• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Total Transmission from Deep Learning Designs

    2022-04-19 05:48:56BeiWuZhanLeiHaoJinHuiChenQiaoLiangBaoYiNengLiuHuanYangChen

    Bei Wu | Zhan-Lei Hao | Jin-Hui Chen | Qiao-Liang Bao | Yi-Neng Liu |Huan-Yang Chen

    Abstract—Total transmission plays an important role in efficiency improvement and wavefront control,and has made great progress in many applications,such as the optical film and signal transmission.Therefore,many traditional physical methods represented by transformation optics have been studied to achieve total transmission.However,these methods have strict limitations on the size of the photonic structure,and the calculation is complex.Here,we exploit deep learning to achieve this goal.In deep learning,the data-driven prediction and design are carried out by artificial neural networks (ANNs),which provide a convenient architecture for large dataset problems.By taking the transmission characteristic of the multi-layer stacks as an example,we demonstrate how optical materials can be designed by using ANNs.The trained network directly establishes the mapping from optical materials to transmission spectra,and enables the forward spectral prediction and inverse material design of total transmission in the given parameter space.Our work paves the way for the optical material design with special properties based on deep learning.

    Index Terms—Artificial neural networks (ANNs),deep learning,forward spectral prediction,inverse material design,total transmission.

    1.lntroduction

    In the past decades,optics and photonics have developed rapidly,showing a strong capability in tailoring light-matter interactions.For example,photonic crystals have the ability to achieve complete photonic band gaps[1].Metamaterials demonstrate special properties,such as the negative refractive index[2],[3].Surface plasmon polaritons can break the traditional diffraction limit and regulate electromagnetic waves at the subwavelength scale[4].Meanwhile,the structure design plays a central role in optics and photonics,ranging from individual plasmonic nanoparticles[5]-[7]to metamaterials composed of meta-atoms[8],and to integrated photonic devices[9].At present,there are mainly two traditional photonic structure design methods.First,we can rely on the physics-based method,which is mainly proceeded from scientific intuition and prior knowledge.For example,dielectric and metallic nanoparticles with simple geometries can be accurately calculated by the Mie theory[10].However,when the geometric structure or material property of the photonic structure is complex,it will be difficult to design accurately.Second,we can resort to electromagnetic modeling based on numerical methods,which mainly include the method of moment (MOM),finite element method (FEM),and finite difference time domain (FDTD).By setting up sufficient mesh grids and iterative steps,the optical response of a specific structure can be calculated accurately.However,it is often necessary to fine tune the geometry and simulate repeatedly in order to gradually approach the optimal structure,which is a waste of computing resources.Moreover,only limited design parameters can be obtained in the optimization process.

    In this work,we realize total transmission through a reasonable photonic structure design.In the past,the realization of total transmission often required the simultaneous analysis of homogenization and transformation optics[11]-[14].The transmission characteristics of a multi-layer stack can be analyzed by replacing it with an effective medium[15].In electromagnetics,the concept of homogenization is to replace a subwavelength-sized complex structure with a uniform effective medium,which goes back to the Lorentz-Lorenz and Maxwell-Garnet effective medium theories[1],[16].Nowadays,the modern method of homogenization can be used to calculate the effective parameters more accurately,and can also be applied to calculate various geometric structures.Although the effective medium theory is available and accurate in some scenarios,in the presence of gain or the strong surface wave interaction,the transmission characteristics of metal dielectric multi-layer stacks will be very sensitive to the detail structures,such as the cases related to hyperbolic metamaterials[17].Moreover,if the incident wavelength is reduced to about the size of the photonic structure,homogenization will be no more effective in periodic metal-based structures[15],[18],[19].

    Hence,a method that could solve the above problems is highly anticipated.And deep learning may be the most promising one.Although it draws inspiration from the biological mechanisms of life,the concept of deep learning goes far beyond the analogies of biological nerves.The unique advantage of deep learning lies in its data-driven ability,which enables a model to quickly design the optimal structure that matches the target optical response,and avoids the tedious iterative procedure.In recent years,deep learning allows the ondemand design for many applications,such as the plasmonic nanostructure design[7],three-dimensional (3D)vectorial holography[9],and self-adaptive microwave cloak[20].It can commendably solve the time-consuming and low-efficiency problems in traditional design methods.In fact,there are many groups applying deep learning to inversely design the photonic structure according to the given spectra.For example,Peurifoyet al.trained artificial neural networks (ANNs) to design the thickness per shell of a nanophotonic particle according to the given scattering cross section[6].Liuet al.exploited deep learning to design the layer thickness of a thin film according to the given transmission spectrum[21].However,these studies are based on ordinary spectra and their applications are limited.The photonic structures with special properties,such as total transmission,total reflection,and total absorption,have not been inversely designed with deep learning.Therefore,the inverse-design algorithm based on deep learning might show a strong ability in dealing with complex systems for total transmission or other similar effects with a large degree of freedom.

