• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Linearly Polarized Polarization-Maintaining Er3+-Doped Fluoride Fiber Laser in the Mid-lnfrared

    2022-04-19 05:48:54HongYuLuoYongZhiWang

    Hong-Yu Luo | Yong-Zhi Wang

    Abstract—We demonstrated the~2.8-μm and~3.5-μm linearly polarized continuous wave (CW) laser outputs from a polarization-maintaining (PM) Er3+-doped fluoride fiber laser.By introducing a film polarizer into the cavity to select the laser polarization orientation,the~2.8-μm linearly polarized CW laser with a high polarization extinction ratio(PER) of~23 dB and maximum output power of 2.37 W was achieved under double-end pumping at 976 nm.By adding another 1981-nm pump source simultaneously,the~3.5-μm linearly polarized CW laser was also obtained,giving higher PER of~27 dB and maximum output power of 307 mW which is only limited by the available power of 1981-nm pump.To the best of our knowledge,this is the first report on a mid-infrared linearly polarized CW PM fiber laser in the >2.5-μm mid-infrared region.This work not only opens up opportunities for some new mid-infrared applications,but also provides a promising platform for developing high-stability and versatile mid-infrared laser sources.

    Index Terms—Fiber laser,linearly polarized,mid-infrared,polarization-maintaining (PM).

    1.lntroduction

    Mid-infrared laser sources emitting at 2 μm to 20 μm have already received researchers’ continuous attention due to their huge potential in a number of application fields (e.g.,medicine,spectroscopy,remote sensing,and defense[1]-[4]).Thereinto,the laser sources based on active/passive optical fibers (commonly called fiber lasers) have been developed to a popular platform for mid-infrared laser generation in the recent decade,by virtue of the superior conversion efficiency,heat dissipation,beam quality,and structure[5].Until now,different rare-earth ions including Tm3+,Er3+,Ho3+,and Dy3+have been doped into the low-phononenergy hosts,especially fluoride glasses,to achieve emissions at 2 μm to 5 μm[6]-[12].And the corresponding lasers have also already covered the wavelength of 2 μm to 4 μm[6]-[11].Among them,the Er3+-doped fluoride fiber laser may be the most attractive one because of the availability of the commercial 976-nm pump laser diode (LD) and its ability of dual mid-infrared emissions at~2.8 μm (4I11/2→4I13/2) and 3.5 μm (4F9/2→4I9/2),which have been substantially reported.

    For the4I11/2→4I13/2transition,the first report on the laser operation of an Er3+-doped fluoride fiber laser could date back to 1988,in which the pumping at 476.5 nm was used by Brierley and France[13].Due to the natural self-terminating as a result of a shorter lifetime of the laser lower level (i.e.,6.9 ms) than the upper level (i.e.,9 ms),a high dopant concentration of Er3+is usually needed,since the enhanced energy transfer upconversion (ETU) process (i.e.,4I13/2,4I13/2→4I9/2+4I15/2) with the increased dopant can not only effectively depopulate the laser lower level,but also recycle the ions,hence improving the efficiency,although there is a simultaneously increased heat load.Based on this highly Er3+-doped scheme,the output was significantly scaled with the developments of the heat management and diode pumping technology at~976 nm in the following more than 30 years,during which there were some impressive results reported[14]-[18].In 1999,the output from a 970-nm diode pumped M-profile Er3+-doped fluoride fiber laser at 2.8 μm had already reached the 1-W level[14].In 2007,Zhu and Jain realized the first 10-W-level 2.8-μm Er3+-doped fluoride fiber laser with the slope efficiency of 21.3% in a free-space alignment,where the active water cooling was exploited[15],and the output was further scaled to 41.2 W with the slope efficiency of 22.9% in an optimized double-end pumped all-fiber cavity by Aydinet al.[16].Recently,Newburgh and Dubinskii achieved a nearly 70-W quasicontinuous wave (CW) output with the slope efficiency of 20% from a double-end pumped free-space Er3+-doped fluoride fiber laser at 2.8 μm,where the dry nitrogen protection of both fiber ends was adopted[17].Fortinet al.demonstrated a 30-W all-fiber Er3+-doped fluoride fiber cavity closed by a pair of fiber Bragg gratings (FBGs) at the extended wavelength of 2.94 μm with the scarified slope efficiency of 16%[18].By recycling the ions in the laser lower level back to the upper level by the excited state absorption (ESA)process (i.e.,4I13/2→4I9/2),which highly resonates the adjacent~1.6-μm transition,a 10-W-level Er3+-doped fluoride fiber laser was achieved with the significantly improved slope efficiency of 50%,exceeding the Stoke limit by 15%[19].These results almost represent the current highest levels of fiber lasers at~3 μm.

