• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Maintenance and development of the Ural high and its contribution to severe cold wave activities in winter 2020/21

    2022-04-26 02:00:16JingeiPengShuqingSunBominChen

    Jingei Peng , , Shuqing Sun , Bomin Chen

    a International Center for Climate and Environment Sciences, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China

    b Shanghai Climate Center, Shanghai, China

    Keywords:Winter 2020/21 Severe cold wave Ural ridge Energy dispersion Quasi-stationary wave

    ABSTRACT Two successive severe cold waves invaded eastern China from the end of 2020 to early 2021, leading to an extensive, severe, and persistent drop in temperature. The paper investigates the features and formation mechanisms of the two cold waves. The main results are as follows: (1) An anticlockwise turning of the transverse trough was observed in both cold waves. However, a broad ridge was maintained over the Ural area from mid-December 2020 till mid-January 2021. No breakdown or discontinuous westward shift of the blocking high was observed,which is different from typical cold waves in eastern Asia. (2) The maintenance and strengthening of northerly winds in front of the Ural high led to an increase in baroclinicity in-situ. In the downstream region, the gradient of the geopotential height contour in the south of the transverse trough rapidly increased and the advection of cold temperature consistently enhanced and advanced southwards. This in turn caused the intensification and southward expansion of the Siberian high. (3) Energy propagation of the quasi-stationary wave was a reason for the development and persistence of the Ural blocking. Prior to the occurrence of the two cold waves, the energy of the low-frequency stationary wave originating from near 0°E (or even to the west) propagated eastwards, which helped the Ural ridge intensify and maintain. Meanwhile, it also contributed to the development of the trough downstream of the ridge and resulted in the anticlockwise turning of the transverse trough, providing a favorable condition for the southward outbreak of cold air.

    1. Introduction

    Cold wave activities are important weather processes that influence the climate of China in winter. Extensive studies on the sources and routes of cold air, key circulation systems and relevant external forcing of cold waves in eastern Asia have been carried out ( Tao, 1959 ;Qiu and Wang, 1983 ; Qiu and Zhao, 1983 ; Ding, 1990 ; Xie et al., 1992 ;Park et al., 2011 ; Wang and Chen, 2014 ). In particular, a common feature of most cold waves invading eastern Asia is the breakdown or discontinuous retreat of the Ural high, leading to an anticlockwise turning of the transverse trough downstream, which has long been recognized( Zhu et al., 1992 ).

    Two successive severe cold waves invaded eastern China from the end of 2020 to early 2021, leading to an extensive, severe, and persistent drop in temperature and considerable effects on the economy and daily lives of people. Their features and formation mechanisms have received widespread attention ( Zheng et al., 2021 ; Dai et al., 2021 ; Wang et al.,2021 ).

    Regarding the features of large-scale circulation, the existence and activity of a Ural blocking high plays a very important role in the outbreak of cold waves in eastern Asia. Its development and decay not only influence the orientation of the trough downstream, but also closely relate to the evolution of the Siberian high and cold waves. However, no breakdown or discontinuous retreat of the blocking high was observed in the present case, as demonstrated later in the paper. On the contrary,during the period from mid-December 2020 to early January 2021, an intense high-pressure system was consistently maintained around the Ural Mountains. How, then, did this persistent Ural blocking or ridge affect the process downstream, causing the deepening of the trough to its east? How did the ridge maintain and strengthen? And what are the possible underlying physical mechanisms? This study attempts to answer these questions.

    2. Data and methods

    The data used were: (1) daily observations from the NCEP—NCAR reanalysis ( Kalnay et al., 1996 ), consisting of geopotential height at 500 hPa and winds and temperature at 1000 hPa for the period December—January 1951—2021; (2) surface minimum temperature at 699 observation stations in China, provided by the National Meteorological Information Center (available to downloaded from http://data.cma.cn/data/cdcdetail/dataCode/SURF_CLI_CHN_MUL_DAY_V3.0.html ). The climatological annual cycle was calculated for the period 1981—2010. In order to investigate the relationship between high-frequency perturbations and low-frequency weather systems, Lanczos filtering (cut-offperiod of eight days) was adopted( Duchon, 1979 ).

    The eastward propagation of wave energy is a source of energy for the development of a downstream trough (or ridge). Estimating the wavelength of the stationary waveLswill help determine whether the energy is favorable for the development of a trough or ridge at a specific longitude ( Yeh, 1949 ; Enomoto et al., 2003 ). For a barotropic and nondivergent atmosphere,Lscan simply be estimated byLs=whereuis the zonal wind andβis the meridional variation of Coriolis parameter. We used this formula to estimate theLsfrom mid-December 2020 to mid-January 2021.

