• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Short-term traffic flow prediction with PSR-XGBoost considering chaotic characteristics

    2022-04-19 03:30:02LiShubinKongXiangkeLiQingtongLinZhaofengZhaoZihao

    Li Shubin Kong Xiangke Li Qingtong Lin Zhaofeng Zhao Zihao

    (1School of Traffic Engineering, Shandong Jianzhu University, Jinan 250101, China)(2Department of Traffic Management Engineering, Shandong Police College, Jinan 250014, China)(3Beijing Urban Construction Design and Development Group Co., Ltd., Beijing 100017, China)

    Abstract:To improve the level of active traffic management, a short-term traffic flow prediction model is proposed by combining phase space reconstruction(PSR)and extreme gradient boosting(XGBoost)algorithms.Firstly, the traditional data preprocessing method is improved.The new method uses hierarchical clustering to determine the traffic flow state and fills in missing and abnormal data according to different traffic flow states.Secondly, one-dimensional data are mapped into a multidimensional data matrix through PSR, and the time series complex network is used to verify the data reconstruction effect.Finally, the multidimensional data matrix is inputted into the XGBoost model to predict future traffic flow parameters.The experimental results show that the mean square error, average absolute error, and average absolute percentage error of the prediction results of the PSR-XGBoost model are 5.399%, 1.632%, and 6.278%, respectively, and the required running time is 17.35 s.Compared with mathematical-statistical models and other machine learning models, the PSR-XGBoost model has clear advantages in multiple predictive indicators, proving its feasibility and superiority in short-term traffic flow prediction.

    Key words:traffic prediction; phase space reconstruct; complex networks; model optimization

    As a critical component of intelligent transportationsystems, traffic flow prediction plays a vital role in providing traffic state predictions and implementing control measures for traffic management departments.At present, there are mainly two categories of traffic flow prediction methods: model-based and data-driven methods.

    Dynamic traffic simulation models can be the typical example of the former, such as DynaMIT-R and Visum-online.However, the model algorithm and software application in this method are very complex, and real-time simulations require substantial computing resources.The latter method is mainly based on historical data and uses statistical analysis and machine learning to make predictions.It has the advantages of a simple algorithm, efficient online operation, and accurate prediction for small-scale road networks.Therefore, this method has also become a research focus in recent years.

    Traffic flow prediction methods driven by data can be divided into three categories: 1)linear prediction method based on time series theory and Kalman filter theory, such as the autoregressive integrated moving average(ARIMA)forecasting model[1], and Kalman filter forecasting model[2]; 2)nonlinear prediction method based on chaos theory, such as chaos of traffic system[3]and multi-step prediction algorithm of traffic flow based on chaos theory[4]; 3)intelligent prediction method based on machine learning, such as support vector regression(SVR)model[5], random forest(RF)model[6], and long short-term memory(LSTM)neural network speed prediction model[7-8].Intelligent prediction methods have gradually become the mainstream method of short-term traffic flow forecasting because of their advantages of accurate forecasting, fast calculation, and good feasibility.However, the current related research mainly focuses on the optimization of model parameters and the exploration of application scenarios.It still lacks the processing of collected data to reflect the traffic situation comprehensively.

    In response to the above problems, this paper proposes a short-term traffic flow prediction model combining phase space reconstruction(PSR)and extreme gradient boosting(XGBoost)algorithms, which mainly include four parts: data preprocessing, PSR, complex network analysis, and XGBoost model training and prediction.The advantages of the model in terms of prediction accuracy and calculation speed are verified through examples.

    1 Improved Data Preprocessing Method

    Data preprocessing is the premise of data analysis, especially the filling of missing and abnormal data.However, traditional data filling methods lack the pertinence of the research object, especially the analysis of the state of a transportation system.On this basis, this paper proposes a data filling method based on a hierarchical clustering algorithm and traffic flow state.The data in this paper are the measured speed data of an expressway in Guangzhou from August 1st to September 25th, 2016.The time span is eight weeks, the time interval of data collection is 10 min, and the total number of data sets is 8 064.