    For the4F9/2→4I9/2transition,the first demonstration of the~3.5-μm Er3+-doped fluoride fiber laser could also date back to 30 years ago.In 1991,T?bben utilized a 653-nm 4-dicyanomethylene-2-methyl-6-pdimethyl-amino-styryl-4H-pyran (DCM) dye laser to pump an Er3+-doped fluoride fiber based cavity at a low temperature of 77 K,achieving the CW laser output in the range of 3.43 μm to 3.48 μm,although only 8.5-mW power with the slope efficiency of 3% was obtained[20].After that,the CW laser output was realized from an optimized system at room temperature using the same pumping method.However,the output power was decreased to even worse~2 mW[21].Such a poor performance is mainly caused by the long lifetimes of the lower excited states (i.e.,4I11/2and4I13/2),which prevent the ions decaying from the laser lower level returning to the ground state.Until 2014,Henderson-Sapiret al.proposed the concept of the dual-wavelength pumping to solve the ions bottleneck[22],where LD at 985 nm was used to excite the ions to the long-lived virtual ground state (VGS)4I11/2,while another fiber laser at 1973 nm continued to excite the ions to the laser upper level.As a result,significantly enhanced power of >200 mW was achieved with the optical-to-optical efficiency of 16% at room temperature.In the following several years,many efforts have been made to improve the performance of the dual-wavelength pumped system[23]-[26].Some important transitions,e.g.,energy transfer (ET) (i.e.,4I11/2+4F9/2→4I13/2+4S3/2)[23]and virtual excited state absorption (VESA) (i.e.,4F9/2→4F7/2)[24],which have the direct effects on the~3.5-μm emission,have been discovered.While some experimental results have been also reported.Impressively,Maeset al.demonstrated a compact all-fiber double-clad 1-mol% lightly Er3+-doped fluoride fiber laser whose cavity was formed by a pair of inscribed FBGs at 3.55 μm.It yielded the current recorded output power of 5.6 W with the slope efficiency of 36.9%with respect to the 1976-nm laser[25].Due to the action of excessive 1976-nm pumping induced VESA,however,the laser quenching behavior,previously predicted in [24],was observed.To circumvent this issue,they proposed to use a 7-mol% heavily Er3+-doped fluoride fiber as the gain medium instead.With the help of the enhanced ETU and cross relaxation (CR) processes resulted from the increased dopant concentration,the 3.42-μm CW laser without any quenching behavior was obtained,giving the maximum output power of 3.4 W with the slightly improved slope efficiency of 38.6%[26],although such a high dopant led to a significantly increased heat load as mentioned before.

    However,almost all the previous reports on the rare-earth ions doped CW fiber lasers in the >2.5-μm mid-infrared region (not only limited to the above Er3+-doped systems) are based on non-polarizationmaintaining (PM) fiber schemes,only providing randomly polarized outputs which may be not suitable for some specific applications (e.g.,harmonic generation,parametric conversion,coherent detection,and coherent and spectral beam combining)[27].In addition,the non-PM systems suffer from serious environmental instability as a result of their strong sensitivity for mechanical perturbations and temperature variations.

    In this paper,we report the linearly polarized CW laser outputs at~2.8 μm and~3.5 μm from a PM Er3+-doped fluoride fiber laser based on different pump schemes.The output characteristics including the power,polarization extinction ratio (PER),and wavelength with the varied pump power are studied in detail.To our knowledge,this is the first report on the direct linearly polarized laser generation from a PM system at>2.5-μm mid-infrared wavelengths.

    2.Experimental Setup

    The proposed experimental setups are schematically shown inFig.1.

    Fig.1.Experimental setups (left) and the related energy levels and transitions (right) of the established linearly polarized PM double-clad Er3+-doped fluoride fiber lasers operating at (a)~2.8 μm and (b)~3.5 μm.L1 to L8:Different lenses with different parameters;DM1 to DM6:Dichroic mirrors with different parameters (DM1 and DM2:High transmission (HT) at 976 nm and high reflection (HR) at~2.8 μm;DM3:HT at 976 nm and HR at 1981 nm;DM4 and DM5:HT at 976 nm and 1981 nm while HR at~3.5 μm;DM6:HT at 976 nm and 1981 nm while 60% reflection at~3.5 μm);FP:Film polarizer;GM:Gold mirror;BF:Bandpass filter;BS:Beam splitter;BT:Beam trap.

