• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Evaluation of CMPAS precipitation products over Sichuan, China

    2022-04-26 02:00:14ShiyingLiXiaolongHuangWeiWuBingDuYuheJiang

    Shiying Li , Xiaolong Huang , Wei Wu , Bing Du , Yuhe Jiang

    Sichuan Meteorological Observation and Data Center, Heavy Rain and Drought-Flood Disasters in Plateau and Basin Key Laboratory of Sichuan Province, Chengdu,China

    Keywords:Multisource precipitation products High-resolution precipitation CMPAS Applicability assessment

    ABSTRACT High-quality and high-resolution precipitation data are the basis for mesoscale numerical weather forecasting,model verification, and hydrological monitoring, which play an important role in meteorological and hydrological disaster prevention and mitigation. In this study, high-density rain gauge data are used to evaluate the fusion accuracy of the China Meteorological Administration Multisource Precipitation Analysis System (CMPAS), and four CMPAS products with different spatial and temporal resolution and different data sources are compared, to derive the applicability of CMPAS. Results show that all the CMPAS products show high accuracy in the Sichuan Basin, followed by Panxi Area and the western Sichuan Plateau. The errors of the four products all rise with the increase in precipitation. CMPAS overestimates precipitation in summer and autumn and underestimates it in spring and winter. Overall, the applicability of these fused data in the Sichuan Basin is quite good. Due to the lack of observations and the influence of the terrain and meteorological conditions, the evaluation of CMPAS in the plateau area needs further analysis.

    1. Introduction

    Precipitation is a significant part of the water cycle and energy exchange in the climate system, as well as an important indicator of climate change ( Syed et al., 2004 ). Extreme weather and climate events related to precipitation, such as floods and droughts, have a considerable impact on human life ( Hirabayashi et al., 2008 ). Besides, high-quality precipitation observation products are also needed to support numerical weather prediction ( Lin et al., 2005 ). Therefore, the development of precipitation analysis products with high spatiotemporal resolution and high precision is needed to reasonably and accurately estimate the spatiotemporal distribution of precipitation, which is of great significance for research in the fields of weather, climate, ecology, agriculture, and environment.

    Precipitation data can be obtained in three ways: from surface rain gauges, ground-based radar, and satellite remote sensing. Observations from surface rain gauges are the most reliable, but there are obvious discontinuities in the spatial and temporal distribution of station observations, making it difficult to reflect the basic climatological characteristics in terms of overall spatial change ( Morrissey et al., 1995 ;Villarini and Krajewski, 2008 ). Satellite remote sensing can carry out continuous detection over a wide range of space and has a high temporal resolution for certain target areas ( Michaelides et al., 2009 ). However, due to the limitations of the physical principles and algorithms of satellite precipitation retrieval, the retrieval accuracy is relatively low, especially for solid precipitation ( Prigent, 2010 ). Also, because of the problems with estimation methods and the calibration of several radars, the accuracy of precipitation estimations from radar is not very high ( Montopoli et al., 2017 ). Therefore, how to effectively combine the advantages of precipitation data from different sources and develop technology that integrates surface observation, satellite and radar precipitation products into much higher quality products has emerged as a hot topic in international research in recent years.

    To meet the needs of meteorological operations and scientific research, several high-quality and high-resolution precipitation products based on rain gauge observations and satellites have already been launched internationally. For instance, the National Oceanic and Atmospheric Administration in the United States has developed a number of products, starting with the Climate Prediction Center(CPC) Merged Analysis of Precipitation ( Xie et al., 2007 ) and the Global Precipitation Climatology Project ( Huffman et al., 1997 ), and then later the Tropical Rainfall Measuring Mission (TRMM) satellite equipped with the Precipitation Radar instrument to monitor precipitation ( Kummerow et al., 1998 ). At this time, high spatiotemporal resolution satellite merged products were further developed, including the TRMM_3B43, TRMM_3B42 ( Huffman et al., 2007 ), CMORPH (CPC Morphing Technique) Bias-corrected, and CMORPH Blended products( Joyce et al., 2004 ; Joyce and Xie, 2011 ; Xie et al., 2017 ). The Japan Meteorological Agency also adopted technology similar to CMORPH and produced its Global Satellite Mapping of Precipitation product( Okamoto et al., 2005 ).

    In recent years, with the development of meteorological forecasts and services, the resolution and accuracy requirements of precipitation products have been improved. The National Meteorological Information Center (NMIC) of the China Meteorological Administration (CMA)introduced the “PDF (probability density function) + OI (optimal interpolation) ” merging method ( Xie and Xiong, 2011 ), which was developed by CPC in the United States, and then continuously optimized and improved this fusion method. Additionally, the NMIC has also adopted the “PDF + BMA (Bayesian model averaging) + OI + DS (downscaling) ”method ( Pan et al., 2015 , 2018a , 2018b ) and an integrated radar precipitation estimation approach; plus, it has developed a three-source (gauge,satellite, radar) merged precipitation product with spatial/temporal resolutions of 5 km/1 h and 1 km/1 h. This fused product is called the CMA Multisource Precipitation Analysis System (CMPAS), which takes full advantage of single-source precipitation products to form a comprehensive and high-quality merged precipitation product in China.

