• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Exploration of the Relation between lnput Noise and Generated lmage in Generative Adversarial Networks

    2022-04-19 05:49:04HaoHeLiuSiQiYaoChengYingYangYuLinWang

    Hao-He Liu | Si-Qi Yao | Cheng-Ying Yang | Yu-Lin Wang

    Abstract—In this paper,we propose a hybrid model aiming to map the input noise vector to the label of the generated image by the generative adversarial network (GAN).This model mainly consists of a pre-trained deep convolution generative adversarial network (DCGAN) and a classifier.By using the model,we visualize the distribution of two-dimensional input noise,leading to a specific type of the generated image after each training epoch of GAN.The visualization reveals the distribution feature of the input noise vector and the performance of the generator.With this feature,we try to build a guided generator (GG) with the ability to produce a fake image we need.Two methods are proposed to build GG.One is the most significant noise (MSN) method,and the other utilizes labeled noise.The MSN method can generate images precisely but with less variations.In contrast,the labeled noise method has more variations but is slightly less stable.Finally,we propose a criterion to measure the performance of the generator,which can be used as a loss function to effectively train the network.

    Index Terms—Deep convolution generative adversarial network (DCGAN),deep learning,guided generative adversarial network (GAN),visualization.

    1.lntroduction

    Unsupervised learning is thought to be the general solution in extracting features from unlabeled data existing in vast quantities[1]and deriving a latent function mapping spatial or other features of training data to a series of labels defined in advance.After the invention of traditional generative adversarial networks (GANs)[2],many variants of GAN have emerged with improvements in performance and training stability[3].

    As we know,a certain kind of input noise can generate only one kind of images.The generator in our work consists of fractionally-strided convolutions[4]and the batch normalization and activation function.The fractionally-strided convolutions transfer something that has the shape of the output of the convolution to something that has the shape of its input,while maintaining the connectivity pattern that is compatible with the said convolution[5].The output of the batch normalization and activation function is not changed for the same batch of input data.So the relation between the input noise vector and the generated image is a one-to-one mapping,which is the prerequisite of our research.

    In this paper,the generator of GAN is denoted byG(p1×n,θg) or simplyG,where p1×nis the input of the generator andθgis a set of trainable parameters.The input noise,p1×n,is a row vector withncolumns.Each element of the vector is randomly sampled from a given distribution,such as the Gaussian distribution.GAN has been studied extensively,but it is still a black box for most researchers and users.There is very limited research trying to understand what GANs learn and how to visualize the intermediate representations in the multilayer of GANs[4].Two of the most prominent questions are how the generator represents or understands the data we feed in and how to judge whether a generator is good or not.To answer these questions,we develop an approach based on the deep convolution generative adversarial network (DCGAN)[4]and the convolutional neural network (CNN) classifier[6]to explore the relation between the input noise vector and the generated image.From the training procedure of GAN,we know that the training dataset is used only to train the discriminator instead of both the generator and the discriminator,i.e.,the generator does not learn information directly from the training set.Therefore,the generator itself must understand the pattern and structure of the training dataset.Taking a two-dimensional input noise vector,p1×2,as an example in this paper,we find that the input noise vectors leading to the same class of generated images tend to congregate in a specific manner.

    Superior to the traditional approach randomly generating a bunch of images and then manually selecting the one which we want,we utilize the distribution feature of the input noise vectors to let the proposed GAN generate an image we exactly expect.We name the proposed GAN as guided GAN,and the proposed generator as the guided generator (GG).In order to filter out outliers,we introduce the Pearson correlation coefficient to score the similarity of two images.Experimental results show that GG manifests a satisfactory result.

    The contributions of our paper include:1) Discovering,visualizing,and analyzing some interesting relations between input noise vectors and fake images;2) successfully making use of this relation to realize GG;3) introducing a criterion to measure the performance of the generator.

    2.Related Work

    2.1.Distribution of Real lmages

    GAN has recently achieved impressive results in many research fields and application areas[2].Generally,researchers are more interested in how well the generator can cover the distribution of the real images;in other words,how realistic and vivid the fake images are.One of the most arousing and admirable studies recently done in this field is style-GAN[7],which can produce a high-resolution and hyper-realistic face by a style-based generator[7].Moreover,GAN could also be used to solve the denoising problem by training the generator to estimate the noise distribution over the input noisy images,so as to generate noise samples[8].

    2.2.lnput Noise

    Although limited research is on noise vectors[9],the distribution of input noise vectors is important for the performance of a neural network.For example,by adding some latent codes and targeting salient structured semantic features of training data[1],infoGAN can successfully disentangle the writing styles on the MNIST dataset,and the hairstyle,presence/absence of eyeglasses,and the emotion on the CelebA face dataset.According to these results,we believe there must be some latent relationships between the input noise vectors and the features of generated images.

