• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    An in situ Digital Background Calibration Algorithm for Multi-Channel R-βR Ladder DACs

    2022-04-19 05:49:00LiangJianLyuQingZhenWangZePengHuangXingWu

    Liang-Jian Lyu | Qing-Zhen Wang | Ze-Peng Huang | Xing Wu

    Abstract—The R-2R resistor ladder is one of the best topologies for implementing compact-sized digital-to-analog converter (DAC) arrays in implantable neuro-stimulators.However,it has a limited resolution and considerable interchannel variation due to component mismatches.To avoid losing analog information,we present sub-radix-2 DAC implemented by the R-βR resistor ladder in this paper.The digital successive approximation register (DSAR)algorithm corrects the transfer function of DACs based on their actual bit weights.Furthermore,a low-cost in situ adaptive bit-weight calibration (ABC) algorithm drives the analog output error between two DACs to zero by adjusting their bit weights automatically.The simulation results show that the proposed algorithm can calibrate the non-linear transfer function of each DAC and the gain error among multiple channels in the background.

    Index Terms—Digital calibration,digital-to-analog converter,gain error,in situ,mismatch,non-linearity,resistor ladder.

    1.lntroduction

    Current-mode neuromodulation is widely adopted in clinical and neuroscience research[1],[2].The activity of nearby neurons can be activated or suppressed by delivering current pulses to micro-electrode arrays (MEAs)placed on specific brain regions,central nerves,or peripheral nerves.Functional electrical stimulation has been successfully used in treating various types of nerve damage,including the restoration of vision[3].Fig.1shows the diagram of the artificial retina system,which receives external optical stimuli and delivers corresponding current stimulation waveforms to the optic nerves[4],[5].The artificial retina usually consists of tens to hundreds of identical pixels,and each pixel includes a photo-sensitive device,an analog front-end(AFE),a digital signal processor (DSP),and a current-mode digital-to-analog converter (DAC)[6],[7].Among them,DAC is a critical part of communications with the brain by generating programmable current pulses.Because the device is implanted on the retina,its size and power must be strictly limited.Furthermore,interchannel mismatches of the stimulators will lead to charge accumulation and permanent damage to the neural tissues.Therefore,compact-sized DACs with a high resolution are in great demand[8],[9].

    The R-2R DAC uses only two resistance values ofRand 2R,and the number of the resistors is linearly proportional to the resolution of DAC,therefore it is widely adopted in designing small-area DACs[10],[11].Moreover,its simple architecture also facilizes operation under extreme conditions or implementation in non-silicon semiconductor processes[12]-[15].However,R-2R DAC has limited linearity due to the component matching,and is conventionally considered not suitable for high-resolution applications greater than 8[10].

    A lot of works have been searching for calibration methods for R-2R DAC.High-resolution R-2R DAC requires high-precision tunable resistors,such as silicon-chromium thin-film resistors[16].However,such devices are not available for most processes.Reference [17] used an auxiliary R-2R ladder to compensate main DAC,the calibration accuracy is determined by the measuring instrument.Reference [18] adopted the ordered element matching (OEM) method to calibrate the gain error between different segments of DAC,but the segmentation leaded to a larger area compared with the binary-weighted resistor ladder.

    In this paper,we propose an all-digital calibration method,which can dynamically correct the error between two DACs.Meanwhile,no external calibration circuits,such as the high-resolution analog-to-digital converter (ADC),are required.Therefore,the area of each DAC will be greatly reduced and making it possible for small-sized DAC arrays with a high resolution.

    The rest of this paper is organized as follows.Section 2 analyzes the mismatch effects in resistor ladder DAC.Section 3 describes the proposedin situdigital background calibration algorithm.Section 4 presents behavior model simulation results to verify the effectiveness of the calibration method.Finally,Section 5 concludes this paper.

    2.Mismatch Effects in R-βR DAC

    Several previous works have analyzed the transfer functions of conventional R-2R DAC and its mismatch influence[19]-[21].In this paper,we extend R-2R DAC to R-βR DAC,whereβcould be any positive value.Fig.2(a) shows the schematic ofn-bit current-mode R-βR DAC.There are two types of resistors in this circuit,the “rung” resistors (i.e.,R2,k,wherek=0,1,…,n) with resistances ofR0and the “l(fā)eg” resistors (i.e.,R1,k,wherek=0,1,…,n) with resistances ofβR0.

    The current shunts at each nodeAk,so we get

    whereis the equivalent resistance of the resistive network on the right side of nodeAk,which consists ofR1,k(k=0,1,…,n-1) andR2,k(k=0,1,…,n-1).It can be calculated as

    Fig.2.Current-mode R-βR DAC:(a) schematic and its transfer functions:(b) no error,(c) analog-missing error,and(d) analog-overlapping error.

