• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Recent Progress in Nanoscale MOFs for Biological Imaging of Tumors and Tumor Markers

    2022-04-22 03:36:52LIAOXueweiLIUYangWANGChen
    分析測(cè)試學(xué)報(bào) 2022年4期

    LIAO Xue-wei,LIU Yang,WANG Chen

    (1.Analytical&Testing Center,Nanjing Normal University,Nanjing 210023,China;2.School of Chemistry and Materials Science,Nanjing Normal University,Nanjing 210023,China;3.School of Environment,Nanjing Normal University,Nanjing 210023,China;4.State Key Laboratory of Analytical Chemistry for Life Science,Nanjing University,Nanjing 210023,China)

    Abstract:Metal-organic frameworks(MOFs)have played important roles in a wide range of fields,such as gas storage and separation,fuel cells,energy conversion,and chemical/biological sensors.When one of the dimensions is scaled down to nanometer,MOFs can be named as nanoscale MOFs(nMOFs).Compared with the traditional MOFs,nMOFs retain the advantages of highly ordered porosity,structural tunability,more effective surface modification sites and improved biological distributions.nMOFs are biocompatible molecular nanomaterials with great potentials in various biomedical applications,especially for detection of tumors and tumor markers.In this review,recent progress in nMOFs for biological imaging of tumors and tumor markers is summarized.Different bioimaging techniques including fluorescence imaging,magnetic resonance imaging(MRI),photoacoustic imaging(PAI),computed tomography imaging(CTI),positron emission tomography imaging(PETI)are introduced.After that,multimodal imaging superimposed by two or more imaging modalities is highlighted.Finally,a brief conclusion about this special field is provided.Priorities of research in nMOF-mediated therapies and the prospects of clinical applications of nMOFs as delivery carriers and cancer therapeutics are also outlined.This review is expected to advance our understanding of this special field,and promote the applications of nMOFs in early diagnosis of disease and tumor therapy.

    Key words:nanoscale metal-organic frameworks(nMOFs);biological imaging;tumor markers;biomedicine

    Metal-organic frameworks(MOFs),which are an emerging class of crystalline porous compounds composed of metal-containing nodes(known as secondary building units,SBUs)and organic linkers,have the advantages of both organic and inorganic materials[1-3].In 1995,the first highly porous and stable MOF-1 was synthesized[4].Afterwards,a large number of MOFs of varied topology structures and sizes have been designed via diverse synthetic strategies[5-9].Thanks to the extraordinarily high surface areas,tunable pore sizes,and adjustable surface properties[10],MOFs have received extensive development over the past few years and played important roles in various fields[11-18].In the wake of development in nanotechnology,nanoscale MOFs(nMOFs)with one of the particle dimensions in the range of tens to hundreds of nanometers emerged[17].Compared with the traditional MOFs,nMOFs have highly ordered porosity,enhanced chemical/colloidal stability,more effective surface modification sites and improved biological distribution[9,18],which are the reasons that found wide applications in energy conversion[14],catalysis[15],chemical sensors[16],and biomedicine[18].

    Early and precise diagnosis of cancer based on detection of tumors and tumor markers contribute to prompt treatment and therapy.There are a variety of bio-molecules which are used as tumor markers including antigens,DNA,mRNA,and enzymes.Detection of tumors and tumor markers is a powerful medical tool for early diagnosis and treatment of diseases.For example,visualized bioimaging technologies play important roles in the field of biomedicine because they can facilitate the diagnosis of diseases using visual imaging of tumors and biomarkers[19].Quick treatment of critical areas after diagnosis is also one of the advantages of imaging technologies[20].Moreover,bioimaging can be used for in vivo tracking and monitoring the dynamic process of molecules in real time.The accuracy of targeted therapy can thus be efficiently improved[21].So far,fluorescence imaging[22],magnetic resonance imaging(MRI)[23],X-ray computed tomography imaging(CTI)[24],photoacoustic imaging(PAI)[25],positron emission tomography imaging(PETI)[26]and other imaging modalities have been applied in diagnosis and treatment of diseases.As an outstanding platform,nMOFs with high porosity can not only help encapsulate large amounts of contrast agents in the pores,but also prevent the agents from agglomeration[27].Compared to other nanoparticles,nMOFs can be properly tailored to possess multifunctions for synergistic applications.The inherent imaging capabilities of metal centers or organic ligands have also played critical roles in the promotion and applications of nMOFs for bioimaging.In addition,customizable functional groups on the surface of nMOFs can also be connected to specific molecules for targeted imaging.

    In this review,we summarized the recent developments in the nMOFs based nanoplatform for biological imaging of tumors and tumor markers(Fig.1).Various imaging technologies including fluorescence,MRI,CTI,PAI,PETI and the multi-modal imaging are introduced.The important roles of various bioimaging modalities including mono-and multi-modal imaging modalities in tumor diagnoses and therapies are also well explained.Finally,a brief conclusion and the future developments of nMOFs for biological imaging are presented.It is hoped that this review can shed some light on the superiority of nMOFs applied in the fields of biological imaging.

    Fig.1 Nanoscale MOFs(nMOFs)and their applications in biological imaging of tumors and tumor markers

    1 Fluorescence imaging

    Fluorescence bioimaging is one of the most popular imaging modalities with relatively simple instrument.Organic fluorophores encapsulated in nMOFs can provide effective guidance for imaging.As extracellular pH is lower for solid tumors than for normal body tissues,pH sensing can provide useful information for tumor detection and analysis.For example,Rhodamine B isothiocyanates(RBITC)were integrated in pocket-channel frameworks(PCN)-224 for pH sensing in a wide range(pH 1.7-11.3)[28].RBITC and tetrakis(4-carboxyphenyl)porphyrin(TCPP)in PCN-224 were capable of imaging in acid and basic solutions,respectively.In addition,pH-responsive nMOFs have been fabricated and used for intracellular fluorescence imaging and drug delivery[29]. Cellular uptake studies showed that the fabricated nMOFs had good biocompatibility.