    2.3.Visualization of GAN

    Until now,most visualization of GAN lies in the study of the internal layer and filter[4],training loss of the generator and discriminator,and distribution similarity of faked and real images.For example,the visualization of the internal filter shows how the feature learned by the kernels of the discriminator activated on the typical parts of a scene[4].The distribution similarity between the fake and real datasets can be visualized in GANLab[10].During the progress of training session,the distribution of training data and the distribution of generated data gradually overlap each other.In this way,we can directly understand the learning process of the generator[10].

    3.Relationship between lnput Noise Vectors and Generated lmages of GAN

    3.1.Brief lntroduction of DCGAN

    Without well-trained GAN,a generator may not produce a fine projection from the input noise vector to the generated image.Among the GAN variants,DCGAN is the most prominent.In DCGAN,a generator generates fake examples,and a discriminator tries to decide whether the image is fake or not,just like traditional GANs.The generator and discriminator alternately train their networks for adversarial purposes with different loss functions.Since the advantages of CNN emerge into the DCGAN model and the fractionally-strided convolution is introduced for efficient up-sampling in DCGAN[4],DCGAN is simpler and more efficient than traditional GANs.Unlike the traditional multilayer perceptron,there is no fully connected(FC) layers in DCGAN,so the number of parameters is significantly reduced.In addition,DCGAN has advantages in network initialization and stability.Therefore,using DCGAN,we can generate images more similar to real images.

    3.2.lntroduction of Noise Variables

    Noise variables,i.e.,elements of the input vector of the generator,play a key role.In most cases,researchers interpret the role of noise variables as reducing the certainty of our model.Because random noise carries fewer “structures”,by using the noise variable as the input,the bias and assumption in the early stage of the model can be avoided.

    3.3.Latent Relationship between lnput Noise and Generated lmage

    Inspired by infoGAN,we first build conventional GAN trained on the CelebA and CIFAR-10 datasets[11],[12],with a p1×16noise vector sampled from the Gaussian distribution,as shown inFig.1.

    By deliberately modifying the noise vector,the generated image also changes nearly in a smooth and continuous way.This indicates that the spatial characteristics of two noise vectors,such as the regional or symmetry distribution,may affect the similarity of their generated images.In order to study the effect of noise variables’ values on the generated images,we adjust the element values of the input noise vector in two ways,as shown inFigs.2 (a)and(b),respectively.

    Fig.1.Well-trained generator.

    Fig.2.Images generated by partly different input vectors of the same size of p1×16:(a) setting one element value to 0 at a time to gradually change the row vectors and (b) setting one element at a time to half of its original value to gradually change the row vectors.

    Fig.2shows 15 images generated by 15 different input vectors with the same size of p1×16.The element values of the input vectors are shown in different colors in the heat map.Each row of the 15×16 matrix represents an input vector p1×16,whose element values are indicated by the colors of its cells and the color bar.By feeding each row into the generator,we can generate a total of 15 fake images shown on the left side ofFig.2.The 15 input vectors inFigs.2 (a)and(b)all come from fine tuning of the noise vector inFig.1.

    InFig.2 (a),in the corresponding position of adjacent two rows,only one element has a different value,the element value at the next row is set to 0.In other words,the elements in the lower triangular of this matrix are all set to zero.Feeding the pretrained generator with these 15 input vectors,we get a column of fake images,shown on the left side ofFig.2,where the data labeled next to each image are the Pearson correlation coefficients used to measure the similarity between the generated images and the real images.Especially inFig.2 (b),in the corresponding position of adjacent two rows,only one element has a different value.We change the value of one element in the current vector to half of the corresponding element in the previous vector.

    4.Proposed Mapping Model

    The main goal of our model is to map an input noise vector,p1×n,to a generated image’s label.For this purpose,we first train two models separately,DCGAN and the classifier.Then we combine them for our mapping work.The scheme is shown inFig.3.

    Fig.3.Proposed model exploring the relation between input noise vectors and generated images.

    4.1.Generator of DCGAN

    We train a DCGAN model on the MNIST dataset.After 20 epochs,we find the fake image shown inFig.4is clear enough,thus we stop training and separate the generator.During the training session,we save the parameters of the generator at an interval,that is,ten times during an epoch,for the follow-up learning process.In our work,we test the noise variables sampled both in the uniform distribution and the Gaussian distribution.We find that it is hard to generate satisfactory images by using hyper-dimensional noise vectors of the uniform distribution.This is because its overall distribution is too scattered,it is hard for the generator to find a pattern to cover the large-scale random noise points.

    Fig.4.Faked digits by DCGAN.