    In this paper,we exploit deep learning to design the optical materials with the target optical properties,specifically,total transmission at any incident angle for a broadband frequency range.Our design approach involves designing an appropriate equivalent description about the transfer matrix method (TMM),training the network model for the forward spectral prediction,and achieving the inverse-design model based on the pre-trained tandem network.Finally,the material parameters can be obtained by applying the total transmission spectrum on the inverse-design network,which is also sketched inFig.1.

    2.Methods

    2.1.Generating Training Data with TMM

    We exploit TMM to generate the training data,which is a powerful tool to analyze the propagation of light through layered dielectric media[22].We consider the dielectric multi-layer stack displayed inFig.1(a),and put it in the air.Here,we take the p-polarized incident wave as an example,and the magnetic fields on both sides of the interface are polarized along theydirection and can be written as the forms ofH1,yandH2,yin (1):

    wherekl,xandkl,z(l=1,2) are the components of the wave vector along thexandzdirections,respectively;alandblare the field coefficients,which can be solved with the transfer matrix of the interface.On the right side of the equation,the first and second terms in parentheses represent the waves propagating in the directions ofzand -z,respectively.For the p-polarized wave,by applying the boundary conditions,the transmission matrix for the p-polarized wave can be obtained as

    whereεl(l=1,2) is the relative dielectric constant.The transmission matrix connects the fields across the interface of different medium layers.When the fields propagate in a homogeneous medium,it can be shown that the electric or magnetic fields atz+Δzcan be related to those at thezposition by a 2×2 propagation matrix[23]:

    ForNlayers shown inFig.1(a),the total transfer matrix can be obtained from the transmission matrices on different interfaces and the propagation matrices in different homogeneous media.We can relate field coefficients of incident and outgoing waves by az+Δztransfer matrix M,namely,

    Eventually,we can calculate the transmittance for the p-polarized wave as

    whereM11is the element in the first row and the first column of the transfer matrix M.

    Here,we focus on the material properties of the multi-layer stacks.In order to prepare data for deep learning,we construct a series of input-output pairs as follows.For the convenience of expression and analysis,we introduce the state vector d=(ε1,ε2,···,εI)Tas the input,which is composed of the material properties per layer,such as the dielectric constant,andIrepresents the number of parameters.Then we exploit TMM to calculate the corresponding transmittance and introduce the label vector β=(T1,T2,···,TN)Tas the output,which is obtained by the transmittance for different incident angles and wavelengths.Specifically,we select a point every 2° in the range of the incident angle from 0° to 88°,and a point every 22 mm in the range of the incident wavelength from 70 mm to 158 mm.It is worth noting that the light transmittance is very low at normal incidence.However,in the inverse design,to achieve total transmission,the label vector needs to be an all-one vector,and the low transmittance at normal incidence will make the convergence slow or diverge.Therefore,when we generate the training data,we limit the maximum incident angle to 88°,which will accelerate the convergence speed of ANNs without decreasing the accuracy.

    From the above description,we generate a 5×104-sample dataset (80% for the training set,10% for the validation set,and 10% for the test set).Here,the training set is the data sample for fitting the network;the validation set is for adjusting the hyper-parameters,such as the learning rate,loss function,and weight initialization and activation function,and for the preliminary evaluation of the ability of the neural network;the test set is used for evaluating the ultimate generalization ability of the network model.Next,ANNs will be trained and evaluated with these samples.

    2.2.Building and Training the Deep Learning Network

    Deep learning has a strong generalization ability in the given design space.Furthermore,it can be used to design the optical materials that conform to our target quickly and accurately without time-consuming numerical calculations.In order to implement two functions of the forward spectral prediction and inverse material design,we build a tandem network model,in which an inverse-design network G cascades with a forward-modeling network F,as shown inFig.2(a).Here,the forward-modeling network predicts the transmittance F(d) based on the input state vector d.It has 6 hidden layers with 225 neurons per layer,and the training target is to minimize the cost function designed as

    where βiis the label vector of the input state vector,F (d) is the predicted transmittance,andLis the number of neurons in each batch.Then we exploit the AdaDelta optimizer to train the forward-modeling network,which is an adaptive learning rate optimization algorithm.The results show that it converges quickly (nearly after 800 epochs),because an array of material parameters will definitely correspond to one transmission characteristic:One-to-one relationship.

    Fig.2.Schematic representation of the neural network model,state vector,and label vector:(a) tandem network in which an inverse-design network G cascades with a forward-modeling network F,(b) state vector d composed of the material properties per layer,and (c) label vector β obtained by the transmittance for different incident angles and wavelengths.