    The main processes of the hierarchical clustering algorithm used to fill in missing and abnormal values are as follows: 1)Clustering speed data are processed by the hierarchical clustering algorithm.Fig.1 shows the data clustering results of the first and second weeks in the time series data.The hierarchical clustering algorithm can clearly divide the speed value into three categories.2)According to the clustering results, the traffic conditions of different categories are identified.According to the basic graph theory, the clustering results can be identified as free flow, transition flow, and congested flow.3)The traffic state where the missing or abnormal value is located is determined.4)Fill it with the average value of data in the same state.

    (a)

    2 Data Reconstruction

    From the perspective of the meso-traffic flow model, the various dimensional states of the transportation system evolve over time to obtain a sequence of multidimensional state parameters to form a phase space.However, in the actual data acquisition process, only a certain dimensional component of the system can be acquired through the detector.Supposev={vi|i=1,2,…n} is the speed sequence of the traffic system, wherevirepresents the average speed of vehicles in a certain period of time andnis the length of the time sequence.The one-dimensional component can be reconstructed into a multidimensional data matrix by

    (1)

    whereVis the data matrix after reconstruction;τis the delay time;mis the embedding dimension.

    The selection of parameters is the key to PSR.For the delay timeτ, the mutual information method is used[9-10].For two sequences, mutual information entropy is positively correlated with the degree of correlation between two sequences.Therefore, by calculating the mutual information entropy of the initial sequence and the sequence delay byτ, the correlation between the sequences can be determined.Fig.2(a)shows the variation of mutual information entropy with delay time, where the best delay time is 2.

    For the embedding dimensionm, the falsek-nearest neighbor method is used[9-10].The calculation idea of the falsek-nearest neighbor method is to gradually eliminate false neighbors by increasing the dimensionality of the phase space until the proportion of false nearest neighbors remains unchanged.Fig.2(b)shows that as the embedding dimension increases, the proportion of the falsek-nearest neighbors rapidly decreases and then stabilizes.The acceptable value of the embedding dimension is 6.

    (a)

    3 Complex Network Analysis

    The data matrix after PSR reflects the evolution of multidimensional states.When constructing a time series complex network, the vector in the matrix is used as the network node, and the connection between nodes is determined by the node distance and critical threshold.If the node distance is smaller than the threshold, then there is a connection between the nodes.

    The choice of the critical threshold is very important to the construction of the network.In this study, the threshold through the network density is examined.In a chaotic system network, there are many clusters of different sizes.As nodes in a cluster are adjacent to one another, the degree will rapidly increase as the threshold within the cluster radius changes.When the threshold is close to the average radius of all clusters, the edge increase will reach the maximum rate, and exceeding the threshold will result in redundant connections between nodes.Therefore, the critical threshold can select the point where the network density grows the fastest.Fig.3 shows that when the threshold is 25, the network density grows the fastest, so it is used as the network connection threshold.

    Fig.3 Selection of the complex network connection threshold

    Fig.4 plots a complex network of the time series of daily period data.From the perspective of the topological structure, the network is mainly composed of clusters of different sizes, without isolated nodes or clusters.From the perspective of quantitative indicators, the Pajek software is used to calculate the degree of nodes in the network.The distribution of node degrees is shown in Fig.5.Its distribution in double logarithmic coordinates can be fitted with a straight line with a negative slope.The finding shows that the network presents a scale-free characteristic.According to existing research conclusions[11], the network has scale-free characteristics, and the reconstructed time series data has strong robustness and noise resistance and is suitable for prediction.

    Fig.4 Complex network topology diagram

    Fig.5 Degree distribution of network nodes

    4 Traffic Flow Prediction

    4.1 XGBoost

    XGBoost is improved on the basis of the gradient boosting decision tree(GBDT)algorithm[12].The construction of each tree in XGBoost is completed by fitting the negative gradient of the loss function of the previous model.To make up for the shortcomings of GBDT in terms of prediction accuracy and overfitting, XGBoost introduces regularization in the objective function to quantify the complexity of the tree model.The complexity of the tree model mainly depends on the number and weight of leaf nodes—the lower the complexity of the tree model, the stronger the generalization ability of the model.Intuitively speaking, when the model expects to minimize the objective function, the model is inclined to choose a simple tree model with a strong generalization ability for prediction.The objective function of the XGBoost model can be calculated by

    (2)

    In addition, an approximate method of the greedy algorithm is used to control the splitting of the tree in the XGBoost model.The approximation algorithm avoids the greedy algorithm to enumerate data, but it is highly suitable for building a tree model with multidimensional data characteristics.This fact also theoretically explains the role of PSR in enhancing the dimension of data in this model.