    4.2.Classifier

    At the initial stage of constructing a restorer to inversely reconstruct the corresponding input noise vector from the generated image,we train a typical decoder using densely connected convolutional networks[13].However,although a series of optimization techniques have been adopted,the training error is still too large to recover the true value of the noise vector.So we use the classifier instead of the decoder to act as our restorer.We choose a conventional CNN-based model as our classifier,which contains two convolution layers and an FC layer.Each convolution is followed by MaxPooling and the activation function (ReLu).Though our classifier is quite simple,it works well on the MNIST dataset.As shown inFig.5,the test accuracy is above 98.5%,which is enough for our requirement.

    The overall structure of our system is shown inFig.3.We first sample a vector,p1×n,in the normal distribution,and then feed p1×ninto the generator to produce a fake image.Next,we feed the fake image to the classifier to yield the label of the fake image.Now,we get a pair of (p1×n,label).For a given generator,repeating this processmtimes,we getmvector-label pairs:

    Fig.5.Training curve of classifier.

    4.3.Visualization and Analysis

    In order to facilitate the visualization of the relationship between input noise vectors and the labels of generated images,we set the parameternof p1×nto 2 so as to do the visualization easily in two-dimensional space.We randomly generate 6000 noise vectors to create a training data set.In addition,during the training session,the parameters of the generator at different intervals at different epochs are recorded.

    Treating each element of a noise vector p1×2as a two-dimensional coordinate,we visualize the input noise vectors and the labels of generated images after 1,5,and 20 epochs,as shown inFig.6.Each point inFig.6represents one input noise vector p1×2with two element values as coordinates.Noise points of different colors correspond to different output image digits.FromFig.6,we can find that points corresponding to the same label (digit) are clustered in the same sector.For a better view ofFig.6,please visit our GitHub page in [14].

    Fig.6.Generated digits and their input noise distributions.

    At the initial stage of training,the generator cannot distinguish distinct digits’ features,so most of the digits it generates are alike or simply not digits.The classifier regards them as just the same digits or limited kinds of digits.After a few more epochs,the generator starts to realize the latent feature of the images,so does our classifier.At this time,we have all sorts of digits generated by our generator.However,the fake image is still not good enough because our classifier only sorts out images based on their features instead of overall shapes.That is why some clustering of the same color points is distributed in different sectors,such as the red points inFig.6.Interestingly,the distribution of input noise points gathers in several different sectors,and the noise points in different sectors correspond to different output numbers.

    At the same time,we found that the image generated by using p1×2is literally the same as usingap1×2,whereais a scaling factor which can take any positive value.As demonstrated inFig.7,fake pictures generated by noise values at points H,I,and G are literally the same.

    Thus,we conclude that it is not the absolute value of input noise that affects the image we get,but the relative values among the elements of input noise.InFig.7,for example,the slopekof a line determines the generated image.This is why the scatter of noise points,such as inFig.6andFig.8,is fan-shaped.For a two-dimensional noise vector,kcan be calculated with

    Fig.7.Demonstration of points in a sector.The horizontal and vertical axes correspond to the range where we sample the random points.

    wherep1×2(k) stands for thek’s dimension value of vector p1×2.

    Fig.8visualizes the training results of our generator.We first choose 40 noise points every 2π/40 radians on a circle with a radius of 2.After that,we feed the values of each noise point into the generator trained after 25 epochs,and get 40 representative fake images,as shown inFig.8.

    In the above experiments,the noise points are two-dimensional,that is,each noise point contains two element values.Next,we extend the above experimental results to higher dimensions.We use t-distributed stochastic neighbor embedding(t-SNE)[15]to visualize the distribution of the noise vector and related generated fake images.The result shows that the above assertion we put forward is also applicable.

    Fig.8.Noise vector chosen every 2π/40 radians on a circle with a radius of 2.

    5.Guided GAN

    We have found that the noise variables are not randomly distributed but based on the feature or class of the image it generates.Therefore this can guide us to select a suitable input noise vector to generate the exact fake image we want.

    5.1.Generating lmage with Most Significant Noise

    InFig.8,the input noise points are well clustered rather than distributed in divided tiny slices,so we can select a representative noise point for each expected output label.The most effective way to select a representative noise point,or most significant noise (MSN),is simply to select any point on the middle radial line in the sector in which the desired output label is located.

    For example,for a group of classified points labeled with purple inFig.8,assuming the slope range of radial lines in the sector isφ0toφ1,we chooseφ=(φ0+φ1)/2 as MSN.As an example,any noise point sampled near or on line OE inFig.7can generate an image more like a real digit,as shown inFig.9.

    Fig.9.Generated images with the MSN method.

    5.2.Generating lmage with Labeled Noise

    In most situations,feeding the noise vectors in the same sector to the generator,the generated images look like with only a little different details.So we try to use the labeled noise to generate the image we want.For example,if we need a fake image with the label ofk,we can directly pick out the noise points,which are pre-labeled by the classifier withk.Then these noise points and their adjacent points can be used by the generator to generate the writing numberk.

