• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Possible contribution of Arctic sea ice decline to intense warming over Siberia in June

    2022-04-26 02:00:16YingZhngMengqiZhngJiehuDongChenToWng

    Ying Zhng , , , , Mengqi Zhng , Jiehu M , , , Dong Chen , To Wng , ,

    a Climate Change Research Center, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China

    b Nansen-Zhu International Research Center Centre, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China

    c Key Laboratory of Meteorological Disaster, Ministry of Education/Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science & Technology, Nanjing, China

    Keywords:Intense Siberian warming Arctic sea ice decline Surface radiation flux Turbulent heat flux

    ABSTRACT Siberia experienced intense heat waves in 2020, and this unusual warming may have caused more wildfires and losses of permafrost than normal, both of which can be devastating to ecosystems. Based on observational data, this paper shows that there was an intense warming trend over Siberia (60°—75°N, 70°—130°E) in June during 1979—2020. The linear trend of the June surface air temperature is 0.90°C/10 yr over Siberia, which is much larger than the area with the same latitudes (60°—75°N, 0°—360°, trend of 0.46°C/10 yr). The warming over Siberia extends from the surface to about 300 hPa. Increased geopotential height in the mid-to-upper troposphere plays an important role in shaping the Siberian warming, which favors more shortwave radiation reaching the surface and further heating the overlying atmosphere via upward turbulent heat flux and longwave radiation. The Siberian warming is closely related to Arctic sea-ice decline, especially the sea ice over northern Barents Sea and Kara Sea. Numerical experiments carried out using and atmospheric general circulation model (IAP-AGCM4.1)confirmed the contribution of the Arctic sea-ice decline to the Siberian warming and the related changes in circulations and surface fluxes.

    1. Introduction

    Siberia suffered intense heat waves in 2020. The meteorological station at Verkhoyansk, a Russian Arctic town, reported a new record temperature of 38 °C on 20 June 2020 ( WMO, 2021 ; Overland and Wang, 2020 ). These extreme events attracted public attention, since unusual warming over Siberia may result in wildfires and losses of permafrost, both of which can be devastating for ecosystems and have substantial impacts on the whole climate system. Based on observational data and climate model simulations, Ciavarella et al. (2021) showed that human-induced climate change dramatically increased the probability of occurrence and magnitude of Siberian heat waves in 2020. In the present study, we analyzed the climate features of early summer warming over Siberia and investigated the possible contribution of Arctic sea ice decline to the warming trend.

    Along with global warming, the rapid decline of Arctic sea ice is one of the most important features in recent decades. Arctic sea ice decline has both local and remote impacts on the climate system( Vihma, 2014 ; Gao et al., 2015 ). Locally, Arctic sea-ice loss has been found to make an important contribution to the enhanced warming over the Arctic —the so-called “Arctic amplification ” ( Screen and Simmonds, 2010 ; Dai et al., 2019 ). Remotely, sea ice decline has been connected with Eurasian cooling in winter, albeit this remains controversial owing to discrepancies among modeling and observational studies( Liu et al., 2012 ; Wu et al., 2017 ; Zhang et al., 2018 ; Mori et al., 2019 ;Screen and Blackport, 2019 ) .

    Previous work on connections in temperature between the Arctic and Eurasia has mainly focused on the cold season. Recently, Arctic sea ice and temperature anomalies have also been linked to Eurasian temperature changes in other seasons. Chen and Wu (2017) found that early autumn Arctic sea ice anomalies have impacts on spring Eurasian temperature variations. Wu and Francis (2019) found that East Asian heat waves are closely linked to summer Arctic cold anomalies. However,the connection between Arctic sea ice and summer temperature changes over Siberia remains unclear. This study investigated the connection between Arctic sea ice decline and the warming trend over Siberia in June and the related circulation changes.

    2. Data, methods, and model

    2.1. Data and methods

    The latest version of the Met Office Hadley Centre/Climatic Research Unit global surface temperature dataset (HadCRUT5; Morice et al.,2021 ; https://www.metoffice.gov.uk/hadobs/hadcrut5 ) was employed to assess the change in surface air temperature (SAT). HadCRUT5 combines sea surface temperature measurements over the ocean from ships and buoys and near-surface air temperature measurements over land from weather stations relative to the period 1961—1990, which is on a regular 5° × 5° grid from 1850 to the present day. The Hadley Centre Sea Ice and Sea Surface Temperature dataset (HadISST2.2.0.0; Titchner and Rayner, 2014 ; downloaded from https://www.metoffice.gov.uk/hadobs/hadisst2 in January 2021) was used to evaluate the change in sea-ice concentration, which is on a 1° × 1° grid since 1850.