    In addition to pH sensing,imaging of intracellular DNA and microRNA is also possible with nMOFs[30-31].For example,Li′s group encapsulated light-switchable sensing frame within dissociable nMOFs to construct autonomous three-dimensional DNA walkers(Fig.2A).Through endocytosis,a self-driven pattern in the acidic environment of the cell lysosome was achieved.Biological imaging of a model biomarker(microRNA-21)was made available(Fig.2B).The proposed sensing platform enables highly sensitive and efficient detection of tumor markers,offering a powerful assay strategy for intracellular imaging.In another example,ZIF-8 nMOFs were employed as a delivery vehicle to construct a microRNA biosensor[30].Obviously,nMOFs could serve as a powerful imaging tool for sensitive and accurate determination of microRNA in living cells(Fig.2C)[31].

    Fig.2 Schematically illustration of the intracellular sensing mechanism of light-activated and self-driven autonomous 3D DNA walkers(A).Confocal fluorescence images of living MCF-7 cells in the presence(top images)and absence(bottom images)of UV light irradiation by incubating with nMOFs for 4 h[30](B).Confocal images of nMOFs incubated A549 cells in the presence(top images)and absence(bottom images)of UV light irradiation using a photo-responsive DNA tetrahedral amplifier and nMOFs encapsulation[31](C)

    For efficient imaging,some special strategies have been combined with fluorescence imaging technique,such as aggregation-induced emission(AIE)and aggregation-caused quenching(ACQ)[32-35].They selected MOF-199 for loading the photosensitizers 2-(4-(diphenylamino)phenyl)anthracene-9,10-dione(TPAAQ)with AIE and Ce6 with ACQ.After cellular uptake,endogenous glutathione(GSH)induced the decomposition of MOFs to release photosensitizers.Through the bright infrared(IR)/near-infrared(NIR)emission of Ce6 and TPAAQ in cancer cells,a cancer cell-specific image-guided photodynamic therapy was demonstrated,while the phototoxicity of normal cells was reduced.In addition,up-conversion luminescent nanoparticles(UCNPs),which can convert NIR radiation into visible light,have become a new class of bio-probes in biomedical applications.The unique optical characteristics decrease the auto-fluorescence background of optical imaging in vivo and reduce the photo damage to cells and living animals[33].Kuang′s group fabricated a hybrid nanoassembly consisting of UCNPs core and zeolitic imidazolate frameworks(ZIF)-8 shell encapsulated with chiral NiSx nanoparticles(NPs)(denoted as UCNP@ZIF-NiSx)(Fig.3A)[34].The up-conversion luminescence(UCL)signal of UCNPs at 540 nm was quenched by Ni Sx NPs,while the UCL signal at 660 nm hardly changed.Using fluorescent signals of UCNPs,the assembly was used for quantitative monitoring of reactive oxygen species(ROS)i n vivo.To track and evaluate non-small-cell lung cancer,Tang′s group used UCNPs as NIR antennas attached onto the surface of nMOFs containing a large number of oxygen indicators(Fig.3B)[35].In the process of fluorescence resonance energy transfer(FRET),the UCNPs upconverted NIR light excited the O2indicator,resultingi n vi votracking of non-small-cell lung cancer lesions through hypoxia imaging.

    An IR/NIR imaging regent can also be incorporated into living cells for fluorescence imaging.For example,an unique MOF(Fig.3C)was prepared based on Yb3+NIR emitting lanthanide cations for NIR imaging[36].NIR microscopy allows for highly efficient discrimination between signals of nMOFs emission and the fluorescence background arising from cellular biological materials[36].These studies indicated the promising applications of NIR lanthanide emission in biological imaging of living cells.

    Fig.3 ROS detection using UCNP@MOF-Ni Sx nanoassemblies[34](A).Strategy for fabrication of sensors based on UCNPs,bio-MOF-100,and[Ru(dpp)3]2+Cl2 for cycling hypoxia response under NIR excitation[35](B).Left:Crystal structure of Yb-phenylenevinylene dicarboxylate(PVDC)-3 viewed along the a-crystallographic axis,the powder X-ray diffraction patterns for different samples,and SEM image of nano-Yb-PVDC-3.Right:Visible and NIR microscopy images of nano Yb-PVDC-3 in HeLa cells(Upper)and NIH 3T3 cells(Lower)(λex=340 nm)[36](C)

    2 Magnetic resonance imaging of(MRI)

    Noninvasive MRI with sub-millimeter spatial resolution is a powerful diagnostic tool in the medical field.MRI has been proved to be highly effective for evaluating anatomical changes and monitoring organ functions[37].However,in many cases,contrast agents are needed to shorten the longitudinal(T1)and transverse(T2)relaxation rates of water protons at the target tissues,thus improving the contrast between diseased tissues and normal ones.Paramagnetic or super-magnetic substances including Gd,F(xiàn)e and Mn are good MRI contrast agents.Lin′s group designed a Gd3+based nMOF for MRI contrast agents with large relaxivities for the first time(Fig.4A)[38].This work suggested that the platform of nMOFs could be potentially used for multimodal imaging,especially doping with Eu3+or Tb3+centers as highly luminescent contrast agents.However,toxic Gd3+,when used as an MRI contrast agent,was likely to be leached from nMOFs and reduce biological safety.Ultra-small superparamagnetic iron oxide(USPIO),γ-Fe2O3(maghemite)coupled with drug carrier MIL(materials from Institute Lavoisier)-100(Fe),was a stable and safe nanovector for image-guided therapy[39].Such MIL-USPIOnanovector exhibited excellent relaxometric properties due to the high value of saturation magnetization.Similarly,F(xiàn)e3O4@UiO-66[40],MnCo-MOF[41],Cu(Ⅱ)-TCPP[42]and PCN-222(Mn)[43]could also been used as MRI contrast agents for combining cancer imaging and treatments.Due to the good dispersibility of Mn3+in the framework as well as the high water affinity of the pores,PCN-222(Mn)showed high longitudinal relaxivity and good catalytic activity,providing good contrast of the tumor site for imaging(Fig.4B,C)[43].