    However,since the classifier does not work accurately,we introduce a criterion called the Pearson correlation coefficient to measure the similarity between the generated image and the standard image,so as to filter out those images that are not satisfactory enough,as shown inFig.10.

    Fig.10.Image generating and filtering.

    InFig.10,there are ten standard images representing digits 0 to 9,respectively.Each standard image is obtained by averaging 1000 randomly-selected training images of the same kind.We calculate the correlation coefficient between the generated image and its corresponding standard image as follows:

    whereX=imagefake,Y=imagestandard,Cov(X,Y) is the covariance of the fake image and the standard image,andσXandσYare the standard deviations of these two images,respectively.

    InFig.10,only those images very similar to standard images can pass the filter,so the final result is very satisfactory.The only hyper-parameter needed to be set is the threshold of the filter for each class of images.

    As demonstrated inFig.8,if we tell the generator that we need some fake pictures of digit “6”,then a bunch of handwritten digits of “6” will be generated.Compared with those images generated by the MSN method,these generated images are more like handwritten digits in the real world,with more details and styles,as seen inFig.11.

    Fig.11.Faked images with filtered labeled noise.

    6.Performance of Our GAN

    We aim at generating a picture as real as possible,so the difference between a fake image and its corresponding real one must be reduced during the training phase.Therefore,we come up with a new criterion for our GAN to measure the loss,by combining the Pearson correlation coefficient with our proposed model.The loss function is described as follows:

    Fig.12.Loss of the generator in GAN.

    wherenis the number of fake images chosen to evaluate the generator.As an example,nis 40 inFig.9.is theith fake image belonging to classk.is the classkstandard image used to evaluate.tdenotes the total number of kinds of images the generator can generate.Generally,the more kinds of images our generator can generate,the better performance the generator has.InFig.9,t=10.λis a hyper-parameter which can change the punishment degree fort.We use this criterion to evaluate the generator in our DCGAN model.As shown inFig.12,the overall loss decreases during the training session.We made animation to demonstrate the change of the input noise distribution during the training session,and the source code is available on GitHub (https://github.com/haoheliu/Guided-GANVisualization).

    7.Conclusions

    In this paper,we visually reveal the relationship between input noise and the label of the image generated by GAN.The visualization based on our proposed model illustrates the training process of the generator in a very intuitive way.We also study the relation between the performance of the generator and the visualization result.We find that the features of this result,such as the aggregation pattern,can show the capability of the tested generator.

    Using the distribution characteristics of different kinds of fake images,GG can be constructed.GG can successfully generate images we expect.The output of GG based on the MSN method is more stable but less varied.The output of GG based on labeled noise has better variations but slightly less precision.

    Finally,a criterion is proposed to evaluate GAN performance.This criterion can also be used as a loss function in the training process.Since the loss function contains similarity information between the generated image and the corresponding standard image,it may greatly improve the performance of the generator.

    Disclosures

    The authors declare no conflicts of interest.