    Substituting the resistor values and assuming thatk?1,(2) can be rewritten as

    Solving (3) and substituting to (1) yields

    In a conventional R-2R resistor ladder,whereβ=2,for eachkwe have

    In this case,the currents are equally separated at each nodeAk,producing ideally radix-2 binary-weighted currents,i.e.,

    whereI0is the least significant bit (LSB) current.Based on the digital input codeDin,the switches (i.e.,Sk,k=0,1,…,n-1) inFig.2(a) then direct the current branches to either the output node or the dummy ground.The output currentIoutcan be defined as

    where,biis theith bit of the digital input code,andIiis the current of theith branch.When the digital code is also binary-weighted as in most cases,the output current is linearly proportional to the digital input,as shown inFig.2(b).

    However,both discrete and on-chip fabricated resistors always suffer from component mismatches,resulting in a non-linear transfer function.To simplify the analysis,only one resistor value (i.e.,R2,n) will be changed.Considering the mid-code transition,i.e.,the digital input code increases from “0 1…11” to “10…00”,the output current will increase by

    Their transfer functions are shown inFigs.2(b) to (d).Cases 2 and 3 both suffer from non-linearity problems,especially in high-resolution applications.For example,an 1% mismatch ofR2,nleads to 1.3-LSB and 326.0-LSB errors in the mid-code transition for 8-bit and 16-bit DACs,respectively.However,there are still some differences between them.InFig.2(c),there is a missing region in the analog domain,which means we cannot find any digital code to generate the analog output of this region.InFig.2(d),on the other hand,there is an overlapped region in the analog domain,which means we can use more than one digital code to generate the analog output of this region.In this case,it is possible to calibrate the transfer function according to the input code and bit-weight information.

    In most cases,the resistances are normally distributed,so errors inFigs.2(c) and (d) occur randomly with equal probability.As discussed above,it is important to avoid the “analog-missing” error shown inFig.2(c).Therefore,we proposed a sub-radix-2 weighted resistor ladder with an intrinsic “analog-overlapping” error.It is implemented by simply changing the resistance ratio of R-βR DAC.According to (4),whenβ>2 and all resistor values are precise,for any mid-code transition from “xx…01…11” to “xx…10…00”,we can get an overlapped analog region as shownFig.2(d).The overlapped region becomes larger whenβincreases and varies due to the resistor mismatches.Therefore,we should choose aβvalue large enough to guarantee that no “analog-missing” error occurs for the worst matching case.

    3.Digital Calibration Algorithm

    Sub-radix-2 DAC proposed in Section 2 has an intrinsically non-linear transfer function,and it covers the full range of the analog domain.So,it can be corrected by adjusting the input code in the digital domain.The calibration algorithm pre-distorts the digital input codes according to the bit-weights of DACs,and the bit-weight is calculated automatically by an adaptive gradient descent algorithm.

    Similar to (8),the output current ofn-bit sub-radix-2 DAC is

    where Dcaland w are 1×nvectors representing the calibrated code for DAC and the actual bit-weight of DAC,respectively.The target of the pre-distortion algorithm is to find the best Dcalwhich minimizes the error between the output of sub-radix-2 DAC and ideal-linear DAC.Fig.3(a) depicts the procedure of the digital successive approximation register (DSAR) algorithm,which is inspired by the successive approximation register (SAR) analog-to-digital converter (ADC)[22].At the beginning of each converting cycle,the residue valueDris initially set to the digital input codeDin.The conversion starts from the most significant bit (MSB),whereDris compared with the MSB weightw[n].IfDr≥w[n],MSB is required in summing up the target analog value.Thus,MSB of Dcalis set to “1”,and the MSB weight is subtracted fromDr.Otherwise,MSB of Dcalis set to “0”,andDrremains unchanged.Then,the conversion steps forward to the lower bit until LSB.Afterncycles of the conversion,we get the calibrated code Dcalto make the output of DAC within an error of±1 LSB.

    Fig.3.Flow charts of algorithms:(a) pre-distortion algorithm with DSAR and (b) adaptive bit-weights calibration algorithm with gradient descent.

    There are several methods to get the actual value of each bit-weight,most of them need high-resolution ADCs.Fig.3(b) shows a low-cost alternative named adaptive bit-weight calibration (ABC).Firstly,two DACs’bit-weights w1and w2are initialized to the calculation values of ideal sub-radix-2 DAC without considering any mismatches.For each digital input codeDin(t),Dcal,1and Dcal,2are obtained with the DSAR algorithm based on two DACs’ bit-weights,respectively.Then,Dcal,1and Dcal,2drives two DACs to obtain the current outputsIout,1andIout,2.The bit-weights w1and w2are updated according to the comparison result ofIout,1andIout,2,and the changing step size is determined byΔ.The simple gradient descent methods will gradually reduce the output errors between two DACs.Once the two DACs are calibrated at different input codes,their transfer functions become linear and nearly identical.

    Compared with previous works with high-resolution ADCs to measure the accurate transfer function of DAC,the ABC algorithm only needs two un-calibrated DACs and an analog comparator.Instead of calibrating each DAC to an ideal transfer function,the proposed method automatically adjusts the bit-weights to keep the transfer functions of two DACs being identical and linear.The algorithm can be further extended to high-density DAC arrays with a little modification.

