• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Curing and mechanical property of single-component polyurethane porous elastic mixture

    2022-04-19 06:49:40ZhongKeZhangMengSunMingzhiHanDingding

    Zhong Ke Zhang Meng Sun Mingzhi Han Dingding

    (Research Institute of Highway, Ministry of Transport, Beijing 100088, China)

    Abstract:The viscosity-time curve of a single-component polyurethane(PU)was examined to determine the mixing and compacting temperatures of its mixture and investigate the curing and mechanical properties of single-component PU porous elastic mixture(PPEM).The curing properties of the single-component PU and PPEM were studied with Fourier transform infrared spectroscopy(FTIR)and Marshall test.The mechanical properties of PPEM were explored via the following tests: rutting test, 3-point bending test, soaked Marshall stability test, freeze-thaw splitting test, and Cantabro test.The effects of a water bath on the stability of aggregate-PU/asphalt mortar-aggregate systems were evaluated through a pull-out test and a shear test.The results show that the recommended mixing temperatures of toluene diisocyanate and methylene diphenyl diisocyanate range from 75 to 80 ℃ and from 64 to 68 ℃, respectively.Room temperature(25 ℃)can be adopted as the compacting temperature of PPEM.PPEM can be fully cured in 4 d.Nevertheless, the water sprinkle method can obviously shorten the full curing time of PPEM.PPEM exhibites good resistance to rutting, brittle cracking, and raveling.The adhesive and shear strength of aggregate-PU/asphalt mortar-aggregate systems are negatively related to water bath duration.

    Key words:single-component polyurethane; curing performance; mechanical performance; porous elastic mixture

    Polyurethane(PU)is commonly used as a binder of porous elastic mixtures.After being heated to 60 to 80 ℃, it can be mixed with aggregates[1].For asphalt binders, the temperature of PU is normally higher than 120 ℃, which increases fuel consumption and exacerbates air pollution[2].PU binders have two types, namely, two-and single-component PU[3-5].Two-component PU is formed through a reaction between polyol and isocyanate[6].After being cured for about 40 min, two-component PU has a fast curing speed, and the viscosity of PU binders can reach above 3 000 mPa·s[7-8].In China, the distance from a mixture fabricating station to a paving field is normally greater than 10 km, and transporting mixtures by a truck takes more than 2 h[9].This observation indicates that the curing speed of two-component PU is too fast for paving in China.The workability of single-component PU is obviously better than that of two-component PU, and its viscosity can be easily controlled by temperature during paving.Therefore, single-component PU is commonly used as a binder of mixtures in porous elastic pavement engineering.

    Few studies have been performed on the curing properties of PU[10].Dong et al.[11]used FTIR, Raman, and DSC to characterize the chemical structure of PU.Das et al.[12]investigated the curing properties and nanocomposites of PU and obtained curing performance based on the time of “dry to touch” and “dry to hard.” They also used two curing reaction kinetic models to calculate the activation energy of PU.

    Porous elastic mixtures contain basalt aggregates, rubber aggregates, and PU binders.Studies on two-component PU adhesive porous elastic mixtures have mainly focused on mechanical properties[13].Wang et al.[14]prepared a porous elastic road surface with a rubber aggregate and two-component PU and examined the absorption coefficient of a porous elastic road surface through acoustic experiments.Li et al.[15]compared the microscopic, functional, and mechanical performance of the porous mixtures bonded with PU with those of mixtures bonded with an asphalt binder.They also studied the adaptability of the porous elastic road surface to the mechanical and functional properties of urban roads in cold regions through experimental and numerical simulation.

    This study was conducted to investigate the mechanical properties of a single-component PU porous elastic mixture(PPEM).The viscosity-time curve of single-component PU was measured to determine the mixing and compacting temperatures.The curing properties of single-component PU and PPEM were evaluated through FTIR and Marshall tests.The mechanical properties of PPEM were evaluated through the following tests: rutting test, 3-point-bending test, soaked Marshall stability test, freeze-thaw splitting test, and Cantabro test.The effects of a water bath on the stability of aggregate-PU/asphalt mortar-aggregate systems were explored through pull-out and shear tests.

    1 Viscosity of Single-Component PU

    Two kinds of PU, namely, PU-Ⅰ and PU-Ⅱ, were adopted in this research.The main component and basic properties of PU-Ⅰ and PU-Ⅱ are shown in Tab.1.