    Similarly,the inverse-design network has 6 hidden layers with 225 neurons per layer.It designs the material parameters G(β) based on the input label vector β.The trained inverse-design network can accurately and rapidly design the material parameters satisfying the target transmission characteristics.However,the same training approach for the inverse-design network would make it difficult to converge due to non-uniqueness mapping:The transmission spectrum does not correspond to only one combination of materials.The tandem network model can effectively solve this problem.It means that instead of directly training the inverse-design network with the training datasets β and d,we replace the datasets with β and F(d) to train the whole tandem network model.In this way,the designed material parameters G(β) do not need to be the same as the state vector d.On the contrary,as long as the predicted transmittance of the designed material F(G(β)) is consistent with the label vector β,the designed material parameters are in line with the requirements.The training target of the tandem network model is to minimize the cost function designed as the mean-square error (MSE) of each point on the spectrum,which indicates the difference between the label vectors and the predicted ones.

    During the tandem network model training,the weights of the trained forward-modeling network are frozen,and only the inverse-design network is updated.Similarly,the AdaDelta optimizer is exploited to train it,and the tandem network will converge after nearly 1200 epochs.Table 1presentsMSE for different sizes of multi-layer stacks.Results show that the errors are close,indicating no over-fitting results caused.

    Table 1:Accuracy of the neural network for different sizes of multi-layer stacks

    3.Results and Discussion

    3.1.Deep Learning Can Realize Spectral Prediction

    For the spectral prediction,we expect that when we input any material parameters into the network model,it can quickly calculate the corresponding transmission spectra.The results show that deep learning can effectively realize the spectral prediction.

    We test the spectral prediction on an instance—a six-layer stack with the thickness of each layer fixed at 1 mm.The relative permeability per layer is fixed at 1 to ensure that the materials are easily available,whereas the relative dielectric constant can be any value that matches the condition (named the random model),as shown inFig.2(b).We set the state vector to be d=(ε1,ε2,ε3,ε4,ε5,ε6)T=(2.1,4.8,3.3,4.3,2.5,7.0)T,and then calculate the corresponding transmission spectra with TMM,deep learning,and COMSOL Multiphysics,respectively,as shown inFig.3(a).It is worth noting that,unlike other ordinary spectra,we select a point every 22 mm in the range of the incident wavelength from 70 mm to 158 mm to meet the broadband characteristics.

    It can be clearly found that the results of the three methods are all very accurate and consistent to each other.However,under the same hardware conditions,it only took 0.07 s to calculate with deep learning,but 70 s to calculate with COMSOL Multiphysics.Deep learning is obviously 1000 times faster than numerical calculations.

    3.2.Deep Learning Can Achieve Total Transmission

    To achieve total transmission,the label vector is set to be an all-one vector and applied on the inversedesign network,then the optical materials will be designed to obtain the transmission spectrum that satisfies the condition.It is essentially an inverse-design problem,and the results show that deep learning can effectively realize this function.

    We test this inverse design on two examples.The first one is an alternative six-layer structure (named the ABAB model),and the state vector is d=(εa,εb,μa,μb)T,as shown inFig.2(b).Similarly,the thickness per layer is fixed at 1 mm,and the incident wavelength ranges from 70 mm to 158 mm.We have the network model learn what optical materials could produce the label vector β=(1,1,···,1)T,and the result shows that d=(2,0.35,0.15,3.2)T.The transmission spectra corresponding to the designed material parameters are shown inFig.3(b).It can be seen that total transmission is realized.

    As explained in Section 1,the effective medium theory can also be exploited to analyze the material properties to achieve total transmission.According to the theory,the ABAB-type multi-layer structure can behave as an anisotropic medium if the thickness of each layer is the same and much less than the operative wavelength ofλ.Taking the above ABAB model as an example,we can calculate the equivalent dielectric constants (ε) and permeability (μ)[24],[25]:

    whereμaandμbare the relative permeability of A and B layers,respectively;εaandεbare the relative dielectric constants of A and B layers,respectively;ε‖andε⊥are the equivalent relative dielectric constants in parallel and perpendicular to the optical axis,respectively.

    According to transformation optics,total transmission can be achieved if the following (9) is satisfied[26]:

    It can be found that in the above ABAB model,the material designed by the neural network does not exactly satisfy transformation optics,but as shown inFig.3(b),it can also realize total transmission at most incident angles (except for angles around 90°) for a broadband frequency range.In fact,in addition to the material parameters we showed above,the neural network has also designed many other material parameters,some of which meet the requirements of transformation optics.Nevertheless,we choose the above optical material as a demonstration,just to show that the material parameters designed by deep learning are not restricted by the traditional physical methods.However,such irregular material parameters might have similar properties.Moreover,if the wavelength is reduced to about the thickness,the performance of the effective medium theory will become invalid,but our method does not have this limitation,even if the wavelength and thickness are almost the same in the realm of photonic crystals,the calculation results will still be accurate.Based on the discussion,we believe that deep learning goes beyond traditional physical methods in a sense.