    简卡轻食公司| 日韩国内少妇激情av| 日韩中文字幕欧美一区二区| 中文字幕精品亚洲无线码一区| 亚洲国产欧美人成| 日本 av在线| 老司机午夜福利在线观看视频| 内地一区二区视频在线| 欧美zozozo另类| 日本精品一区二区三区蜜桃| 国产高清激情床上av| 悠悠久久av| 一级黄色大片毛片| 黄色日韩在线| 免费一级毛片在线播放高清视频| 国产在线男女| 观看免费一级毛片| 免费在线观看日本一区| 日日夜夜操网爽| 国产又黄又爽又无遮挡在线| 可以在线观看毛片的网站| 内射极品少妇av片p| 亚洲在线自拍视频| 免费在线观看亚洲国产| 国产成人av教育| 嫩草影视91久久| ponron亚洲| 国内精品久久久久久久电影| 美女高潮的动态| 久久久久久久精品吃奶| 国产亚洲欧美在线一区二区| 神马国产精品三级电影在线观看| 亚洲avbb在线观看| a级毛片a级免费在线| 成年版毛片免费区| 乱码一卡2卡4卡精品| 欧美一区二区国产精品久久精品| 国产精品影院久久| 国产亚洲精品av在线| 日本五十路高清| 一进一出抽搐gif免费好疼| 色av中文字幕| 久久久久免费精品人妻一区二区| 国产黄a三级三级三级人| 国产在视频线在精品| 欧美激情在线99| 国产欧美日韩精品一区二区| 亚洲国产精品999在线| 尤物成人国产欧美一区二区三区| 中文字幕精品亚洲无线码一区| 男人舔女人下体高潮全视频| 久久久久久九九精品二区国产| 色尼玛亚洲综合影院| 人妻制服诱惑在线中文字幕| 每晚都被弄得嗷嗷叫到高潮| 国产欧美日韩精品一区二区| 日本在线视频免费播放| 18禁黄网站禁片午夜丰满| 大型黄色视频在线免费观看| 国产三级中文精品| 精品久久久久久久久久久久久| 久久九九热精品免费| 老司机午夜福利在线观看视频| 国产免费av片在线观看野外av| 天美传媒精品一区二区| 日本 av在线| 午夜日韩欧美国产| 国产av一区在线观看免费| 久久精品国产99精品国产亚洲性色| 香蕉av资源在线| 成人亚洲精品av一区二区| 亚洲无线在线观看| 久久精品综合一区二区三区| 午夜久久久久精精品| 国产高清激情床上av| 搡老岳熟女国产| 亚洲 国产 在线| av视频在线观看入口| 黄色视频,在线免费观看| 国产精品乱码一区二三区的特点| 99热这里只有精品一区| 性色avwww在线观看| 他把我摸到了高潮在线观看| av天堂中文字幕网| 99热这里只有是精品50| 日韩高清综合在线| 欧美乱妇无乱码| 精品一区二区三区视频在线| 国产淫片久久久久久久久 | 久久久久久久久久黄片| 哪里可以看免费的av片| 成人无遮挡网站| 国产淫片久久久久久久久 | 久久九九热精品免费| 国产精品伦人一区二区| 免费一级毛片在线播放高清视频| 国内精品一区二区在线观看| 麻豆成人av在线观看| 黄色配什么色好看| 性欧美人与动物交配| 怎么达到女性高潮| 日日摸夜夜添夜夜添av毛片 | 国产一区二区激情短视频| 麻豆国产97在线/欧美| 91在线精品国自产拍蜜月| 91久久精品国产一区二区成人| 亚洲人与动物交配视频| 久久久久精品国产欧美久久久| 国产在线男女| 成人毛片a级毛片在线播放| 嫩草影视91久久| 欧美一区二区精品小视频在线| 久久99热这里只有精品18| 哪里可以看免费的av片| 嫁个100分男人电影在线观看| 久久99热6这里只有精品| 久久久精品大字幕| 久久久久久久久久成人| 91字幕亚洲| 精华霜和精华液先用哪个| 中文字幕人妻熟人妻熟丝袜美| 欧美乱妇无乱码| 亚洲精华国产精华精| 琪琪午夜伦伦电影理论片6080| 亚洲国产欧美人成| 欧美日韩乱码在线| 嫁个100分男人电影在线观看| 高清日韩中文字幕在线| 亚洲欧美精品综合久久99| 免费看美女性在线毛片视频| 亚洲国产精品久久男人天堂| 毛片女人毛片| 香蕉av资源在线| 欧美三级亚洲精品| 精品国内亚洲2022精品成人| 精品无人区乱码1区二区| 毛片女人毛片| 夜夜爽天天搞| 国产成人影院久久av| 别揉我奶头~嗯~啊~动态视频| bbb黄色大片| 国产人妻一区二区三区在| 禁无遮挡网站| 午夜福利在线观看吧| 久久中文看片网| 国产乱人伦免费视频| 可以在线观看的亚洲视频| 欧美色视频一区免费| 99国产精品一区二区蜜桃av| 精品人妻视频免费看| 此物有八面人人有两片| 男人舔奶头视频| 亚洲中文字幕一区二区三区有码在线看| 精品不卡国产一区二区三区| h日本视频在线播放| 在线观看舔阴道视频| 