    Fig.4 SEM images of the crystalline Gd3+based nMOF,and the corresponding MRI[38](A).Illustration showing the construction of PCN-222 and its SEM image,which was then used for MRI[43](B).MRI of tumor-bearing mice and the tumor(red circles),kidney(orange circles)sites[43](C)

    3 Other means of imaging

    As another noninvasive clinical diagnostic technique,CTI can provide high-resolution 3D structural details based on differential X-ray absorption of biological tissues[44].To provide high contrast between target tissues and adjacent tissues,contrast agents with high X-ray attenuation are ideal for CTI.But using smallmolecule contrast agents alone(such as barium sulfate and iodinated aromatic molecules)will cause adverse reactions in some patients due to non-specific distribution and extravasation from blood and lymphatic vessels[45].Incorporating imaging agents into nMOFs can serve as promising CT contrast agents.Based on the metal ion chelating ability of the porphyrin structure,2D Zn-TCPP was labeled with 99mTc(a gamma emission radioisotope)for single photon emission computer tomography(SPECT)imaging,achieving quantitative tracking in vivo after intravenous injection[46].Quercetin with excellent X-ray attenuation ability can be encapsulated into Zr-MOFs for in vivo CTI[47].This Zr-MOF-Quercetin provides an imaging platform for quantitatively monitoring Zr-MOF biodistribution and real-time monitoring of tumor treatment.Besides,gold nanoparticles can also be used for CTI owing to the large X-ray absorption coefficient.Han′s group developed gold nanorods(AuNRs)/ZIF-8 janus NPs with high contrast for CTI-guided liver cancer theranostics,which exhibited excellent performance as potential CTI agents[48].

    Based on the photoacoustic effect of light absorbers,PAI is a new non-invasive and non-ionizing biomedical imaging technology with remarkably increased imaging depth and spatial resolution.One type of porphyrin-MOF containing porphyrin-like single atom Fe(Ⅲ)centers was expected to be active for PAI(Fig.5A)[49].Switches in the spin state of Fe(Ⅲ)in P-MOF under NIR could facilitate the generation of1O2in vivo and thereby enabled photoacoustic imaging of cancer cells.After injection,the average intensity of PAI in the tumor area increased by 12 folds.Moreover,a bacteriochlorin-based versatile MOF nanosheet(DBBC-UiO)was developed as O2-·generator under NIR laser irradiation for PAI-guided therapy for hypoxic tumor(Fig.5B)[50].The DBBC-UiO exhibited remarkable photoacoustic responses and the concentration-dependent PAI signal intensity was positively correlated with DBBC-UiO concentration(0-1 mg/mL).

    Fig.5 Schematic illustration of NIR-stimulation of single atom iron centers in P-MOF,resulting in efficient cancer phototherapy via photodynamic therapy and photothermal therapy,as well as PAI cancer imaging[49](A).Schematic illustration of the synthetic procedure and photoinduced therapy mechanism of DBBC-Ui O[50](B).Schematic synthesis route of Zr-UiO-nMOFs conjugates and the corresponding crystal structure[51](C)

    In addition,highly specific PETI has superior detection sensitivity and deeper signal penetration.By injecting metabolites marked with radionuclides into the human body,the status of metabolic activities can be directly reflected.Hong′s group reported an nMOF incorporated by the positron-emitting isotope zirconium-89(89Zr)for PETI of MDA-MB-231(triple-negative breast cancer cells,nucleolin)(Fig.5C)[51].The porous structure of nMOFs increased the loading rate of hydrophilic and hydrophobic drugs and the surface-modified polyethylene glycol(PEG)improved the stability and dispersion in biological media.PETI of the present nanoplatform with long half-life(t1/2=78.4 h)not only guided efficient drug delivery,but also monitored metabolic processesin vivo.

    4 Multi-modal imaging

    Imaging methods involving fluorescence,MRI and CT are the most commonly used technologies,but they have advantages and disadvantages,respectively.Fluorescence has a high sensitivity but a relatively low penetration depth.MRI can provide 3D soft tissue details but its planar resolution is limited.CT imaging is suitable for imaging bones and calcified parts but less sensitive to soft tissues.Thus,monomodal imaging alone fails to provide all the information needed for comprehensive imaging and diagnosis.To address these issues,multimodal imaging superimposed by two or more imaging modalities can provide more pathological information,and has been rapidly developing into a promising technology for clinical diagnosis and disease detection in recent years[52].