    3. Severe cold waves and associated circulation features

    Two successive cold waves are investigated in this paper —namely,that which occurred during 28—31 December 2020, and the other being that which took place during 6—8 January 2021. Fig. 1 shows the temperature drops during the total process of each of the two cold waves.The isoline denotes the difference between the minimum temperature in the cold wave process and that of the day just before the outbreak of the cold wave. The red spots represent the stations with minimum temperature equal to or lower than the historical record. It can be seen that the area where the temperature drop exceeds 12°C extends far to the south of the Yangtze River basin for the first cold wave ( Fig. 1 (a)).And for the second cold wave, the stations with minimum temperature lower than the historical record are spread over a vast area ( Fig. 1 (b)).

    Fig. 1. Temperature drop during the entire process of the two cold waves: (a) 28—31 December 2020; (b) 6—8 January 2021 (units: °C). Red dots indicate stations with a minimum temperature equal to or lower than the historical record.

    The setup and maintenance of the blocking situation in the midtroposphere is the main feature of circulation that induces the occurrence of a severe cold wave. Fig. 2 shows the average 500 hPa geopotential height and its anomalies during the two cold wave processes. There was a ridge over the Ural Mountains extending to the polar region during 28—31 December 2020. The center of polar vortex was biased towards northeastern Asia and the central North Pacific, and a so-called “inverse Ω” flow pattern was formed ( Fig. 2 (a)). Northerly winds prevailed at the front of the ridge over the Ural Mountains, leading to a southward shift and accumulation of polar cold air, which provided the necessary condition for the southward breakout of this polar cold air. As for the second cold wave ( Fig. 2 (b)), there were ridges over the area to the east of the Ural Mountains and over the central Atlantic, respectively. The polar vortex was biased towards the Asian region, and a transverse trough was tilted from northeastern Asia to Lake Baikal. The common features of the two can be briefly summarized as follows: in the middle and high latitudes, a broad ridge area was situated at approximately 30°—105°E with a blocking high centered over the Ural Mountains area. Strong northerlies prevailed in front of the ridge. A northeast—southwest-tilting transverse trough lay to the southeast of Lake Baikal. The northerly winds consistently brought polar cold air to the mid latitudes of Asia.

    Fig. 2. Mean 500 hPa geopotential height (contours) and its anomalies (shaded)averaged for (a) 28—31 December 2020 and (b) 6—8 January 2021. Units: m.

    The outbreak of cold waves usually relates to the decay of a blocking high upstream, which may lead to an anticlockwise turning of the transverse trough and southward shift of the Siberian high in the lower troposphere. However, the evolution of the present cases is different. As can be seen in Fig. 2 (three-day mean 500 hPa height field), a broad ridge presented over the midlatitudes (60°—90°E) in both cold wave cases. The daily evolution of geopotential height at 500 hPa from 27 to 30 December 2020 and from 5 to 7 January 2021 is shown in Fig. 3 .Even during the whole period from mid-December 2020 to early January 2021, a high was consistently maintained over the Ural Mountains area(though the high experienced strengthening, weakening, and strengthening again in the meantime). Strong cold advection associated with intense northerly flows in front of the blocking high led to a steady southward shift of the cold-air mass. Therefore, it is meaningful to study the effects and maintenance mechanism of the Ural blocking high during this period.

    Fig. 3. Daily geopotential height (contours) and its anomalies (shaded) on (a) 27, (b) 29, and (c) 30 December 2020, and on (d) 5, (e) 6, and (f) 7 January 2021.Units: m.

    4. Role of the Ural blocking high in the outbreak of cold waves

    4.1. Enhancement of baroclinicity of the trough downstream

    As mentioned above, a broad ridge was maintained from mid-December 2020 till the end of the second cold wave. Its persistence and strengthening brought a pronounced effect on the development of the downstream trough. The strong northerly flows in front of the ridge and associated southward advance of cold air was able to enhance the meridional gradient of geopotential height at the bottom of the downstream trough. The meridional gradient of temperature also increased from the beginning to the extreme of the first cold wave ( Fig. 3 (a—c)).We calculated the meridional difference in geopotential height at 500 hPa between 30°N and 40°N along 120°E. At the beginning of the first cold wave (27 December 2020), the meridional difference in geopotential height was 218 m, while it reached 365 m at the extreme of the cold wave (30 December 2020). Similar features were observed during the second cold wave ( Fig. 3 (d—f)). The geopotential height at 500 hPa between 30°N and 40°N along 120°E increased from 394 m (5 January 2021) to 521.5 m (6 January 2021). Fig. 4 shows the temporal evolution of the 500 hPa height field and temperature advection at 1000 hPa.There were very strong cold advections in the two cold wave events,which were located right to the east of the ridge. Strong cold advection appeared with wide meridional extension, closely following a rapid strengthening of the high, which also indicates an increase in baroclinicity in the lower troposphere.