    CMPAS at the 5 km resolution was transitioned into operation in June 2018, while the 1 km resolution version was operationalized in July 2020. So far, however, there have been few studies on the applicability of CMPAS in China. The present paper aims to address this knowledge gap, as the need to evaluate and improve the ability of CMPAS to support forecasting services and other applications is an urgent one.

    2. Data and methods

    2.1. Study area

    Sichuan Province is located in southwestern China within the area 26°03 ′ —34°19 ′ N and 97°21 ′ —108°12 ′ E. Meteorologically, Sichuan is generally divided into three regions for analysis: the western Sichuan Plateau, the Sichuan Basin (central and eastern Sichuan), and Panxi Area(southwestern Sichuan). The western Sichuan Plateau is located on the east side of the Qinghai—Tibet Plateau, with an altitude of 4000—4500 m. A total of 17 cities are located in the Sichuan Basin, which is the core area of this province. Panxi Area is a part of the Yunnan—Guizhou Plateau.

    2.2. Data

    The CMPAS datasets are provided by the NMIC, CMA. Four CMPAS precipitation products are evaluated in this study: CMPAS_5km_FAST,CMPAS_5km_FRT, CMPAS_1km_RT, and CMPAS_1km_NRT. CMPAS_5km_FAST is a satellite—gauge merged precipitation product and CMPAS_5km_FRT is a radar—satellite—gauge merged precipitation product. The horizontal resolution of these two products is 0.05° × 0.05°(native resolution: 5 km), and the temporal resolution is hourly.CMPAS_1km_RT and CMPAS_1km_NRT are both radar—satellite—gauge merged precipitation products with a resolution of 0.01° × 0.01°(native resolution: 1 km), and again the temporal resolution is hourly.However, CMPAS_1km_RT is a real-time product (i.e., updated in real time) and CMPAS_1km_NRT is a near-real-time product (updated with a delay of about 24 h).

    The fusion accuracy of CMPAS is evaluated using high-density rain gauge data. The hourly surface rain gauge data are collected from 156 national automatic weather stations (NAWS) and 5128 regional automatic weather stations (RAWS) in Sichuan Province, provided by the CMA and Sichuan Meteorological Service. Among them, the rain gauge data of 2923 RAWS are not fused into CMPAS. All the observational data have been quality controlled. The evaluation period in this study is from 0000 UTC 1 August 2019 to 2300 UTC 31 July 2020.

    2.3. Analysis methods

    Taking the hourly surface rain gauge data of 156 NAWS and 5128 RAWS in Sichuan as the real values, the CMPAS products are interpolated to 156 NAWS and 5128 RAWS by the bilinear interpolation method. The error and correlation between them in a period are statistically compared. The statistical indicators include the mean error (ME),relative error (RE), mean absolute error (MAE), correlation coefficient(COR), graded root-mean-square error ( RMS Ek), and threat score ( TSk) .The ME, RE, MAE, and COR —calculated as

    and

    whereOiis the station observation value,Giis the value obtained by interpolating the CMPAS products to stations, andNis the total number of samples (number of stations) —are used to analyze the spatial and temporal distributions; while RMS Ekand TSk—calculated as

    and

    wherekrepresents the precipitation classification level,Ukis the upper bound of thekth precipitation level interval,Lkis the lower bound of thekth precipitation level interval, and [] represents an operator that converts logic into a numerical value —are used for graded evaluation,in which the hourly precipitation is divided into five levels: 0.1—1.9 mm,2—4.9 mm, 5—9.9 mm, 10—19.9 mm, and 20 mm and above. When the logical value is positive, it is taken as 1; otherwise, it is taken as 0. The termsOi,GiandNhave the same meaning as in Eqs. (1) —(4) .

    Lastly, the CMPAS products needed to be interpolated to station sites,for which the nearest-neighbor method was used. Taking the value of the nearest grid cell among four adjacent grid cells as the value of the interpolated grid cell, the distance from the interpolation grid cell,g(i,i) ,to the four adjacent grid cells,fk(i,i)(k= 1,2,3,4 ) , isdk(k= 1,2,3,4 ) :

    3. Results and discussion

    3.1. Comparative analysis of spatial distribution characteristics

    The general spatial distribution characteristics of the two products at 5 km are similar, and the two products at 1 km also show a similar situation. The CMPAS_5KM_FRT product is used to represent the accuracy of the 5 km products and the CMPAS_1KM_NRT product to represent the 1 km products. The distribution of ME between the CMPAS products and observations is shown in Fig. 1 . According to the probability density function (PDF) distribution, the Sichuan Basin shows the smallest ME, especially for the 1 km product; 66% of the ME is in [ ? 0.01,0.01] mm h?1. The ME of the two resolutions in the western Sichuan Plateau is relatively large; only 34% (FRT) and 30% (NRT) is in [ ? 0.01,0.01] mm h?1. There are no obvious characteristics of overestimation and underestimation. The regional difference of ME for 1 km products is relatively notable, but the trend of the PDF distribution in the three regions is generally similar.