    The combination of fluorescence and MRI will be popular in precise diagnosis.Prussian blue(PB)nanoparticles can serve as an imaging contrast agent due to the unique Fe(Ⅱ)-C≡N-Fe(Ⅲ)structure in which Fe(Ⅱ)was low spin(S=0)and Fe(Ⅲ)was high spin(S=5/2)[53].Moreover,carbon dots,PB analogues were capable of green fluorescence[54].It has been reported that PB@ZIF-8 core-shell could be used for MRI and fluorescence optical imaging[55].As another example,the GdMOF/Au nanocomposites were chosen as a multimodal contrast agent for MRI/CT dual-modal imaging(Fig.6A)[56].Gd(Ⅲ)is an ideal contrast agent candidate for CT imaging,exhibiting excellent MRI capacity.Owing to the higher Gd3+loading rate of GdnMOF,the retention time and relaxivities were improved.Lin′s group fabricated a novel yolk-shell Au@MOF nanocarrier with high anticancer drug delivery capacity and superior NIR-Ⅱ(1 000-1 350 nm)responsive photothermal conversion ability for imaging-guided monitoring and combined chemo-photothermal therapy(Fig.6B)[57].After efficient accumulation of Au@MOF in tumors tissues,the temperature elevation was quickly triggered under laser irradiation.Meanwhile,the tumor sites displayed strong PAI signals due to the intense NIR absorption capacity of Au@MOF.

    Recently,CTI/PAI combined with thermal imaging was successfully applied by introducing the photoactive tetratopic chlorin(TCPC)and Hf atom into UiO-66(Fig.6C)[58].Due to the high photothermal conversion efficiency and strong X-ray attenuating ability of Hf element,the as-synthesized TCPC-UiO was capable of photodynamic therapy and photothermal therapy simultaneously.Thus,this excellent multi-modal imaging platform also manifested valuable therapeutic advantages under NIR irradiation.To reveal sufficient characteristics for diagnosis of different types of cancer,Au@MIL-88(Fe)core-shell nanoparticles were synthesized for the assembly of multifunctional imaging agents(Fig.6D)[59].AuNRs with photothermolysis and NIR(650-900 nm)absorptive properties can serve as contrast agents for X-ray CT and PAI contrast.The porous MOF shells prevent aggregation while exhibiting MRI property.Duringin vivostudies of gliomas,both CT and MRI showed clear structure with high depth of penetration and PAI exhibited clear detection,high spatial resolution,and high contrast(Fig.6D)[59].Fe2+adsorbed ZIF-8 was prepared fori n vivomultimodal imaging of cancerous cells for early diagnosis of target cancers[60].Unlike that in normal cells,the Fe2+species on ZIF-8 could be oxidized by ROS to Fe3+and then formed superparamagnetic Fe3O4in cancer cells.The Fe3O4nanoparticles increased the T2relaxation rate of H2O in tumor tissues and exhibited CT contrast.Simultaneously,the high concentration of GSH in cancer cells degraded ZIF-8,thereby allowing Zn2+to escape from the skeleton and eventually form fluorescent ZnO nanoclusters.Moreover,Dong′s group reported a novel multifunctional Zr-ferriporphyrin MOF nanoshuttle with tri-mode tumor-specific imaging capability[61].The nanoshuttle revealed stronger PA signals after tail vein injection and good CT capability,which might have resulted from the high-Zr component.Additionally,the good photothermal effect endowed its good in vivo photothermal imaging ability.The fascinating tri-mode imaging capability provided a powerful tool for accurate tumor diagnosis.It is important to form a clear imaging contrast between the target and surrounding tissues.Therefore,the development of effective contrast agents with good sensitivity and selectivity is critical to the efficiency of diagnosis and treatment.Due to their porosity and customization,nMOFs have great potentials as new imaging agents and promoting diagnostic medicine.Although multimodal imaging has been used for monitoring the degradation process of nMOFs,the comprehensive theoretical basis needs to be further explored by means of long-term monitoring of absorption,distribution,metabolism and excretion.

    Fig.6 Schematic representation of the structure of hybrid GdMOF-poly(acrylic acid)-Au nanostructures and the application to multimodality imaging[56](A).Schematic illustration for the fabrication process,IR/PAI imaging effects,and synergistic anticancer therapy of Au@MOF-doxorubicin hydrochloride(DOX)[57](B).Synthesis and mechanism for cancer therapy of TCPC-Ui O by light activation[58](C).Schematic illustration of the synthesis of Au@MIL-88(Fe)nMOFs and the application to multimodality imaging[59](D)

    5 Conclusions

    In summary,we have outlined the latest biomedical developments of nMOFs for biological imaging of tumors and tumor biomarkers.Different biological imaging methods were introduced in this review.With a large specific area and high porosity,nMOFs have the special ability to act as imaging agents with high loading rates.Although tremendous progress has been made in this field,there are still some new challenges and issues that need to be addressed.

    Firstly,the ultimate goal behind the use of tumors and tumor markers for diagnosis is to develop powerful and reliable detection techniques for early diagnosis.By using biomarker detection,physicians can monitor disease progression in time,and accordingly choose a precise and accurate therapeutic strategy for their patients.To achieve this goal,the detection platforms must be affordable,portable and adaptable to a point-ofcare testing,which is also one of the trends of future clinical diagnostics.

    Secondly,for better performance,the size control and biodistribution of nMOFs need to be precisely designed and fabricated.The particle size of nanomaterials affects not only cells’uptake efficiency,but also the biological distributionin vivo.Kidneys are known to rapidly eliminate particles smaller than 6 nm via filtration,while particles larger than 200 nm can accumulate in the liver and spleen via rapid mononuclear phagocytic system clearance[61].Although MOFs have been confined to the nanoscale level,it′s essential to obtain nMOFs with more suitable hydrodynamic sizes for improved biodistributionin vivo.In addition,the biocompatibility,toxicity,and thein vivodegrading are worthy of contemplation.To date,the mechanisms and pathways by which nMOFs are biodegradedin vivoremain little known.