    4.2 Experimental analysis

    This experiment uses a computer with an Intel Core i7 processor and 8 GB memory.To verify the feasibility of the PSR-XGBoost method proposed in this paper, five control models were designed, namely, ARIMA, XGBoost, PSR-RF, PSR-SVR, and PSR-LSTM.The parameters of the model are determined by grid search and step-by-step experiments.Fig.6 shows the fit of the predicted and actual values of the model.The results show that the prediction value of the PSR-XGBoost model fits better than that of other control prediction models.

    (a)

    To quantitatively describe the prediction effect of the model, the following evaluation indicators are introduced: mean square error(MSE), average absolute error(MAE), and average absolute percentage error(MAPE).Tab.1 shows the evaluation index table of the six model prediction results.

    Tab.1 Model prediction performance index table

    The experimental results show that the prediction accuracy indicators MSE, MAE, and MAPE of the PSR-XGBoost model are 5.339%, 1.632%, and 6.278%, respectively, and the calculation time is 17.35 s.Compared with the XGBoost model, the PSR-XGBoost model enriches the structure of the tree model by increasing the data dimension and greatly improves the prediction effect of the model.Compared with the mathematical statistics model, the calculation time of the PSR-XGBoost model is longer, but the three accuracy indicators, MSE, MAE, and MAPE, increased by 77.5%, 59.4%, and 56.3%, respectively.Compared with the PSR-SVR, PSR-RF, and PSR-LSTM models, the prediction accuracy of the PSR-XGBoost model improved to a certain extent; the MSE increased by 59.9%, 48.1%, and 16.1%; the MAE increased by 29.1%, 13.2%, and 5.6%; and the MAPE increased by 31.6%, 18.1%, and 1.9%, respectively.Although the prediction accuracy of the PSR-XGBoost and PSR-LSTM models are not much different, the time required for the prediction is significantly reduced.

    5 Conclusions

    1)The improved data preprocessing method is specific to traffic data.This method can effectively identify the road traffic state through the hierarchical clustering algorithm and fill in missing and abnormal data based on the traffic state.

    2)PSR can map one-dimensional data to a multidimensional matrix, effectively solving the problem of low basic data dimensions, optimizing the model input, enriching the model structure, and improving the prediction accuracy.In addition, complex network methods can analyze and verify the characteristics of reconstructed data.

    3)Considering the prediction accuracy and computing efficiency, the PSR-XGBoost model has advantages over mathematical-statistical models and other machine learning algorithms and can be used as an effective method for short-term traffic flow prediction.