    Tab.1 Main component and basic properties

    According to the JTG E20—2011 Standard Test Method of Bitumen and Bituminous Mixtures for Highway Engineering, the viscosity of the binder should be 150 to 190 mPa·s when the binder is mixed with aggregates, but it should be 1 000 to 3 000 mPa·s when the mixture is compacted in accordance with the JTG/T 3364-02—2019 Specifications for Design and Construction of Pavement on Highway Steel Deck Bridge.A Brookfield viscometer was used to measure the viscosities of PU-Ⅰ and PU-Ⅱ at different temperatures and examine the mixing and compacting temperatures of single-component PU.The viscosity-temperature curves of PU-Ⅰ and PU-Ⅱ are shown in Fig.1.

    Fig.1 Viscosity-temperature curves of PU-Ⅰ and PU-Ⅱ

    According to Fig.1, the viscosities and temperatures of PU-Ⅰ and PU-Ⅱ have a significantly negative correlation.Moreover, the viscosities of PU-Ⅰ and PU-Ⅱ are 2 750 and 1 600 mPa·s at room temperature(25 ℃), respectively.The viscosities of PU-Ⅰ and PU-Ⅱ are between 150 and 190 mPa·s when they reach their mixing temperatures(75 to 80 ℃ and 64 to 68 ℃, respectively).In the following mixture fabrication, PU-Ⅰ and PU-Ⅱ were first heated to 77 and 66 ℃, respectively.Then, they were mixed with aggregates.The mixtures were compacted at room temperature(25 ℃).

    2 Curing Performance of Single-component PU and PPEM

    2.1 Fourier transform infrared spectrum(FTIR)of single-component PU

    The absorbance of the key functional groups of single-component PU under different curing times was determined through FTIR.

    (1)

    (2)

    whereA1,A2, andA0are the peak areas of isocyanate, urea, and benzene groups, respectively;IandUare the isocyanate and urea indices, respectively.

    The peak area ratio method was used to calculateIandUaccording to Eqs.(1)and(2).Benzene was selected as the reference group because it(1 599 cm-1)does not participate in the curing reaction of single-component PU.The wave numbers of the isocyanate and urea groups are 2 265 and 1 642 cm-1, respectively[16].In addition, the curing duration for single-component PU was 7 d, the average temperature within 7 d was 16.2 ℃, and the average humidity was 40.9%(see Fig.2).The FTIR results of single-component PU at different curing times are shown in Fig.3.

    Fig.2 Laboratory temperature and humidity

    Fig.3 Single-component PU under different curing durations

    In Fig.3, curing time negatively affected the isocyanate indices of PU-Ⅰ and PU-Ⅱ but positively influenced their urea indices.When curing was performed for more than 4 d, the isocyanate and urea indices of PU-Ⅰ and PU-Ⅱ changed slightly.Therefore, PU-Ⅰ and PU-Ⅱ were almost completely cured after 4 d of curing.

    2.2 Marshall stability test on PPEM under room curing condition

    The PPEM Marshall specimens were prepared on the basis of the mixing and compaction temperatures of PU-Ⅰ and PU-Ⅱ.Specifically, PU-Ⅰ and PU-Ⅱ were utilized as binders, basalt and rubber were chosen as aggregates, and the mixtures were numbered PPEM-Ⅰ and PPEM-Ⅱ, respectively.The gradation of PPEM is shown in Tab.2.The optimum PU content was 4.5%.After the Marshall specimens were fabricated, the Marshall stability test was carried out(see Fig.4).The curing temperature and humidity after 7 d were the same as those of FTIR.

    Tab.2 Gradation of PPEM

    Fig.4 Marshall stability of PPEM under room curing condition

    In Fig.4, the Marshall stability(MS)of PPEM had a significantly positive correlation with curing time.Specifically, Marshall specimens could not be demolded after they were cured for 1 d at room temperature because they did not bond.Moreover, the MS of PPEM-Ⅰ and PPEM-Ⅱ Marshall specimens after being cured at room temperature for 2 d were higher than 3.5 kN.Consequently, they reached the stability requirements of OGFC-13 in JTG F40—2004 Technical Specifications for Construction of Highway Asphalt Pavements.The MS of PPEM-Ⅰ and PPEM-Ⅱ changed slightly after 4 d of curing, and the coefficients of variation were 0.022 and 0.019, respectively.Therefore, PPEM-Ⅰ and PPEM-Ⅱ were almost completely cured after 4 d of curing.Under the same room curing condition, the MS of PPEM-Ⅱ was lower than that of PPEM-Ⅰ.

    2.3 Marshall stability test on PPEM under fast curing condition

    According to the curing conditions of PPEM at room temperature, the curing speed of Marshall specimens is slow, resulting in the delay of transportation service.Single-component PU is produced using isocyanate and water in the environment.As such, in this study, the water sprinkle method was applied to improve the curing speed of PPEM.After the completion of the PPEM Marshall specimens, water was sprinkled on the upper and bottom surfaces of the specimens(see Fig.5).Moreover, the water-PPEM mass ratios were 2.0%, 1.5%, 1.0%, and 0.5%.The Marshall specimens of PPEM were cured at room temperature for 1 d.Then, the Marshall test was taken after the specimens were sprinkled with water.The measured results of Marshall stability are shown in Fig.6.