    The distribution of MAE is shown in Fig. 2 . In the Sichuan Basin,the MAE of 42% of stations in the 1 km products is less than 0.02 mm h?1, but the 5 km product is significantly more, in [0.04, 0.05] mm h?1(41%). The MAE of Panxi Area and the western Sichuan Plateau is relatively large, and the difference between Panxi Area and the western Sichuan Plateau is not significant in the 5 km product, but the MAE of the 1 km product in Panxi Area is markedly smaller than that of the Plateau. For the 5 km product, 41.2% stations have an MAE in [0.07,0.1] mm h?1in Panxi Area, with 36% in [0.09, 0.12] mm h?1in the Plateau. For the 1 km product, the MAE of the western Sichuan Plateau is relatively larger, while 24% of stations have a smaller MAE ([0, 0.01]mm h?1) in Panxi Area.

    The distribution of RE is shown in Fig. 3 . In the Sichuan Basin, 73%of stations have an RE in [0.045, 0.09] with the 5 km product, while 70%of stations have an RE lower than 0.06 with the 1 km product. For Panxi Area, most of the RE results are concentrated in [0.03, 0.135] with the 5 km products; whereas, the 1 km product has 30% of RE values lower than 0.03. For the western Sichuan Plateau, the RE results are striking;the majority of stations have an RE in [0.12, 0.18] with both products.

    The distribution of COR is shown in Fig. 4 . In the Sichuan Basin and Panxi Area, the CORs in [0.8, 0.95] account for 84% and 60% of the 5 km products respectively, while 46% and 27% of the stations have CORs above 0.95 with the 1 km product; the 1 km resolution product is more correlated. In the western Sichuan Plateau, the correlation is lower than that in other regions, mostly in [0.6, 0.8], and the 5 km product shows a better correlation (61% in the 5 km product versus 21% in the 1 km product).

    Fig. 1. Distribution of ME between CMPAS products and observations (units: mm h ? 1 ): (a) spatial distribution of CMPAS_5KM_FRT; (b) spatial distribution of CMPAS_1KM_NRT; (c) PDF distribution of CMPAS_5KM_FRT; (d) PDF distribution of CMPAS_1KM_NRT.

    Fig. 2. Distribution of MAE between CMPAS products and observations (units: mm h ? 1 ): (a) spatial distribution of CMPAS_5KM_FRT; (b) spatial distribution of CMPAS_1KM_NRT; (c) PDF distribution of CMPAS_5KM_FRT; (d) PDF distribution of CMPAS_1KM_NRT.

    Fig. 3. Distribution of RE between CMPAS products and observations: (a) spatial distribution of CMPAS_5KM_FRT; (b) spatial distribution of CMPAS_1KM_NRT; (c)PDF distribution of CMPAS_5KM_FRT; (d) PDF distribution of CMPAS_1KM_NRT.

    Fig. 4. Distribution of COR between CMPAS products and observations: (a) spatial distribution of CMPAS_5KM_FRT; (b) spatial distribution of CMPAS_1KM_NRT;(c) PDF distribution of CMPAS_5KM_FRT; (d) PDF distribution of CMPAS_1KM_NRT.

    Comparing the 1 km products to the 5 km products, the ME of about 75% stations is decreasing, the MAE of about 30% stations is reduced by more than 60%, 77% of stations show a decrease in RE, and the COR of over 60% of stations is rising. As a consequence, most errors in the 5 km products can be reduced in the 1 km products.

    Overall, all products have higher accuracy in the Sichuan Basin, followed by Panxi Area and the western Sichuan Plateau. On the one hand,most of the stations in the plateau area are located in high mountains and valleys, and as a result the representativeness of the gauge data is poor. On the other hand, lacking automatic weather stations in the plateau area means that rain gauge data are insufficient, and for this reason the evaluation of CMPAS in the plateau area needs to be further analyzed in combination with more relevant data.

    3.2. Comparative analysis of different precipitation levels

    The samples with precipitation of more than 0.1 mm h?1account for about 10% of the total sample size. The RMSEs of different precipitation levels are shown in Table 1 . With the increase in precipitation level,the sample size gradually reduces, and the RMSE is on the rise. When the precipitation is 0.1—9.9 mm h?1, the RMSE of CMPAS_5KM_FRT is smaller. CMPAS_1KM_NRT performs better when the precipitation is larger than 10 mm h?1.

    Table 1 RMSE of different precipitation levels.

    In terms of TS ( Table 2 ), there is a downward trend in TS with increased precipitation. Apart from when the precipitation is 0.1—1.9 mm h?1, the performance of CMPAS_5KM_FRT is slightly better, and the TSs of CMPAS_1KM_NRT are higher in other levels.