    亚洲av美国av| 亚洲 国产 在线| 在线免费观看的www视频| 色播亚洲综合网| 国产精品亚洲av一区麻豆| 色综合婷婷激情| 欧美一区二区精品小视频在线| 亚洲,欧美精品.| 亚洲精品久久国产高清桃花| 国产 一区 欧美 日韩| 亚洲经典国产精华液单 | 欧美中文日本在线观看视频| 国产成+人综合+亚洲专区| 日韩欧美国产一区二区入口| 90打野战视频偷拍视频| 国产亚洲欧美98| 真人做人爱边吃奶动态| 亚洲专区中文字幕在线| 亚洲熟妇熟女久久| 熟女人妻精品中文字幕| 日日夜夜操网爽| 国内精品美女久久久久久| 在线免费观看的www视频| 18美女黄网站色大片免费观看| 欧美中文日本在线观看视频| 欧美+日韩+精品| 一区二区三区激情视频| 97超视频在线观看视频| 一级作爱视频免费观看| 亚洲午夜理论影院| 久久国产乱子伦精品免费另类| 极品教师在线免费播放| 午夜福利成人在线免费观看| 成年版毛片免费区| 在线免费观看的www视频| 桃红色精品国产亚洲av| 97热精品久久久久久| 美女高潮的动态| 久久久久免费精品人妻一区二区| 3wmmmm亚洲av在线观看| 性色avwww在线观看| 欧洲精品卡2卡3卡4卡5卡区| 亚洲成人免费电影在线观看| 88av欧美| 精品无人区乱码1区二区| 色综合婷婷激情| 午夜福利在线在线| 欧美性猛交黑人性爽| 一级作爱视频免费观看| netflix在线观看网站| 99国产极品粉嫩在线观看| 欧美性猛交黑人性爽| 少妇人妻精品综合一区二区 | 亚洲综合色惰| 禁无遮挡网站| 赤兔流量卡办理| 中文字幕av成人在线电影| 国产亚洲欧美在线一区二区| 亚洲精品456在线播放app | 婷婷色综合大香蕉| 国模一区二区三区四区视频| 脱女人内裤的视频| 自拍偷自拍亚洲精品老妇| 亚洲狠狠婷婷综合久久图片| 一卡2卡三卡四卡精品乱码亚洲| 国产精品一区二区三区四区免费观看 | 怎么达到女性高潮| 日韩人妻高清精品专区| 欧美性猛交黑人性爽| 一级作爱视频免费观看| 欧美激情国产日韩精品一区| 国产一区二区在线观看日韩| www.www免费av| 精品人妻一区二区三区麻豆 | 免费黄网站久久成人精品 | 久久久久九九精品影院| 国内精品久久久久精免费| 一区二区三区高清视频在线| 免费大片18禁| 欧美极品一区二区三区四区| 国产黄片美女视频| 九色成人免费人妻av| 18禁黄网站禁片午夜丰满| 看黄色毛片网站| 午夜免费成人在线视频| 性色av乱码一区二区三区2| 精品日产1卡2卡| 国产毛片a区久久久久| 久久人人精品亚洲av| 日本免费a在线| 极品教师在线视频| 国产精品98久久久久久宅男小说| 十八禁网站免费在线| 亚洲成人久久爱视频| 少妇的逼水好多| 亚洲美女黄片视频| 日韩欧美精品免费久久 | 成人特级av手机在线观看| 亚洲国产色片| 欧美乱色亚洲激情| av欧美777| 欧美成人一区二区免费高清观看| 免费观看精品视频网站| 亚洲成人精品中文字幕电影| 色播亚洲综合网| 精品人妻一区二区三区麻豆 | 国产探花在线观看一区二区| 自拍偷自拍亚洲精品老妇| 两个人视频免费观看高清| 欧美国产日韩亚洲一区| 日韩欧美 国产精品| 亚洲av电影在线进入| 国产成人欧美在线观看| 日本黄色视频三级网站网址| 嫩草影院精品99| 国产单亲对白刺激| 动漫黄色视频在线观看| 偷拍熟女少妇极品色| 成人亚洲精品av一区二区| 波野结衣二区三区在线| 亚洲av日韩精品久久久久久密| 国产69精品久久久久777片| 成人国产综合亚洲| 亚洲熟妇熟女久久| 