    In the second example,the model is consistent with that in the spectral prediction (the random model).Specifically,the relative dielectric constant of each layer is not correlated and able to be any value that matches the condition,whereas the relative permeability is fixed at 1.In this case,the state vector is d=(ε1,ε2,ε3,ε4,ε5,ε6)T,similarly,the designed optical material needs to satisfy the label vector β=(1,1,···,1)T,as shown inFig.2(c).The result shows that d=(15.02,0.32,0.42,0.39,-0.63,-0.74)T,and the corresponding transmission spectra are shown inFig.3(c).It can be seen that if the wavelength is greater than 100 mm and the incident angle is in the range from 0° to 85°,the transmittance is close to 1,i.e.,total transmission.We can verify this effect from the electric field distributions simulated by COMSOL Multiphysics,as shown inFig.4(a).In the simulation,we chose 80 mm as the incident wavelength,and the transmission spectra change little with the incident wavelength,as shown inFig.4(b).It is worth noting that this instance does not strictly satisfy the broadband condition.When the incident wavelength is too small,the multi-layer stack will no longer achieve total transmission,because the material designed by the neural network cannot be equivalent to the air with the effective medium theory and the light will be reflected in this case.

    Fig.4.Validation results of the total transmission case:(a) electric field distributions simulated by COMSOL Multiphysics and (b) transmission spectra varying with the incident wavelength.

    It will be very complicated if we solve the second instance with transformation optics,and the designed materials will be gradient,which are difficult to manufacture.By introducing deep learning,the timeconsuming numerical calculations are avoided.Moreover,the material designed by the neural network is not limited by transformation optics,but could be the non-gradient materials (maybe with some kind of randomness).It is worth mentioning that in order to test the generalization performance of the network model,our given training data do not include total transmission samples.Under this condition,deep learning can still design the materials satisfying total transmission,and the generated parameters in the random model are beyond the value range of the state vector d from 2 to 8.This shows that deep learning is not simply fitting the data,but further learning the underlying physical laws of the data[27].

    4.Conclusions

    In this article,we proposed to exploit the deep learning approach for predicting the transmission spectra based solely on the optical material parameters.We have designed,trained,and tested the proposed scheme,showing a very accurate prediction of the transmission characteristics for given materials and significantly speeding up the spectral prediction of the multi-layer stacks.Although we focused on the optimization of material parameters,this approach can be easy to be extended to design the thickness when the material is specified,and to other research fields,such as 3D vectorial holography[9],topological photonics[28],and optical logic operation[29].It can also effectively solve the inverse-design problem.Specifically,we exploit deep learning to achieve total transmission at any incident angle for a broadband frequency range,which might even go beyond traditional physical methods,such as transformation optics.

    Disclosures

    The authors declare no conflicts of interest.