    The other monthly atmospheric data are from the European Centre for Medium-Range Weather Forecasts (ECMWF) ERA5 Reanalysis ( Hersbach et al., 2020 ; https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era5 ). The variables include air temperature, geopotential, surface net shortwave flux, surface net longwave flux,surface sensible heat flux, and surface latent heat flux, with a resolution of 1° × 1° during 1979—2020.

    The area of 60°—75°N and 70°—130°E (boxes in Fig. 1 ) defines Siberia in this paper. The linear trends were estimated by calculating regression coefficients via the least-squares method on the time dimension. The Student’st-test was used for significance testing.

    Fig. 1. Linear trends of SAT (units: °C/10 yr) in (a) June, (b) July, and (c) August during 1979—2020. Latitude—pressure section of linear trends of air temperature(units: °C/10 yr) in (d) June, (e) July, and (f) August averaged over 70°—130°E during 1979—2020. Stippled regions indicate the trends are significant at the 0.1 level.

    2.2. Model

    Atmospheric general circulation model (AGCM) experiments were conducted to estimate the possible contribution of sea ice to the Siberian warming. The model used in this study was the Atmospheric General Circulation Model of the Institute of Atmospheric Physics, version 4.1(IAP-AGCM4.1; Sun et al., 2012 ). It has 30 vertical levels with the top at 2.2 hPa and a horizontal resolution of 1.4° × 1.4°.

    3. Results

    3.1. Intense warming over Siberia in June

    Fig. 1 (a—c) shows the spatial distributions of the linear trends in SAT for summer months over northern Eurasia. Significant warming trends can be seen over Siberia in June, whereas the trends are weakened and insignificant over the region in July and August. The linear trend of June SAT averaged over Siberia reaches up to 0.90°C/10 yr during 1979—2020. It is widely known that, due to increased anthropogenic emissions of greenhouse gases, almost the entire globe has experienced surface warming during the past several decades ( Hartmann et al., 2013 ).The linear trend of June SAT averaged over the area with the same latitudes (60°—75°N, 0°—360°) is 0.46°C/10 yr during 1979—2020. This result indicates that the warming trend over Siberia largely exceeds the zonal average warming trend at the same latitude. Fig. 1 (d—f) displays the vertical structures of the linear trends in air temperature from the surface to 100 hPa averaged along 70°—130°E. The significant Siberian warming in June extends from the surface to about 300 hPa, with larger magnitude and zonal spread at lower levels. Similar to the SAT, there are generally no significant trends in the tropospheric temperature over Siberia in July and August. The above results suggest that there was an intense and deep warming trend over Siberia in June during 1979—2020.

    Fig. 2. Linear trends of (a) 500 hPa geopotential height ( Z 500 ; units: m/10 yr), (b) 200 hPa geopotential height ( Z 200 ; units: m/10 yr), (c) surface net downward shortwave flux (SSR; units: W/10 yr), (d) surface turbulent heat flux (LH + SH; latent flux plus sensible flux; units: W/10 yr), and (e) surface net upward longwave flux (STR; units: W/10 yr) in June during 1979—2020. Stippled regions indicate the trends are significant at the 0.1 level. Contours in (c—e) indicate the climatology of SSR (units: W), LH + SH (units: W), and STR (units: W) in June during 1979—2020, respectively. Positive values indicate the direction of flux is downwards.

    Fig. 3. (a) Simultaneous correlation coefficient of non-detrended (shading) and detrended (contours) sea ice concentration and Siberian SAT in June during 1979—2020. Stippled regions indicate the correlation coefficients between the detrended sea ice concentration and Siberian SAT are significant at the 0.1 level.(b) Linear trends (shading, units: %/yr) and standard deviation (contours; units:%) of sea ice concentration in June during 1979—2020. Stippled regions indicate the trends are significant at the 0.1 level.

    3.2. Trends in circulations and surface fluxes

    In this section, the linear trends of atmospheric circulations, surface radiation fluxes, and turbulent heat flux in June are presented. Significant increasing trends are apparent in the geopotential height at 500 hPa and 200 hPa over Siberia, with the centers located in the eastern part of the region ( Fig. 2 (a, b)). This indicates that an increase in geopotential height has prevailed in the mid-to-upper troposphere over Siberia,which would favor more anticyclonic circulations in that region. Such an increase in high pressure and anticyclonic activity will then lead to more solar radiation reaching the surface and further heating of the surface. Accordingly, significant increasing trends can be found over Siberia in the surface downward shortwave flux, turbulent heat flux, and upward longwave flux ( Fig. 2 (c—e)). The changes in surface fluxes indicate that the surface is absorbing more solar radiation and then warming up the overlying atmosphere through turbulence and longwave radiation,which is an important process responsible for the intense warming over Siberia.