    Fig.5 Water sprinkle method for PPEM

    In Fig.6, curing time positively affected the MS of PPEM.Under the same fast curing condition, the MS of PPEM-Ⅱ was lower than that of PPEM-Ⅰ.When the water-PPEM mass ratio was 2%, the MS of PPEM-Ⅰ and PPEM-Ⅱ was similar to that of the samples under the room curing condition of 4 d.This result indicated that PPEM-Ⅰ and PPEM-Ⅱ were almost completely cured.Therefore, in the subsequent production of PPEM specimens, the water sprinkle method was adopted to improve the curing speed, and the water-PPEM mass ratio was 2%.

    Fig.6 Marshall stability of PPEM under fast curing conditions

    3 Mechanical Performance of PPEM

    3.1 Experiments

    In terms of the mechanical performance of PPEM, rutting test, 3-point bending test, moisture susceptibility test, and Cantabro test were conducted in accordance with JTG E20—2011 Standard Test Method of Bitumen and Bituminous Mixtures for Highway Engineering.The mechanical performance of porous asphalt concrete-13(PAC-13), which was chosen as the reference group to be compared with PPEM, was also examined.Specifically, SBS-and Tafpack Super(TPS)-modified bitumens were used as the asphalt binders of SBS-PAC-13 and TPS-PAC-13, respectively.The gradation of PAC-13 is shown in Tab.3, and the optimum asphalt content was 4.5%.

    Tab.3 Gradation of PAC-13

    3.2 Results and discussion

    The mechanical test results of PPEM and PAC-13 are shown in Fig 7.

    According to Fig.7(a), the average dynamic stability(DS)of PAC-13 is lower than that of PPEM.The high-temperature stability of PPEM-Ⅰ is better than that of PPEM-Ⅱ.Moreover, the average DS values of PPEM-Ⅰ are 5.3 and 4.6 times as high as that of SBS-PAC-13 and TPS-PAC-13, respectively.Therefore, PPEM has good rutting resistance.

    (a)

    In Fig.7(b), the flexural modulus of PPEM is lower than that of PAC-13, whereas the maximum flexural strain of PPEM is higher than that of PAC-13 because the rubber aggregate is adopted in PPEM.It is more flexible than basalt aggregate.Therefore, the flexibility and brittle cracking resistance of PPEM are better than those of PAC-13.

    In Fig.7(c), the residual Marshall stabilities(MSR)of PPEM and PAC-13 are higher than 75%, which is the criterion of MSR for OGFC-13 in JTG F40—2004.PPEM-Ⅰ has the lowest MSR, whereas the MSR values of PPEM-Ⅱ, SBS-PAC-13, and TPS-PAC-13 are similar(the coefficient of variation is 0.018).This result indicates that PPEM can be utilized in rainy areas.As for the freeze-thaw splitting test results, the tensile strength ratio(TSR)of PPEM is lower than that of PAC-13.The TSR of PPEM is not greater than 70%, which is the criterion of TSR for asphalt mixture in JTG F40—2004.Therefore, PPEM is not recommended to be adopted in seasonal freezing areas.

    According to Fig.7(d), the mass loss(Rm)of PPEM-Ⅰ is lower than that of PPEM-Ⅱ and PAC-13, indicating that the raveling resistance of PPEM-Ⅰ is better than that of PPEM-Ⅱ and PAC-13.However, the mass loss of PPEM-Ⅱ is 1.6 times as high as the criterion(20%)of OGFC-13 in JTG F40—2004.Therefore, the adhesive property of PU-Ⅱ is worse than that of the three other binders.

    4 Effects of Water Bath on Stability of Aggregate-PU/asphalt mortar-aggregate

    According to the mechanical performance of PPEM, the moisture susceptibility of PPEM is not as good as PAC-13.Moisture susceptibility is usually affected by air void ratio, rubber aggregate content, and mortar gradation in mixtures.Our laboratory test revealed that the air void ratios of PPEM(22%)and PAC-13(21%)were similar.The higher the rubber content is, the higher the moisture susceptibility of the mixture will be[16].Therefore, the gradation of fine aggregates(the maximum sieve size of the mortar is 1.18 mm)in the mixture may significantly affect their moisture susceptibility because PPEM has fewer fine aggregates than PAC-13.