    It can be concluded from the above analysis that the maintenance and development of the Ural blocking high or ridge led to an enhancement of baroclinicity at the front of the high and bottom of the downstream trough, which, in turn, favored the development and southward advance of cold air.

    4.2. Effect of energy dispersion

    The analysis above has displaced the quasi-stationary characteristic of the Ural blocking high. The formation and influence of the stationary wave is discussed in this section. First, an eight-day low-pass filtering for 500 hPa geopotential height was performed and a Hovm?ller diagram of its anomalies to the climatology drawn ( Fig. 5 (a)). It can be seen that positive anomalies were maintained in the area of 50°—60°E,whereas negative anomalies persisted within 90°—150°E throughout the 35-day period from 10 December 2020 to 15 January 2021. The phase of the wave train basically remained unchanged, which is reminiscent of the pattern of a stationary wave, albeit with the strength varying during this period. If we use the movement of the maxima of the anomalies of geopotential heightΦ′(positive or negative centers in Fig. 5 (a)) to indicate the eastward propagation of the maxima ofΦ′2, and hence the propagation of energy, the mean velocity of the eastward propagation in the first and second cold wave can be estimated at 16° and 12° of longitude per day, respectively. The mean velocity of energy propagation was about 15° of longitude per day from around the middle of December 2020 to the middle of January 2021.

    Fig. 4. Time—latitude cross section of (a) 60°—90°E mean 500 hPa geopotential height (units: m) and (b) 105°—120°E mean temperature advection at 1000 hPa (units: °C d ? 1 ) from 22 December 2020 to 10 January 2021. Grey shading denotes the 28—31 December 2020 and 6—8 January 2021 cold waves.

    Taking the 500 hPa geostrophic westerlies in January 2021 averaged within the area of 0°—120°E and 45°—55°N as?u,Lsis estimated to be 96°.This means that if an intense development of low pressure occurs at 0°E,the development of a trough at 96°E is expected. This, of course, is but a simple physical explanation. In fact, how to decide the value of?uis a matter of multiple choices.

    The above analysis has shown that the eastward propagation of the stationary wave not only caused the maintenance and reinforcement of the ridge (or blocking high), but also favored the development of the transverse trough downstream and the outbreak of the cold waves.

    Fig. 5 (b) shows the activity of eight-day high-pass waves. Apparently, successive high-frequency waves moved eastwards rapidly.Positive and negative centers alternated in a specific area. Negative centers appeared to the east of 110°E, i.e., the location of the developing trough at the outbreak of the first cold wave. This indicates that the activity of high-frequency waves, together with the eastward propagation of low-frequency stationary wave energy, jointly contributed to the development of the cold waves.

    Fig. 5. Time—longitude cross section of 40°—60°N mean eight-day (a) low-pass and (b) high-pass filtering of 500 hPa geopotential anomalies from 10 December 2020 to 10 January 2021. Units: m. Grey shading denotes the 28—31 December 2020 and 6—8 January 2021 cold waves.

    5. Conclusion

    At the end of 2020 and on into early 2021, the eastern part of China experienced the intrusion of two successive cold waves. A drastic drop in temperature exceeding its historical extreme occurred at many stations from the north to the south. The area with intense temperature variation(interdiurnal variation larger than 6°C) extended to the south of 20°N.The zero line of minimum temperature advanced to South China.

    Regarding the features of circulation, a broad ridge (or blocking high) was maintained over the Ural Mountains area. No breakdown or discontinuous westward shift of the blocking high was observed, which is different from the typical situation for cold waves in eastern Asia.It is therefore worthwhile answering the question as to what process promoted the turning of the transverse trough.