    Finally,the surface modification is an important determinant of imaging quality.Total reliance on the inherent biocompatibility of nMOFs for biological applications is undesirable.To prevent the mononuclear phagoytic system clearance,modifying nMOFs with PEG or its derivatives is the most common method,which can not only improve biocompatibility,but also increase the stability of nMOFs.Other substances such as silica[62],cyclodextrin[63],heparin[64],hyaluronic acid[65]and cancer cell membranes[66]have also been used to modify nMOFs.In addition,the surface of nMOFs can also be modified with targeting molecules including folic acid[67],integrin targeting peptides[62]and aptamers[68]to increase tumor cell uptakes.Although significant progress has been made in surface modification,the accurate characterization of coating or targeting efficiency has been a formidable challenge in recent years.

    99九九在线精品视频| 久久久久精品人妻al黑| 交换朋友夫妻互换小说| 国产成人av教育| 国产精品一区二区在线不卡| 老熟妇乱子伦视频在线观看 | 五月开心婷婷网| 免费人妻精品一区二区三区视频| 中文精品一卡2卡3卡4更新| 亚洲成人手机| 妹子高潮喷水视频| 亚洲成人国产一区在线观看| 亚洲激情五月婷婷啪啪| 中文字幕色久视频| 在线观看免费高清a一片| 热re99久久精品国产66热6| 国产主播在线观看一区二区| 国产免费福利视频在线观看| 夜夜夜夜夜久久久久| 免费一级毛片在线播放高清视频 | 精品少妇黑人巨大在线播放| 嫁个100分男人电影在线观看| 亚洲欧洲日产国产| 免费在线观看视频国产中文字幕亚洲 | 99精国产麻豆久久婷婷| 亚洲精品久久久久久婷婷小说| 亚洲avbb在线观看| 女性被躁到高潮视频| 99国产极品粉嫩在线观看| 久久久水蜜桃国产精品网| 欧美亚洲 丝袜 人妻 在线| 法律面前人人平等表现在哪些方面 | 久久天堂一区二区三区四区| 免费观看人在逋| 精品一区二区三区四区五区乱码| 精品高清国产在线一区| 免费在线观看影片大全网站| 亚洲国产精品999| 国产精品 国内视频| www.精华液| 欧美激情久久久久久爽电影 | 精品免费久久久久久久清纯 | 成人黄色视频免费在线看| 欧美大码av| 国产精品免费视频内射| 久久精品国产亚洲av香蕉五月 | 丝袜美腿诱惑在线| 女人精品久久久久毛片| 丰满少妇做爰视频| 极品少妇高潮喷水抽搐| 99国产综合亚洲精品| 久久久精品国产亚洲av高清涩受| 热re99久久国产66热| 黄色 视频免费看| 高清视频免费观看一区二区| 亚洲色图 男人天堂 中文字幕| 精品第一国产精品| 亚洲精品在线美女| 国产91精品成人一区二区三区 | 久久久久久人人人人人| 精品国内亚洲2022精品成人 | 久久亚洲精品不卡| 午夜两性在线视频| 亚洲av成人不卡在线观看播放网 | 波多野结衣一区麻豆| 一级,二级,三级黄色视频| av网站在线播放免费| 99久久综合免费| 两性午夜刺激爽爽歪歪视频在线观看 | 欧美+亚洲+日韩+国产| 欧美黑人欧美精品刺激| 两性夫妻黄色片| 黄片播放在线免费| 每晚都被弄得嗷嗷叫到高潮| 国产在线视频一区二区| 久久九九热精品免费| 久久综合国产亚洲精品| 国产无遮挡羞羞视频在线观看| 国产精品国产av在线观看| 亚洲精品自拍成人| 久久久精品94久久精品| 又紧又爽又黄一区二区| 国产又色又爽无遮挡免| 日韩大码丰满熟妇| 国产日韩一区二区三区精品不卡| 婷婷色av中文字幕| 国产精品九九99| 亚洲人成电影免费在线| 窝窝影院91人妻| 老汉色∧v一级毛片| 男女床上黄色一级片免费看| 在线观看免费午夜福利视频| 真人做人爱边吃奶动态| 嫩草影视91久久| 久久国产精品大桥未久av| 日本vs欧美在线观看视频| 99久久99久久久精品蜜桃| 久久精品国产a三级三级三级| 日韩熟女老妇一区二区性免费视频| 