    3.3. Connection between Arctic sea-ice decline and Siberian warming

    Arctic sea ice has decreased rapidly in the past several decades,which has had profound impacts on the global climate system. In this section, the connection between sea ice decline and the intense Siberian warming is investigated using observation/reanalysis data. Fig. 3 (a)presents the simultaneous correlation coefficients of sea ice concentration over the Eurasian Arctic with the June SAT averaged over Siberia.The Eurasian Arctic sea ice concentration is generally negatively correlated with the Siberian SAT, with the largest correlation over the northern Barents Sea and Kara Sea. The negative correlations over the northern Barents Sea and Kara Sea are still significant after removing the linear trends. Fig. 3 (b) depicts the trends and standard deviation of sea-ice concentration in June during 1979—2020, revealing there to be generally decreasing trends in the Eurasian Arctic sea ice concentration. The maximum center of the linear trends and standard deviation is over the northern Barents Sea and Kara Sea. These results indicate that the intense warming over Siberia is closely related to the sea ice decline over the northern Barents Sea and Kara Sea, which is also the region with large decreasing trend and variation.

    Fig. 4. (a) Linear trends for SAT in June in EXP1-EXP2 (units: °C/10 yr). (b)Latitude—pressure section of linear trends of air temperature (units: °C/10 yr)averaged over 70°—130°E. Stippled regions indicate the trends are significant at the 0.1 level.

    3.4. AGCM simulation

    To confirm the contribution of sea ice decline to the intense warming over Siberia, two sets of numerical experiments were conducted. Experiment I (EXP1) was forced with observed daily sea surface temperature and sea ice, while experiment II (EXP2) was similar to EXP1 but the sea ice data were replaced with the multi-year daily mean climatology. The climate impacts of sea ice change could be isolated by the difference between the two experiments (the former minus the latter, referred to as EXP1-EXP2). To reduce the impact of atmospheric internal variability,there were 15 members for each experiment. The simulation period was 1979—2015.

    Fig. 4 (a) shows the spatial distribution of June SAT trends in EXP1-EXP2. Significant warming trends are also found over Siberia, albeit the warming center is shifted westward compared with that in the observation ( Fig. 1 (a)). The vertical structure of the air temperature trend in EXP1-EXP2 also shows significant warming over Siberia, extending from the surface to about 300 hPa, with larger magnitude at lower levels. However, the warming is shifted polewards compared to that in the observation ( Fig. 1 (b)). The simulated temperature trends over Siberia generally resemble those in the observation, which verifies the contribution of sea-ice decline to the intense warming over Siberia.

    Fig. 5. Linear trends of (a) 500 hPa geopotential height ( Z 500 ; units: m/10 yr), (b) 200 hPa geopotential height ( Z 200 ; units: m/10 yr), (c) surface net downward shortwave flux (SSR; units: W/10 yr), (d) surface turbulent heat flux (LH + SH; latent flux plus sensible flux; units: W/10 yr), (e) surface net upward longwave flux(STR; units: W/10 yr) in June in EXP1-EXP2. Contours in (c—e) indicate the climatology of SSR (units: W), LH + SH (units: W), and STR (units: W) in June during 1979—2015 in EXP1, respectively. Stippled regions indicate the trends are significant at the 0.1 level. Positive values indicate the direction of flux is downwards.

    The linear trends of the circulations, radiation fluxes and turbulent heat flux in EXP1-EXP2 are shown in Fig. 5 . Increased geopotential height is found over Siberia at 500 hPa and 200 hPa. The maximum center is located more to the west compared with that in the observation, which is consistent with the westward shift in SAT warming in the simulation. There are also increases in surface net downward shortwave radiation, turbulent heat flux, and upward longwave radiation flux over the Siberian region. This result indicates that the surface absorbs more solar radiation and then heats the overlying atmosphere through longwave radiation and turbulent heat flux. The simulated changes in circulations and surface fluxes generally resemble those in the observation and reanalysis, which further confirms the physical processes linking the Arctic sea ice decline and Siberian warming.

    4. Conclusions and discussion

    This study shows that there was intense warming over Siberia in June during 1979—2020. The linear trend of June SAT over Siberia reaches up to 0.90°C/10 yr, which is much larger than the trend averaged over the area with same latitudes (trend of 0.46°C/10 yr). The Siberian warming extends from the surface to about 300 hPa. Corresponding to the warming, there are generally increasing trends in geopotential height in the mid-to-upper troposphere over Siberia, which favors more incoming solar radiation reaching the surface and warming of the lower-level atmosphere through upward longwave radiation and turbulent heat flux. Observation/reanalysis data show that the Siberian SAT warming is closely related to sea ice decline over the northern Barents Sea and Kara Sea.