    Firstly, the maintenance and intensification of the Ural blocking and the northerly winds at its front were a strong of the increase in baroclinicity. Cold advection was reinforced and marched to the south consistently. These processes led to the strengthening and southward extension of the Siberian high. And secondly, the dispersion of stationary wave energy was a key factor in the maintenance and development of the Ural blocking high. Before the beginning of the two cold waves, the eastward propagation of low-frequency stationary waves originating at 0°E (or even to its west) successively reinforced the Ural high. It also promoted the development of a trough or the anticlockwise turning of the transverse trough downstream. Thus, it favored the southward invasion of cold air.

    The above conclusions are based on an investigation into two cold wave cases. To verify the broader applicability of the conclusions, more cases need to be studied. Furthermore, numerical model experiments would be helpful to further examine the process and effect of stationary wave energy propagation. This will be the next step in the work of our group.

    By comparing the temperature drop during each entire process( Fig. 1 ) and the geopotential height at 500 hPa ( Fig. 2 ), remarkable differences between these two cases were found. The characteristics and mechanisms underlying these differences should be studied in detail in the future.

    Funding

    This research was funded by a National Key Research and Development Program Project [grant number 2018YFC1505601 ] and the National Natural Science Foundation of China [grant number 41975072 ].

    Acknowledgments

    We are grateful to Professor Liren Ji for his encouragement and helpful discussions during the course of this work.