特大巨黑吊av在线直播| 免费在线观看影片大全网站| 狠狠狠狠99中文字幕| 色尼玛亚洲综合影院| 亚洲一区二区三区色噜噜| 色哟哟·www| 美女高潮的动态| 亚洲色图av天堂| 97超视频在线观看视频| 性欧美人与动物交配| 婷婷精品国产亚洲av| 精品午夜福利在线看| 在线免费观看不下载黄p国产 | 最新中文字幕久久久久| 国产精品美女特级片免费视频播放器| 少妇高潮的动态图| 国产黄a三级三级三级人| 久久99热6这里只有精品| 亚洲av五月六月丁香网| 欧美一区二区国产精品久久精品| 久久久国产成人免费| 两人在一起打扑克的视频| 精品国产三级普通话版| 国产精品,欧美在线| 欧美在线一区亚洲| 校园春色视频在线观看| 久久久久免费精品人妻一区二区| 变态另类成人亚洲欧美熟女| 午夜影院日韩av| 婷婷六月久久综合丁香| 极品教师在线免费播放| 国产人妻一区二区三区在| 免费黄网站久久成人精品 | 在线观看一区二区三区| 琪琪午夜伦伦电影理论片6080| 脱女人内裤的视频| .国产精品久久| 国产精品一及| 久久精品国产99精品国产亚洲性色| .国产精品久久| 看黄色毛片网站| 亚洲成人中文字幕在线播放| 熟女人妻精品中文字幕| 国产老妇女一区| 成人特级av手机在线观看| 91麻豆av在线| 91字幕亚洲| 欧美在线一区亚洲| 怎么达到女性高潮| 国产精品av视频在线免费观看| 最近在线观看免费完整版| 一本综合久久免费| 亚洲熟妇中文字幕五十中出| 国产精品亚洲av一区麻豆| 欧美最新免费一区二区三区 | 精品久久久久久久久久久久久| 我的老师免费观看完整版| 观看美女的网站| 午夜久久久久精精品| 亚洲专区中文字幕在线| 18美女黄网站色大片免费观看| 日日摸夜夜添夜夜添小说| 精华霜和精华液先用哪个| 美女cb高潮喷水在线观看| 亚洲国产日韩欧美精品在线观看| 波多野结衣高清作品| 国产成人欧美在线观看| 永久网站在线| 免费大片18禁| 免费观看精品视频网站| 免费av毛片视频| 国产成人av教育| 国产乱人伦免费视频| 国产精品三级大全| 欧美另类亚洲清纯唯美| 国产精品久久久久久亚洲av鲁大| 一本久久中文字幕| 搞女人的毛片| 床上黄色一级片| 少妇人妻精品综合一区二区 | 黄片小视频在线播放| 老司机午夜十八禁免费视频| 免费av不卡在线播放| a级毛片a级免费在线| 国内久久婷婷六月综合欲色啪| 一区二区三区高清视频在线| 91久久精品国产一区二区成人| 成人一区二区视频在线观看| 国产欧美日韩一区二区三| 亚洲欧美激情综合另类| 99久久久亚洲精品蜜臀av| 69av精品久久久久久| 成人一区二区视频在线观看| 国产精品,欧美在线| aaaaa片日本免费| 又紧又爽又黄一区二区| av视频在线观看入口| 成人欧美大片| 日韩欧美三级三区| 久久精品国产亚洲av天美| 波多野结衣高清无吗| 午夜老司机福利剧场| 99久久99久久久精品蜜桃| 久久久久久久久大av| 成年免费大片在线观看| 中文字幕av成人在线电影| 最近最新免费中文字幕在线| 国产精品乱码一区二三区的特点| 亚洲av成人av| 中文字幕人妻熟人妻熟丝袜美| 村上凉子中文字幕在线| 国产人妻一区二区三区在| 亚洲色图av天堂| 噜噜噜噜噜久久久久久91| 国产又黄又爽又无遮挡在线| 欧美在线黄色| 欧美丝袜亚洲另类 | 日韩欧美三级三区| 午夜福利成人在线免费观看| 国产男靠女视频免费网站| 欧美乱妇无乱码| 国产毛片a区久久久久| 欧美一区二区国产精品久久精品| 高潮久久久久久久久久久不卡| 