    4.Simulation Results

    We use a behavior model to verify the proposed calibration method in MATLAB.Sub-radix-2 DACs are implemented by the R-βR resistor ladder,whereβ=2.1.For each resistor used in DACs,we assume a normally distributed mismatch with a 2% standard deviation.The update step sizeΔ,as shown inFig.3(b),of each bit is 1×10?6of the default bit-weight.A larger step size accelerates the calibration procedure but may cause converge problems and increase the calibration error.

    We use two different digital input signals for the bit-weights calibration,an evenly-distributed random signal,and a sinusoidal signal with a frequency of 0.0001fs,wherefsis the sample rate of DAC.The amplitudes of both signals are from 10% to 90% of the maximum analog output range.Figs.4(a) and (b)show the output errors between two DACs in LSB.For both types of input signals,the inter-channel errors converge within 5.0×105iterations.The calibration procedure takes only 50 ms at a sample rate of 10 MHz,which can be easily implemented for on-chip R-2R DACs[9],[23].We also notice that the convergence is faster using the random signal input.Figs.4(c) and (d) show the calibrated MSB bit-weights.Almost simultaneously with the inter-channel errors,both DACs’ MSB bit-weights converge to their theoretical values.

    Fig.4.Simulated calibration process of DACs:(a) and (b) the inter-channel output errors;(c) and (d) the calibrated MSB bit-weights of two DACs.The input signals for (a) and (c) are random signals and those for (b) and (d) are sinusoidal input signals.

    The proposed method can also calibrate the gain errors between DACs.We add 5% gain errors with different polarities to DACs.Fig.5(a) shows the transfer functions of two un-calibrated DACs and ideal subradix-2 DAC without any mismatch,where the gains of both DAC channels are different from the ideal one.When DSAR is applied to pre-distort the input with the default bit-weight,the linearity is greatly improved as shown inFig.5(b).The gain and the mid-code transition error,however,remain large.It is also worth noticing that the digital input code range reduces by 20%,which is caused by removing the overlapped region in the transfer functions.After 5.0×105cycles of adaptive calibration,the bit-weights are learned automatically.InFig.5(c),there is nearly no gain error between DACs.

    Fig.5.Transfer functions with different calibration methods:(a) without DSAR,(b) DSAR with default weight,and(c) DSAR with calibrated weight;the inter-channel errors of DACs with different calibration methods:(d) without DSAR,(e) DSAR with default weight,and (f) DSAR with calibrated weight.

    Figs.5(d) to (f) show the normalized inter-channel error,which is defined as the difference between the analog output of DACs.If the DACs’ gain matches perfectly,the inter-channel error will be around zero.Figs.5(d) and (e) show that the un-calibrated gain error between DACs is about 10%,and the default bit-weights calibration with DSAR enlarges the gain error as the input range becomes smaller.However,the proposed algorithm restores two linear DACs with the channel error less than ±20 ppm,which is around±1.3 LSB for ideal 16-bit binary-weighted DAC.

    Differential nonlinearity (DNL) is the difference between the actual and the ideal step sizes corresponding to DAC’s outputs with two consecutive input codes.Integral nonlinearity (INL) is the difference between the ideally linear-fitted curve and the actual curve of DAC’s transfer function.They are both vital indicators that measure the static performance of DAC.Figs.6(a) and (d) show DNL and INL of two uncalibrated DACs,respectively,both are poor with over 100-LSB absolute errors.However,uncalibrated DNL of sub-radix-2 DACs is always less than 1 LSB,which means no analog-missing error occurs.Figs.6(b) and (e) show DNL and INL with DSAR using the default bit-weight,respectively.DSAR calibrates the intrinsic non-linearity of sub-radix-2 DACs,and improves both DNL and INL.DSAR calibrates the intrinsic non-linearity of sub-radix-2 DACs,and improves both DNL and INL.However,random mismatch errors become predominant.This also appears in conventional binary-weighted R-2R DACs,and limits the high-resolution applications.Figs.6(c)and (f) show DNL and INL with DSAR using the calibrated bit-weight,respectively.DNLs of both channels are within ±1 LSB,and INLs are with ±0.5 LSB.As shown in the figures,the ABC algorithm together with the DSAR pre-distortion significantly improves DNL and INL,despite using low-accuracy components.The simulation results prove that sub-radix-2 DAC based on the R-βR resistor ladder can be used in high-resolution applications with digital calibration.

    Fig.6.DNL of DACs with different calibration methods:(a) without DSAR,(b) DSAR with default weight,and (c) DSAR with calibrated weight;INL of DACs with different calibration methods:(d) without DSAR,(e) DSAR with default weight,and (f) DSAR with calibrated weight.