    The specimens for rubber-PU-rubber(RPR), basalt-PU-basalt(BPB), rubber-PU-basalt(RPB), and basalt-asphalt mortar-basalt(BAB)systems were fabricated to investigate this conjecture, as shown in Fig.8(a).After the RPR, BPB, and RPB specimens were fully cured, the water bath conditioning test was conducted at 25 ℃, and the maximum water bath duration of the four kinds of bonding systems(RPR, BPB, RPB, and BAB)was 5 d.Pull-out and shear tests(six replicates for each group)were conducted at 25 ℃ to compare the stability of different bonding systems, which are illustrated in Fig.8(b).The average adhesive and shear strength of aggregate-PU/asphalt mortar-aggregate systems are presented in Fig.9.

    (a)

    (a)

    According to Fig.9, the adhesive strength and shear strength of aggregate-PU/asphalt mortar-aggregate systems are negatively related to water bath duration.The adhesive strength and shear strength of RPR and RPB are lower than those of BPB.Moreover, RPR has the lowest adhesive strength, whereas RPB has the lowest shear strength.Furthermore, the adhesive strength and shear strength of BPB are higher than those of BAB; however, after 2 d in a water bath, the adhesive strength and shear strength of BPB are lower than those of BAB.Therefore, the effects of water baths on the bonding property of PU are more obvious than those of asphalt mortar.As such, the moisture susceptibility of PPEM is not as good as that of PAC-13.

    5 Conclusions

    1)The mixing temperatures of PU-Ⅰ and PU-Ⅱ are from 75 to 80 ℃ and from 64 to 68 ℃, respectively.The mixture can be compacted at 25 ℃.

    2)PPEM-Ⅰ and PPEM-Ⅱ are almost completely cured after 4 d.When the water-PPEM mass ratio is 2%, the MS of PPEM-Ⅰ and PPEM-Ⅱ is similar to that of the samples under the room curing condition for 4 d.The water sprinkle method can obviously improve the curing speed of PPEM.

    3)PPEM has good resistance to rutting, brittle cracking, and raveling.PPEM can be utilized in rainy areas, but it is not recommended for seasonal freezing areas.

    4)The adhesive strength and shear strength of aggregate-PU/asphalt mortar-aggregate systems are negatively related to water bath duration.The adhesive strength and shear strength of RPR and RPB are lower than those of BPB.RPR has the lowest adhesive strength, whereas RPB has the lowest shear strength.