    综合色丁香网| 成年免费大片在线观看| 精品国产三级普通话版| 午夜久久久久精精品| 国产欧美日韩一区二区精品| 18禁在线播放成人免费| 日韩欧美三级三区| 一进一出抽搐gif免费好疼| 欧美日韩国产亚洲二区| 国产综合懂色| 干丝袜人妻中文字幕| 亚洲av免费高清在线观看| 高清日韩中文字幕在线| 国产精品久久久久久亚洲av鲁大| 国产精品一区二区三区四区免费观看 | 蜜桃久久精品国产亚洲av| 亚洲成人久久爱视频| 国产精品久久视频播放| 舔av片在线| 人人妻人人澡欧美一区二区| 亚洲专区国产一区二区| 国产免费男女视频| 国产色婷婷99| 特大巨黑吊av在线直播| 春色校园在线视频观看| 长腿黑丝高跟| 男人舔女人下体高潮全视频| 久久精品人妻少妇| 九九在线视频观看精品| 亚洲欧美日韩东京热| 天堂影院成人在线观看| 国产亚洲欧美98| 国产真实乱freesex| 69人妻影院| 精品免费久久久久久久清纯| 波多野结衣高清作品| 无遮挡黄片免费观看| 亚洲一区二区三区色噜噜| 色5月婷婷丁香| 日韩一区二区视频免费看| 蜜桃久久精品国产亚洲av| 精品无人区乱码1区二区| videossex国产| 国产欧美日韩精品亚洲av| av国产免费在线观看| 搡老熟女国产l中国老女人| 成熟少妇高潮喷水视频| 男人和女人高潮做爰伦理| 午夜亚洲福利在线播放| 亚洲最大成人av| 成年女人永久免费观看视频| 搡老岳熟女国产| 人人妻人人澡欧美一区二区| 在线天堂最新版资源| 三级经典国产精品| 久久久久国产网址| 国产在线男女| 九九爱精品视频在线观看| 欧美xxxx性猛交bbbb| 97热精品久久久久久| 欧美性猛交╳xxx乱大交人| 美女黄网站色视频| 国产一区二区在线观看日韩| 一区二区三区高清视频在线| 1024手机看黄色片| 一进一出抽搐gif免费好疼| 国产欧美日韩精品一区二区| 久久韩国三级中文字幕| 日韩精品青青久久久久久| 啦啦啦观看免费观看视频高清| 亚洲欧美日韩高清专用| 久久亚洲精品不卡| 免费观看精品视频网站| 99九九线精品视频在线观看视频| 国产免费一级a男人的天堂| 国产av麻豆久久久久久久| 在线看三级毛片| 久久久色成人| 俄罗斯特黄特色一大片| 菩萨蛮人人尽说江南好唐韦庄 | 国产又黄又爽又无遮挡在线| 99久国产av精品国产电影| 欧美一区二区亚洲| 一级毛片电影观看 | 久久久午夜欧美精品| 亚洲人成网站在线播放欧美日韩| 日韩国内少妇激情av| 欧美不卡视频在线免费观看| 国产伦精品一区二区三区四那| 天堂影院成人在线观看| 91精品国产九色| 最近手机中文字幕大全| 嫩草影院入口| 久久6这里有精品| 亚洲婷婷狠狠爱综合网| 搡老妇女老女人老熟妇| 97在线视频观看| 亚洲自偷自拍三级| 亚洲熟妇中文字幕五十中出| 国产精品av视频在线免费观看| 菩萨蛮人人尽说江南好唐韦庄 | 美女cb高潮喷水在线观看| 嫩草影院精品99| 国产精品爽爽va在线观看网站| 国产不卡一卡二| 亚洲18禁久久av| 亚洲18禁久久av| 2021天堂中文幕一二区在线观| 免费观看在线日韩| 在线观看免费视频日本深夜| 亚洲av五月六月丁香网| 国产毛片a区久久久久| 尾随美女入室| 亚洲国产日韩欧美精品在线观看| 精品国内亚洲2022精品成人| 久久久a久久爽久久v久久| 久久久久久久亚洲中文字幕| 国产精品一区二区免费欧美| 午夜免费激情av| 午夜福利在线观看吧| 岛国在线免费视频观看| 天美传媒精品一区二区| 国产精品精品国产色婷婷| or卡值多少钱| 国产一区二区三区在线臀色熟女| 精品久久国产蜜桃| 国产精品三级大全| 亚洲国产欧美人成| 国产一区亚洲一区在线观看| 亚洲精品色激情综合| 精品乱码久久久久久99久播| 国产私拍福利视频在线观看| 久久99热这里只有精品18| 日本与韩国留学比较| 2021天堂中文幕一二区在线观| 国产男靠女视频免费网站| 午夜福利在线观看免费完整高清在 | 草草在线视频免费看| 久久婷婷人人爽人人干人人爱| 久久亚洲精品不卡| www.