    Table 2 Threat scores of different precipitation levels.

    3.3. Comparative analysis of temporal distribution characteristics

    The seasonal variation characteristics are provided in Fig. 5 . The four products overestimate the precipitation in summer and autumn, while in spring and winter it is underestimated. The MAE is larger in summer and autumn, and the MAE of the 5 km resolution products is more noticeable. The RE is more distinct in summer and autumn, followed by spring and winter. There is more precipitation in summer, and the heavier the precipitation, the larger the errors. The CORs of the four seasons show a moderate change. Generally, the 1 km resolution products are more likely to have slight errors in the four seasons.

    Fig. 5. Seasonal variation of evaluation characteristics: (a) ME; (b) MAE; (c); (RE); (d) COR.

    4. Conclusions

    High-density rain gauge data are used to evaluate the fusion accuracy of CMPAS over different terrain conditions, different precipitation levels, and different seasons. The accuracy of the four products is higher with NAWS. There is no obvious spatial distribution of overestimation and underestimation between the two different resolution products and gauge observations. The MAE of the four products is mostly concentrated below 0.12 mm h?1. More than 70% of stations have REs lower than 0.18 for all products. All the errors in the Sichuan Basin are relatively small. However, the 5 km resolution products are better correlated with observations in plateau areas, whereas in the Sichuan Basin the 1 km resolution products have a higher correlation.

    The errors arise with the increase in precipitation. Seasonally, the four products overestimate precipitation in summer and autumn, while in spring and winter it is underestimated. The CORs of the four seasons are basically unchanged, and most are significantly correlated with observations.

    In conclusion, all the CMPAS products show high fusion accuracy in the Sichuan Basin, followed by Panxi Area and the western Sichuan Plateau. As for the reason for the large errors in the plateau area, firstly,lacking surface observation data is a direct cause. Moreover, various topographic factors (altitude, slope, aspect, vegetation, etc.) and meteorological factors (temperature, humidity, wind speed, etc.) have a certain impact on surface precipitation observation, and consequently the rain gauge data may not be real values. Further work needs to be done to use precipitation observation data from non-meteorological industries to evaluate the accuracy of CMPAS, to promote the local application of products and improve product service capabilities.

    Funding

    This study was supported by the Sichuan Meteorological Bureau,the Sichuan Meteorological Observation and Data Center, the Heavy Rain and Drought-Flood Disasters in Plateau and Basin Key Laboratory of Sichuan Province [grant number SCQXKJQN202121], the Key Technology Development Project of Weather Forecasting [grant number YBGJXM(2020)1A-08], and the Innovative Development Project of the China Meteorological Administration [grant number CXFZ2021Z007].