    久久99热这里只有精品18| 国产精品成人在线| 国产精品一二三区在线看| 麻豆久久精品国产亚洲av| 国产综合懂色| 一本一本综合久久| 日韩大片免费观看网站| 在线a可以看的网站| 一个人看的www免费观看视频| 91精品国产九色| 狂野欧美激情性xxxx在线观看| 国产亚洲5aaaaa淫片| 日日摸夜夜添夜夜添av毛片| 国产人妻一区二区三区在| 亚洲国产精品专区欧美| 亚洲一区二区三区欧美精品 | 免费观看在线日韩| 在线播放无遮挡| 亚洲精品日本国产第一区| 午夜福利高清视频| 麻豆成人av视频| 国产91av在线免费观看| 亚洲精品国产色婷婷电影| 黄片wwwwww| 美女脱内裤让男人舔精品视频| 午夜精品一区二区三区免费看| 性色avwww在线观看| 欧美国产精品一级二级三级 | 日本色播在线视频| 亚洲精品一二三| 熟女人妻精品中文字幕| 男女边吃奶边做爰视频| 婷婷色麻豆天堂久久| 欧美高清成人免费视频www| 精品一区二区三区视频在线| 一级毛片电影观看| 欧美区成人在线视频| 亚洲av成人精品一区久久| 国产精品嫩草影院av在线观看| 亚洲av福利一区| 欧美日韩一区二区视频在线观看视频在线 | 久热这里只有精品99| 97精品久久久久久久久久精品| 精品一区在线观看国产| 男女边摸边吃奶| 小蜜桃在线观看免费完整版高清| 欧美性感艳星| 久久热精品热| 成人亚洲欧美一区二区av| 80岁老熟妇乱子伦牲交| 亚洲国产精品国产精品| 韩国av在线不卡| 国产黄色免费在线视频| 精品酒店卫生间| 成人欧美大片| 中文字幕亚洲精品专区| 国产成人免费无遮挡视频| 成人国产麻豆网| 一个人看的www免费观看视频| 国产精品麻豆人妻色哟哟久久| 日韩 亚洲 欧美在线| 六月丁香七月| 欧美性猛交╳xxx乱大交人| 爱豆传媒免费全集在线观看| 久久99热这里只有精品18| 免费高清在线观看视频在线观看| 国产成人一区二区在线| 成人亚洲精品av一区二区| 男人和女人高潮做爰伦理| 日韩成人av中文字幕在线观看| 一本色道久久久久久精品综合| 只有这里有精品99| 免费av不卡在线播放| 日韩电影二区| 亚洲精品一区蜜桃| 亚洲人与动物交配视频| 成人二区视频| 99久久精品国产国产毛片| 综合色丁香网| 免费电影在线观看免费观看| 久久99蜜桃精品久久| 亚洲欧美精品自产自拍| 一个人看视频在线观看www免费| 国产美女午夜福利| 搡老乐熟女国产| 国产成年人精品一区二区| 成人国产麻豆网| 麻豆久久精品国产亚洲av| 尤物成人国产欧美一区二区三区| 久久精品夜色国产| 在线免费十八禁| 18禁裸乳无遮挡免费网站照片| 男人和女人高潮做爰伦理| 简卡轻食公司| 男女边吃奶边做爰视频| 日韩欧美 国产精品| 最近中文字幕2019免费版| 99精国产麻豆久久婷婷| 国产精品99久久久久久久久| 中文字幕人妻熟人妻熟丝袜美| 国产黄色视频一区二区在线观看| 国产高清有码在线观看视频| 啦啦啦中文免费视频观看日本| 麻豆国产97在线/欧美| 国产av不卡久久| 国内揄拍国产精品人妻在线| 最新中文字幕久久久久| av免费观看日本| 日本色播在线视频| 纵有疾风起免费观看全集完整版| 在线精品无人区一区二区三 | 极品教师在线视频| 老司机影院成人| 国产成人a∨麻豆精品| 欧美日韩视频高清一区二区三区二| 久久久久久久午夜电影| 国产精品久久久久久精品电影| 一区二区av电影网| 亚洲一级一片aⅴ在线观看| 国产欧美另类精品又又久久亚洲欧美| av又黄又爽大尺度在线免费看| 亚洲国产欧美在线一区| 大香蕉久久网| 亚洲久久久久久中文字幕| 亚洲不卡免费看| 久久久a久久爽久久v久久| 亚洲av不卡在线观看| a级毛色黄片| 国产亚洲精品久久久com| 国产精品女同一区二区软件| 狂野欧美激情性xxxx在线观看| 久久久国产一区二区| 国产精品人妻久久久影院| 婷婷色综合大香蕉| av在线观看视频网站免费| 国产 一区精品| 国产精品福利在线免费观看| 人妻夜夜爽99麻豆av| 美女脱内裤让男人舔精品视频| 成人亚洲精品一区在线观看 | 亚洲精品影视一区二区三区av| 亚洲国产av新网站| 国产极品天堂在线| 午夜福利在线在线| 成人国产麻豆网| 亚洲欧美成人综合另类久久久| 国产成人福利小说| 亚洲av电影在线观看一区二区三区 | 亚洲自拍偷在线| 汤姆久久久久久久影院中文字幕| 亚洲精品乱码久久久久久按摩| 亚洲第一区二区三区不卡| 