色视频.com| 久久精品夜夜夜夜夜久久蜜豆| 国产蜜桃级精品一区二区三区| 日本 av在线| 搡老岳熟女国产| 最新中文字幕久久久久| 国内揄拍国产精品人妻在线| 成人国产麻豆网| 欧美成人免费av一区二区三区| 免费看美女性在线毛片视频| 精品久久久久久久久av| 99热只有精品国产| 国产一区二区在线av高清观看| 久久精品综合一区二区三区| 久久久精品欧美日韩精品| 成人漫画全彩无遮挡| 俄罗斯特黄特色一大片| 搡老妇女老女人老熟妇| 91久久精品国产一区二区成人| 亚洲欧美日韩卡通动漫| 狠狠狠狠99中文字幕| 男女之事视频高清在线观看| or卡值多少钱| 欧美一区二区亚洲| 久久久精品欧美日韩精品| 亚洲18禁久久av| 亚洲国产欧美人成| 欧美一区二区国产精品久久精品| 九九热线精品视视频播放| 国产国拍精品亚洲av在线观看| 国产精品三级大全| 久久人人爽人人爽人人片va| 12—13女人毛片做爰片一| 国产精品1区2区在线观看.| 国产色婷婷99| 亚洲av中文字字幕乱码综合| a级一级毛片免费在线观看| 成人一区二区视频在线观看| 日韩大尺度精品在线看网址| 欧美一级a爱片免费观看看| 国内精品久久久久精免费| 精品一区二区三区av网在线观看| 亚洲三级黄色毛片| 美女被艹到高潮喷水动态| 在线播放无遮挡| 午夜免费男女啪啪视频观看 | 精品一区二区三区视频在线观看免费| 欧美日韩综合久久久久久| 国语自产精品视频在线第100页| 你懂的网址亚洲精品在线观看 | 色尼玛亚洲综合影院| 一本精品99久久精品77| 九九爱精品视频在线观看| 久久精品国产鲁丝片午夜精品| 丝袜喷水一区| 欧美最黄视频在线播放免费| 国产久久久一区二区三区| 日本三级黄在线观看| 中文字幕人妻熟人妻熟丝袜美| 国产成人a区在线观看| 看黄色毛片网站| 国产在视频线在精品| 丝袜喷水一区| a级一级毛片免费在线观看| av在线亚洲专区| 免费一级毛片在线播放高清视频| av专区在线播放| 亚洲国产精品合色在线| av福利片在线观看| 伦精品一区二区三区| 国产视频一区二区在线看| av天堂在线播放| eeuss影院久久| 亚州av有码| 国产av不卡久久| 99九九线精品视频在线观看视频| 亚洲国产欧美人成| 美女xxoo啪啪120秒动态图| а√天堂www在线а√下载| 一区二区三区免费毛片| 午夜免费激情av| 国产精品久久视频播放| 亚洲精品国产av成人精品 | 18禁在线播放成人免费| 超碰av人人做人人爽久久| 中国国产av一级| 欧美日韩乱码在线| 久久6这里有精品| 美女内射精品一级片tv| 亚洲欧美日韩卡通动漫| 六月丁香七月| 美女内射精品一级片tv| 插阴视频在线观看视频| 男人的好看免费观看在线视频| 久久久久国内视频| 99久久精品国产国产毛片| 最近在线观看免费完整版| 亚洲18禁久久av| 国产精品日韩av在线免费观看| 美女黄网站色视频| a级毛片a级免费在线| 一夜夜www| 欧美激情在线99| 日韩高清综合在线| 国产综合懂色| 亚洲精品国产av成人精品 | 成人精品一区二区免费| 麻豆久久精品国产亚洲av| 九色成人免费人妻av| 成人性生交大片免费视频hd| 天堂影院成人在线观看| 免费无遮挡裸体视频| 伊人久久精品亚洲午夜| 欧美日韩国产亚洲二区| 女同久久另类99精品国产91| 亚洲中文字幕一区二区三区有码在线看| 又粗又爽又猛毛片免费看| 成人国产麻豆网| 丰满乱子伦码专区| aaaaa片日本免费| 熟妇人妻久久中文字幕3abv| 男女下面进入的视频免费午夜| 一个人观看的视频www高清免费观看| 九九爱精品视频在线观看| 亚洲精品一卡2卡三卡4卡5卡| 我的女老师完整版在线观看| 精品人妻熟女av久视频| 一个人看视频在线观看www免费| 我的老师免费观看完整版| 亚洲最大成人av| a级毛色黄片| 久久鲁丝午夜福利片| 国产高清激情床上av| 日韩亚洲欧美综合| 日韩欧美在线乱码| 在线观看一区二区三区| 亚洲四区av| 日韩一区二区视频免费看| 久久欧美精品欧美久久欧美| 最近中文字幕高清免费大全6| 亚洲不卡免费看| 免费在线观看影片大全网站| 中国国产av一级| 麻豆乱淫一区二区| 黄色一级大片看看| 国产午夜精品久久久久久一区二区三区 | 91狼人影院| av在线蜜桃| 国产一区二区三区在线臀色熟女| 亚洲国产精品久久男人天堂| 精品熟女少妇av免费看| 成人特级av手机在线观看| 欧美xxxx黑人xx丫x性爽| 最近最新中文字幕大全电影3| 欧美一区二区精品小视频在线| 久久久精品欧美日韩精品| 晚上一个人看的免费电影| 国产高清不卡午夜福利| 欧美性猛交╳xxx乱大交人| 欧美成人精品欧美一级黄| 小说图片视频综合网站| 欧美一区二区国产精品久久精品| 老司机午夜福利在线观看视频| 