    The conventional DAC calibration method needs to measure the bit-weight mismatches and store the calibration values before usage.During the operation mode,DAC’s calibration values are fixed.However,the bit-weights of DAC sometimes change with time.For example,resistors fabricated on-chip usually have poor temperature stability.Temperature gradients may affect the resistance values of DACs located in different parts differently.In this case,continuous background calibration is in great demand.The ABC algorithm,as a digital calibration method,can continuously calibrate the bit-weights and track their changes over time.The proposed calibration method can work in the background.

    Fig.7shows the spectrograms of two 16-bit sub-radix-2 DACs,when the background calibration process is performed.The input signal is a continuous sinusoidal wave with an amplitude covering 10% to 90% of the maximum signal range.Initially,the bit-weights are set to the default value,and each channel has a poor signal-to-noise-and-distortion ratio (SNDR) of around 42 dB,i.e.,7-bit effective number of bits (ENOB).The ABC algorithm achieves a significant improvement in linearity in 1.2×105iterations,when SNDR increases to around 87 dB,i.e.14.5-bit ENOB.SNDR and ENOB are improved by 45 dB and 7.5 bit,respectively.Then the bit-weight of channel 1 (CH 1) changes rapidly by 1% (iteration=2.0×105).SNDR of CH 1 reduces to 53.0 dB,and the calibration restarts to rematch the outputs of two DACs.SNDR of channel 2 (CH 2) also reduces to 58.6 dB,because the calibration algorithm cannot identify which channel is changed and needs to re-calibrate both channels.And 5.0×104cycles later,the DAC outputs are correctly calibrated again,resulting in 87-dB SNDR.Then we apply the bit-weight changes to CH 2 (iteration=4.0×105) and both channels(iteration=6.0×105),for both cases the proposed background calibration algorithm can finally correct the analog output signals.

    Fig.7.Spectrograms of the outputs of two DACs with background calibration.

    The simulation results above verify the effectiveness of the proposed DSAR pre-distortion and ABC algorithm.They can be easily integrated into embedded systems and integrated circuits (ICs),as there are no complex calculation operations,such as multiplication and division.Although the previous analyses and simulations are based on a 2-channel example,the proposed calibration method can also be generalized to more channels.Consider a DAC array withM(1 ,2,…,M) channels,where channeliand channeli+1 are calibrated by the proposed method (0

    Table 1:Performance summary and comparison with previous works

    5.Conclusion

    This paper proposed a low-costin situcalibration method for high-resolution resistor ladder DAC.The proposed sub-radix-2 DAC is implemented with the R-βR resistor ladder.We proposed a low-cost method for calibrating both non-linear transfer functions and the inter-channel mismatches between two DACs based on the digital successive approximation register and the adaptive bit-weight calibration algorithms.In addition,the behavior model simulation results show that both the static and dynamic performance of the proposed DACs are significantly improved.Besides,the proposed method can operate in the background and continuously track and correct any error caused by bit-weights variations.By taking full advantage of the digital processing capacities brought by modern sub-micron IC processes,high-resolution DACs will become smaller and smarter.

    Acknowledgement

    This work is also sponsored by “Shuguang Program” supported by Shanghai Education Development Foundation and Shanghai Municipal Education Commission,and the Fundamental Research Funds for the Central Universities.

    Disclosures

    The authors declare no conflicts of interest.