    国产一区二区三区综合在线观看| 搡老熟女国产l中国老女人| 曰老女人黄片| 18禁观看日本| 变态另类丝袜制服| 国产麻豆成人av免费视频| 国产成人啪精品午夜网站| 成人永久免费在线观看视频| 精品久久久久久,| 美女高潮到喷水免费观看| 在线观看免费日韩欧美大片| 久久伊人香网站| 精品久久久精品久久久| 日韩成人在线观看一区二区三区| 91av网站免费观看| 精品无人区乱码1区二区| 一级毛片女人18水好多| 亚洲全国av大片| 亚洲精品美女久久久久99蜜臀| 久久精品国产亚洲av高清一级| 操美女的视频在线观看| 又黄又粗又硬又大视频| 亚洲第一av免费看| 亚洲国产欧美一区二区综合| √禁漫天堂资源中文www| 欧美性长视频在线观看| 午夜福利欧美成人| 国产精品久久视频播放| 国产高清videossex| 精品卡一卡二卡四卡免费| 日韩欧美在线二视频| 欧美色欧美亚洲另类二区 | 婷婷丁香在线五月| 叶爱在线成人免费视频播放| 无遮挡黄片免费观看| 亚洲av成人一区二区三| www.www免费av| 宅男免费午夜| 婷婷六月久久综合丁香| 一本大道久久a久久精品| 国产精品久久久久久亚洲av鲁大| 午夜视频精品福利| 波多野结衣av一区二区av| 91麻豆精品激情在线观看国产| 日本精品一区二区三区蜜桃| 国产亚洲欧美在线一区二区| 亚洲av第一区精品v没综合| 亚洲五月婷婷丁香| 国内精品久久久久久久电影| 国产欧美日韩一区二区精品| 国产精品免费视频内射| 无限看片的www在线观看| 国产精品99久久99久久久不卡| 亚洲精品在线观看二区| 久久精品国产亚洲av高清一级| 精品午夜福利视频在线观看一区| 一二三四在线观看免费中文在| 日韩精品免费视频一区二区三区| 男人的好看免费观看在线视频 | 给我免费播放毛片高清在线观看| 国产精品一区二区免费欧美| 午夜视频精品福利| 日本免费a在线| 狂野欧美激情性xxxx| 国产成+人综合+亚洲专区| 涩涩av久久男人的天堂| 久久久久久久精品吃奶| 久久热在线av| 神马国产精品三级电影在线观看 | 亚洲熟妇中文字幕五十中出| 一区在线观看完整版| 看免费av毛片| 欧美日本亚洲视频在线播放| 免费看美女性在线毛片视频| 欧美另类亚洲清纯唯美| 亚洲电影在线观看av| 天堂动漫精品| 欧美色欧美亚洲另类二区 | 中国美女看黄片| 正在播放国产对白刺激| 一进一出抽搐gif免费好疼| 女生性感内裤真人,穿戴方法视频| 国产麻豆成人av免费视频| netflix在线观看网站| 欧美日本亚洲视频在线播放| 亚洲黑人精品在线| 天堂影院成人在线观看| 激情视频va一区二区三区| 美女高潮喷水抽搐中文字幕| 热99re8久久精品国产| 精品卡一卡二卡四卡免费| 久久人人精品亚洲av| 91av网站免费观看| 亚洲国产精品久久男人天堂| 亚洲国产欧美日韩在线播放| 精品国产乱码久久久久久男人| 精品欧美一区二区三区在线| 亚洲成人免费电影在线观看| 国产精品爽爽va在线观看网站 | 国产片内射在线| 日韩中文字幕欧美一区二区| 在线天堂中文资源库| 99久久国产精品久久久| 岛国在线观看网站| 国产精品,欧美在线| 香蕉国产在线看| 亚洲精品av麻豆狂野| 欧美+亚洲+日韩+国产| 亚洲九九香蕉| 伦理电影免费视频| 97碰自拍视频| 啪啪无遮挡十八禁网站| 两个人看的免费小视频| 午夜福利高清视频| 亚洲av熟女| svipshipincom国产片| 中文亚洲av片在线观看爽| 天堂√8在线中文| aaaaa片日本免费| 搞女人的毛片| 色综合亚洲欧美另类图片| 欧美乱妇无乱码| 丁香六月欧美| 97人妻精品一区二区三区麻豆 | 无人区码免费观看不卡| 成年版毛片免费区| 一二三四社区在线视频社区8| 可以在线观看的亚洲视频| 女人爽到高潮嗷嗷叫在线视频| 一级a爱片免费观看的视频| 亚洲五月天丁香| 91老司机精品| 国产又爽黄色视频| 国产av又大| 热re99久久国产66热| 午夜福利18| 精品免费久久久久久久清纯| 国产片内射在线| 久久久久久人人人人人| 男女之事视频高清在线观看| 国产日韩一区二区三区精品不卡| 嫩草影视91久久| 欧美成人性av电影在线观看| 亚洲 欧美一区二区三区| 亚洲伊人色综图| av视频在线观看入口| 在线播放国产精品三级| 亚洲少妇的诱惑av| 亚洲人成电影观看| 午夜福利影视在线免费观看| 亚洲av美国av| av片东京热男人的天堂| a在线观看视频网站| 国产在线精品亚洲第一网站| 午夜福利高清视频| 亚洲av美国av| 操美女的视频在线观看| 国产亚洲精品av在线| 亚洲精品在线美女| 51午夜福利影视在线观看| 久久久久精品国产欧美久久久| 国产成人欧美| 中文字幕另类日韩欧美亚洲嫩草| 黄色丝袜av网址大全| 国产欧美日韩一区二区三区在线| 亚洲,欧美精品.