    To confirm the results obtained from the observational and reanalysis data, two experiments were carried out using IAP-AGCM4.1. The differences between the experiments (EXP1-EXP2) were able to isolate the impacts of sea ice change on atmospheric circulations. The distribution of temperature trends in EXP1-EXP2 resembled that in the observation, thereby verifying the contribution of sea-ice decline to the Siberian warming. The trends of the circulations, surface radiation fluxes, and turbulent heat flux in EXP1-EXP2 were generally consistent with those in the reanalysis data, implying that the changes in circulations and surface fluxes in association with the sea ice decline have played important roles in forming the intense warming over Siberia.

    The results of this study indicate that in addition to the general global warming effect, the sea ice decline over the Arctic has likely given rise to regional atmospheric circulation anomalies over Siberia and induced extra warming in that region. It is important to note that the enhanced Siberian warming disappears in July and August, and the corresponding circulation and surface flux changes in July and August show large difference from those in June. There are no significant changes over Siberia in July and August, with only slight decreases in geopotential height, surface net downward shortwave flux, and surface turbulent heat flux, and a slight increase in surface net upward longwave flux.The underlying process related to this interseasonal variation needs further exploration. Previous work shows that the Siberian SAT is associated with changes in the stratospheric polar vortex, North Atlantic Oscillation/Arctic Oscillation, tropospheric jet stream, and blocking activity in the Greenland region, amongst other factors ( Wang et al., 2019 ;Overland and Wang, 2020 ; Wu and Chen, 2020 ). The specific pathway by which the Arctic sea ice changes impact the Siberian SAT remains to be explored in the future.

    Funding

    This research was jointly supported by the National Key R&D Program of China [grant number 2017YFE0111800] and the National Natural Science Foundation of China [grant numbers 41790472 and 41822502 ] .