色综合婷婷激情| 91在线观看av| 人妻丰满熟妇av一区二区三区| 99精品在免费线老司机午夜| 欧美日本视频| 午夜福利欧美成人| 少妇人妻一区二区三区视频| 欧美又色又爽又黄视频| 国产乱人视频| 男女下面进入的视频免费午夜| 一级毛片久久久久久久久女| 18美女黄网站色大片免费观看| 午夜福利在线观看吧| 热99在线观看视频| 欧美日韩中文字幕国产精品一区二区三区| 成人三级黄色视频| 久久精品国产亚洲av天美| 狂野欧美白嫩少妇大欣赏| 亚洲欧美日韩无卡精品| 尤物成人国产欧美一区二区三区| 观看免费一级毛片| 在现免费观看毛片| 一边摸一边抽搐一进一小说| 少妇裸体淫交视频免费看高清| 久久久久久国产a免费观看| 亚洲第一区二区三区不卡| 99视频精品全部免费 在线| 国产视频一区二区在线看| 精品一区二区三区视频在线观看免费| 成人美女网站在线观看视频| 内地一区二区视频在线| av在线老鸭窝| 能在线免费观看的黄片| 90打野战视频偷拍视频| 久久亚洲精品不卡| 成人国产综合亚洲| 亚洲aⅴ乱码一区二区在线播放| 欧美日韩乱码在线| 天堂√8在线中文| 亚洲av一区综合| 99riav亚洲国产免费| 国产中年淑女户外野战色| 日本一本二区三区精品| 99久久成人亚洲精品观看| 日本在线视频免费播放| 亚洲欧美激情综合另类| 亚洲无线观看免费| 91字幕亚洲| 亚洲av日韩精品久久久久久密| 变态另类丝袜制服| 欧美日韩瑟瑟在线播放| 香蕉av资源在线| 国产欧美日韩精品一区二区| 很黄的视频免费| 最近在线观看免费完整版| 亚洲黑人精品在线| 久久久久久大精品| 亚洲精品一区av在线观看| 国产伦精品一区二区三区四那| 国产aⅴ精品一区二区三区波| 蜜桃久久精品国产亚洲av| 观看免费一级毛片| 成人一区二区视频在线观看| 真人做人爱边吃奶动态| 欧美高清成人免费视频www| 18+在线观看网站| 青草久久国产| 日本撒尿小便嘘嘘汇集6| 赤兔流量卡办理| 欧美日本亚洲视频在线播放| 舔av片在线| 亚洲人成伊人成综合网2020| 国产伦精品一区二区三区四那| 亚洲成人久久性| 91麻豆精品激情在线观看国产| 成人午夜高清在线视频| 美女 人体艺术 gogo| 免费人成在线观看视频色| 国产欧美日韩精品一区二区| 中文字幕高清在线视频| 国产白丝娇喘喷水9色精品| 精品一区二区三区人妻视频| av中文乱码字幕在线| h日本视频在线播放| 亚洲五月婷婷丁香| 俄罗斯特黄特色一大片| 亚洲片人在线观看| 两性午夜刺激爽爽歪歪视频在线观看| 午夜精品在线福利| 欧美色视频一区免费| 久久久久久大精品| 观看美女的网站| 免费电影在线观看免费观看| 2021天堂中文幕一二区在线观| 午夜a级毛片| 亚洲激情在线av| 亚洲国产欧美人成| 日本精品一区二区三区蜜桃| 国产国拍精品亚洲av在线观看| 国产精品女同一区二区软件 | 免费av毛片视频| 欧美在线一区亚洲| 亚洲在线观看片| 大型黄色视频在线免费观看| 99国产极品粉嫩在线观看| 他把我摸到了高潮在线观看| 男女做爰动态图高潮gif福利片| 男人舔女人下体高潮全视频| 国产一区二区激情短视频| 成人午夜高清在线视频| 久久亚洲精品不卡| 九色成人免费人妻av| 精品午夜福利在线看| 99在线人妻在线中文字幕| av在线蜜桃| 国产成人a区在线观看| 高清在线国产一区| 亚洲三级黄色毛片| 亚洲男人的天堂狠狠| 九九热线精品视视频播放| 18禁裸乳无遮挡免费网站照片| 成人午夜高清在线视频| 俄罗斯特黄特色一大片| 我要看日韩黄色一级片| 亚洲avbb在线观看| 可以在线观看毛片的网站| 伊人久久精品亚洲午夜| 国产高清三级在线| 别揉我奶头~嗯~啊~动态视频| 国产伦人伦偷精品视频| 国产精品久久久久久人妻精品电影| 男女床上黄色一级片免费看| 亚洲成人中文字幕在线播放| 欧美日韩黄片免| 最近视频中文字幕2019在线8| 亚洲精华国产精华精| 免费观看的影片在线观看| 亚洲人与动物交配视频| 中文字幕人妻熟人妻熟丝袜美| 午夜福利在线观看免费完整高清在 | 亚洲av一区综合| 亚洲国产精品久久男人天堂| 网址你懂的国产日韩在线| a级毛片免费高清观看在线播放| 亚洲av成人精品一区久久| 国产伦精品一区二区三区视频9| 国产成人欧美在线观看| 99国产极品粉嫩在线观看| 亚洲一区二区三区不卡视频| 亚洲乱码一区二区免费版| 嫁个100分男人电影在线观看| 在线十欧美十亚洲十日本专区| 