| 国产精品免费一区二区三区在线| 精品久久久精品久久久| 激情视频va一区二区三区| 97人妻精品一区二区三区麻豆 | 中文字幕精品免费在线观看视频| 91成人精品电影| 男女之事视频高清在线观看| 操出白浆在线播放| 最新美女视频免费是黄的| 激情在线观看视频在线高清| 成人国产一区最新在线观看| 国产私拍福利视频在线观看| 国产成人精品无人区| 久久久精品国产亚洲av高清涩受| 久久国产精品人妻蜜桃| 久久精品亚洲熟妇少妇任你| 免费看a级黄色片| 日韩三级视频一区二区三区| 一边摸一边抽搐一进一小说| 欧美日韩亚洲国产一区二区在线观看| 99久久99久久久精品蜜桃| 麻豆久久精品国产亚洲av| 国产一卡二卡三卡精品| 久久久久九九精品影院| 人妻久久中文字幕网| 在线十欧美十亚洲十日本专区| 久久狼人影院| 男人操女人黄网站| 国产人伦9x9x在线观看| 日韩中文字幕欧美一区二区| 精品国产一区二区三区四区第35| 日日干狠狠操夜夜爽| 久久这里只有精品19| 男男h啪啪无遮挡| 久久国产乱子伦精品免费另类| 国产精品精品国产色婷婷| 亚洲色图 男人天堂 中文字幕| 色尼玛亚洲综合影院| 久久精品亚洲熟妇少妇任你| 人人妻人人澡欧美一区二区 | 99国产精品99久久久久| 亚洲少妇的诱惑av| 两个人视频免费观看高清| aaaaa片日本免费| 国产伦一二天堂av在线观看| 天天躁狠狠躁夜夜躁狠狠躁| 国产精品精品国产色婷婷| 国产成人av教育| 午夜日韩欧美国产| 国产精品影院久久| 欧美日本中文国产一区发布| 老鸭窝网址在线观看| 亚洲一区高清亚洲精品| 91精品国产国语对白视频| 亚洲国产欧美日韩在线播放| 国产成年人精品一区二区| 久久天躁狠狠躁夜夜2o2o| 国产精品久久电影中文字幕| 老司机深夜福利视频在线观看| 国产亚洲精品第一综合不卡| 女性生殖器流出的白浆| 在线观看日韩欧美| 亚洲午夜理论影院| 久久久国产欧美日韩av| 一夜夜www| 成人18禁高潮啪啪吃奶动态图| 99国产极品粉嫩在线观看| 这个男人来自地球电影免费观看| 又黄又爽又免费观看的视频| 免费高清在线观看日韩| 国产精品一区二区在线不卡| 国产主播在线观看一区二区| 夜夜夜夜夜久久久久| 动漫黄色视频在线观看| 国产精品 国内视频| 在线国产一区二区在线| 变态另类丝袜制服| 人人澡人人妻人| 99re在线观看精品视频| 美女 人体艺术 gogo| 亚洲五月色婷婷综合| 日韩欧美免费精品| 色综合婷婷激情| 国产一卡二卡三卡精品| 日本在线视频免费播放| 男人舔女人下体高潮全视频| 亚洲成国产人片在线观看| 丝袜在线中文字幕| 十八禁人妻一区二区| 亚洲自偷自拍图片 自拍| 国产欧美日韩精品亚洲av| svipshipincom国产片| 亚洲美女黄片视频| 日韩高清综合在线| 亚洲精品一卡2卡三卡4卡5卡| 黄色视频,在线免费观看| 9色porny在线观看| 18禁国产床啪视频网站| 欧美一级毛片孕妇| 欧美日本亚洲视频在线播放| 久久这里只有精品19| 亚洲一区二区三区色噜噜| 亚洲黑人精品在线| 美国免费a级毛片| 国产黄a三级三级三级人| 亚洲第一电影网av| 久热这里只有精品99| 两人在一起打扑克的视频| 老汉色∧v一级毛片| 电影成人av| 亚洲国产日韩欧美精品在线观看 | 亚洲一卡2卡3卡4卡5卡精品中文| 亚洲 欧美 日韩 在线 免费| 人成视频在线观看免费观看| 9191精品国产免费久久| 国产精品爽爽va在线观看网站 | 国产成人精品久久二区二区免费| 精品乱码久久久久久99久播| 级片在线观看| 婷婷六月久久综合丁香| 国产亚洲欧美精品永久| 精品人妻1区二区| 一级作爱视频免费观看| 每晚都被弄得嗷嗷叫到高潮| 国产欧美日韩一区二区精品| 国产视频一区二区在线看| 级片在线观看| 丝袜在线中文字幕| 一个人免费在线观看的高清视频| 国产极品粉嫩免费观看在线| 波多野结衣巨乳人妻| 亚洲少妇的诱惑av| 久久中文字幕一级| 女人精品久久久久毛片| 天天一区二区日本电影三级 | 色综合欧美亚洲国产小说| 成人国产综合亚洲| 欧美黄色片欧美黄色片| 91国产中文字幕| 国产成人免费无遮挡视频| 人人妻,人人澡人人爽秒播| 欧美激情高清一区二区三区| 