国产不卡一卡二| 国产精品美女特级片免费视频播放器| 亚洲中文字幕一区二区三区有码在线看| 51午夜福利影视在线观看| 欧美潮喷喷水| 国产高清视频在线观看网站| 国产 一区 欧美 日韩| 亚洲成人中文字幕在线播放| 国产69精品久久久久777片| 1000部很黄的大片| 国产亚洲av嫩草精品影院| 婷婷亚洲欧美| 91在线精品国自产拍蜜月| 99久久精品一区二区三区| 九九久久精品国产亚洲av麻豆| 免费在线观看成人毛片| 在线观看av片永久免费下载| 精品一区二区三区视频在线| 国产午夜福利久久久久久| 91久久精品国产一区二区成人| 国产亚洲精品综合一区在线观看| 国产一区二区亚洲精品在线观看| 久久国产精品人妻蜜桃| 九九久久精品国产亚洲av麻豆| 亚洲一区高清亚洲精品| 亚洲真实伦在线观看| 好男人在线观看高清免费视频| 国语自产精品视频在线第100页| 国产精品精品国产色婷婷| 亚洲三级黄色毛片| 波多野结衣高清作品| 久久伊人香网站| 精品人妻视频免费看| 欧美xxxx性猛交bbbb| 日本黄色视频三级网站网址| 18禁裸乳无遮挡免费网站照片| 欧美精品啪啪一区二区三区| 搡老妇女老女人老熟妇| 在线观看舔阴道视频| АⅤ资源中文在线天堂| av在线老鸭窝| 久久久久久久久大av| 精品日产1卡2卡| 最好的美女福利视频网| 国产中年淑女户外野战色| av在线蜜桃| 性色avwww在线观看| 国产精品国产高清国产av| 一个人免费在线观看的高清视频| 小蜜桃在线观看免费完整版高清| 久久久久久国产a免费观看| 亚洲人成网站高清观看| 久久久久久久久久黄片| av在线老鸭窝| 久久久久久久久久黄片| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 99在线视频只有这里精品首页| 欧美日韩综合久久久久久 | 久9热在线精品视频| 九九在线视频观看精品| 国产成人影院久久av| 精品福利观看| 亚洲精华国产精华精| 黄色配什么色好看| 亚洲欧美日韩卡通动漫| 黄色一级大片看看| 色播亚洲综合网| 欧美乱色亚洲激情| 国产黄色小视频在线观看| 国产亚洲精品综合一区在线观看| 88av欧美| 在线播放国产精品三级| 国产欧美日韩一区二区三| 免费黄网站久久成人精品 | 九色国产91popny在线| 国产蜜桃级精品一区二区三区| 色av中文字幕| av欧美777| 精品午夜福利视频在线观看一区| 3wmmmm亚洲av在线观看| 欧美另类亚洲清纯唯美| 婷婷六月久久综合丁香| 亚洲久久久久久中文字幕| 精华霜和精华液先用哪个| 国产69精品久久久久777片| 亚洲精品亚洲一区二区| 免费在线观看成人毛片| 91午夜精品亚洲一区二区三区 | 99久久精品一区二区三区| 国产高清视频在线观看网站| 免费观看精品视频网站| 精品久久国产蜜桃| 在线国产一区二区在线| 国产一区二区三区在线臀色熟女| 91九色精品人成在线观看| 淫秽高清视频在线观看| 中文资源天堂在线| 国产伦人伦偷精品视频| 欧美日韩瑟瑟在线播放| 久久亚洲真实| 波野结衣二区三区在线| 日韩高清综合在线| 国产午夜福利久久久久久| 午夜免费激情av| 国产亚洲精品久久久久久毛片| 18美女黄网站色大片免费观看| 一个人看的www免费观看视频| 女人十人毛片免费观看3o分钟| 亚洲最大成人中文| 男女视频在线观看网站免费| 精品不卡国产一区二区三区| 国产亚洲av嫩草精品影院| 日韩中文字幕欧美一区二区| 桃红色精品国产亚洲av| 国产精品一区二区性色av| 日韩亚洲欧美综合| 