精品亚洲成a人片在线观看| 国产av精品麻豆| 国产亚洲欧美精品永久| 久久国产精品影院| 一二三四社区在线视频社区8| 18禁黄网站禁片午夜丰满| 午夜福利影视在线免费观看| 搡老岳熟女国产| 麻豆av在线久日| 脱女人内裤的视频| 国产日韩欧美亚洲二区| 精品免费久久久久久久清纯 | av中文乱码字幕在线| 久久精品国产亚洲av高清一级| 免费av中文字幕在线| 久久婷婷成人综合色麻豆| 露出奶头的视频| 夜夜夜夜夜久久久久| 最新美女视频免费是黄的| 亚洲精品粉嫩美女一区| 男女下面插进去视频免费观看| 99精品久久久久人妻精品| av天堂久久9| 国产精品亚洲一级av第二区| 欧美激情 高清一区二区三区| 两性夫妻黄色片| 亚洲av片天天在线观看| 免费黄频网站在线观看国产| 久久久久久久精品吃奶| 国产片内射在线| 国产成人欧美| 两个人免费观看高清视频| 叶爱在线成人免费视频播放| 一区在线观看完整版| 国产成人啪精品午夜网站| av不卡在线播放| 91字幕亚洲| 久久中文看片网| 国产成人影院久久av| 91精品国产国语对白视频| 村上凉子中文字幕在线| 日韩人妻精品一区2区三区| 黄色怎么调成土黄色| 欧美精品高潮呻吟av久久| 国产精品美女特级片免费视频播放器 | 久久精品国产综合久久久| 亚洲专区中文字幕在线| 久久久久久久午夜电影 | 国产精品久久视频播放| 黄片播放在线免费| 成人国产一区最新在线观看| 日韩大码丰满熟妇| 国产精品久久久久成人av| 国产一区在线观看成人免费| 在线观看免费日韩欧美大片| 夜夜躁狠狠躁天天躁| 老熟女久久久| 天堂中文最新版在线下载| svipshipincom国产片| 国产精品99久久99久久久不卡| 成年人免费黄色播放视频| bbb黄色大片| 亚洲自偷自拍图片 自拍| 国产蜜桃级精品一区二区三区 | 国产亚洲av高清不卡| 美女高潮喷水抽搐中文字幕| 麻豆国产av国片精品| 色播在线永久视频| tube8黄色片| 中亚洲国语对白在线视频| 欧美大码av| 久久久久久久国产电影| 国产精品自产拍在线观看55亚洲 | 身体一侧抽搐| 精品久久久久久久毛片微露脸| 最新在线观看一区二区三区| 美女国产高潮福利片在线看| 亚洲视频免费观看视频| 久久午夜亚洲精品久久| 少妇猛男粗大的猛烈进出视频| 国产男靠女视频免费网站| 国产成人精品久久二区二区91| 免费av中文字幕在线| 999久久久精品免费观看国产| 老汉色av国产亚洲站长工具| 亚洲人成电影免费在线| 香蕉久久夜色| 午夜福利一区二区在线看| 制服诱惑二区| netflix在线观看网站| 精品视频人人做人人爽| 在线观看午夜福利视频| 夜夜躁狠狠躁天天躁| 婷婷精品国产亚洲av在线 | 国产激情欧美一区二区| 村上凉子中文字幕在线| 电影成人av| 亚洲成人手机| 一a级毛片在线观看| 欧美日韩成人在线一区二区| 丁香六月欧美| 搡老岳熟女国产| 国产色视频综合| 精品国产国语对白av| 午夜福利,免费看| 日本wwww免费看| 欧美日韩精品网址| 欧美老熟妇乱子伦牲交| 久久这里只有精品19| 亚洲午夜精品一区,二区,三区| 在线免费观看的www视频| 久久草成人影院| 亚洲 国产 在线| 欧美精品一区二区免费开放| 下体分泌物呈黄色| 国产精品av久久久久免费| 精品少妇久久久久久888优播| 亚洲精品久久成人aⅴ小说| 日本撒尿小便嘘嘘汇集6| 身体一侧抽搐| 1024视频免费在线观看| 国产精品久久久久成人av| 国产精品九九99| 中文字幕最新亚洲高清| 国产在线观看jvid| 欧美亚洲 丝袜 人妻 在线| 淫妇啪啪啪对白视频| 欧美+亚洲+日韩+国产| 欧美激情高清一区二区三区| 91麻豆av在线| 久久香蕉精品热| 欧美日本中文国产一区发布| 久久这里只有精品19| 色婷婷久久久亚洲欧美| 热99久久久久精品小说推荐| 嫁个100分男人电影在线观看| 99精品在免费线老司机午夜| 精品人妻1区二区| 亚洲一码二码三码区别大吗| 国产人伦9x9x在线观看| 成人av一区二区三区在线看| 国产男女超爽视频在线观看| 熟女少妇亚洲综合色aaa.| 建设人人有责人人尽责人人享有的| 美女高潮到喷水免费观看| 91麻豆av在线| 精品国产超薄肉色丝袜足j| 一个人免费在线观看的高清视频| www.熟女人妻精品国产| 日韩精品免费视频一区二区三区| 久久久久国产一级毛片高清牌| 涩涩av久久男人的天堂| 无人区码免费观看不卡| 午夜视频精品福利| 久久香蕉激情| 悠悠久久av| 欧美色视频一区免费| 身体一侧抽搐| 香蕉国产在线看| 超碰97精品在线观看| 成人手机av| 久久香蕉精品热| 日韩大码丰满熟妇| 国产视频一区二区在线看| 久久精品91无色码中文字幕| 午夜激情av网站| 老鸭窝网址在线观看| 下体分泌物呈黄色| 啪啪无遮挡十八禁网站| a级毛片黄视频| 满18在线观看网站| av不卡在线播放| 高清黄色对白视频在线免费看| 国产精品久久久久成人av| 日韩欧美免费精品| 高清欧美精品videossex| 亚洲国产精品合色在线| 男女免费视频国产| 又黄又爽又免费观看的视频| 大型av网站在线播放| 激情在线观看视频在线高清 | 国精品久久久久久国模美| 亚洲熟妇熟女久久|