国产激情久久老熟女| 妹子高潮喷水视频| 国产成人精品在线电影| 色av中文字幕| 999精品在线视频| 国产精品av久久久久免费| 色av中文字幕| 国产午夜福利久久久久久| 亚洲九九香蕉| 亚洲在线自拍视频| 亚洲第一av免费看| 久久性视频一级片| 9色porny在线观看| 国产又爽黄色视频| 久久九九热精品免费| 丰满人妻熟妇乱又伦精品不卡| 久久精品亚洲熟妇少妇任你| 国产一区二区在线av高清观看| 电影成人av| 香蕉久久夜色| 亚洲精品粉嫩美女一区| 久久午夜综合久久蜜桃| 国产一区在线观看成人免费| 人人妻人人澡人人看| 欧美成人午夜精品| 99国产精品一区二区蜜桃av| 亚洲国产日韩欧美精品在线观看 | 久久人人爽av亚洲精品天堂| 黑人巨大精品欧美一区二区蜜桃| a在线观看视频网站| 亚洲最大成人中文| 黄片小视频在线播放| 国产麻豆69| 久久精品91蜜桃| 国产精品爽爽va在线观看网站 | 操美女的视频在线观看| 国产午夜福利久久久久久| 免费人成视频x8x8入口观看| 9191精品国产免费久久| 亚洲熟妇熟女久久| 中文字幕久久专区| 777久久人妻少妇嫩草av网站| 少妇被粗大的猛进出69影院| 精品熟女少妇八av免费久了| 在线十欧美十亚洲十日本专区| 免费高清视频大片| 亚洲国产精品久久男人天堂| 精品电影一区二区在线| 性色av乱码一区二区三区2| 久久热在线av| 国产男靠女视频免费网站| 成年人黄色毛片网站| 亚洲专区国产一区二区| 免费女性裸体啪啪无遮挡网站| 国产99久久九九免费精品| 日本 av在线| 在线观看午夜福利视频| 99国产精品99久久久久| 人人妻人人爽人人添夜夜欢视频| 久久精品国产99精品国产亚洲性色 | 99精品久久久久人妻精品| 国产亚洲精品综合一区在线观看 | 亚洲专区字幕在线| 18禁国产床啪视频网站| 十分钟在线观看高清视频www| 99riav亚洲国产免费| 欧洲精品卡2卡3卡4卡5卡区| 亚洲电影在线观看av| 亚洲av日韩精品久久久久久密| 黄片播放在线免费| 成人三级黄色视频| 在线观看午夜福利视频| 99精品在免费线老司机午夜| 无遮挡黄片免费观看| 一级片免费观看大全| 99国产精品99久久久久| 亚洲国产毛片av蜜桃av| 国产亚洲av嫩草精品影院| 两性午夜刺激爽爽歪歪视频在线观看 | 18美女黄网站色大片免费观看| 一级毛片女人18水好多| 久久狼人影院| 无人区码免费观看不卡| 国产亚洲精品久久久久久毛片| 丝袜美腿诱惑在线| 亚洲在线自拍视频| 欧美+亚洲+日韩+国产| 高清黄色对白视频在线免费看| 一级毛片高清免费大全| 一区二区日韩欧美中文字幕| 女人精品久久久久毛片| 久久人人97超碰香蕉20202| 在线观看免费日韩欧美大片| 亚洲欧美日韩另类电影网站| 日韩av在线大香蕉| 99国产精品一区二区三区| 国产一区二区三区在线臀色熟女| 日韩大尺度精品在线看网址 | 亚洲情色 制服丝袜| 老熟妇仑乱视频hdxx| 丝袜人妻中文字幕| 美女国产高潮福利片在线看| or卡值多少钱| 国产成人精品久久二区二区免费| 久久久久久国产a免费观看| 正在播放国产对白刺激| 精品人妻在线不人妻| 日韩一卡2卡3卡4卡2021年| 美女国产高潮福利片在线看| 免费看美女性在线毛片视频| xxx96com| 日韩 欧美 亚洲 中文字幕| 人人妻人人澡人人看| 在线观看免费视频日本深夜| 欧美成人性av电影在线观看| 亚洲色图综合在线观看| 亚洲视频免费观看视频| 在线观看日韩欧美| 黄网站色视频无遮挡免费观看| 日韩欧美免费精品| 99久久99久久久精品蜜桃| 国产91精品成人一区二区三区| 欧美日韩亚洲国产一区二区在线观看| 亚洲国产欧美日韩在线播放| 国产成人精品久久二区二区91| 国产高清videossex| 女人高潮潮喷娇喘18禁视频| 午夜福利视频1000在线观看 | 日韩欧美三级三区| 亚洲欧美精品综合久久99| 午夜福利高清视频| 高清毛片免费观看视频网站| 久久精品亚洲精品国产色婷小说| 国产黄a三级三级三级人| 91大片在线观看| 1024香蕉在线观看| 久久这里只有精品19| 欧美一级a爱片免费观看看 | 国产精品一区二区免费欧美| 亚洲av美国av| 黄色丝袜av网址大全| 黄色女人牲交| 成年女人毛片免费观看观看9| 女人高潮潮喷娇喘18禁视频| 国产熟女午夜一区二区三区| 久久久久久久久中文| 他把我摸到了高潮在线观看| 精品国产一区二区久久| 少妇 在线观看| 亚洲性夜色夜夜综合| 免费观看精品视频网站| avwww免费| 