在线观看免费午夜福利视频| 黑人操中国人逼视频| av线在线观看网站| 欧美日韩亚洲综合一区二区三区_| av片东京热男人的天堂| 一本久久精品| 久久国产精品男人的天堂亚洲| 久久人妻熟女aⅴ| 亚洲精品乱久久久久久| 黄色视频在线播放观看不卡| 国产av一区二区精品久久| 18在线观看网站| 男女国产视频网站| 天堂俺去俺来也www色官网| 久久中文看片网| 日韩大码丰满熟妇| 黄色a级毛片大全视频| 国产精品一二三区在线看| 一二三四社区在线视频社区8| 两性夫妻黄色片| 啦啦啦在线免费观看视频4| 久久久久久久国产电影| 天天添夜夜摸| 成人国产av品久久久| 妹子高潮喷水视频| 国产精品一区二区在线观看99| av片东京热男人的天堂| 下体分泌物呈黄色| 欧美激情 高清一区二区三区| 久久香蕉激情| 在线观看舔阴道视频| 国产精品久久久av美女十八| 中国美女看黄片| 久久久久久久久免费视频了| av天堂在线播放| 欧美xxⅹ黑人| 高清在线国产一区| 亚洲全国av大片| 免费观看人在逋| 国产亚洲午夜精品一区二区久久| 精品国产超薄肉色丝袜足j| 日韩熟女老妇一区二区性免费视频| 在线av久久热| 日韩一区二区三区影片| 国产精品.久久久| 首页视频小说图片口味搜索| 精品福利观看| 精品人妻熟女毛片av久久网站| 国产一区二区在线观看av| 五月天丁香电影| 免费在线观看完整版高清| 精品熟女少妇八av免费久了| 亚洲欧美清纯卡通| 他把我摸到了高潮在线观看 | 一级毛片精品| 欧美精品高潮呻吟av久久| 亚洲国产欧美一区二区综合| 久久青草综合色| 97在线人人人人妻| 中亚洲国语对白在线视频| 淫妇啪啪啪对白视频 | 如日韩欧美国产精品一区二区三区| 久久国产亚洲av麻豆专区| 国产日韩欧美在线精品| 欧美日韩成人在线一区二区| 国产成人精品久久二区二区免费| 久久久精品免费免费高清| 欧美成狂野欧美在线观看| 国精品久久久久久国模美| 国产精品99久久99久久久不卡| 精品人妻在线不人妻| 精品福利永久在线观看| 18禁裸乳无遮挡动漫免费视频| 午夜激情av网站| 91精品三级在线观看| 18禁黄网站禁片午夜丰满| 欧美人与性动交α欧美软件| 久久亚洲国产成人精品v| 精品一区二区三区四区五区乱码| 狂野欧美激情性bbbbbb| 国产亚洲欧美在线一区二区| 国产精品 欧美亚洲| 12—13女人毛片做爰片一| 国产精品一区二区在线观看99| 欧美中文综合在线视频| 久久久久久人人人人人| 母亲3免费完整高清在线观看| 亚洲欧美日韩高清在线视频 | 国产伦人伦偷精品视频| 国产一区二区 视频在线| 嫩草影视91久久| 伊人亚洲综合成人网| 午夜免费鲁丝| 青春草视频在线免费观看| 各种免费的搞黄视频| 国产精品99久久99久久久不卡| 欧美激情极品国产一区二区三区| 狂野欧美激情性xxxx| 午夜两性在线视频| 丝袜美腿诱惑在线| 国产精品一区二区在线不卡| 免费黄频网站在线观看国产| 国产色视频综合| netflix在线观看网站| 他把我摸到了高潮在线观看 | 亚洲欧美清纯卡通| 精品人妻熟女毛片av久久网站| 少妇的丰满在线观看| 一边摸一边抽搐一进一出视频| 在线精品无人区一区二区三| 亚洲伊人久久精品综合| 日韩一区二区三区影片| 性色av乱码一区二区三区2| 人人澡人人妻人| 日本91视频免费播放| a在线观看视频网站| 王馨瑶露胸无遮挡在线观看| 18禁国产床啪视频网站| 十分钟在线观看高清视频www| 侵犯人妻中文字幕一二三四区| 中文字幕人妻丝袜一区二区| 成人三级做爰电影| 三上悠亚av全集在线观看| 高清黄色对白视频在线免费看| 久久国产精品人妻蜜桃| 国产精品影院久久| 超色免费av| 在线观看舔阴道视频| 精品乱码久久久久久99久播| 日韩中文字幕视频在线看片| 91字幕亚洲| 伊人亚洲综合成人网| 丝袜美足系列| 精品乱码久久久久久99久播| av网站在线播放免费| 久久久久久久国产电影| 视频在线观看一区二区三区| 人妻人人澡人人爽人人| 亚洲精品美女久久久久99蜜臀| 狂野欧美激情性xxxx| 每晚都被弄得嗷嗷叫到高潮| 亚洲精品日韩在线中文字幕| 高清欧美精品videossex| 一本一本久久a久久精品综合妖精| 成年女人毛片免费观看观看9 | 国产免费视频播放在线视频| 另类亚洲欧美激情| 国产成人欧美在线观看 | 又紧又爽又黄一区二区| 亚洲欧美精品自产自拍| 91精品伊人久久大香线蕉| 1024香蕉在线观看| 亚洲国产欧美在线一区| 日本五十路高清| 久久性视频一级片| 国产精品久久久久久精品电影小说| 捣出白浆h1v1| 日本猛色少妇xxxxx猛交久久| 成年av动漫网址| 久久天躁狠狠躁夜夜2o2o| 99久久99久久久精品蜜桃| 人人妻人人爽人人添夜夜欢视频| 欧美日韩亚洲国产一区二区在线观看 | 成人国语在线视频| 午夜视频精品福利| 亚洲国产欧美一区二区综合| 超碰成人久久| 成在线人永久免费视频| 久久青草综合色| 欧美变态另类bdsm刘玥| 老司机午夜福利在线观看视频 | 天天影视国产精品| 国产熟女午夜一区二区三区| 