国内精品美女久久久久久| 国产毛片在线视频| 午夜视频国产福利| 99久久精品一区二区三区| 乱码一卡2卡4卡精品| 精品一区二区三卡| av线在线观看网站| 久久久a久久爽久久v久久| 免费看不卡的av| 国产精品一区二区三区四区免费观看| 一个人看视频在线观看www免费| 可以在线观看毛片的网站| 欧美另类一区| 国产熟女欧美一区二区| 国产伦在线观看视频一区| 成年av动漫网址| 熟妇人妻不卡中文字幕| 国产爽快片一区二区三区| 亚洲不卡免费看| 国产爽快片一区二区三区| 欧美极品一区二区三区四区| 91精品国产九色| 国产精品蜜桃在线观看| 18禁动态无遮挡网站| 国产v大片淫在线免费观看| 久久久a久久爽久久v久久| 亚洲图色成人| 欧美成人午夜免费资源| 成年av动漫网址| 亚洲久久久久久中文字幕| 精品99又大又爽又粗少妇毛片| 晚上一个人看的免费电影| 欧美日韩亚洲高清精品| 蜜桃亚洲精品一区二区三区| 国产一级毛片在线| 国产精品蜜桃在线观看| 亚洲国产成人一精品久久久| 超碰97精品在线观看| 成年免费大片在线观看| 香蕉精品网在线| 久热久热在线精品观看| 韩国av在线不卡| 99热全是精品| 少妇 在线观看| 特大巨黑吊av在线直播| 国产免费又黄又爽又色| 国产欧美亚洲国产| 天天躁夜夜躁狠狠久久av| 九九久久精品国产亚洲av麻豆| 精华霜和精华液先用哪个| 欧美日韩视频精品一区| 亚洲美女视频黄频| 在线观看三级黄色| 美女xxoo啪啪120秒动态图| 69av精品久久久久久| 欧美性猛交╳xxx乱大交人| 六月丁香七月| 嫩草影院入口| 亚洲综合精品二区| 最后的刺客免费高清国语| 男人爽女人下面视频在线观看| 午夜爱爱视频在线播放| 人妻系列 视频| 国产日韩欧美亚洲二区| 男人添女人高潮全过程视频| 久久久久久久久久久免费av| 亚洲精华国产精华液的使用体验| 人人妻人人看人人澡| 欧美激情国产日韩精品一区| 一个人看视频在线观看www免费| 内射极品少妇av片p| 看免费成人av毛片| 成年版毛片免费区| 99精国产麻豆久久婷婷| 全区人妻精品视频| 纵有疾风起免费观看全集完整版| 只有这里有精品99| 精品国产乱码久久久久久小说| www.色视频.com| 大码成人一级视频| 成人漫画全彩无遮挡| 国产成人a∨麻豆精品| 日韩亚洲欧美综合| 久久久久性生活片| 精品99又大又爽又粗少妇毛片| 国产高清三级在线| 日韩在线高清观看一区二区三区| 日本熟妇午夜| 国产熟女欧美一区二区| 男女边摸边吃奶| 久久精品久久久久久噜噜老黄| 另类亚洲欧美激情| 国产视频内射| videos熟女内射| 色综合色国产| 国产精品久久久久久久电影| 亚洲熟女精品中文字幕| 久久久国产一区二区| 亚洲av一区综合| 免费大片18禁| 丝袜脚勾引网站| 在线观看一区二区三区激情| 网址你懂的国产日韩在线| 交换朋友夫妻互换小说| 男女下面进入的视频免费午夜| av在线天堂中文字幕| 欧美zozozo另类| 国产黄色视频一区二区在线观看| 极品少妇高潮喷水抽搐| 欧美潮喷喷水| 最近中文字幕2019免费版| 亚洲精品日韩av片在线观看| 免费电影在线观看免费观看| 欧美日韩视频高清一区二区三区二| 男人和女人高潮做爰伦理| 别揉我奶头 嗯啊视频| 亚洲国产精品999| 国产乱来视频区| 好男人在线观看高清免费视频| 蜜桃亚洲精品一区二区三区| 在线观看一区二区三区激情| 国产精品99久久久久久久久| 制服丝袜香蕉在线| 国产 一区精品| 午夜激情久久久久久久| 国模一区二区三区四区视频| 亚洲精品第二区| 99久久人妻综合| 在线播放无遮挡| 国内少妇人妻偷人精品xxx网站| 五月玫瑰六月丁香| 天天躁日日操中文字幕| 成人鲁丝片一二三区免费| 人妻一区二区av| av在线蜜桃| 亚洲av欧美aⅴ国产| 国产黄a三级三级三级人| 视频中文字幕在线观看| av国产久精品久网站免费入址| 欧美丝袜亚洲另类| 夜夜爽夜夜爽视频| 99精国产麻豆久久婷婷| 久久国产乱子免费精品| 99九九线精品视频在线观看视频| 少妇人妻精品综合一区二区| videos熟女内射| 欧美激情久久久久久爽电影| 日本与韩国留学比较| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 亚洲内射少妇av| 欧美成人a在线观看| 在线亚洲精品国产二区图片欧美 | 日本熟妇午夜| 午夜福利网站1000一区二区三区| 