    亚洲高清免费不卡视频| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 最近手机中文字幕大全| 特大巨黑吊av在线直播| 亚洲无线观看免费| 午夜日本视频在线| 大片电影免费在线观看免费| 久久国内精品自在自线图片| 丁香六月天网| 性高湖久久久久久久久免费观看| 男人操女人黄网站| 成人18禁高潮啪啪吃奶动态图 | 麻豆成人av视频| 伊人亚洲综合成人网| 各种免费的搞黄视频| 精品少妇内射三级| 亚洲精品国产av蜜桃| 国产成人一区二区在线| 日本av免费视频播放| 男女高潮啪啪啪动态图| 少妇 在线观看| 日韩精品免费视频一区二区三区 | 美女大奶头黄色视频| 菩萨蛮人人尽说江南好唐韦庄| 黄色怎么调成土黄色| 国产乱来视频区| 人妻 亚洲 视频| 永久免费av网站大全| 国产欧美另类精品又又久久亚洲欧美| 精品一区二区三区视频在线| 人妻 亚洲 视频| av网站免费在线观看视频| 精品午夜福利在线看| 亚洲综合精品二区| 青春草视频在线免费观看| 久久久久久久久久人人人人人人| 色吧在线观看| 成年人午夜在线观看视频| 亚洲国产毛片av蜜桃av| 我的老师免费观看完整版| 免费不卡的大黄色大毛片视频在线观看| 丝袜美足系列| 亚洲国产毛片av蜜桃av| 久久热精品热| 亚洲国产精品一区三区| 久热久热在线精品观看| 亚洲av二区三区四区| 最新中文字幕久久久久| 日韩免费高清中文字幕av| 91成人精品电影| 国产高清不卡午夜福利| 免费不卡的大黄色大毛片视频在线观看| 欧美日韩国产mv在线观看视频| 亚洲不卡免费看| 免费看光身美女| 亚洲天堂av无毛| 黄片播放在线免费| 亚洲精品国产av蜜桃| 国产成人精品福利久久| 色吧在线观看| 国产黄色视频一区二区在线观看| 日韩成人伦理影院| 这个男人来自地球电影免费观看 | 亚洲在久久综合| av在线观看视频网站免费| 精品一区在线观看国产| 91精品国产九色| 久久精品国产亚洲av涩爱| 黄片无遮挡物在线观看| 美女福利国产在线| 一级毛片我不卡| 中文字幕制服av| 大香蕉久久网| 七月丁香在线播放| 91精品伊人久久大香线蕉| 中文字幕免费在线视频6| 伦理电影大哥的女人| 视频区图区小说| 国产成人a∨麻豆精品| 老熟女久久久| 寂寞人妻少妇视频99o| av又黄又爽大尺度在线免费看| 国产精品嫩草影院av在线观看| 高清在线视频一区二区三区| 永久免费av网站大全| 精品久久国产蜜桃| 成人二区视频| 久久国产精品大桥未久av| 久久久久久伊人网av| 精品久久久精品久久久| 亚洲精品久久成人aⅴ小说 | 水蜜桃什么品种好| 国产精品99久久久久久久久| 极品人妻少妇av视频| 日韩欧美精品免费久久| 免费人成在线观看视频色| 亚洲精品aⅴ在线观看| √禁漫天堂资源中文www| 国产黄色视频一区二区在线观看| 国产成人freesex在线| 国产一区二区在线观看日韩| 婷婷色综合www| 夜夜爽夜夜爽视频| 亚洲美女黄色视频免费看| 日本av手机在线免费观看| 特大巨黑吊av在线直播| 国产成人精品久久久久久| 啦啦啦在线观看免费高清www| 精品一区二区三区视频在线| 国产在线视频一区二区| 精品久久蜜臀av无| 日韩 亚洲 欧美在线| 亚洲精品一二三| 国产午夜精品久久久久久一区二区三区| 观看美女的网站| 99热这里只有精品一区| 亚洲国产精品一区二区三区在线| 免费大片18禁| 精品99又大又爽又粗少妇毛片| 久久久久久久久久久免费av| 2018国产大陆天天弄谢| a级毛色黄片| 伊人久久精品亚洲午夜| 一本—道久久a久久精品蜜桃钙片| 国产亚洲精品久久久com| 一区二区日韩欧美中文字幕 | 草草在线视频免费看| 性色avwww在线观看| 亚洲av成人精品一区久久| 国产免费一级a男人的天堂| 亚洲欧洲精品一区二区精品久久久 | 国产成人精品一,二区| 午夜福利网站1000一区二区三区| 国产片内射在线| 美女视频免费永久观看网站| 久久久久久久久久人人人人人人| 伦理电影免费视频| 热re99久久精品国产66热6| 久久鲁丝午夜福利片| 国产成人免费观看mmmm| 免费黄色在线免费观看| 成人免费观看视频高清| 午夜激情久久久久久久| 三级国产精品片| 成人免费观看视频高清| 精品久久国产蜜桃| 特大巨黑吊av在线直播| 久久99一区二区三区| 国产视频首页在线观看| 