    Fig.1 (a)shows the schematic of the~2.8-μm linearly polarized PM double-clad Er3+-doped fluoride fiber laser,which is a typical double-end pumping structure.The pump source includes two same 976-nm LDs,each of which has a 105-μm core diameter fiber pigtail and the maximum output power of 30 W.The gain medium is a segment of 4-m commercial PM double-clad 7-mol% Er3+-doped fluoride fiber (Le Verre Fluoré)with a birefringence of 7×10-5,corresponding to a beat length of~4 cm measured based on the conoscopic interference phenomenon[28].It has a core diameter of 15 μm (NA=0.12) and an inner clad diameter of 260 μm (NA=0.4),where its circular symmetry is broken by two parallel flats separated by 240 μm.Our measured fast-and slow-axis background losses of the PM fiber at~2.8 μm are 42.5 dB/km and 43.8 dB/km,respectively,close to the average loss of 40 dB/km provided by the manufacturer.The left fiber end is perpendicularly cleaved as the output coupler with the aid of 4% Fresnel reflection,while the right one is angle-cleaved at 8° to avoid parasitic lasing.For two fiber ends,the same pump coupling alignment is adopted,which can contribute to the clad coupling efficiency of 77%.The laser from the angle-cleaved fiber end is guided by DM2 and projected onto GM as the terminated feedback.Between DM2 and GM,FP is inserted to keep the intra-cavity linearly polarized oscillation.The laser from the other fiber end is guided by DM1 for the spectrum,power,and PER monitoring after purifying with BF (2500 nm to 3000 nm).Fig.1 (b)shows the experimental setup of the~3.5-μm linearly polarized PM double-clad Er3+-doped fluoride fiber laser,in which the same gain fiber is used.The pump source includes two lasers.One is 976-nm LD,the same as before,and the other is a home-made Tm-doped fiber laser at 1981 nm with an SMF28e fiber pigtail which can provide 8-W maximum output power.After combining by using DM3,the two beams are launched into the clad and core of the fiber via L7 with the efficiency of 76% and 86%,respectively.Different from the above~2.8-μm cavity,external DM6 is butted against the perpendicularly cleaved fiber end acting as the output coupler instead due to the lower gain of the~3.5-μm transition.DM4 is placed between DM3 and DM6 to guide the laser output for following measurement after purifying by using another BF (3250 nm to 3750 nm).The laser from the angle-cleaved fiber end is collimated by using L8 and then projected onto GM as the terminated feedback after removing the residual pump by DM5.The same FP is inserted between DM5 and GM to keep the intra-cavity linearly polarized oscillation.In the experiments,the power is recorded using a thermal power sensor (Thorlabs,S405C),and the optical spectrum is measured using a monochromator with~0.4-nm resolution (Princeton Instruments,Acton SP2300).

    3.Experimental Results

    3.1.Operation in 2.8-μm Band

    In the~2.8-μm laser system as shown inFig.1 (a),FP was firstly rotated to make its polarization orientation parallel to the fast or slow axis of the PM fiber,thus keeping the linearly polarized oscillations.The laser output characteristics with the varied pump power in both cases were recorded,as plotted inFigs.2 (a)and(b).It is observed that the output power increases almost linearly with the pump power in either case,while the laser oscillation along the fiber fast axis has the slope efficiency of 17.9% which is higher than that(i.e.,16.1%) along the slow axis,although it is still significantly lower than its non-PM counterpart,mainly caused by the 17% insertion loss from FP.In this experiment,only the maximum pump power of 13.3 W was allowed,since we found that higher output power would lead to the damage of FP as a result of a large amount of heat loads.At this pump power,the maximum output power of 2.37 W is achieved,of which further scaling is expected by using a high-damage-threshold polarizer (e.g.,polarization beam splitter or Glan-Taylor polarizer) instead in the future.Over the whole pump range,the laser PERs in both cases are almost kept unchanged at~23 dB and~21 dB for the fast-and slow-axis oscillations,respectively.These results indicate that the oscillation along the fast axis can provide a better performance,which is mainly determined by the fiber quality itself.

    Fig.2.Laser output characteristics along the fast and slow axes with varied pump power:(a) power and (b) PER evolutions.

    In the case of the fast-axis oscillation,the output spectra at different levels of pump power were recorded,as shown inFig.3.It is seen that the wavelength red-shifts from 2776.6 nm to 2794.2 nm with the increased pump power from 1.31 W to 1.75 W,as a result of the up-shifted terminated Stark manifolds of the4I13/2level,and then slightly to 2794.6 nm with the further increased pump power to 11.8 W.While the 3-dB bandwidth is almost kept~2 nm.

    Fig.3.Laser spectra at different levels of pump power.