    欧美黑人欧美精品刺激| 好看av亚洲va欧美ⅴa在| 丰满饥渴人妻一区二区三| 国产又色又爽无遮挡免费看| 大型av网站在线播放| 夜夜夜夜夜久久久久| 中文字幕av电影在线播放| 亚洲欧美日韩另类电影网站| 国产av一区二区精品久久| 久久人妻福利社区极品人妻图片| 国产97色在线日韩免费| 91九色精品人成在线观看| 久久婷婷成人综合色麻豆| 国产不卡av网站在线观看| 高清黄色对白视频在线免费看| 操美女的视频在线观看| 亚洲自偷自拍图片 自拍| 免费看a级黄色片| 久久久久久久午夜电影 | 色婷婷av一区二区三区视频| 欧美黑人精品巨大| 久久人妻福利社区极品人妻图片| 99久久综合精品五月天人人| 一边摸一边抽搐一进一出视频| 久久国产乱子伦精品免费另类| 岛国毛片在线播放| 国产成人一区二区三区免费视频网站| 精品国产国语对白av| 国产精品综合久久久久久久免费 | 两性午夜刺激爽爽歪歪视频在线观看 | 精品一区二区三区四区五区乱码| 欧美中文综合在线视频| 夜夜躁狠狠躁天天躁| 色播在线永久视频| 麻豆成人av在线观看| 看黄色毛片网站| 99精品久久久久人妻精品| 18禁裸乳无遮挡动漫免费视频| 自拍欧美九色日韩亚洲蝌蚪91| 亚洲第一欧美日韩一区二区三区| 热99re8久久精品国产| 中出人妻视频一区二区| 久久国产精品人妻蜜桃| 少妇猛男粗大的猛烈进出视频| 老司机亚洲免费影院| 建设人人有责人人尽责人人享有的| 好男人电影高清在线观看| 亚洲片人在线观看| 亚洲av日韩精品久久久久久密| 亚洲aⅴ乱码一区二区在线播放 | 欧美日韩乱码在线| e午夜精品久久久久久久| 在线观看舔阴道视频| av线在线观看网站| 男女之事视频高清在线观看| 色综合欧美亚洲国产小说| 亚洲专区字幕在线| 久久精品aⅴ一区二区三区四区| 天天操日日干夜夜撸| 人妻久久中文字幕网| 岛国在线观看网站| 欧美在线黄色| 丁香欧美五月| 精品国产乱子伦一区二区三区| 国产精品乱码一区二三区的特点 | 久久香蕉国产精品| 午夜福利免费观看在线| 黄色视频不卡| 大陆偷拍与自拍| 久久精品91无色码中文字幕| 久9热在线精品视频| 欧美日韩亚洲国产一区二区在线观看 | 男女高潮啪啪啪动态图| 啦啦啦视频在线资源免费观看| 777久久人妻少妇嫩草av网站| 女人被躁到高潮嗷嗷叫费观| 国产xxxxx性猛交| 国产成人精品在线电影| 久久久久国产一级毛片高清牌| 色婷婷久久久亚洲欧美| 91麻豆精品激情在线观看国产 | 国产aⅴ精品一区二区三区波| 女同久久另类99精品国产91| 国产午夜精品久久久久久| 国产极品粉嫩免费观看在线| 国产免费男女视频| 亚洲,欧美精品.| 国产精品成人在线| 色综合婷婷激情| 新久久久久国产一级毛片| 久久人妻福利社区极品人妻图片| 高清在线国产一区| 女同久久另类99精品国产91| 亚洲熟妇中文字幕五十中出 | 国产精品秋霞免费鲁丝片| 中文字幕av电影在线播放| 欧美 日韩 精品 国产| 99国产精品免费福利视频| 国产精华一区二区三区| 免费一级毛片在线播放高清视频 | 成人18禁高潮啪啪吃奶动态图| 一级黄色大片毛片| 亚洲成av片中文字幕在线观看| 国产精华一区二区三区| 成人精品一区二区免费| 久久国产乱子伦精品免费另类| 久久中文字幕一级| 欧美丝袜亚洲另类 | 三级毛片av免费| 王馨瑶露胸无遮挡在线观看| avwww免费| 日韩人妻精品一区2区三区| 制服人妻中文乱码| 黑人巨大精品欧美一区二区蜜桃| 久久亚洲真实| 国精品久久久久久国模美| 日韩制服丝袜自拍偷拍| av网站免费在线观看视频| 国产人伦9x9x在线观看| 99国产极品粉嫩在线观看| 欧美日韩亚洲综合一区二区三区_| 中文字幕色久视频| 国产亚洲一区二区精品| 99国产综合亚洲精品| 777米奇影视久久| 少妇 在线观看| 男女下面插进去视频免费观看| 大码成人一级视频| 国产1区2区3区精品| netflix在线观看网站| 成人国产一区最新在线观看| 两个人免费观看高清视频| 亚洲av电影在线进入| 麻豆国产av国片精品| 国产精品久久电影中文字幕 | 国产在线精品亚洲第一网站| 极品少妇高潮喷水抽搐| 亚洲一区二区三区欧美精品| 精品久久久久久久久久免费视频 | 国产一区在线观看成人免费| 亚洲一卡2卡3卡4卡5卡精品中文| 欧美国产精品va在线观看不卡| 他把我摸到了高潮在线观看| aaaaa片日本免费| 欧美国产精品va在线观看不卡| 国产精品国产av在线观看| 午夜福利在线观看吧| 精品一区二区三区av网在线观看| 好男人电影高清在线观看| 久久人妻熟女aⅴ| 黑人猛操日本美女一级片| 动漫黄色视频在线观看| 天堂中文最新版在线下载| 色尼玛亚洲综合影院| 国产无遮挡羞羞视频在线观看| 美女高潮到喷水免费观看| 在线av久久热| 国产精品亚洲一级av第二区| 国产精品.