18禁动态无遮挡网站| 亚洲成人av在线免费| 大片电影免费在线观看免费| 18禁动态无遮挡网站| 在线天堂最新版资源| 欧美国产精品一级二级三级| 纯流量卡能插随身wifi吗| 欧美三级亚洲精品| 视频中文字幕在线观看| 成人综合一区亚洲| 观看av在线不卡| 丰满少妇做爰视频| 18+在线观看网站| 69精品国产乱码久久久| 国产在视频线精品| 久久久久久久久久成人| 在线观看三级黄色| 亚洲av不卡在线观看| 国产av码专区亚洲av| 免费久久久久久久精品成人欧美视频 | 婷婷色综合www| 另类亚洲欧美激情| av福利片在线| 下体分泌物呈黄色| 国产在线免费精品| 国产精品欧美亚洲77777| 嘟嘟电影网在线观看| 国产熟女欧美一区二区| 青青草视频在线视频观看| 丝瓜视频免费看黄片| 国产免费一级a男人的天堂| 国产综合精华液| 亚洲精品一区蜜桃| 18在线观看网站| 中文字幕av电影在线播放| 欧美精品高潮呻吟av久久| 亚洲精品亚洲一区二区| 啦啦啦视频在线资源免费观看| 亚洲第一av免费看| 国产极品粉嫩免费观看在线 | 夫妻性生交免费视频一级片| 多毛熟女@视频| 欧美日韩亚洲高清精品| 肉色欧美久久久久久久蜜桃| 国精品久久久久久国模美| 少妇精品久久久久久久| 69精品国产乱码久久久| 国产成人aa在线观看| 五月开心婷婷网| 亚洲内射少妇av| 国产一级毛片在线| 国产成人精品无人区| 日本爱情动作片www.在线观看| 丁香六月天网| 一区在线观看完整版| 欧美 亚洲 国产 日韩一| 18+在线观看网站| 极品人妻少妇av视频| 免费黄色在线免费观看| 国产成人精品久久久久久| 观看美女的网站| 国产成人精品一,二区| 欧美日韩在线观看h| 最近手机中文字幕大全| 伦理电影大哥的女人| av不卡在线播放| 亚洲,欧美,日韩| 一级毛片 在线播放| 麻豆精品久久久久久蜜桃| av有码第一页| 99九九线精品视频在线观看视频| 国产淫语在线视频| 国产极品粉嫩免费观看在线 | 肉色欧美久久久久久久蜜桃| 久久国产亚洲av麻豆专区| 秋霞伦理黄片| 97超视频在线观看视频| 狠狠精品人妻久久久久久综合| 亚洲av欧美aⅴ国产| 国产精品女同一区二区软件| 青春草视频在线免费观看| 久久精品国产自在天天线| 热99国产精品久久久久久7| 精品少妇黑人巨大在线播放| 黑人猛操日本美女一级片| 久久精品国产a三级三级三级| 男女边摸边吃奶| 亚洲国产最新在线播放| 国产不卡av网站在线观看| 精品一区二区免费观看| 国产精品久久久久久精品古装| 国产成人精品久久久久久| 一区二区三区四区激情视频| 中国美白少妇内射xxxbb| 99久久中文字幕三级久久日本| 性色av一级| 亚洲欧美精品自产自拍| 91精品国产国语对白视频| 久久婷婷青草| 大码成人一级视频| 亚洲少妇的诱惑av| 少妇丰满av| 日韩 亚洲 欧美在线| 免费高清在线观看日韩| 黄片播放在线免费| 午夜免费男女啪啪视频观看| 在线观看三级黄色| 国产亚洲精品第一综合不卡 | 国产高清有码在线观看视频| 色5月婷婷丁香| 日韩中文字幕视频在线看片| 精品亚洲乱码少妇综合久久| 欧美日韩精品成人综合77777| 亚洲欧美一区二区三区国产| 你懂的网址亚洲精品在线观看| 综合色丁香网| 日韩成人伦理影院| 国产精品三级大全| 欧美97在线视频| 免费播放大片免费观看视频在线观看| 亚洲成人一二三区av| 欧美精品人与动牲交sv欧美| 热99国产精品久久久久久7| 伦理电影大哥的女人| 制服人妻中文乱码| 欧美97在线视频| 日韩制服骚丝袜av| 在线亚洲精品国产二区图片欧美 | 亚洲不卡免费看| 亚洲精品,欧美精品| 日韩亚洲欧美综合| 国产高清不卡午夜福利| 精品少妇内射三级| 欧美人与善性xxx| 国产精品三级大全| 成年女人在线观看亚洲视频| 中文精品一卡2卡3卡4更新| 丝瓜视频免费看黄片| 中文欧美无线码| 久久久久精品性色| 免费观看在线日韩| 一区二区三区乱码不卡18| 亚洲无线观看免费| 中文字幕最新亚洲高清| 国产av一区二区精品久久| 18禁裸乳无遮挡动漫免费视频| 欧美成人精品欧美一级黄| 亚洲精品乱码久久久久久按摩| 最近手机中文字幕大全| 亚洲人成77777在线视频| 久久久久久久精品精品| 99re6热这里在线精品视频| 欧美少妇被猛烈插入视频| 午夜福利视频在线观看免费| 日日撸夜夜添| 新久久久久国产一级毛片| 