    3.2.Operation in 3.5-μm Band

    In the~3.5-μm laser system as shown inFig.1 (b),FP was directly rotated to the orientation along the PM fiber fast axis as a result of the better performance.The output power evolutions of the~3.5-μm laser with the varied 976-nm and 1981-nm pump power were recorded,as shown inFigs.4 (a)and(b),respectively.FromFig.4 (a),it is seen that the~3.5-μm laser power first increases monotonously and then tends to saturate with the increased 976-nm pump power.This phenomenon is typical for such a dual-wavelength pumped system due to the insufficient 1981-nm pump power,which has been observed in previous demonstrations of either lightly or heavily non-PM Er3+-doped systems in this band[25],[26].The slight red-shifting of the saturation point with the increased 1981-nm pump power is also a confirmation.In addition,it is clearly seen that the 976-nm pump threshold decreases with the increased 1981-nm power,which is exclusive for the heavily Er3+-doped system since there is no VESA induced quenching behavior[26].At the 1981-nm pump power of 6.6 W,the maximum~3.5-μm laser power of 307 mW is achieved with a 976-nm pump threshold of 0.98 W.Further power scaling is only limited by the available 1981-nm pump power.Fig.4 (b)shows the corresponding evolution with the varied 1981-nm pump power.It is seen that the~3.5-μm output power always increases linearly with the 1981-nm pump power without any quenching phenomena.With the increased 976-nm pump power,the 1981-nm pump threshold decreases while the slope efficiency increases,and both tend to saturate,which are similar to the previously reported non-PM heavily Er3+-doped fluoride fiber system at~3.5 μm and are the result of the population recycling dynamics[26].At the 976-nm pump power of 1.44 W,the slope efficiency and threshold with respect to the 1981-nm pump power are 11.7% and 3.7 W,respectively,worse than the previously reported non-PM system[26].This is mainly caused by the high insertion loss of >2 dB from FM and L8 lens at this wavelength.

    Fig.4.Laser output power with the varied pump power at (a) 976 nm and (b) 1981 nm.

    Fig.5 (a)plots the measured PER at different values of output power.The higher PER of >27 dB over the whole output power range indicates the greater linearly polarized output,and it is even 4 dB higher than that achieved at~2.8 μm,which is partly caused by the higher extinction ratio of FP at~3.5 μm.While the output optical spectra at different pump levels of 1981-nm pump were recorded,as shown inFig.5 (b).With the increased 1981-nm pump power,the center wavelength red-shifts from 3464.0 nm to 3468.8 nm with an almost unchanged 3-dB bandwidth of 1 nm.

    Fig.5.Laser output characteristics:(a) PER as a function of output power and (b) optical spectra at different power levels of 1981-nm pump at the fixed 976-nm pump power of 1.44 W.

    4.Conclusions

    In summary,we reported the mid-infrared linearly polarized CW laser generations directly from a PM Er3+-doped fluoride fiber laser,for the first time to the best of our knowledge,where FP was used to guarantee the linearly polarized operation.Pumping at 976 nm alone,the linearly polarized~2.8-μm CW laser with PER of >23 dB was achieved,yielding the maximum output power of 2.37 W.Pumping at 976 nm and 1981 nm simultaneously,the laser yielded the linearly polarized~3.5-μm CW laser with higher PER of >27 dB and output power of 307 mW.By employing a high-damage-threshold polarizer and a 1981-nm pump laser with higher power,further power scaling at both bands is expected in the future.This work not only opens up the opportunities for some new mid-infrared applications,but also provides a promising platform for developing high-stability and versatile mid-infrared laser sources.

    Disclosures

    The authors declare no conflicts of interest.