久久久| 欧美黄色淫秽网站| 国产99白浆流出| 19禁男女啪啪无遮挡网站| 在线av久久热| 亚洲精品成人av观看孕妇| 国产欧美亚洲国产| 国产精品 欧美亚洲| 老汉色∧v一级毛片| 国产男女超爽视频在线观看| av网站在线播放免费| 成人特级黄色片久久久久久久| 亚洲中文av在线| 91麻豆av在线| 自线自在国产av| 亚洲aⅴ乱码一区二区在线播放 | 午夜免费成人在线视频| 麻豆av在线久日| 亚洲色图综合在线观看| 精品一品国产午夜福利视频| 很黄的视频免费| 亚洲午夜精品一区,二区,三区| 日本精品一区二区三区蜜桃| 99热网站在线观看| 999精品在线视频| 欧美日韩亚洲综合一区二区三区_| 免费久久久久久久精品成人欧美视频| 乱人伦中国视频| 亚洲五月天丁香| 精品国产乱子伦一区二区三区| 亚洲少妇的诱惑av| 欧美精品一区二区免费开放| 欧美激情久久久久久爽电影 | 国产真人三级小视频在线观看| 国产色视频综合| 精品国产国语对白av| 国产蜜桃级精品一区二区三区 | 亚洲美女黄片视频| 亚洲熟女精品中文字幕| 老司机在亚洲福利影院| 成人亚洲精品一区在线观看| 免费av中文字幕在线| 亚洲精品国产区一区二| 性色av乱码一区二区三区2| 国产aⅴ精品一区二区三区波| av天堂在线播放| 日韩人妻精品一区2区三区| 国产精品电影一区二区三区 | av一本久久久久| 每晚都被弄得嗷嗷叫到高潮| 午夜福利在线观看吧| 亚洲精品久久午夜乱码| 他把我摸到了高潮在线观看| 夜夜夜夜夜久久久久| 建设人人有责人人尽责人人享有的| 亚洲性夜色夜夜综合| 美女扒开内裤让男人捅视频| 日韩欧美国产一区二区入口| 久久性视频一级片| 女性被躁到高潮视频| 久久久久精品人妻al黑| 亚洲国产中文字幕在线视频| 大型黄色视频在线免费观看| 99riav亚洲国产免费| 色播在线永久视频| 亚洲男人天堂网一区| 国产成人免费观看mmmm| 成人av一区二区三区在线看| 男女免费视频国产| 国产1区2区3区精品| 一区二区日韩欧美中文字幕| 日本撒尿小便嘘嘘汇集6| 国产精品1区2区在线观看. | 亚洲 欧美一区二区三区| 男女午夜视频在线观看| 一区在线观看完整版| 成年人午夜在线观看视频| 日韩三级视频一区二区三区| 成人18禁高潮啪啪吃奶动态图| av线在线观看网站| 欧美人与性动交α欧美精品济南到| 超碰成人久久| 五月开心婷婷网| 国产精品永久免费网站| 亚洲欧美色中文字幕在线| 欧美人与性动交α欧美精品济南到| 免费日韩欧美在线观看| 免费高清在线观看日韩| 精品少妇久久久久久888优播| 在线观看一区二区三区激情| 精品一区二区三区四区五区乱码| 女人被躁到高潮嗷嗷叫费观| 一级片免费观看大全| 看黄色毛片网站| 欧美午夜高清在线| 法律面前人人平等表现在哪些方面| 婷婷成人精品国产| 亚洲一区二区三区欧美精品| 欧美不卡视频在线免费观看 | 操出白浆在线播放| 亚洲成人免费电影在线观看| 久久久久久久久久久久大奶| 免费在线观看视频国产中文字幕亚洲| 午夜福利免费观看在线| 日日摸夜夜添夜夜添小说| 丰满的人妻完整版| 精品欧美一区二区三区在线| 十八禁高潮呻吟视频| 超色免费av| 高清欧美精品videossex| 亚洲精品美女久久av网站| 国产精品永久免费网站| 日韩免费高清中文字幕av| 中文字幕人妻丝袜一区二区| 久久午夜综合久久蜜桃| 两个人免费观看高清视频| 欧美黄色淫秽网站| 午夜免费成人在线视频| 精品国产一区二区久久| 999久久久国产精品视频| 午夜福利在线观看吧| 超碰成人久久| 免费观看人在逋| 国产精品电影一区二区三区 | 国产成人精品久久二区二区免费| 国产午夜精品久久久久久| 欧美精品av麻豆av| 午夜福利一区二区在线看| 亚洲一区高清亚洲精品| 悠悠久久av| 一边摸一边抽搐一进一小说 | a级毛片在线看网站| 午夜免费鲁丝| 999精品在线视频| 亚洲欧美一区二区三区黑人| 国产在线精品亚洲第一网站| 老熟妇仑乱视频hdxx| 色94色欧美一区二区| 首页视频小说图片口味搜索| 亚洲自偷自拍图片 自拍| 欧美精品高潮呻吟av久久| 欧美日韩成人在线一区二区| 亚洲精品成人av观看孕妇| 久久中文字幕人妻熟女| 欧美乱码精品一区二区三区| 国产男女超爽视频在线观看| 