看非洲黑人一级黄片| 日韩强制内射视频| 日韩免费高清中文字幕av| 晚上一个人看的免费电影| 亚洲人成网站在线观看播放| 人体艺术视频欧美日本| 哪个播放器可以免费观看大片| 日韩av免费高清视频| 好男人视频免费观看在线| 亚洲精品中文字幕在线视频 | 一级毛片黄色毛片免费观看视频| 久久国产乱子免费精品| 一级毛片电影观看| 大香蕉97超碰在线| 内地一区二区视频在线| 麻豆成人av视频| 中文字幕av成人在线电影| 97超视频在线观看视频| 亚洲欧美日韩卡通动漫| 丝袜脚勾引网站| tube8黄色片| 亚洲国产日韩一区二区| 蜜臀久久99精品久久宅男| 亚洲精品色激情综合| 嫩草影院新地址| 午夜激情福利司机影院| 成人综合一区亚洲| 国内少妇人妻偷人精品xxx网站| 免费高清在线观看视频在线观看| 大片电影免费在线观看免费| 久久久色成人| 亚洲av中文字字幕乱码综合| 亚洲精品日韩在线中文字幕| 免费大片18禁| 中文字幕免费在线视频6| 在线a可以看的网站| 少妇人妻久久综合中文| 日韩强制内射视频| 日韩亚洲欧美综合| 欧美成人午夜免费资源| 成人亚洲欧美一区二区av| 国产精品一及| 男人和女人高潮做爰伦理| 国产日韩欧美在线精品| 亚洲国产高清在线一区二区三| 丰满人妻一区二区三区视频av| 王馨瑶露胸无遮挡在线观看| 久久久a久久爽久久v久久| 高清视频免费观看一区二区| 日本色播在线视频| 一区二区三区四区激情视频| 狂野欧美白嫩少妇大欣赏| 91精品一卡2卡3卡4卡| 欧美日韩在线观看h| 99九九线精品视频在线观看视频| 狂野欧美白嫩少妇大欣赏| 亚洲精华国产精华液的使用体验| 国产极品天堂在线| 免费观看性生交大片5| 女人被狂操c到高潮| 国产毛片在线视频| 免费高清在线观看视频在线观看| 欧美另类一区| 久久久久国产精品人妻一区二区| 可以在线观看毛片的网站| 午夜福利网站1000一区二区三区| 国产一区亚洲一区在线观看| 日韩免费高清中文字幕av| 国产大屁股一区二区在线视频| 最近中文字幕2019免费版| 精品久久久久久电影网| 王馨瑶露胸无遮挡在线观看| 亚洲精品一区蜜桃| 国产高清不卡午夜福利| 日韩不卡一区二区三区视频在线| 日韩成人av中文字幕在线观看| 丝瓜视频免费看黄片| 国产精品一区二区在线观看99| 日韩大片免费观看网站| 亚洲欧美日韩另类电影网站 | 下体分泌物呈黄色| 高清视频免费观看一区二区| 亚洲色图av天堂| 欧美日韩视频高清一区二区三区二| 国产淫片久久久久久久久| 看黄色毛片网站| 成人黄色视频免费在线看| 丰满少妇做爰视频| 亚洲三级黄色毛片| 男女啪啪激烈高潮av片| 成人特级av手机在线观看| 国产精品久久久久久久久免| 亚洲国产精品999| 亚洲av中文av极速乱| 久久99热这里只频精品6学生| 国产乱人偷精品视频| 九九在线视频观看精品| 大片电影免费在线观看免费| 午夜激情福利司机影院| 国产精品99久久久久久久久| 久久久久精品久久久久真实原创| 大香蕉97超碰在线| 亚洲国产精品999| 久久人人爽人人爽人人片va| 久久久久精品性色| 欧美潮喷喷水| 97人妻精品一区二区三区麻豆| 最后的刺客免费高清国语| av专区在线播放| 久久99精品国语久久久| 精品少妇久久久久久888优播| 晚上一个人看的免费电影| 亚洲成色77777| 爱豆传媒免费全集在线观看| 亚洲欧美中文字幕日韩二区| 国产精品人妻久久久久久| 亚洲欧美精品专区久久| 女人十人毛片免费观看3o分钟| 亚洲图色成人| 国产免费福利视频在线观看| 欧美少妇被猛烈插入视频| 女人被狂操c到高潮| 网址你懂的国产日韩在线| 丰满人妻一区二区三区视频av| 在线 av 中文字幕| 另类亚洲欧美激情| 久久国产乱子免费精品| 六月丁香七月| 一级爰片在线观看| 日本与韩国留学比较| 男男h啪啪无遮挡| 国产成人a区在线观看| 国产午夜精品久久久久久一区二区三区| 亚洲婷婷狠狠爱综合网| 国产伦精品一区二区三区四那| 日韩伦理黄色片| 最近的中文字幕免费完整| 黄色日韩在线| 久久影院123| 老女人水多毛片| av在线观看视频网站免费| 嫩草影院入口| 中文字幕亚洲精品专区| 欧美最新免费一区二区三区| 在线观看三级黄色| 国产视频内射| 一个人看的www免费观看视频| 五月玫瑰六月丁香| 青春草国产在线视频| 99久久九九国产精品国产免费| 97超视频在线观看视频| 少妇熟女欧美另类| 国产白丝娇喘喷水9色精品| 