欧美激情久久久久久爽电影| 深夜精品福利| 免费看日本二区| av天堂中文字幕网| 久久久久久国产a免费观看| 日本黄色片子视频| 伦理电影大哥的女人| 色综合亚洲欧美另类图片| 麻豆成人午夜福利视频| 国产欧美日韩精品一区二区| 日韩欧美精品v在线| videossex国产| 真人做人爱边吃奶动态| 一区福利在线观看| 日韩高清综合在线| 亚洲人成网站在线观看播放| 亚洲人成网站在线播放欧美日韩| eeuss影院久久| 国产精品三级大全| 日韩欧美精品免费久久| 国产单亲对白刺激| 寂寞人妻少妇视频99o| 淫秽高清视频在线观看| 亚洲精品乱码久久久v下载方式| 日韩,欧美,国产一区二区三区 | 美女cb高潮喷水在线观看| 日韩成人伦理影院| 99久久精品热视频| 国产人妻一区二区三区在| 欧美+日韩+精品| 91麻豆精品激情在线观看国产| 亚洲欧美清纯卡通| 搞女人的毛片| 国产高清视频在线观看网站| 女的被弄到高潮叫床怎么办| 国产精品亚洲一级av第二区| 国产精品爽爽va在线观看网站| 可以在线观看的亚洲视频| 国产精品电影一区二区三区| 最好的美女福利视频网| 日韩高清综合在线| 色5月婷婷丁香| 香蕉av资源在线| 热99re8久久精品国产| 大香蕉久久网| 天堂√8在线中文| 久久草成人影院| 寂寞人妻少妇视频99o| 超碰av人人做人人爽久久| 国产精品一区二区免费欧美| 国产真实伦视频高清在线观看| 亚洲精品久久国产高清桃花| 久久久欧美国产精品| ponron亚洲| 欧美激情在线99| av在线蜜桃| 久久中文看片网| 级片在线观看| 美女黄网站色视频| 成人综合一区亚洲| 少妇的逼好多水| 一级毛片aaaaaa免费看小| 99热只有精品国产| 啦啦啦韩国在线观看视频| 日韩欧美三级三区| 日韩大尺度精品在线看网址| 日韩三级伦理在线观看| 人妻丰满熟妇av一区二区三区| 国产精品一区二区三区四区久久| 可以在线观看毛片的网站| 国产黄a三级三级三级人| 欧美潮喷喷水| 日韩强制内射视频| 国产精品99久久久久久久久| 欧美zozozo另类| 成年版毛片免费区| 在线观看午夜福利视频| 夜夜看夜夜爽夜夜摸| 男女视频在线观看网站免费| 三级男女做爰猛烈吃奶摸视频| videossex国产| 熟女电影av网| 一边摸一边抽搐一进一小说| 国产极品精品免费视频能看的| 国内精品宾馆在线| 欧美一区二区精品小视频在线| 亚洲成人久久爱视频| 亚洲精品亚洲一区二区| 成人鲁丝片一二三区免费| 亚洲精品日韩av片在线观看| 国产久久久一区二区三区| 国产精品久久久久久精品电影| 国产v大片淫在线免费观看| 黄片wwwwww| 国产精品久久电影中文字幕| 色吧在线观看| 亚洲人成网站高清观看| 欧美一区二区国产精品久久精品| 国产午夜精品论理片| 日韩成人av中文字幕在线观看 | 黄色视频,在线免费观看| 久久久久久久久久成人| 国产精品久久久久久av不卡| 亚洲第一区二区三区不卡| 毛片女人毛片| 中文字幕av成人在线电影| 少妇熟女欧美另类| 欧美日韩精品成人综合77777| 国产91av在线免费观看| 我的女老师完整版在线观看| 美女被艹到高潮喷水动态| 国产精品爽爽va在线观看网站| av在线亚洲专区| 两个人视频免费观看高清| 国产黄片美女视频| 99久久精品国产国产毛片| 一进一出抽搐gif免费好疼| 国产中年淑女户外野战色| 亚洲成人精品中文字幕电影| 久久精品国产亚洲av天美| www.色视频.com| 久久久久久久亚洲中文字幕| 成人特级av手机在线观看| 欧美日韩国产亚洲二区| 天天躁日日操中文字幕| 日本-黄色视频高清免费观看| 国产真实乱freesex| 久久久午夜欧美精品| 麻豆精品久久久久久蜜桃| 久久人人精品亚洲av| 欧美极品一区二区三区四区| 日本色播在线视频| 少妇人妻精品综合一区二区 | 91久久精品电影网| 春色校园在线视频观看| 日本免费一区二区三区高清不卡| 久久久国产成人精品二区| 国产不卡一卡二| 午夜久久久久精精品| 长腿黑丝高跟| 欧美日韩国产亚洲二区| 精品久久久久久久末码| 成人av一区二区三区在线看| 成人鲁丝片一二三区免费| 亚洲一区高清亚洲精品| 国产 一区精品| 国产久久久一区二区三区| 日韩三级伦理在线观看| 亚洲精华国产精华液的使用体验 | 精品午夜福利视频在线观看一区| 日本 av在线| 久久久久久久亚洲中文字幕| 国产一区二区三区在线臀色熟女| 