国产成人精品久久二区二区免费| 成人免费观看视频高清| 国产精品电影一区二区三区 | 精品卡一卡二卡四卡免费| 天堂√8在线中文| 黄色丝袜av网址大全| 国产又色又爽无遮挡免费看| 久久久国产一区二区| 精品亚洲成国产av| 久久久久久亚洲精品国产蜜桃av| 亚洲精品在线观看二区| aaaaa片日本免费| 国产欧美日韩一区二区三区在线| 99精品久久久久人妻精品| 激情视频va一区二区三区| 午夜福利在线观看吧| 亚洲一区中文字幕在线| 亚洲黑人精品在线| 手机成人av网站| а√天堂www在线а√下载 | 国产精品偷伦视频观看了| 欧美日韩精品网址| 最近最新免费中文字幕在线| 手机成人av网站| 51午夜福利影视在线观看| 国产亚洲精品一区二区www | 曰老女人黄片| 老鸭窝网址在线观看| 不卡av一区二区三区| 亚洲性夜色夜夜综合| 亚洲中文日韩欧美视频| 女人久久www免费人成看片| 夜夜躁狠狠躁天天躁| 国产精品免费一区二区三区在线 | 亚洲第一av免费看| 精品久久蜜臀av无| 国产xxxxx性猛交| 国产单亲对白刺激| 十八禁高潮呻吟视频| 国产精品秋霞免费鲁丝片| 天天躁夜夜躁狠狠躁躁| 国产麻豆69| 女人被躁到高潮嗷嗷叫费观| 女警被强在线播放| 久久人人97超碰香蕉20202| 国产av又大| 天堂俺去俺来也www色官网| 久久精品91无色码中文字幕| 欧美成人午夜精品| 久久天躁狠狠躁夜夜2o2o| 欧美日韩av久久| cao死你这个sao货| 一级a爱视频在线免费观看| 亚洲av欧美aⅴ国产| a级毛片黄视频| 高清黄色对白视频在线免费看| 欧美性长视频在线观看| 男女下面插进去视频免费观看| 欧美精品啪啪一区二区三区| 国产成人精品无人区| 欧美国产精品va在线观看不卡| 51午夜福利影视在线观看| 欧美 亚洲 国产 日韩一| 国内毛片毛片毛片毛片毛片| 在线十欧美十亚洲十日本专区| 欧美日韩亚洲综合一区二区三区_| 欧美日韩国产mv在线观看视频| 大陆偷拍与自拍| 咕卡用的链子| 国产伦人伦偷精品视频| 美女国产高潮福利片在线看| 亚洲国产欧美一区二区综合| 又紧又爽又黄一区二区| 男人的好看免费观看在线视频 | 天堂动漫精品| 日日爽夜夜爽网站| 露出奶头的视频| 亚洲国产欧美网| 亚洲性夜色夜夜综合| 好看av亚洲va欧美ⅴa在| 精品国产乱码久久久久久男人| 美国免费a级毛片| 丝袜美腿诱惑在线| 国产精品乱码一区二三区的特点 | 天天添夜夜摸| 不卡av一区二区三区| 久久99一区二区三区| 美女国产高潮福利片在线看| 又大又爽又粗| 丝袜在线中文字幕| 精品无人区乱码1区二区| av中文乱码字幕在线| 欧美丝袜亚洲另类 | 男人舔女人的私密视频| 国产成人免费观看mmmm| 亚洲国产看品久久| 国产精品一区二区在线不卡| 日本黄色日本黄色录像| 王馨瑶露胸无遮挡在线观看| 18禁美女被吸乳视频| 国产精品乱码一区二三区的特点 | 国产av精品麻豆| 亚洲一区二区三区不卡视频| 日本a在线网址| 曰老女人黄片| 在线观看免费日韩欧美大片| 999久久久国产精品视频| 日韩一卡2卡3卡4卡2021年| 极品少妇高潮喷水抽搐| 一级片'在线观看视频| av欧美777| 国产人伦9x9x在线观看| 捣出白浆h1v1| 天天躁日日躁夜夜躁夜夜| 亚洲性夜色夜夜综合| 两性午夜刺激爽爽歪歪视频在线观看 | 一级,二级,三级黄色视频| 国产视频一区二区在线看| 精品久久蜜臀av无| avwww免费| 久久ye,这里只有精品| 午夜福利,免费看| 窝窝影院91人妻| 午夜福利免费观看在线| 国产精品乱码一区二三区的特点 | 日韩欧美免费精品| 777久久人妻少妇嫩草av网站| 一边摸一边抽搐一进一小说 | 国产97色在线日韩免费| 午夜福利乱码中文字幕| 黄色a级毛片大全视频| 五月开心婷婷网| 一本大道久久a久久精品| 高清黄色对白视频在线免费看| 国产精品1区2区在线观看. | 黑人巨大精品欧美一区二区mp4| 久久九九热精品免费| 18禁观看日本| 首页视频小说图片口味搜索| 人妻 亚洲 视频| 国产aⅴ精品一区二区三区波| 天堂√8在线中文| 9191精品国产免费久久| 亚洲七黄色美女视频| 一级黄色大片毛片| 黄片大片在线免费观看| 自线自在国产av| 女人被狂操c到高潮| 欧美黑人精品巨大| 人妻丰满熟妇av一区二区三区 | 精品少妇久久久久久888优播| 久久久国产精品麻豆| 国产精品久久久久成人av| 精品福利永久在线观看| 亚洲精品中文字幕在线视频| 亚洲成a人片在线一区二区| 亚洲国产看品久久| 黄色a级毛片大全视频| 