69精品国产乱码久久久| 亚洲国产欧美日韩在线播放| 亚洲天堂av无毛| 日韩一区二区三区影片| 91午夜精品亚洲一区二区三区| 我要看黄色一级片免费的| 国产白丝娇喘喷水9色精品| 99九九线精品视频在线观看视频| 久久亚洲国产成人精品v| 有码 亚洲区| 国产高清三级在线| 99久久中文字幕三级久久日本| 亚洲人成网站在线播| 久久99蜜桃精品久久| 狂野欧美激情性bbbbbb| 亚洲av日韩在线播放| 亚洲国产最新在线播放| 精品国产一区二区三区久久久樱花| 亚洲色图综合在线观看| 久久鲁丝午夜福利片| 亚洲情色 制服丝袜| 另类亚洲欧美激情| 国产亚洲最大av| 日韩电影二区| 精品久久国产蜜桃| 久久久精品免费免费高清| 各种免费的搞黄视频| 十八禁高潮呻吟视频| 久久精品久久久久久噜噜老黄| 超碰97精品在线观看| 亚洲精品视频女| 亚洲国产精品成人久久小说| 人成视频在线观看免费观看| 国产片特级美女逼逼视频| 精品熟女少妇av免费看| 国产亚洲精品久久久com| 99国产综合亚洲精品| 国产成人a∨麻豆精品| 人妻制服诱惑在线中文字幕| 日日摸夜夜添夜夜爱| 一个人看视频在线观看www免费| 国产亚洲最大av| 久久久精品免费免费高清| 少妇的逼好多水| 国产免费又黄又爽又色| 一级片'在线观看视频| 在线观看一区二区三区激情| 国产欧美另类精品又又久久亚洲欧美| 欧美一级a爱片免费观看看| 亚洲一级一片aⅴ在线观看| 新久久久久国产一级毛片| 亚洲国产av影院在线观看| 成年av动漫网址| 日本午夜av视频| 999精品在线视频| 国产精品成人在线| 欧美丝袜亚洲另类| 欧美日韩视频精品一区| 嘟嘟电影网在线观看| 亚洲色图 男人天堂 中文字幕 | 极品少妇高潮喷水抽搐| 99久久中文字幕三级久久日本| 97在线人人人人妻| 亚洲一级一片aⅴ在线观看| 在线观看人妻少妇| 亚州av有码| 老女人水多毛片| 十分钟在线观看高清视频www| 精品亚洲乱码少妇综合久久| 亚洲国产精品专区欧美| 国产亚洲精品第一综合不卡 | 免费观看的影片在线观看| 国产av码专区亚洲av| 国产在视频线精品| 国产免费一级a男人的天堂| 亚洲精品日本国产第一区| 满18在线观看网站| 水蜜桃什么品种好| 免费高清在线观看视频在线观看| 99热这里只有是精品在线观看| 一区二区三区精品91| 国产亚洲一区二区精品| 欧美日韩精品成人综合77777| 飞空精品影院首页| 亚洲怡红院男人天堂| 高清毛片免费看| 亚洲美女视频黄频| 免费黄频网站在线观看国产| 国产亚洲欧美精品永久| 精品人妻在线不人妻| 青青草视频在线视频观看| 亚洲性久久影院| 在线观看美女被高潮喷水网站| 久久精品国产亚洲av涩爱| 亚洲色图综合在线观看| 欧美最新免费一区二区三区| 中文字幕精品免费在线观看视频 | 久久人人爽人人爽人人片va| 另类亚洲欧美激情| 校园人妻丝袜中文字幕| 麻豆成人av视频| 黄色怎么调成土黄色| 免费大片黄手机在线观看| 国精品久久久久久国模美| 久久久国产精品麻豆| 18禁在线无遮挡免费观看视频| 久久久久久久久久人人人人人人| 在现免费观看毛片| 久久久亚洲精品成人影院| 丝袜脚勾引网站| 国产黄色免费在线视频| 嘟嘟电影网在线观看| 亚洲欧洲国产日韩| 国产色爽女视频免费观看| 亚洲综合色网址| 两个人免费观看高清视频| 91久久精品国产一区二区三区| 亚洲国产精品999| xxxhd国产人妻xxx| 亚洲av二区三区四区| av电影中文网址| 满18在线观看网站| 青春草国产在线视频| 日本av免费视频播放| 狠狠精品人妻久久久久久综合| 少妇人妻久久综合中文| 男女无遮挡免费网站观看| 国国产精品蜜臀av免费| 欧美激情国产日韩精品一区| 亚洲婷婷狠狠爱综合网| 人妻夜夜爽99麻豆av| 在线免费观看不下载黄p国产| 只有这里有精品99| 亚洲人成网站在线播| 一级毛片 在线播放| 青春草视频在线免费观看| 国产视频首页在线观看| 国产在线免费精品| 2021少妇久久久久久久久久久| 国产精品 国内视频| 日韩一区二区三区影片| 久久久久精品久久久久真实原创| 国产一区有黄有色的免费视频| 色哟哟·www| 久久亚洲国产成人精品v| 一区二区三区四区激情视频| 日日撸夜夜添| 午夜影院在线不卡| 国产视频首页在线观看| 亚洲中文av在线| 亚洲欧美清纯卡通| 亚洲激情五月婷婷啪啪| 特大巨黑吊av在线直播| 各种免费的搞黄视频| 