    男女下面插进去视频免费观看| 中文字幕av电影在线播放| 亚洲精品日本国产第一区| 国产爽快片一区二区三区| 欧美黄色片欧美黄色片| 2022亚洲国产成人精品| 成人18禁高潮啪啪吃奶动态图| 亚洲av免费高清在线观看| 男人舔女人的私密视频| 90打野战视频偷拍视频| 国产国语露脸激情在线看| 一级片'在线观看视频| 美国免费a级毛片| 天天躁夜夜躁狠狠躁躁| 国产成人精品在线电影| 色婷婷av一区二区三区视频| 美国免费a级毛片| 99久久人妻综合| 深夜精品福利| 欧美人与性动交α欧美精品济南到 | 国产亚洲午夜精品一区二区久久| 国产精品嫩草影院av在线观看| 成年av动漫网址| 国产探花极品一区二区| 99热国产这里只有精品6| 国产精品女同一区二区软件| 老汉色∧v一级毛片| 免费看不卡的av| 美女大奶头黄色视频| 可以免费在线观看a视频的电影网站 | a 毛片基地| 国产一区有黄有色的免费视频| 国产免费现黄频在线看| 女人精品久久久久毛片| 亚洲av免费高清在线观看| 亚洲国产毛片av蜜桃av| 午夜福利在线观看免费完整高清在| 极品人妻少妇av视频| 久久国产亚洲av麻豆专区| 蜜桃国产av成人99| 国产白丝娇喘喷水9色精品| 观看av在线不卡| 综合色丁香网| 男人舔女人的私密视频| 亚洲av电影在线进入| 免费播放大片免费观看视频在线观看| 国产日韩一区二区三区精品不卡| 一级片'在线观看视频| 波多野结衣av一区二区av| 啦啦啦啦在线视频资源| 国产片特级美女逼逼视频| 亚洲精品国产色婷婷电影| 中文字幕人妻熟女乱码| 69精品国产乱码久久久| 麻豆av在线久日| 丝袜美腿诱惑在线| 寂寞人妻少妇视频99o| 色网站视频免费| 国产成人精品久久二区二区91 | 国产野战对白在线观看| 国产淫语在线视频| 日韩视频在线欧美| 中文字幕制服av| 国产爽快片一区二区三区| 日韩中文字幕欧美一区二区 | 一区二区三区精品91| 最近2019中文字幕mv第一页| 亚洲av免费高清在线观看| 女性被躁到高潮视频| 三级国产精品片| 亚洲伊人色综图| 日韩欧美一区视频在线观看| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 人体艺术视频欧美日本| 99re6热这里在线精品视频| 成人毛片a级毛片在线播放| 制服诱惑二区| 天堂8中文在线网| 香蕉精品网在线| 看免费成人av毛片| 十分钟在线观看高清视频www| 国产在视频线精品| 午夜福利一区二区在线看| 日韩人妻精品一区2区三区| 久久99蜜桃精品久久| 国产成人免费无遮挡视频| 久久热在线av| 日韩免费高清中文字幕av| 亚洲欧美日韩另类电影网站| 久久人人97超碰香蕉20202| 国产野战对白在线观看| 亚洲,欧美,日韩| 亚洲经典国产精华液单| 看十八女毛片水多多多| 人成视频在线观看免费观看| 69精品国产乱码久久久| 自拍欧美九色日韩亚洲蝌蚪91| 制服人妻中文乱码| 国产片特级美女逼逼视频| 黑人巨大精品欧美一区二区蜜桃| 国产有黄有色有爽视频| 男女边吃奶边做爰视频| 精品少妇一区二区三区视频日本电影 | 高清欧美精品videossex| 在线观看一区二区三区激情| 视频在线观看一区二区三区| 久久97久久精品| 天天躁夜夜躁狠狠躁躁| 边亲边吃奶的免费视频| 亚洲av电影在线观看一区二区三区| 啦啦啦啦在线视频资源| 99国产综合亚洲精品| 在线观看三级黄色| 久热久热在线精品观看| 国产精品av久久久久免费| 成人国语在线视频| 国产精品99久久99久久久不卡 | 两性夫妻黄色片| 日本爱情动作片www.在线观看| 久久久久久久大尺度免费视频| 国产免费现黄频在线看| 免费av中文字幕在线| 国产乱来视频区| 91精品三级在线观看| 99热国产这里只有精品6| 午夜福利影视在线免费观看| 尾随美女入室| 中文字幕人妻熟女乱码| 美女国产高潮福利片在线看| 亚洲国产日韩一区二区| 精品久久蜜臀av无| 性色av一级| 精品酒店卫生间| 99热网站在线观看| 少妇人妻精品综合一区二区| 不卡视频在线观看欧美| 日本vs欧美在线观看视频| 中文乱码字字幕精品一区二区三区| 人妻 亚洲 视频| 国产精品偷伦视频观看了| 免费观看性生交大片5| 亚洲图色成人| 91午夜精品亚洲一区二区三区| 两个人看的免费小视频| 免费黄频网站在线观看国产| 免费高清在线观看视频在线观看| 