嫩草影院精品99| 美女被艹到高潮喷水动态| 99热只有精品国产| 波野结衣二区三区在线| 免费观看人在逋| 午夜免费男女啪啪视频观看 | 天堂av国产一区二区熟女人妻| 亚洲自拍偷在线| 日本a在线网址| 亚洲久久久久久中文字幕| 在线十欧美十亚洲十日本专区| 久久久久久久久大av| 亚洲国产色片| 亚洲人成网站高清观看| 国产精品久久久久久亚洲av鲁大| 国产伦人伦偷精品视频| 直男gayav资源| 三级国产精品欧美在线观看| 乱人视频在线观看| 免费黄网站久久成人精品 | 国产高清有码在线观看视频| 日日摸夜夜添夜夜添av毛片 | 51国产日韩欧美| 我的老师免费观看完整版| 桃红色精品国产亚洲av| 亚洲 欧美 日韩 在线 免费| 久久性视频一级片| av福利片在线观看| 舔av片在线| 国产aⅴ精品一区二区三区波| 国产高清视频在线播放一区| 观看美女的网站| 精品一区二区三区av网在线观看| 午夜福利高清视频| 超碰av人人做人人爽久久| 国产精品永久免费网站| 国产乱人视频| 精品免费久久久久久久清纯| 日本一本二区三区精品| 国产精品久久久久久亚洲av鲁大| 免费搜索国产男女视频| 久久久精品大字幕| av中文乱码字幕在线| 久久久久久大精品| 人妻久久中文字幕网| av福利片在线观看| 天堂动漫精品| 麻豆av噜噜一区二区三区| 激情在线观看视频在线高清| 亚洲激情在线av| x7x7x7水蜜桃| 欧美精品啪啪一区二区三区| 香蕉av资源在线| x7x7x7水蜜桃| 中文字幕av成人在线电影| 日韩有码中文字幕| 日韩欧美国产一区二区入口| 国产亚洲欧美98| 国产野战对白在线观看| 99久国产av精品| 一级a爱片免费观看的视频| 免费看日本二区| 美女大奶头视频| 久久草成人影院| 搡老岳熟女国产| 亚洲欧美精品综合久久99| av国产免费在线观看| 性欧美人与动物交配| 久久国产乱子伦精品免费另类| 久久99热6这里只有精品| 最好的美女福利视频网| 如何舔出高潮| 99久久精品热视频| 国产高清三级在线| 国产黄a三级三级三级人| 日日夜夜操网爽| 女生性感内裤真人,穿戴方法视频| 可以在线观看毛片的网站| 国产三级黄色录像| 色综合婷婷激情| 嫩草影院精品99| 91九色精品人成在线观看| 综合色av麻豆| 内射极品少妇av片p| 最近中文字幕高清免费大全6 | 国产精品1区2区在线观看.| 久久午夜福利片| 日本熟妇午夜| 俄罗斯特黄特色一大片| 脱女人内裤的视频| 国产精品综合久久久久久久免费| 在线观看66精品国产| 他把我摸到了高潮在线观看| 成年免费大片在线观看| 在线观看免费视频日本深夜| 他把我摸到了高潮在线观看| 亚洲欧美日韩高清专用| 中文字幕高清在线视频| 日韩中字成人| 国产成人影院久久av| 成人精品一区二区免费| 久久久成人免费电影| 午夜激情福利司机影院| 九九在线视频观看精品| 噜噜噜噜噜久久久久久91| 欧美高清性xxxxhd video| 精品福利观看| 日韩欧美免费精品| 757午夜福利合集在线观看| 狠狠狠狠99中文字幕| 国产成+人综合+亚洲专区| 女生性感内裤真人,穿戴方法视频| 99热6这里只有精品| 国产成人aa在线观看| 成人高潮视频无遮挡免费网站| 一进一出好大好爽视频| 成人亚洲精品av一区二区| 国产野战对白在线观看| 午夜精品久久久久久毛片777| 久久久精品大字幕| 中文字幕人成人乱码亚洲影| 日韩欧美精品免费久久 | 精品国产三级普通话版| 老司机午夜十八禁免费视频| 国产精品98久久久久久宅男小说| 嫩草影院精品99| 日日夜夜操网爽| 国产av不卡久久| 日本一本二区三区精品| 久久精品夜夜夜夜夜久久蜜豆| 欧美3d第一页| 国产精品人妻久久久久久| 欧美日本亚洲视频在线播放| 俺也久久电影网| 国产精品乱码一区二三区的特点| 欧美一区二区国产精品久久精品| 黄色丝袜av网址大全| 亚洲真实伦在线观看| 亚洲内射少妇av| 国产精品久久久久久久久免 | www日本黄色视频网| 性色av乱码一区二区三区2| 赤兔流量卡办理| 一个人免费在线观看电影| 国产黄片美女视频| 国内毛片毛片毛片毛片毛片| 午夜日韩欧美国产| 国产黄色小视频在线观看| 国产伦精品一区二区三区视频9| 桃色一区二区三区在线观看| 欧美日韩黄片免| 亚洲五月婷婷丁香| 一级黄色大片毛片| 免费人成视频x8x8入口观看| 99视频精品全部免费 在线| 1024手机看黄色片| 男人舔奶头视频| 亚洲欧美激情综合另类| 