中文字幕av成人在线电影| 18禁黄网站禁片午夜丰满| 中文字幕av成人在线电影| 一进一出抽搐动态| 欧美日本亚洲视频在线播放| 如何舔出高潮| 久久精品夜夜夜夜夜久久蜜豆| 亚洲人成网站在线播| 五月伊人婷婷丁香| 丰满人妻熟妇乱又伦精品不卡| 国产精品久久久久久精品电影| 黄色丝袜av网址大全| 亚洲激情在线av| 国产大屁股一区二区在线视频| 日韩欧美一区二区三区在线观看| 国产色爽女视频免费观看| 色吧在线观看| 亚洲av成人精品一区久久| 天堂动漫精品| 丁香六月欧美| 欧美性感艳星| 国产毛片a区久久久久| 男女视频在线观看网站免费| 全区人妻精品视频| 好男人在线观看高清免费视频| 两个人的视频大全免费| 一级黄片播放器| 欧美日本亚洲视频在线播放| 特大巨黑吊av在线直播| 色综合亚洲欧美另类图片| 亚洲天堂国产精品一区在线| 长腿黑丝高跟| 9191精品国产免费久久| 69人妻影院| 伦理电影大哥的女人| 最近最新免费中文字幕在线| 国产午夜福利久久久久久| 最近在线观看免费完整版| 在线观看av片永久免费下载| 最新在线观看一区二区三区| 久久精品久久久久久噜噜老黄 | 亚洲成人免费电影在线观看| 国产真实乱freesex| 亚洲精品亚洲一区二区| 蜜桃亚洲精品一区二区三区| 久久久成人免费电影| av在线老鸭窝| 丰满乱子伦码专区| 日韩国内少妇激情av| 亚洲黑人精品在线| 夜夜看夜夜爽夜夜摸| 麻豆国产av国片精品| 国内少妇人妻偷人精品xxx网站| 非洲黑人性xxxx精品又粗又长| 国产野战对白在线观看| 亚洲久久久久久中文字幕| 亚洲综合色惰| 国产欧美日韩精品一区二区| 我要搜黄色片| av福利片在线观看| 久久久国产成人免费| 日韩欧美国产一区二区入口| 色综合欧美亚洲国产小说| 九九久久精品国产亚洲av麻豆| 久久人妻av系列| 天堂√8在线中文| 久久久久久久久中文| 免费观看人在逋| 白带黄色成豆腐渣| 欧美乱妇无乱码| 久久热精品热| 老司机午夜福利在线观看视频| 久久亚洲精品不卡| 夜夜躁狠狠躁天天躁| 欧美性猛交黑人性爽| 国产精品99久久久久久久久| 一区二区三区免费毛片| 悠悠久久av| 欧美色欧美亚洲另类二区| 久久精品国产自在天天线| av黄色大香蕉| 国产精品日韩av在线免费观看| 国产午夜精品论理片| 日韩av在线大香蕉| 日本黄大片高清| 精品无人区乱码1区二区| 国产午夜精品久久久久久一区二区三区 | 91久久精品电影网| 国产美女午夜福利| 婷婷色综合大香蕉| 又黄又爽又刺激的免费视频.| 久久久久久国产a免费观看| 亚洲国产日韩欧美精品在线观看| 亚洲国产精品成人综合色| 全区人妻精品视频| 中文字幕精品亚洲无线码一区| 久久国产乱子免费精品| 国产综合懂色| 一个人免费在线观看的高清视频| 婷婷亚洲欧美| 国产欧美日韩一区二区精品| 亚洲成人精品中文字幕电影| 日韩欧美国产在线观看| 久久久久久大精品| 国产白丝娇喘喷水9色精品| 18禁裸乳无遮挡免费网站照片| 一区二区三区高清视频在线| 老司机午夜福利在线观看视频| 欧美午夜高清在线| 少妇的逼水好多| 欧美成人性av电影在线观看| 午夜福利在线观看免费完整高清在 | 夜夜看夜夜爽夜夜摸| 欧美xxxx性猛交bbbb| 2021天堂中文幕一二区在线观| 成年免费大片在线观看| 国产男靠女视频免费网站| 久久久久久久精品吃奶| 一级作爱视频免费观看| 一区二区三区激情视频| 久久性视频一级片| 亚洲精品在线美女| 国产精品久久视频播放| 欧美最新免费一区二区三区 | 