欧美精品啪啪一区二区三区 | xxxhd国产人妻xxx| 亚洲成人国产一区在线观看| 国产亚洲午夜精品一区二区久久| 在线观看一区二区三区激情| 热99re8久久精品国产| 激情视频va一区二区三区| 精品福利永久在线观看| 黑人操中国人逼视频| 老汉色av国产亚洲站长工具| 中文字幕最新亚洲高清| 国产精品香港三级国产av潘金莲| 久久久久久亚洲精品国产蜜桃av| 天天躁夜夜躁狠狠躁躁| 欧美精品一区二区免费开放| 欧美日韩精品网址| 成年美女黄网站色视频大全免费| 午夜日韩欧美国产| 国产在线视频一区二区| 人人澡人人妻人| 人妻 亚洲 视频| 十分钟在线观看高清视频www| 三上悠亚av全集在线观看| 亚洲五月婷婷丁香| 狂野欧美激情性bbbbbb| av网站免费在线观看视频| 99九九在线精品视频| 岛国毛片在线播放| 搡老乐熟女国产| 国产日韩欧美在线精品| 亚洲成国产人片在线观看| 亚洲国产成人一精品久久久| 国产熟女午夜一区二区三区| 国产无遮挡羞羞视频在线观看| 亚洲精品自拍成人| 一级a爱视频在线免费观看| 中文字幕人妻丝袜制服| 亚洲精品国产av成人精品| videosex国产| 精品高清国产在线一区| 亚洲中文av在线| 国产一区二区 视频在线| 久热这里只有精品99| 一本—道久久a久久精品蜜桃钙片| 成人国产一区最新在线观看| 国产成人av教育| 每晚都被弄得嗷嗷叫到高潮| 麻豆国产av国片精品| 黄网站色视频无遮挡免费观看| cao死你这个sao货| 热99国产精品久久久久久7| 色94色欧美一区二区| 黄色a级毛片大全视频| 1024香蕉在线观看| 制服人妻中文乱码| 国产欧美日韩一区二区三 | 国产日韩欧美亚洲二区| 在线观看免费午夜福利视频| 久久久久久久国产电影| 视频区图区小说| 在线亚洲精品国产二区图片欧美| 亚洲色图 男人天堂 中文字幕| 一边摸一边做爽爽视频免费| 亚洲一区二区三区欧美精品| 秋霞在线观看毛片| 免费看十八禁软件| 97精品久久久久久久久久精品| 欧美精品一区二区大全| 欧美激情久久久久久爽电影 | 丰满人妻熟妇乱又伦精品不卡| 国产精品久久久av美女十八| 自拍欧美九色日韩亚洲蝌蚪91| av在线app专区| 99久久国产精品久久久| 人人妻,人人澡人人爽秒播| bbb黄色大片| 黄色 视频免费看| 国产一区二区三区av在线| 精品少妇一区二区三区视频日本电影| 久久免费观看电影| 久热爱精品视频在线9| 纵有疾风起免费观看全集完整版| 国产老妇伦熟女老妇高清| 肉色欧美久久久久久久蜜桃| 高清欧美精品videossex| 亚洲全国av大片| 欧美日韩福利视频一区二区| 韩国高清视频一区二区三区| 欧美日韩视频精品一区| 黄色 视频免费看| 国产欧美日韩一区二区精品| 每晚都被弄得嗷嗷叫到高潮| 人人妻人人澡人人看| 午夜视频精品福利| 午夜老司机福利片| 老司机靠b影院| 国产色视频综合| 亚洲精品在线美女| av福利片在线| 嫩草影视91久久| 国产成人一区二区三区免费视频网站| 日韩欧美国产一区二区入口| 亚洲伊人久久精品综合| 国产精品麻豆人妻色哟哟久久| 国产成人欧美在线观看 | 人人妻,人人澡人人爽秒播| 国产一区二区在线观看av| 人人妻,人人澡人人爽秒播| 老司机午夜十八禁免费视频| 国产亚洲精品第一综合不卡| 成人三级做爰电影| 国产免费av片在线观看野外av| 亚洲欧洲日产国产| 他把我摸到了高潮在线观看 | 欧美少妇被猛烈插入视频| 黄色 视频免费看| 国产精品九九99| 国产人伦9x9x在线观看| 天天躁夜夜躁狠狠躁躁| 高清黄色对白视频在线免费看| 亚洲欧美日韩高清在线视频 | 天天影视国产精品| 免费人妻精品一区二区三区视频| 下体分泌物呈黄色| 国产成人精品在线电影| 久久影院123| av天堂在线播放| 日韩大码丰满熟妇| 岛国在线观看网站| 80岁老熟妇乱子伦牲交| 女警被强在线播放| 欧美日韩黄片免| 国产成人影院久久av| 美国免费a级毛片| 国产精品九九99| 久久久久久久久免费视频了| av欧美777| 国产97色在线日韩免费| 成人国产一区最新在线观看| 久久人妻福利社区极品人妻图片| 9191精品国产免费久久| 欧美黄色片欧美黄色片| 人妻久久中文字幕网| 男人舔女人的私密视频| 两性夫妻黄色片| 动漫黄色视频在线观看| 国产黄色免费在线视频| 侵犯人妻中文字幕一二三四区| 亚洲欧美精品自产自拍| 国产精品一区二区在线不卡| 波多野结衣av一区二区av| 午夜精品久久久久久毛片777| 狂野欧美激情性bbbbbb| 成在线人永久免费视频| 欧美中文综合在线视频| av欧美777| 制服诱惑二区| 我要看黄色一级片免费的| 久久久国产精品麻豆| 国产成人av激情在线播放| 考比视频在线观看| 免费不卡黄色视频| 韩国高清视频一区二区三区| 精品福利永久在线观看| 搡老熟女国产l中国老女人| 国产在线视频一区二区| 香蕉丝袜av| 精品第一国产精品| 搡老岳熟女国产| 成年人黄色毛片网站| 韩国高清视频一区二区三区| 电影成人av| 美国免费a级毛片| 欧美激情极品国产一区二区三区| 亚洲精品国产色婷婷电影| 天天影视国产精品| 一级片'在线观看视频| www.