国产成人a∨麻豆精品| 一个人免费看片子| 丝袜人妻中文字幕| 午夜老司机福利剧场| 精品一区二区三卡| 美女主播在线视频| 日本欧美国产在线视频| 日韩,欧美,国产一区二区三区| 女人精品久久久久毛片| 免费看av在线观看网站| 欧美xxⅹ黑人| 成人影院久久| 国产日韩欧美亚洲二区| 亚洲人成电影观看| 一级毛片我不卡| 成年动漫av网址| 青草久久国产| 国产视频首页在线观看| 国产精品一区二区在线不卡| av福利片在线| 亚洲情色 制服丝袜| 我要看黄色一级片免费的| 免费看av在线观看网站| 精品人妻熟女毛片av久久网站| 欧美日韩精品成人综合77777| 国产综合精华液| 免费黄色在线免费观看| 久久久久久久亚洲中文字幕| 少妇被粗大的猛进出69影院| 欧美人与善性xxx| 久久久国产精品麻豆| 女人精品久久久久毛片| 国产日韩欧美视频二区| 久久人妻熟女aⅴ| 国产日韩一区二区三区精品不卡| 欧美在线黄色| 日本wwww免费看| a级毛片黄视频| 亚洲精品美女久久av网站| 国产精品亚洲av一区麻豆 | 国产爽快片一区二区三区| 寂寞人妻少妇视频99o| 久久综合国产亚洲精品| 国产日韩欧美在线精品| 五月伊人婷婷丁香| 欧美国产精品va在线观看不卡| 1024香蕉在线观看| 国产成人精品无人区| 亚洲精品在线美女| 在线观看免费高清a一片| www.自偷自拍.com| 亚洲精品中文字幕在线视频| 国产欧美亚洲国产| 最近中文字幕2019免费版| 久久久久视频综合| 人人澡人人妻人| 香蕉精品网在线| 亚洲中文av在线| 亚洲欧美成人综合另类久久久| 久久国产亚洲av麻豆专区| av线在线观看网站| 久久国产精品大桥未久av| 又大又黄又爽视频免费| 亚洲欧美成人综合另类久久久| 男女高潮啪啪啪动态图| 亚洲一区中文字幕在线| 少妇 在线观看| 热99久久久久精品小说推荐| 亚洲国产最新在线播放| 我要看黄色一级片免费的| videos熟女内射| 亚洲久久久国产精品| 亚洲在久久综合| 一级,二级,三级黄色视频| 日韩成人av中文字幕在线观看| 日韩中文字幕欧美一区二区 | 亚洲国产精品999| 永久网站在线| 七月丁香在线播放| 精品卡一卡二卡四卡免费| 女人被躁到高潮嗷嗷叫费观| 日韩在线高清观看一区二区三区| 你懂的网址亚洲精品在线观看| 人人妻人人澡人人看| av国产久精品久网站免费入址| 精品国产超薄肉色丝袜足j| 宅男免费午夜| 久久久久久久久久久免费av| 亚洲av成人精品一二三区| 亚洲精品久久午夜乱码| 久久久精品区二区三区| 国产淫语在线视频| 欧美xxⅹ黑人| 日韩大片免费观看网站| 免费观看无遮挡的男女| 在线亚洲精品国产二区图片欧美| 中文字幕人妻丝袜一区二区 | 两性夫妻黄色片| 国产精品欧美亚洲77777| 成年人午夜在线观看视频| 精品一品国产午夜福利视频| 男女免费视频国产| 精品午夜福利在线看| 午夜福利视频精品| 中文字幕亚洲精品专区| 日韩欧美一区视频在线观看| 国产精品无大码| 色播在线永久视频| 久久精品国产鲁丝片午夜精品| 成年人免费黄色播放视频| 国产黄频视频在线观看| 黄色毛片三级朝国网站| 极品少妇高潮喷水抽搐| 美女脱内裤让男人舔精品视频| 亚洲综合色惰| 夜夜骑夜夜射夜夜干| 天天躁狠狠躁夜夜躁狠狠躁| 国产熟女欧美一区二区| 亚洲精品乱久久久久久| 大片免费播放器 马上看| 精品亚洲成a人片在线观看| 永久网站在线| 国产精品免费大片| 亚洲精品日本国产第一区| 国产色婷婷99| 边亲边吃奶的免费视频| 男女国产视频网站| 久久韩国三级中文字幕| 国产日韩欧美亚洲二区| 欧美激情高清一区二区三区 | 欧美精品av麻豆av| 久久精品国产a三级三级三级| 欧美日韩成人在线一区二区| 一级黄片播放器| 免费女性裸体啪啪无遮挡网站| 亚洲 欧美一区二区三区| 两个人免费观看高清视频| 色婷婷av一区二区三区视频| 男人舔女人的私密视频| 黄片无遮挡物在线观看| 秋霞在线观看毛片| 永久免费av网站大全| 热re99久久国产66热| 熟女av电影| 国产精品三级大全| 欧美在线黄色| 亚洲av福利一区| 亚洲少妇的诱惑av| 性少妇av在线| 精品人妻一区二区三区麻豆| 一区二区av电影网| 一区二区三区激情视频| 宅男免费午夜| 久久久久久人人人人人| 不卡视频在线观看欧美| 少妇人妻 视频| 亚洲四区av| 亚洲av电影在线进入| 看免费av毛片| 热99久久久久精品小说推荐| 男女国产视频网站| 国产不卡av网站在线观看| 大片电影免费在线观看免费| 男女无遮挡免费网站观看| 日日撸夜夜添| 波多野结衣av一区二区av| 精品一区二区三区四区五区乱码 | 高清av免费在线| 国产日韩欧美亚洲二区| 亚洲欧洲国产日韩| 18禁观看日本| 国产 一区精品| 国产精品一二三区在线看| 日韩av不卡免费在线播放| 在线 av 中文字幕| 国产免费福利视频在线观看| av电影中文网址| 女人久久www免费人成看片| 黑人欧美特级aaaaaa片| 欧美激情 高清一区二区三区| 欧美另类一区| 蜜桃在线观看..