国产av一区二区精品久久| 国产成人av激情在线播放 | 18禁在线播放成人免费| 伦理电影大哥的女人| 美女cb高潮喷水在线观看| 日韩av不卡免费在线播放| 免费看av在线观看网站| 美女国产视频在线观看| 久久婷婷青草| 精品少妇久久久久久888优播| 国产精品一区二区在线观看99| 国内精品宾馆在线| 亚洲精品,欧美精品| 蜜桃久久精品国产亚洲av| 亚州av有码| 免费看不卡的av| 日日爽夜夜爽网站| 男女免费视频国产| 日本黄色片子视频| 久久久久久伊人网av| 秋霞伦理黄片| 日日爽夜夜爽网站| 男女免费视频国产| 妹子高潮喷水视频| 亚洲国产精品专区欧美| 80岁老熟妇乱子伦牲交| 国产av国产精品国产| 肉色欧美久久久久久久蜜桃| 国产日韩欧美视频二区| 久久精品久久久久久噜噜老黄| 久久久久久久亚洲中文字幕| 美女xxoo啪啪120秒动态图| 女人久久www免费人成看片| 亚洲欧美清纯卡通| 只有这里有精品99| 精品人妻一区二区三区麻豆| 激情五月婷婷亚洲| 欧美激情极品国产一区二区三区 | 国产色婷婷99| 久久综合国产亚洲精品| 国产熟女欧美一区二区| 三级国产精品片| 九九久久精品国产亚洲av麻豆| 久久狼人影院| 日本av手机在线免费观看| 一级毛片黄色毛片免费观看视频| 人妻系列 视频| 九九久久精品国产亚洲av麻豆| 亚洲丝袜综合中文字幕| 91在线精品国自产拍蜜月| 在线天堂最新版资源| 久久人人爽人人片av| 精品国产一区二区久久| 在线观看免费视频网站a站| 黄色怎么调成土黄色| 中文字幕人妻丝袜制服| 在线观看www视频免费| av免费在线看不卡| 91精品一卡2卡3卡4卡| 丝袜美足系列| 亚洲激情五月婷婷啪啪| 亚洲不卡免费看| 男女边吃奶边做爰视频| 久久久国产精品麻豆| 午夜激情av网站| 国产欧美日韩综合在线一区二区| 久久婷婷青草| 久久韩国三级中文字幕| 22中文网久久字幕| 国产欧美日韩一区二区三区在线 | 亚洲,欧美,日韩| 最近手机中文字幕大全| 中文欧美无线码| 国产高清三级在线| 色视频在线一区二区三区| 你懂的网址亚洲精品在线观看| 国产精品一二三区在线看| 亚洲av.av天堂| 97超碰精品成人国产| 精品国产国语对白av| 久久久午夜欧美精品| 久久精品国产亚洲av天美| 免费av中文字幕在线| 伦理电影大哥的女人| 黄色视频在线播放观看不卡| 看非洲黑人一级黄片| 日韩视频在线欧美| 日日爽夜夜爽网站| 22中文网久久字幕| 黑人巨大精品欧美一区二区蜜桃 | 一边摸一边做爽爽视频免费| 久久久久久伊人网av| 尾随美女入室| 国内精品宾馆在线| 3wmmmm亚洲av在线观看| 午夜免费观看性视频| 男男h啪啪无遮挡| 伊人亚洲综合成人网| 亚洲美女搞黄在线观看| 国产片内射在线| 99国产综合亚洲精品| 国产亚洲一区二区精品| 亚洲精品色激情综合| 日本黄色日本黄色录像| 人妻少妇偷人精品九色| 国产国语露脸激情在线看| 精品视频人人做人人爽| 热re99久久国产66热| 18在线观看网站| 午夜福利视频在线观看免费| 黄色怎么调成土黄色| 人成视频在线观看免费观看| 丝瓜视频免费看黄片| 中国国产av一级| 日本-黄色视频高清免费观看| 香蕉精品网在线| 一级a做视频免费观看| 成人亚洲精品一区在线观看| 亚洲五月色婷婷综合| 久久久久久久久大av| 国产毛片在线视频| 热99国产精品久久久久久7| 看非洲黑人一级黄片| 少妇被粗大的猛进出69影院 | 三级国产精品片| 日韩中文字幕视频在线看片| 欧美激情极品国产一区二区三区 | 熟女av电影| 一本大道久久a久久精品| 五月伊人婷婷丁香| 一区二区日韩欧美中文字幕 | 亚洲精品成人av观看孕妇| 七月丁香在线播放| 不卡视频在线观看欧美| 国产精品熟女久久久久浪| 又大又黄又爽视频免费| kizo精华| 女性被躁到高潮视频| 久久精品久久久久久噜噜老黄| 免费看不卡的av| 99久国产av精品国产电影| 精品国产乱码久久久久久小说| 国产成人午夜福利电影在线观看| 我要看黄色一级片免费的| 国产欧美日韩综合在线一区二区| 国产不卡av网站在线观看| av不卡在线播放| 搡女人真爽免费视频火全软件| a级片在线免费高清观看视频| 99久国产av精品国产电影| 成人国产麻豆网| 尾随美女入室| 国产片特级美女逼逼视频| 精品一区二区免费观看| 十八禁网站网址无遮挡| 最近的中文字幕免费完整|