亚洲精品乱久久久久久| 免费在线观看成人毛片| 国产白丝娇喘喷水9色精品| 又粗又硬又长又爽又黄的视频| 国产乱来视频区| av福利片在线观看| 国国产精品蜜臀av免费| 免费看日本二区| 天堂中文最新版在线下载 | 嫩草影院入口| 美女被艹到高潮喷水动态| 亚洲天堂av无毛| 毛片女人毛片| 麻豆成人av视频| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 性色av一级| 国产午夜福利久久久久久| 久久久久久久精品精品| 亚洲在线观看片| 黄片无遮挡物在线观看| 在现免费观看毛片| 成年版毛片免费区| 久久久精品欧美日韩精品| 乱码一卡2卡4卡精品| 亚洲天堂av无毛| 51国产日韩欧美| 免费观看av网站的网址| 69av精品久久久久久| 欧美人与善性xxx| 一级a做视频免费观看| 亚洲av在线观看美女高潮| 街头女战士在线观看网站| 在线 av 中文字幕| 成人亚洲欧美一区二区av| 少妇裸体淫交视频免费看高清| 精品视频人人做人人爽| 久久久久久伊人网av| 免费看av在线观看网站| 永久免费av网站大全| 好男人视频免费观看在线| 日本熟妇午夜| 日韩强制内射视频| 国产 一区 欧美 日韩| 少妇被粗大猛烈的视频| 午夜激情福利司机影院| 亚洲电影在线观看av| 一二三四中文在线观看免费高清| 日韩电影二区| 国产精品一及| 女的被弄到高潮叫床怎么办| 亚洲精品视频女| 高清欧美精品videossex| 色综合色国产| 欧美性猛交╳xxx乱大交人| 亚洲丝袜综合中文字幕| www.色视频.com| 中文字幕亚洲精品专区| freevideosex欧美| 乱码一卡2卡4卡精品| 一区二区三区精品91| 色婷婷久久久亚洲欧美| 色综合色国产| 舔av片在线| 国产色婷婷99| 少妇人妻 视频| 色视频www国产| 交换朋友夫妻互换小说| 丰满少妇做爰视频| 少妇高潮的动态图| 美女xxoo啪啪120秒动态图| 青春草视频在线免费观看| 色吧在线观看| 高清毛片免费看| 黄片wwwwww| 国产v大片淫在线免费观看| av在线观看视频网站免费| 水蜜桃什么品种好| 国内精品美女久久久久久| 久久久久九九精品影院| 国产精品一区二区在线观看99| 卡戴珊不雅视频在线播放| 精品少妇黑人巨大在线播放| 成人漫画全彩无遮挡| 国产在线男女| 综合色av麻豆| 国产伦精品一区二区三区四那| 97超视频在线观看视频| 亚洲精品一区蜜桃| 日韩不卡一区二区三区视频在线| 91精品国产九色| 欧美亚洲 丝袜 人妻 在线| 最近的中文字幕免费完整| 欧美精品一区二区大全| 色婷婷久久久亚洲欧美| 熟女电影av网| 国产免费一区二区三区四区乱码| 亚洲欧美日韩东京热| 欧美一区二区亚洲| 人人妻人人看人人澡| 麻豆国产97在线/欧美| 又黄又爽又刺激的免费视频.| 七月丁香在线播放| 又爽又黄a免费视频| 亚洲欧美成人综合另类久久久| 亚洲国产成人一精品久久久| 国产真实伦视频高清在线观看| 麻豆精品久久久久久蜜桃| 男女边摸边吃奶| 精品一区二区三区视频在线| 成年女人看的毛片在线观看| 禁无遮挡网站| 天堂中文最新版在线下载 | 嘟嘟电影网在线观看| 成人黄色视频免费在线看| 干丝袜人妻中文字幕| 只有这里有精品99| 99热6这里只有精品| 午夜福利高清视频| 久久久久网色| 国产免费福利视频在线观看| 美女cb高潮喷水在线观看| 欧美区成人在线视频| 好男人视频免费观看在线| 国产白丝娇喘喷水9色精品| 国精品久久久久久国模美| 日本熟妇午夜| 91在线精品国自产拍蜜月| 日韩国内少妇激情av| 国产综合精华液| 欧美人与善性xxx| 少妇裸体淫交视频免费看高清| 国产伦在线观看视频一区| 免费大片18禁| 伦精品一区二区三区| 久久99热这里只频精品6学生| 亚洲欧美日韩东京热| 亚洲aⅴ乱码一区二区在线播放| 国产精品一区二区在线观看99| 欧美xxxx黑人xx丫x性爽| 熟女电影av网| 五月天丁香电影| 在线观看av片永久免费下载| 一级黄片播放器| 自拍偷自拍亚洲精品老妇| 国产精品久久久久久精品古装| 3wmmmm亚洲av在线观看| 精品亚洲乱码少妇综合久久| 一本色道久久久久久精品综合| 天堂网av新在线| 国产av不卡久久| 日韩视频在线欧美| 久久精品综合一区二区三区| 国产精品人妻久久久久久| 国产视频首页在线观看| 亚洲,欧美,日韩| 国产成人免费无遮挡视频|