    天美传媒精品一区二区| 国产亚洲精品综合一区在线观看| 又紧又爽又黄一区二区| 亚洲专区中文字幕在线| 色综合亚洲欧美另类图片| 欧美一区二区国产精品久久精品| 亚洲熟妇熟女久久| 久久久久九九精品影院| 18禁裸乳无遮挡免费网站照片| 国产真实乱freesex| 国产精品久久久久久久久免 | 久久精品国产99精品国产亚洲性色| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 人人妻人人看人人澡| 亚洲色图av天堂| 国产精品综合久久久久久久免费| 亚洲av成人av| 亚洲人成电影免费在线| 精品久久久久久成人av| 757午夜福利合集在线观看| 色哟哟哟哟哟哟| 高清日韩中文字幕在线| 欧美成人一区二区免费高清观看| 国产精品女同一区二区软件 | 久久精品夜夜夜夜夜久久蜜豆| 亚洲精品亚洲一区二区| h日本视频在线播放| 小说图片视频综合网站| 色老头精品视频在线观看| 老熟妇乱子伦视频在线观看| 欧美不卡视频在线免费观看| 国产免费男女视频| 一区二区三区国产精品乱码| 级片在线观看| 国内精品久久久久精免费| 精品久久久久久久人妻蜜臀av| 日日摸夜夜添夜夜添小说| 精品人妻一区二区三区麻豆 | 热99re8久久精品国产| 真人一进一出gif抽搐免费| e午夜精品久久久久久久| 国产真实乱freesex| 久久午夜亚洲精品久久| 两人在一起打扑克的视频| 一本精品99久久精品77| 成人一区二区视频在线观看| 免费一级毛片在线播放高清视频| 亚洲国产色片| 99riav亚洲国产免费| 在线观看美女被高潮喷水网站 | 男女做爰动态图高潮gif福利片| 18禁黄网站禁片免费观看直播| 成人国产一区最新在线观看| 激情在线观看视频在线高清| 久久久久国产精品人妻aⅴ院| 熟女电影av网| 欧美一区二区精品小视频在线| 国产极品精品免费视频能看的| 2021天堂中文幕一二区在线观| 91麻豆精品激情在线观看国产| 欧美成人一区二区免费高清观看| 啦啦啦观看免费观看视频高清| 亚洲一区二区三区色噜噜| 88av欧美| x7x7x7水蜜桃| 少妇熟女aⅴ在线视频| 男女午夜视频在线观看| 欧美激情在线99| 亚洲av电影不卡..在线观看| 欧美日韩精品网址| 亚洲18禁久久av| 男人和女人高潮做爰伦理| 国产 一区 欧美 日韩| 波野结衣二区三区在线 | 非洲黑人性xxxx精品又粗又长| 在线国产一区二区在线| ponron亚洲| 国内揄拍国产精品人妻在线| 久久久国产成人精品二区| 欧美日韩中文字幕国产精品一区二区三区| 国产一区二区在线av高清观看| 日本精品一区二区三区蜜桃| 制服丝袜大香蕉在线| 搡老妇女老女人老熟妇| 中出人妻视频一区二区| 在线观看免费视频日本深夜| 少妇的逼好多水| 99精品久久久久人妻精品| 精品久久久久久久久久免费视频| 三级男女做爰猛烈吃奶摸视频| 国产午夜精品久久久久久一区二区三区 | 国产伦人伦偷精品视频| 首页视频小说图片口味搜索| 国语自产精品视频在线第100页| 五月伊人婷婷丁香| 丝袜美腿在线中文| 久久久久久久亚洲中文字幕 | 欧美黑人欧美精品刺激| 真人一进一出gif抽搐免费| 精品久久久久久成人av| 9191精品国产免费久久| 女人高潮潮喷娇喘18禁视频| 老鸭窝网址在线观看| 91麻豆av在线| 国产视频一区二区在线看| 高清日韩中文字幕在线| 国产一区二区亚洲精品在线观看| 国产一区二区亚洲精品在线观看| 夜夜爽天天搞| 在线播放国产精品三级| 老熟妇仑乱视频hdxx| 亚洲无线在线观看| 欧洲精品卡2卡3卡4卡5卡区| 欧美一区二区精品小视频在线| 精品久久久久久久毛片微露脸| 国产亚洲欧美98| 欧美日韩瑟瑟在线播放| 婷婷六月久久综合丁香| 在线观看日韩欧美| 国产伦精品一区二区三区四那| 亚洲av中文字字幕乱码综合| 免费av观看视频| 欧美激情久久久久久爽电影| 久久精品国产亚洲av涩爱 | 伊人久久大香线蕉亚洲五| 午夜福利18| 19禁男女啪啪无遮挡网站| 老司机午夜十八禁免费视频| 精品福利观看| 国产一区二区激情短视频| 最新在线观看一区二区三区| 欧美日韩精品网址| 亚洲av美国av| 成人鲁丝片一二三区免费| 成年版毛片免费区| 亚洲国产欧美人成| 最新在线观看一区二区三区| 成年女人看的毛片在线观看| 18禁在线播放成人免费| 色尼玛亚洲综合影院| 国产午夜福利久久久久久| 国产三级黄色录像| 欧美另类亚洲清纯唯美| 亚洲成人久久性| 国产精品精品国产色婷婷| www国产在线视频色| 免费av不卡在线播放| 国产成年人精品一区二区| 国产精品美女特级片免费视频播放器| 手机成人av网站| 美女黄网站色视频| 欧美黄色淫秽网站| 精品一区二区三区人妻视频| 亚洲欧美日韩卡通动漫| 丁香六月欧美| 丁香欧美五月| 亚洲国产色片| 黄色日韩在线| 最近视频中文字幕2019在线8| 91麻豆av在线| 动漫黄色视频在线观看| 亚洲七黄色美女视频| 天堂影院成人在线观看| 亚洲美女黄片视频| 亚洲成av人片免费观看| 99国产精品一区二区三区| 黄色女人牲交| 国产日本99.