自偷自拍.com| 成年人黄色毛片网站| 亚洲五月色婷婷综合| 亚洲av日韩精品久久久久久密| 国产1区2区3区精品| 亚洲男人天堂网一区| 国产男人的电影天堂91| 99久久人妻综合| 国产黄色免费在线视频| 九色亚洲精品在线播放| 99国产精品一区二区蜜桃av | 中文字幕另类日韩欧美亚洲嫩草| 精品高清国产在线一区| 在线天堂中文资源库| 中国国产av一级| 在线观看免费视频网站a站| 亚洲第一欧美日韩一区二区三区 | 国产亚洲av高清不卡| 母亲3免费完整高清在线观看| av不卡在线播放| 欧美日韩亚洲综合一区二区三区_| 99久久综合免费| 欧美日韩中文字幕国产精品一区二区三区 | 黄网站色视频无遮挡免费观看| 免费观看a级毛片全部| 十八禁高潮呻吟视频| www.精华液| www.999成人在线观看| 黄色毛片三级朝国网站| 满18在线观看网站| 建设人人有责人人尽责人人享有的| 女警被强在线播放| 男女无遮挡免费网站观看| 久久综合国产亚洲精品| 国产精品一区二区在线观看99| 岛国在线观看网站| 后天国语完整版免费观看| 丁香六月天网| 男女高潮啪啪啪动态图| 亚洲av日韩精品久久久久久密| 久久精品亚洲熟妇少妇任你| 成人手机av| av在线app专区| 丰满人妻熟妇乱又伦精品不卡| 亚洲精品粉嫩美女一区| 欧美激情久久久久久爽电影 | 免费不卡黄色视频| 另类亚洲欧美激情| 亚洲中文日韩欧美视频| 永久免费av网站大全| 97精品久久久久久久久久精品| 最黄视频免费看| 免费黄频网站在线观看国产| 亚洲av电影在线观看一区二区三区| 午夜福利免费观看在线| 下体分泌物呈黄色| 在线观看免费午夜福利视频| 男人添女人高潮全过程视频| 看免费av毛片| 性色av乱码一区二区三区2| 亚洲三区欧美一区| 亚洲免费av在线视频| 91麻豆精品激情在线观看国产 | 中亚洲国语对白在线视频| 亚洲国产成人一精品久久久| 欧美日韩亚洲国产一区二区在线观看 | 在线观看免费高清a一片| 男女下面插进去视频免费观看| 亚洲人成电影免费在线| 国产精品久久久av美女十八| 精品第一国产精品| 中文字幕另类日韩欧美亚洲嫩草| 天堂俺去俺来也www色官网| 99热网站在线观看| 国产一卡二卡三卡精品| 国产亚洲精品一区二区www | 亚洲欧美一区二区三区黑人| 男人爽女人下面视频在线观看| 欧美精品一区二区免费开放| 国产精品麻豆人妻色哟哟久久| 黑人欧美特级aaaaaa片| 精品国产一区二区三区久久久樱花| 亚洲国产精品成人久久小说| 久久久国产成人免费| 国产真人三级小视频在线观看| 淫妇啪啪啪对白视频 | 亚洲av片天天在线观看| 免费看十八禁软件| 新久久久久国产一级毛片| 免费av中文字幕在线| 久久女婷五月综合色啪小说| 亚洲欧美精品综合一区二区三区| 免费在线观看黄色视频的| 午夜福利乱码中文字幕| 亚洲成人手机| a在线观看视频网站| 国产亚洲av片在线观看秒播厂| 亚洲av电影在线观看一区二区三区| 国产精品av久久久久免费| 一边摸一边做爽爽视频免费| 日韩大片免费观看网站| 精品少妇黑人巨大在线播放| 热99国产精品久久久久久7| 亚洲色图 男人天堂 中文字幕| 久久国产精品男人的天堂亚洲| 国产99久久九九免费精品| 永久免费av网站大全| 成年av动漫网址| 国产片内射在线| 一个人免费在线观看的高清视频 | 亚洲欧美一区二区三区黑人| 女人被躁到高潮嗷嗷叫费观| 夫妻午夜视频| 91成年电影在线观看| 亚洲欧美激情在线| 99久久精品国产亚洲精品| 国产不卡av网站在线观看| 一本综合久久免费| 成人黄色视频免费在线看| 国产淫语在线视频| 黄色毛片三级朝国网站| 亚洲精品日韩在线中文字幕| 亚洲精品一区蜜桃| 久久久久久久久免费视频了| 精品免费久久久久久久清纯 | 老熟妇乱子伦视频在线观看 | 免费在线观看影片大全网站| 欧美中文综合在线视频| 国产精品自产拍在线观看55亚洲 | 在线十欧美十亚洲十日本专区| 香蕉国产在线看| 男人添女人高潮全过程视频| 亚洲中文日韩欧美视频| 免费人妻精品一区二区三区视频| 久久久国产欧美日韩av| 啦啦啦中文免费视频观看日本| 一级片免费观看大全| 亚洲全国av大片| 男女国产视频网站| 成在线人永久免费视频| 亚洲精品中文字幕在线视频| 一级片'在线观看视频| 国产成人精品在线电影| 午夜两性在线视频| 色综合欧美亚洲国产小说| 成人亚洲精品一区在线观看| 久久人人爽人人片av| 国产97色在线日韩免费| 亚洲国产精品999| 美女国产高潮福利片在线看| 人人妻人人澡人人看| 亚洲国产精品999| 美女国产高潮福利片在线看| 亚洲国产av影院在线观看| 亚洲第一青青草原| 成年人午夜在线观看视频| 老司机午夜十八禁免费视频| 91精品三级在线观看| 亚洲欧美精品综合一区二区三区| 成人国语在线视频| 亚洲中文av在线| 建设人人有责人人尽责人人享有的| av网站在线播放免费| 久久国产精品大桥未久av| 天堂俺去俺来也www色官网| 亚洲avbb在线观看|