欧美不卡视频在线免费观看| 国产精品嫩草影院av在线观看| 男女啪啪激烈高潮av片| 蜜桃亚洲精品一区二区三区| 国产精品一及| 欧美潮喷喷水| 99九九线精品视频在线观看视频| 久久久久国产网址| 久久九九热精品免费| 日韩精品青青久久久久久| 免费看av在线观看网站| 国产蜜桃级精品一区二区三区| 亚洲三级黄色毛片| 综合色丁香网| 全区人妻精品视频| 国产精品一区www在线观看| 亚洲美女黄片视频| 久久久久久久久久久丰满| 99在线人妻在线中文字幕| 午夜日韩欧美国产| 久久6这里有精品| 国产老妇女一区| 精品人妻熟女av久视频| 亚洲激情五月婷婷啪啪| 国产中年淑女户外野战色| 搡老岳熟女国产| 国产久久久一区二区三区| 日韩欧美三级三区| av在线老鸭窝| 亚洲av美国av| 国产又黄又爽又无遮挡在线| 欧美一区二区精品小视频在线| 亚洲精品国产av成人精品 | 搡老妇女老女人老熟妇| 欧美人与善性xxx| 噜噜噜噜噜久久久久久91| 国产在线男女| 97在线视频观看| 午夜视频国产福利| 久久久久久久午夜电影| 大又大粗又爽又黄少妇毛片口| 波多野结衣高清作品| 欧美一级a爱片免费观看看| 国产成年人精品一区二区| 亚洲在线自拍视频| 亚洲av免费在线观看| 亚洲国产精品国产精品| 最新中文字幕久久久久| 女的被弄到高潮叫床怎么办| 亚洲真实伦在线观看| 狂野欧美白嫩少妇大欣赏| 国产高清视频在线播放一区| 好男人在线观看高清免费视频| 免费观看在线日韩| 好男人在线观看高清免费视频| 欧美三级亚洲精品| 欧美zozozo另类| 国产精品一区二区三区四区免费观看 | 亚洲国产精品国产精品| 成人特级av手机在线观看| 成年版毛片免费区| 国产精品美女特级片免费视频播放器| 看非洲黑人一级黄片| 啦啦啦观看免费观看视频高清| 综合色丁香网| 国产成人精品久久久久久| 麻豆av噜噜一区二区三区| 国产精品,欧美在线| 中文字幕av在线有码专区| 六月丁香七月| 日韩精品青青久久久久久| 亚洲国产精品久久男人天堂| 亚洲无线在线观看| 免费av不卡在线播放| 少妇人妻精品综合一区二区 | 成年女人永久免费观看视频| 白带黄色成豆腐渣| 最近的中文字幕免费完整| 亚洲美女视频黄频| 赤兔流量卡办理| 精品久久久久久久末码| 午夜福利在线在线| 最近最新中文字幕大全电影3| 露出奶头的视频| 小说图片视频综合网站| 美女 人体艺术 gogo| 男女做爰动态图高潮gif福利片| 天堂网av新在线| 校园人妻丝袜中文字幕| 两个人的视频大全免费| 特大巨黑吊av在线直播| 有码 亚洲区| h日本视频在线播放| 午夜激情欧美在线| 91麻豆精品激情在线观看国产| 中国美白少妇内射xxxbb| 最近手机中文字幕大全| 国产三级在线视频| 最近最新中文字幕大全电影3| 我要搜黄色片| 国产极品精品免费视频能看的| 免费看日本二区| 99热网站在线观看| 成人欧美大片| 一区二区三区免费毛片| 日本与韩国留学比较| 老师上课跳d突然被开到最大视频| 俄罗斯特黄特色一大片| 国产极品精品免费视频能看的| 如何舔出高潮| 97在线视频观看| 国产老妇女一区| 性欧美人与动物交配| 亚洲自偷自拍三级| 黄色一级大片看看| 在线免费观看不下载黄p国产| 亚洲综合色惰| 国产免费男女视频| 成人av在线播放网站| 久久婷婷人人爽人人干人人爱| 国产亚洲精品av在线| 国内精品宾馆在线| avwww免费| 日韩欧美在线乱码| 国产亚洲精品久久久com| eeuss影院久久| 亚洲中文日韩欧美视频| 亚洲欧美清纯卡通| 欧美日韩精品成人综合77777| 亚洲av中文字字幕乱码综合| 日韩高清综合在线| 亚洲成人中文字幕在线播放| 国产欧美日韩精品一区二区| 一区二区三区四区激情视频 | 久久精品综合一区二区三区| 女同久久另类99精品国产91| 免费看日本二区| 亚洲av免费在线观看| 国产毛片a区久久久久| 少妇熟女欧美另类| 五月玫瑰六月丁香| 精品福利观看| 成年免费大片在线观看| 少妇的逼好多水| 欧美日韩综合久久久久久| 久久精品国产99精品国产亚洲性色| 国产成人福利小说| 国产精品亚洲一级av第二区| 久久草成人影院| 色综合站精品国产| 国产熟女欧美一区二区| 老司机福利观看| 精品久久国产蜜桃| 欧美日韩综合久久久久久| 蜜桃亚洲精品一区二区三区| 精品久久久久久久久av| av天堂中文字幕网| 91精品国产九色| 露出奶头的视频|