| 夫妻午夜视频| 一区二区日韩欧美中文字幕| 日本猛色少妇xxxxx猛交久久| 亚洲第一av免费看| 中文精品一卡2卡3卡4更新| 新久久久久国产一级毛片| 国产精品秋霞免费鲁丝片| 老汉色∧v一级毛片| 久久99蜜桃精品久久| 麻豆乱淫一区二区| 免费高清在线观看视频在线观看| 性色av一级| 久久99精品国语久久久| 韩国高清视频一区二区三区| 午夜av观看不卡| 三级国产精品片| 最新的欧美精品一区二区| 久久精品夜色国产| av在线观看视频网站免费| 国产黄色视频一区二区在线观看| 精品人妻偷拍中文字幕| 韩国av在线不卡| 亚洲av欧美aⅴ国产| 一二三四中文在线观看免费高清| 亚洲av在线观看美女高潮| 欧美成人午夜精品| 久久精品国产亚洲av涩爱| 99热网站在线观看| 国产老妇伦熟女老妇高清| 免费大片黄手机在线观看| 啦啦啦中文免费视频观看日本| 99国产精品免费福利视频| 国产一区二区 视频在线| 午夜免费男女啪啪视频观看| 国产精品一区二区在线不卡| 欧美老熟妇乱子伦牲交| 人人澡人人妻人| 99国产精品免费福利视频| 校园人妻丝袜中文字幕| 成人免费观看视频高清| 精品国产国语对白av| 色94色欧美一区二区| 亚洲,一卡二卡三卡| 欧美日本中文国产一区发布| 嫩草影院入口| 日本免费在线观看一区| 亚洲国产精品成人久久小说| 日韩一本色道免费dvd| 少妇人妻精品综合一区二区| 黄片无遮挡物在线观看| 午夜精品国产一区二区电影| 亚洲美女视频黄频| av在线老鸭窝| 欧美日韩亚洲国产一区二区在线观看 | 日本wwww免费看| 高清在线视频一区二区三区| 国产精品亚洲av一区麻豆 | 人成视频在线观看免费观看| 亚洲五月色婷婷综合| 超色免费av| 婷婷色av中文字幕| 亚洲美女视频黄频| 亚洲欧美色中文字幕在线| 少妇的丰满在线观看| av在线老鸭窝| 国产成人精品婷婷| 亚洲视频免费观看视频| 在线观看美女被高潮喷水网站| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 久久久久久久亚洲中文字幕| 国产精品三级大全| 人人妻人人爽人人添夜夜欢视频| 国产1区2区3区精品| 久久久久久久久久久免费av| 高清欧美精品videossex| 最近最新中文字幕大全免费视频 | 一区二区三区乱码不卡18| 日本-黄色视频高清免费观看| 超碰成人久久| 午夜日本视频在线| 亚洲精品中文字幕在线视频| 国产麻豆69| av在线老鸭窝| 丰满乱子伦码专区| 捣出白浆h1v1| 性色avwww在线观看| 欧美激情高清一区二区三区 | 日韩欧美一区视频在线观看| 亚洲情色 制服丝袜| 成年人免费黄色播放视频| 亚洲婷婷狠狠爱综合网| 亚洲av日韩在线播放| 美女国产高潮福利片在线看| 免费人妻精品一区二区三区视频| 香蕉精品网在线| 日韩制服骚丝袜av| 欧美精品高潮呻吟av久久| 又粗又硬又长又爽又黄的视频| 午夜福利一区二区在线看| 9色porny在线观看| 亚洲中文av在线| 一区二区三区乱码不卡18| 在线看a的网站| 水蜜桃什么品种好| 成人黄色视频免费在线看| 韩国精品一区二区三区| 中国三级夫妇交换| 日日啪夜夜爽| 日韩精品有码人妻一区| 国产精品嫩草影院av在线观看| 女性被躁到高潮视频| 18禁国产床啪视频网站| 又粗又硬又长又爽又黄的视频| 伊人久久大香线蕉亚洲五| 亚洲精品久久久久久婷婷小说| 99九九在线精品视频| 国产午夜精品一二区理论片| 777米奇影视久久| 亚洲精品在线美女| 国产成人精品久久久久久| 丰满乱子伦码专区| 一级爰片在线观看| 久久精品国产自在天天线| 精品一品国产午夜福利视频| 99热网站在线观看| 久久精品国产综合久久久| 老汉色∧v一级毛片| 91午夜精品亚洲一区二区三区| 