免费观看| 亚洲欧美日韩东京热| 国产精品久久久久久精品电影| 1024手机看黄色片| 婷婷亚洲欧美| 噜噜噜噜噜久久久久久91| 亚洲av电影不卡..在线观看| 成人国产一区最新在线观看| 男人的好看免费观看在线视频| 亚洲中文日韩欧美视频| 亚洲激情在线av| 三级毛片av免费| 日韩精品中文字幕看吧| 99精品欧美一区二区三区四区| av片东京热男人的天堂| 999久久久精品免费观看国产| 国产精品爽爽va在线观看网站| 亚洲男人的天堂狠狠| 成年女人看的毛片在线观看| 亚洲七黄色美女视频| 日本一本二区三区精品| 无遮挡黄片免费观看| 岛国在线免费视频观看| 色av中文字幕| 波多野结衣高清无吗| 欧美zozozo另类| 国产成人a区在线观看| 亚洲精品一区av在线观看| 欧美成人一区二区免费高清观看| 内射极品少妇av片p| 国产精品,欧美在线| 在线免费观看不下载黄p国产 | 国内精品久久久久精免费| av中文乱码字幕在线| 久久亚洲真实| 韩国av一区二区三区四区| 国产精品久久久久久精品电影| 在线免费观看不下载黄p国产 | 内射极品少妇av片p| 欧美黄色片欧美黄色片| 亚洲avbb在线观看| 久久欧美精品欧美久久欧美| 成年人黄色毛片网站| 国产午夜精品论理片| 美女黄网站色视频| 又爽又黄无遮挡网站| 国产午夜福利久久久久久| 国产黄色小视频在线观看| 国产成人av激情在线播放| 国产真实伦视频高清在线观看 | 成人午夜高清在线视频| 看免费av毛片| 亚洲激情在线av| 夜夜夜夜夜久久久久| 在线天堂最新版资源| 亚洲性夜色夜夜综合| www.熟女人妻精品国产| 一级a爱片免费观看的视频| 精品一区二区三区视频在线 | 亚洲最大成人手机在线| 成人国产综合亚洲| 偷拍熟女少妇极品色| 中文在线观看免费www的网站| 婷婷精品国产亚洲av在线| 久久久久国内视频| 又黄又爽又免费观看的视频| 听说在线观看完整版免费高清| xxx96com| 欧美在线黄色| aaaaa片日本免费| 小说图片视频综合网站| 丝袜美腿在线中文| 老司机深夜福利视频在线观看| 久久久久久久久久黄片| 久久精品人妻少妇| 男人和女人高潮做爰伦理| 岛国在线观看网站| 叶爱在线成人免费视频播放| 夜夜躁狠狠躁天天躁| 男人舔女人下体高潮全视频| 亚洲成a人片在线一区二区| 午夜福利在线观看免费完整高清在 | 欧美在线一区亚洲| 少妇的逼水好多| 在线免费观看的www视频| 国产单亲对白刺激| 免费看a级黄色片| 日韩亚洲欧美综合| 小说图片视频综合网站| 夜夜爽天天搞| 色老头精品视频在线观看| 午夜福利免费观看在线| 国产精品电影一区二区三区| 岛国视频午夜一区免费看| 亚洲欧美精品综合久久99| 午夜福利高清视频| 亚洲精华国产精华精| 国产熟女xx| 一二三四社区在线视频社区8| 国产成年人精品一区二区| www.www免费av| 国产亚洲精品av在线| 日韩欧美三级三区| 中文字幕人妻熟人妻熟丝袜美 | 国产成人啪精品午夜网站| 97碰自拍视频| av女优亚洲男人天堂| 久久国产精品影院| 岛国在线免费视频观看| 搞女人的毛片| 露出奶头的视频| 亚洲av电影不卡..在线观看| 91av网一区二区| tocl精华| 成人特级黄色片久久久久久久| 天美传媒精品一区二区| 亚洲一区二区三区不卡视频| 国产国拍精品亚洲av在线观看 | 欧美激情久久久久久爽电影| 18禁美女被吸乳视频| 看黄色毛片网站| 天堂动漫精品| 日本一本二区三区精品| 国产精品,欧美在线| 精品99又大又爽又粗少妇毛片 | 老汉色∧v一级毛片| 精品久久久久久久末码| 欧美精品啪啪一区二区三区| 国产精品一区二区三区四区久久| 最近最新免费中文字幕在线| 99精品欧美一区二区三区四区| 99热6这里只有精品| 国产免费男女视频| 在线视频色国产色| 久久午夜亚洲精品久久| 香蕉久久夜色| 国产精品一区二区三区四区久久| 亚洲成a人片在线一区二区| av天堂中文字幕网| 国产精品爽爽va在线观看网站| 