色94色欧美一区二区| 精品国产国语对白av| 亚洲av熟女| 亚洲成人免费电影在线观看| 国产成人一区二区三区免费视频网站| 99re在线观看精品视频| 人人澡人人妻人| 99精品欧美一区二区三区四区| 久久久久精品国产欧美久久久| 亚洲国产精品sss在线观看 | 母亲3免费完整高清在线观看| 欧美人与性动交α欧美软件| 性色av乱码一区二区三区2| 黄片播放在线免费| 国产欧美日韩一区二区三| 午夜成年电影在线免费观看| 巨乳人妻的诱惑在线观看| 女人被狂操c到高潮| 十八禁高潮呻吟视频| 午夜精品在线福利| 国产精品99久久99久久久不卡| 少妇裸体淫交视频免费看高清 | 亚洲成人免费电影在线观看| av福利片在线| 国产又爽黄色视频| 国产人伦9x9x在线观看| 国产欧美日韩一区二区三| 免费av中文字幕在线| 一二三四社区在线视频社区8| 中文字幕高清在线视频| 国产一区二区三区在线臀色熟女 | 18禁观看日本| 熟女少妇亚洲综合色aaa.| 天堂动漫精品| 国产免费男女视频| 久久精品亚洲av国产电影网| videos熟女内射| 在线播放国产精品三级| 国产三级黄色录像| 美女国产高潮福利片在线看| 一区在线观看完整版| 免费黄频网站在线观看国产| 国产精品一区二区在线不卡| 久久国产精品大桥未久av| 国产精品99久久99久久久不卡| 午夜精品久久久久久毛片777| 无遮挡黄片免费观看| 国产精品一区二区在线不卡| 天天添夜夜摸| 国产视频一区二区在线看| 精品无人区乱码1区二区| 久热这里只有精品99| 丁香六月欧美| 欧美在线一区亚洲| 午夜精品国产一区二区电影| 亚洲avbb在线观看| 大香蕉久久网| 国产精品国产高清国产av | 波多野结衣av一区二区av| 成人18禁高潮啪啪吃奶动态图| 国产一区二区三区在线臀色熟女 | 国产不卡av网站在线观看| 色播在线永久视频| 在线观看午夜福利视频| 日本五十路高清| 欧美精品av麻豆av| 大陆偷拍与自拍| 在线观看免费视频日本深夜| 很黄的视频免费| 国产免费av片在线观看野外av| 一区二区三区国产精品乱码| 久久天躁狠狠躁夜夜2o2o| 自线自在国产av| svipshipincom国产片| 久久精品人人爽人人爽视色| 色婷婷久久久亚洲欧美| 99精品久久久久人妻精品| 精品视频人人做人人爽| 日日夜夜操网爽| 满18在线观看网站| 三上悠亚av全集在线观看| www.精华液| 久久精品人人爽人人爽视色| 在线观看66精品国产| 免费在线观看亚洲国产| 宅男免费午夜| 一本综合久久免费| 如日韩欧美国产精品一区二区三区| 国产精品久久久av美女十八| 人妻丰满熟妇av一区二区三区 | 91在线观看av| 一区二区三区精品91| 欧美av亚洲av综合av国产av| 精品少妇久久久久久888优播| 男女免费视频国产| 久久久久久久国产电影| 国产精品永久免费网站| 黄色视频,在线免费观看| 精品少妇一区二区三区视频日本电影| 夜夜夜夜夜久久久久| 一本一本久久a久久精品综合妖精| 高清欧美精品videossex| 欧美色视频一区免费| 日韩精品免费视频一区二区三区| 成人精品一区二区免费| 99riav亚洲国产免费| 久久国产乱子伦精品免费另类| 午夜免费鲁丝| 亚洲黑人精品在线| 国产在线一区二区三区精| 亚洲欧洲精品一区二区精品久久久| 精品国产一区二区三区久久久樱花| 精品国产亚洲在线| 成人三级做爰电影| 国产三级黄色录像| 麻豆成人av在线观看| 十分钟在线观看高清视频www| 99国产精品免费福利视频| 美女国产高潮福利片在线看| 国产成人av教育| 久久天堂一区二区三区四区| 成人永久免费在线观看视频| 后天国语完整版免费观看| 精品一区二区三卡| 看黄色毛片网站| 男人的好看免费观看在线视频 | 交换朋友夫妻互换小说| 大型黄色视频在线免费观看| 国产精品永久免费网站| 日韩欧美免费精品| 午夜视频精品福利| 伦理电影免费视频| 一夜夜www| 大型黄色视频在线免费观看| 丰满人妻熟妇乱又伦精品不卡| 天天添夜夜摸| 999精品在线视频| 国产精品 欧美亚洲| 久久人妻福利社区极品人妻图片| 悠悠久久av| 国产片内射在线| 中文字幕另类日韩欧美亚洲嫩草| 一进一出抽搐gif免费好疼 | 99国产精品一区二区三区| 国产欧美日韩综合在线一区二区| 久久精品国产清高在天天线| 又黄又粗又硬又大视频| 香蕉国产在线看| 亚洲精品久久成人aⅴ小说| 好看av亚洲va欧美ⅴa在| 别揉我奶头~嗯~啊~动态视频| 热99久久久久精品小说推荐| 99国产精品一区二区三区|