天天躁日日躁夜夜躁夜夜| 精品酒店卫生间| av天堂久久9| 久久这里有精品视频免费| xxx大片免费视频| 丝袜喷水一区| 日韩不卡一区二区三区视频在线| 久热久热在线精品观看| 街头女战士在线观看网站| 欧美日韩av久久| 在线看a的网站| 国产精品久久久久成人av| 人人妻人人澡人人爽人人夜夜| 综合色丁香网| 尾随美女入室| 国产视频首页在线观看| 国产av一区二区精品久久| 色哟哟·www| 天天影视国产精品| 国产成人免费观看mmmm| 日韩制服丝袜自拍偷拍| av福利片在线| 三上悠亚av全集在线观看| 制服诱惑二区| 国产无遮挡羞羞视频在线观看| 丝袜人妻中文字幕| 亚洲欧洲精品一区二区精品久久久 | 久久av网站| 一级毛片电影观看| 一区福利在线观看| 久久久国产一区二区| 波多野结衣av一区二区av| av一本久久久久| 国产免费又黄又爽又色| 精品午夜福利在线看| 久久久久久久亚洲中文字幕| 成人国语在线视频| 午夜福利视频在线观看免费| 最近最新中文字幕免费大全7| 丝袜喷水一区| 日韩三级伦理在线观看| 少妇精品久久久久久久| 一本—道久久a久久精品蜜桃钙片| 涩涩av久久男人的天堂| 99久久中文字幕三级久久日本| 老熟女久久久| 亚洲国产av影院在线观看| 男女午夜视频在线观看| 七月丁香在线播放| 老熟女久久久| 日韩制服骚丝袜av| 韩国av在线不卡| 又大又黄又爽视频免费| 久久这里有精品视频免费| 一区二区三区四区激情视频| 亚洲一码二码三码区别大吗| 香蕉精品网在线| 国产一区亚洲一区在线观看| 久久av网站| 国产在视频线精品| 91国产中文字幕| 久久久国产欧美日韩av| 亚洲情色 制服丝袜| 欧美激情高清一区二区三区 | 国产色婷婷99| 又粗又硬又长又爽又黄的视频| 国产欧美日韩一区二区三区在线| 男人添女人高潮全过程视频| 国产97色在线日韩免费| 三上悠亚av全集在线观看| 日韩伦理黄色片| 狠狠精品人妻久久久久久综合| 中文欧美无线码| 三级国产精品片| 国产精品一国产av| 久久久久久人人人人人| 又大又黄又爽视频免费| 伊人久久国产一区二区| 一本色道久久久久久精品综合| 午夜影院在线不卡| www.精华液| 18禁国产床啪视频网站| 在线观看美女被高潮喷水网站| 国产欧美亚洲国产| 丝袜美足系列| av.在线天堂| 在现免费观看毛片| 日韩一本色道免费dvd| 人妻系列 视频| 一区在线观看完整版| 久久久久久人妻| 十分钟在线观看高清视频www| 欧美在线黄色| 欧美精品av麻豆av| 亚洲精品美女久久久久99蜜臀 | 欧美日韩一区二区视频在线观看视频在线| 啦啦啦啦在线视频资源| 777米奇影视久久| 九草在线视频观看| 狂野欧美激情性bbbbbb| 久久久久久伊人网av| 人妻一区二区av| www日本在线高清视频| 久久精品国产自在天天线| 午夜免费观看性视频| 好男人视频免费观看在线| 中文字幕人妻丝袜制服| 午夜福利视频精品| 亚洲国产欧美日韩在线播放| 黄片无遮挡物在线观看| 在线亚洲精品国产二区图片欧美| 美女国产视频在线观看| 亚洲三级黄色毛片| 成人18禁高潮啪啪吃奶动态图| www.av在线官网国产| 久久精品国产综合久久久| 成人毛片60女人毛片免费| 少妇人妻精品综合一区二区| 日本色播在线视频| 久久久a久久爽久久v久久| 97在线视频观看| 亚洲精品美女久久av网站| 2021少妇久久久久久久久久久| 欧美日韩成人在线一区二区| 久久精品国产亚洲av天美| 国产成人精品婷婷| 亚洲精品一二三| 久久精品国产综合久久久| 一级毛片黄色毛片免费观看视频| 丝袜脚勾引网站| 男人操女人黄网站| 日韩中文字幕欧美一区二区 | 久久这里有精品视频免费| 久久青草综合色| 熟女电影av网| 麻豆乱淫一区二区| 精品久久久久久电影网| 久久国产精品男人的天堂亚洲| 亚洲国产精品一区三区| 久久久国产精品麻豆| 曰老女人黄片| av福利片在线| 巨乳人妻的诱惑在线观看| 免费av中文字幕在线| 日韩,欧美,国产一区二区三区| 最近手机中文字幕大全| 男女啪啪激烈高潮av片| 韩国高清视频一区二区三区| 亚洲av男天堂| 80岁老熟妇乱子伦牲交| av卡一久久| 日韩av不卡免费在线播放| 在线亚洲精品国产二区图片欧美| 午夜激情久久久久久久| 九九爱精品视频在线观看| 久久久久国产一级毛片高清牌| kizo精华| 人妻人人澡人人爽人人| 一级,二级,三级黄色视频|