国产av一区在线观看免费| 亚洲av一区综合| 美女cb高潮喷水在线观看| 亚洲午夜理论影院| avwww免费| 别揉我奶头~嗯~啊~动态视频| 亚洲国产精品合色在线| 19禁男女啪啪无遮挡网站| 精品久久久久久成人av| 国产av在哪里看| 国产亚洲av嫩草精品影院| 日韩欧美在线乱码| 亚洲激情在线av| 51国产日韩欧美| 精品不卡国产一区二区三区| 长腿黑丝高跟| 色综合欧美亚洲国产小说| 夜夜看夜夜爽夜夜摸| 国产黄色小视频在线观看| 黑人欧美特级aaaaaa片| 国产精品综合久久久久久久免费| 国产黄色小视频在线观看| 一本精品99久久精品77| 99国产极品粉嫩在线观看| 最后的刺客免费高清国语| 亚洲av中文字字幕乱码综合| 一级a爱片免费观看的视频| 在线观看免费午夜福利视频| 国产伦在线观看视频一区| 日韩欧美一区二区三区在线观看| 午夜福利在线观看吧| 亚洲在线自拍视频| 在线观看av片永久免费下载| 一个人免费在线观看电影| 中文字幕人妻熟人妻熟丝袜美 | 高清日韩中文字幕在线| 久久天躁狠狠躁夜夜2o2o| 国产 一区 欧美 日韩| 99国产极品粉嫩在线观看| 久久6这里有精品| 观看免费一级毛片| 两个人的视频大全免费| 亚洲精品国产精品久久久不卡| 最新在线观看一区二区三区| 欧美日韩综合久久久久久 | 真实男女啪啪啪动态图| 好男人电影高清在线观看| 舔av片在线| 国内久久婷婷六月综合欲色啪| 亚洲成人久久性| 91在线精品国自产拍蜜月 | 国产成年人精品一区二区| av片东京热男人的天堂| 女同久久另类99精品国产91| 亚洲欧美一区二区三区黑人| 日本熟妇午夜| 欧美激情在线99| 欧美日韩瑟瑟在线播放| 母亲3免费完整高清在线观看| 欧美精品啪啪一区二区三区| 欧美黑人巨大hd| 亚洲色图av天堂| 免费人成视频x8x8入口观看| 老司机在亚洲福利影院| 亚洲精品久久国产高清桃花| 精品一区二区三区视频在线观看免费| 久9热在线精品视频| 老汉色∧v一级毛片| 真人一进一出gif抽搐免费| 老汉色∧v一级毛片| 欧美色视频一区免费| 12—13女人毛片做爰片一| 精品一区二区三区视频在线 | 少妇人妻精品综合一区二区 | 国产精品日韩av在线免费观看| 免费在线观看日本一区| 99精品欧美一区二区三区四区| 淫妇啪啪啪对白视频| 国产成年人精品一区二区| 亚洲不卡免费看| 中文字幕高清在线视频| 国产亚洲精品久久久久久毛片| 香蕉av资源在线| 午夜免费激情av| 欧美国产日韩亚洲一区| 此物有八面人人有两片| 亚洲av第一区精品v没综合| 国产成人av激情在线播放| 国产精品综合久久久久久久免费| 欧美日韩乱码在线| 99热这里只有是精品50| 好男人电影高清在线观看| 两个人视频免费观看高清| 成人一区二区视频在线观看| 欧美bdsm另类| 午夜激情欧美在线| 日本成人三级电影网站| 免费大片18禁| 国产高清三级在线| 国产主播在线观看一区二区| 中文字幕精品亚洲无线码一区| 日本免费一区二区三区高清不卡| 亚洲人与动物交配视频| 亚洲欧美日韩无卡精品| 亚洲精品乱码久久久v下载方式 | 国产欧美日韩精品一区二区| 嫩草影院精品99| 香蕉久久夜色| 99久久无色码亚洲精品果冻| 女同久久另类99精品国产91| 国产欧美日韩一区二区精品| av天堂在线播放| 久久精品国产99精品国产亚洲性色| 亚洲精品成人久久久久久| 精品久久久久久成人av| 岛国视频午夜一区免费看| 免费人成在线观看视频色| 国产亚洲欧美在线一区二区| 日本黄色片子视频| 亚洲成人精品中文字幕电影| 午夜福利成人在线免费观看| 男人舔奶头视频| 精品一区二区三区视频在线 | 免费人成视频x8x8入口观看| 三级男女做爰猛烈吃奶摸视频| 日本一二三区视频观看| 91字幕亚洲| 首页视频小说图片口味搜索| 九九久久精品国产亚洲av麻豆| 国产高清videossex| 国产高清视频在线观看网站| 中文字幕av在线有码专区| 免费观看人在逋| 老司机在亚洲福利影院| 一本一本综合久久| 亚洲精品在线观看二区| 成人亚洲精品av一区二区| 搡女人真爽免费视频火全软件 | 在线观看一区二区三区| 中文字幕人妻熟人妻熟丝袜美 | 国产精品99久久久久久久久| 色精品久久人妻99蜜桃| 一区二区三区高清视频在线| aaaaa片日本免费| av国产免费在线观看| www.