日韩一卡2卡3卡4卡2021年| 久久欧美精品欧美久久欧美| 无人区码免费观看不卡| 乱人伦中国视频| 免费在线观看黄色视频的| 12—13女人毛片做爰片一| 亚洲一卡2卡3卡4卡5卡精品中文| 国产一区二区三区视频了| 国产精品久久视频播放| 久久久久久久久中文| 宅男免费午夜| e午夜精品久久久久久久| 一区二区三区高清视频在线| 日日干狠狠操夜夜爽| 日韩大尺度精品在线看网址 | 女人精品久久久久毛片| 韩国精品一区二区三区| 欧美日韩一级在线毛片| 亚洲国产欧美日韩在线播放| 黄片大片在线免费观看| 国产精品国产高清国产av| 黄色视频不卡| e午夜精品久久久久久久| 黄色 视频免费看| 日韩高清综合在线| 女同久久另类99精品国产91| 麻豆av在线久日| 一级黄色大片毛片| 亚洲五月天丁香| 免费无遮挡裸体视频| 国产精品 国内视频| 在线观看免费视频日本深夜| 亚洲精品久久国产高清桃花| 变态另类成人亚洲欧美熟女 | 亚洲国产精品合色在线| 51午夜福利影视在线观看| 黑人操中国人逼视频| 99国产精品免费福利视频| 91老司机精品| 国产精品二区激情视频| 午夜免费鲁丝| 老汉色av国产亚洲站长工具| 欧美最黄视频在线播放免费| 久久久水蜜桃国产精品网| 久久国产精品人妻蜜桃| 免费在线观看完整版高清| 人人澡人人妻人| 亚洲精品美女久久久久99蜜臀| 看免费av毛片| 啦啦啦 在线观看视频| 精品国产乱子伦一区二区三区| 欧美黄色片欧美黄色片| 国产精品一区二区在线不卡| 男女床上黄色一级片免费看| 脱女人内裤的视频| 日韩三级视频一区二区三区| 免费一级毛片在线播放高清视频 | 熟女少妇亚洲综合色aaa.| 日韩成人在线观看一区二区三区| 人人妻人人澡人人看| 免费在线观看影片大全网站| 在线观看免费日韩欧美大片| 亚洲色图av天堂| 性色av乱码一区二区三区2| 热re99久久国产66热| 亚洲成av片中文字幕在线观看| 91大片在线观看| 巨乳人妻的诱惑在线观看| 99久久国产精品久久久| 国产一级毛片七仙女欲春2 | 88av欧美| 国产av一区在线观看免费| 亚洲第一av免费看| 精品无人区乱码1区二区| 每晚都被弄得嗷嗷叫到高潮| 高清毛片免费观看视频网站| 在线观看66精品国产| 亚洲黑人精品在线| 亚洲av成人一区二区三| 91成年电影在线观看| 一本大道久久a久久精品| 一个人观看的视频www高清免费观看 | 国产精华一区二区三区| 国产一级毛片七仙女欲春2 | 性欧美人与动物交配| 一区福利在线观看| 黑人欧美特级aaaaaa片| 免费高清视频大片| 国产熟女xx| 久久久久久久久久久久大奶| 999久久久精品免费观看国产| 好男人在线观看高清免费视频 | 久久狼人影院| 高清在线国产一区| 一二三四社区在线视频社区8| 亚洲国产欧美网| 国产伦人伦偷精品视频| 亚洲午夜精品一区,二区,三区| 中国美女看黄片| 亚洲电影在线观看av| 国产精品美女特级片免费视频播放器 | 精品人妻1区二区| 欧美中文日本在线观看视频| 日韩欧美一区视频在线观看| 中文字幕久久专区| 欧美激情高清一区二区三区| 变态另类成人亚洲欧美熟女 | 91字幕亚洲| 欧美丝袜亚洲另类 | 国产又色又爽无遮挡免费看| 级片在线观看| 国产精品九九99| 香蕉久久夜色| 亚洲av熟女| 国产成人欧美| 精品久久蜜臀av无| 岛国视频午夜一区免费看| 丝袜美足系列| 亚洲七黄色美女视频| 精品不卡国产一区二区三区| 可以在线观看的亚洲视频| 成人三级黄色视频| 久久午夜综合久久蜜桃| 亚洲精品美女久久久久99蜜臀| 国产亚洲精品av在线| 狠狠狠狠99中文字幕| 成人国产综合亚洲| 青草久久国产| 久久欧美精品欧美久久欧美| 亚洲国产中文字幕在线视频| 在线免费观看的www视频| 欧美最黄视频在线播放免费| 国产av一区二区精品久久| 日韩大尺度精品在线看网址 | 欧美性长视频在线观看| 午夜福利视频1000在线观看 | 欧美日韩福利视频一区二区| 午夜影院日韩av| 黄色丝袜av网址大全| 美女高潮喷水抽搐中文字幕| 搡老熟女国产l中国老女人| 色精品久久人妻99蜜桃| 亚洲专区中文字幕在线| 老司机午夜福利在线观看视频| 国产精品,欧美在线| 91精品国产国语对白视频| а√天堂www在线а√下载| 一边摸一边做爽爽视频免费| 精品熟女少妇八av免费久了| 精品国产一区二区三区四区第35| 亚洲在线自拍视频| 国内毛片毛片毛片毛片毛片| 少妇 在线观看| 极品人妻少妇av视频| 一进一出好大好爽视频|