日日干狠狠操夜夜爽| 特级一级黄色大片| 欧美一区二区亚洲| 国产亚洲精品av在线| 国产三级黄色录像| 亚洲人成网站高清观看| 免费电影在线观看免费观看| 久久人妻av系列| 一个人免费在线观看的高清视频| 国产黄片美女视频| 国产精品美女特级片免费视频播放器| 久久精品国产自在天天线| 成人美女网站在线观看视频| 欧美性感艳星| 一区二区三区激情视频| 色视频www国产| 欧美午夜高清在线| 亚洲午夜理论影院| 午夜福利在线观看吧| 日韩人妻高清精品专区| 亚洲久久久久久中文字幕| 少妇的逼好多水| 在线十欧美十亚洲十日本专区| 青草久久国产| 国产真实伦视频高清在线观看 | 少妇被粗大猛烈的视频| 日韩大尺度精品在线看网址| 日韩欧美免费精品| 成年女人看的毛片在线观看| 国产精品亚洲av一区麻豆| 丰满人妻一区二区三区视频av| 欧美高清成人免费视频www| 中亚洲国语对白在线视频| 大型黄色视频在线免费观看| 亚洲国产精品久久男人天堂| 欧美日韩中文字幕国产精品一区二区三区| h日本视频在线播放| 一进一出抽搐动态| 久久精品国产亚洲av香蕉五月| 真人做人爱边吃奶动态| 日本 欧美在线| 国产三级中文精品| 久久久久精品国产欧美久久久| 淫秽高清视频在线观看| 麻豆成人av在线观看| aaaaa片日本免费| 91麻豆精品激情在线观看国产| 日韩欧美在线乱码| 18禁裸乳无遮挡免费网站照片| 日本五十路高清| 国产大屁股一区二区在线视频| 俄罗斯特黄特色一大片| 久久精品91蜜桃| 免费看日本二区| 国产欧美日韩精品亚洲av| 亚洲国产精品合色在线| 可以在线观看的亚洲视频| 亚洲av电影在线进入| 国产乱人伦免费视频| 三级毛片av免费| 丰满的人妻完整版| 中文资源天堂在线| 毛片女人毛片| 日韩中字成人| 天堂av国产一区二区熟女人妻| 嫩草影院入口| av在线观看视频网站免费| 真实男女啪啪啪动态图| 国产黄色小视频在线观看| 人妻夜夜爽99麻豆av| 亚洲avbb在线观看| 综合色av麻豆| 成人特级黄色片久久久久久久| 国产单亲对白刺激| 九色成人免费人妻av| 国产黄片美女视频| aaaaa片日本免费| 欧美黄色片欧美黄色片| 成人高潮视频无遮挡免费网站| 精品熟女少妇八av免费久了| 黄色女人牲交| 91狼人影院| 久久久色成人| 久久精品夜夜夜夜夜久久蜜豆| 人人妻人人看人人澡| 老鸭窝网址在线观看| 色哟哟哟哟哟哟| 国内精品久久久久久久电影| 黄色配什么色好看| 亚洲美女黄片视频| 91麻豆av在线| 精品国产三级普通话版| 国产久久久一区二区三区| 亚洲激情在线av| 高潮久久久久久久久久久不卡| 久久久久久大精品| 内射极品少妇av片p| 久久天躁狠狠躁夜夜2o2o| 三级国产精品欧美在线观看| 亚洲人成伊人成综合网2020| 日韩中字成人| 国产精品一区二区免费欧美| 亚洲无线在线观看| 成人高潮视频无遮挡免费网站| 午夜免费激情av| 欧美+亚洲+日韩+国产| 色综合欧美亚洲国产小说| 97超视频在线观看视频| 国产亚洲精品综合一区在线观看| 69av精品久久久久久| 亚洲 欧美 日韩 在线 免费| 99热6这里只有精品| 久久精品国产自在天天线| 真实男女啪啪啪动态图| 久久久久久大精品| 婷婷亚洲欧美| 好男人在线观看高清免费视频| 2021天堂中文幕一二区在线观| 蜜桃久久精品国产亚洲av| 国产精品免费一区二区三区在线| 特级一级黄色大片| 一进一出抽搐动态| 88av欧美| .国产精品久久| 老司机午夜福利在线观看视频| 亚洲无线在线观看| 日本黄大片高清|