熟女人妻精品国产| 国产成人福利小说| 搞女人的毛片| 日韩高清综合在线| 日韩免费av在线播放| 首页视频小说图片口味搜索| 国产精品久久久久久精品电影| 亚洲在线观看片| 90打野战视频偷拍视频| 老熟妇乱子伦视频在线观看| 国产精品嫩草影院av在线观看 | 免费观看精品视频网站| 噜噜噜噜噜久久久久久91| 国内精品一区二区在线观看| 天天躁日日操中文字幕| 一区二区三区激情视频| 日韩有码中文字幕| 成人三级黄色视频| 最近最新中文字幕大全电影3| 久久久久久国产a免费观看| 欧美乱色亚洲激情| 日日干狠狠操夜夜爽| 国产精品一区二区三区四区免费观看 | 国产aⅴ精品一区二区三区波| 麻豆国产97在线/欧美| 国产精品亚洲美女久久久| 国产精品久久久久久人妻精品电影| 国语自产精品视频在线第100页| 午夜精品在线福利| 国产三级中文精品| 人妻久久中文字幕网| 丰满人妻一区二区三区视频av | 18禁国产床啪视频网站| 欧美最黄视频在线播放免费| 香蕉丝袜av| 久久国产精品影院| 日韩有码中文字幕| 午夜福利欧美成人| 99热这里只有是精品50| 国内毛片毛片毛片毛片毛片| 免费无遮挡裸体视频| 男人和女人高潮做爰伦理| 欧美又色又爽又黄视频| 蜜桃久久精品国产亚洲av| 国产成年人精品一区二区| 久久精品国产综合久久久| 欧美在线一区亚洲| 国产高潮美女av| aaaaa片日本免费| 男女做爰动态图高潮gif福利片| 国产成人av激情在线播放| 欧美性感艳星| 一级黄色大片毛片| 亚洲成人久久爱视频| 91av网一区二区| 久久久久久久亚洲中文字幕 | 中文字幕精品亚洲无线码一区| 亚洲精品成人久久久久久| 国产aⅴ精品一区二区三区波| 欧美性猛交黑人性爽| www日本在线高清视频| 青草久久国产| 国产三级中文精品| 亚洲国产中文字幕在线视频| 女生性感内裤真人,穿戴方法视频| 在线十欧美十亚洲十日本专区| 午夜免费激情av| 人人妻人人澡欧美一区二区| 国产av一区在线观看免费| 欧美日韩中文字幕国产精品一区二区三区| 欧美激情久久久久久爽电影| 久久久色成人| 欧美在线黄色| 窝窝影院91人妻| 91在线精品国自产拍蜜月 | 精品熟女少妇八av免费久了| 亚洲 国产 在线| 在线观看免费午夜福利视频| ponron亚洲| 熟女人妻精品中文字幕| 成人av一区二区三区在线看| 麻豆国产av国片精品| 亚洲 国产 在线| 久9热在线精品视频| 日韩精品青青久久久久久| 可以在线观看的亚洲视频| 久久久久久九九精品二区国产| 欧美日韩一级在线毛片| 12—13女人毛片做爰片一| 国产真实乱freesex| 嫩草影视91久久| aaaaa片日本免费| 神马国产精品三级电影在线观看| 午夜激情福利司机影院| 亚洲中文字幕一区二区三区有码在线看| 国产精品嫩草影院av在线观看 | 天堂√8在线中文| 美女被艹到高潮喷水动态| 一进一出好大好爽视频| 亚洲第一电影网av| 色吧在线观看| 精品久久久久久久久久免费视频| 国产精品一及| 最新美女视频免费是黄的| www.999成人在线观看| 亚洲在线观看片| 久久精品综合一区二区三区| 真人做人爱边吃奶动态| 国产精品女同一区二区软件 | 在线观看免费午夜福利视频| 精品人妻偷拍中文字幕| 最新在线观看一区二区三区| 搡老岳熟女国产| 国内久久婷婷六月综合欲色啪| 免费电影在线观看免费观看| 高潮久久久久久久久久久不卡| 有码 亚洲区| 国产伦一二天堂av在线观看| 亚洲欧美一区二区三区黑人| 在线观看66精品国产| 桃红色精品国产亚洲av| 91久久精品电影网| 在线免费观看不下载黄p国产 | 好看av亚洲va欧美ⅴa在| 国产成人影院久久av| 国产真实伦视频高清在线观看 | 亚洲五月天丁香| 香蕉久久夜色| 精品人妻1区二区| 色视频www国产| 一a级毛片在线观看| 啦啦啦观看免费观看视频高清| 久久久精品欧美日韩精品| 亚洲欧美日韩东京热| 精品久久久久久久末码| 12—13女人毛片做爰片一| 久久草成人影院| 丰满的人妻完整版| 国产色婷婷99| 噜噜噜噜噜久久久久久91| 亚洲最大成人中文| 欧美成人a在线观看| 亚洲国产高清在线一区二区三| 18禁黄网站禁片午夜丰满| 在线观看一区二区三区| 精品久久久久久久久久久久久| 哪里可以看免费的av片| 内射极品少妇av片p| 欧美xxxx黑人xx丫x性爽| 此物有八面人人有两片| 老司机福利观看| 中文字幕人妻丝袜一区二区| 91在线观看av| 亚洲精华国产精华精| 91久久精品电影网| 国产视频内射| 久久精品国产清高在天天线| 高清在线国产一区| 亚洲18禁久久av| 在线国产一区二区在线| 俄罗斯特黄特色一大片| 国产精品乱码一区二三区的特点| 国产精品久久视频播放|