亚洲av成人不卡在线观看播放网| 可以在线观看的亚洲视频| 国产探花在线观看一区二区| 亚洲色图av天堂| 观看美女的网站| 国产亚洲精品综合一区在线观看| 久久久成人免费电影| 国产成人欧美在线观看| 2021天堂中文幕一二区在线观| 亚洲精品影视一区二区三区av| 99久久九九国产精品国产免费| 极品教师在线免费播放| 天堂av国产一区二区熟女人妻| 亚洲18禁久久av| 午夜精品一区二区三区免费看| 久久精品国产自在天天线| 久久久色成人| 精品一区二区三区视频在线观看免费| a在线观看视频网站| 三级男女做爰猛烈吃奶摸视频| 免费人成视频x8x8入口观看| 一个人看视频在线观看www免费| 深爱激情五月婷婷| 中文字幕高清在线视频| 久久精品综合一区二区三区| 免费一级毛片在线播放高清视频| 十八禁网站免费在线| 成人欧美大片| 亚洲欧美日韩卡通动漫| av在线蜜桃| 首页视频小说图片口味搜索| 丰满的人妻完整版| 国产精品野战在线观看| 丝袜美腿在线中文| 一区二区三区高清视频在线| 色综合欧美亚洲国产小说| 97超视频在线观看视频| 91狼人影院| 最后的刺客免费高清国语| 成人国产一区最新在线观看| 亚洲成a人片在线一区二区| avwww免费| 国产精品电影一区二区三区| 岛国在线免费视频观看| 伦理电影大哥的女人| 观看美女的网站| 亚洲久久久久久中文字幕| 国产精品伦人一区二区| 日韩人妻高清精品专区| 久久这里只有精品中国| 日本撒尿小便嘘嘘汇集6| 我的老师免费观看完整版| 日本 欧美在线| 一级黄色大片毛片| 99riav亚洲国产免费| 亚洲中文字幕一区二区三区有码在线看| 1024手机看黄色片| 老熟妇仑乱视频hdxx| 18禁黄网站禁片午夜丰满| 99久久久亚洲精品蜜臀av| bbb黄色大片| 欧美+亚洲+日韩+国产| 日本撒尿小便嘘嘘汇集6| 亚洲乱码一区二区免费版| 老司机午夜福利在线观看视频| 久久精品久久久久久噜噜老黄 | 国产国拍精品亚洲av在线观看| 蜜桃久久精品国产亚洲av| 欧美三级亚洲精品| 久久久久国内视频| 高潮久久久久久久久久久不卡| 日韩欧美三级三区| 亚洲三级黄色毛片| 久久精品综合一区二区三区| 国产av麻豆久久久久久久| 亚洲国产欧美人成| 国产色婷婷99| 国产精品日韩av在线免费观看| 激情在线观看视频在线高清| 国产精品美女特级片免费视频播放器| 精品一区二区三区视频在线观看免费| 亚洲精品456在线播放app | 一区二区三区免费毛片| 欧美又色又爽又黄视频| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 亚洲aⅴ乱码一区二区在线播放| 亚洲av免费高清在线观看| 给我免费播放毛片高清在线观看| 国产毛片a区久久久久| 中文字幕av成人在线电影| 99精品久久久久人妻精品| 97碰自拍视频| 日本撒尿小便嘘嘘汇集6| 村上凉子中文字幕在线| xxxwww97欧美| 热99在线观看视频| 午夜日韩欧美国产| 嫁个100分男人电影在线观看| 久久国产乱子伦精品免费另类| 天堂网av新在线| 一区二区三区四区激情视频 | 久久久精品欧美日韩精品| 内射极品少妇av片p| 中文字幕熟女人妻在线| 亚洲五月天丁香| 亚洲最大成人中文| 男女视频在线观看网站免费| 精品福利观看| 精品久久久久久久末码| 精品国产亚洲在线| 在线免费观看不下载黄p国产 | 亚洲中文字幕一区二区三区有码在线看| 国产麻豆成人av免费视频| 他把我摸到了高潮在线观看| 亚洲,欧美,日韩| 亚洲精品影视一区二区三区av| 亚洲真实伦在线观看| 淫妇啪啪啪对白视频| 丝袜美腿在线中文| 神马国产精品三级电影在线观看| 真实男女啪啪啪动态图| 91在线精品国自产拍蜜月| 动漫黄色视频在线观看| 久久久国产成人精品二区| 亚洲国产欧洲综合997久久,| 白带黄色成豆腐渣| 三级毛片av免费| 精品乱码久久久久久99久播| 国产精品人妻久久久久久| 久久性视频一级片| 久久精品久久久久久噜噜老黄 | 亚洲 国产 在线| 乱码一卡2卡4卡精品| 69人妻影院| 97碰自拍视频| 精品久久久久久久久久免费视频| 欧美在线一区亚洲| 国产av在哪里看| 中文字幕久久专区| 国产三级黄色录像| 看黄色毛片网站| 一区二区三区免费毛片| 亚洲自拍偷在线| 国产高清三级在线| 国产精品自产拍在线观看55亚洲| 精品福利观看| aaaaa片日本免费| 国产精品,欧美在线| 黄色一级大片看看|