• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Evaluation of remaining useful life for corroded pipeline with finite element simulation and reliability theory

    2022-04-19 06:49:42WangYifeiSuChunXieMingjiang

    Wang Yifei Su Chun,2 Xie Mingjiang

    (1School of Mechanical Engineering, Southeast University, Nanjing 211189, China)(2Hunan Provincial Key Lab of Health Maintenance for Mechanical Equipment, Hunan University of Science and Technology, Xiangtan 411201, China)

    Abstract:An integrated approach was proposed to evaluate the remaining useful life(RUL)of corroded petroleum pipelines.Two types of failure modes(i.e., leakage and burst failure)were considered, and the corresponding limit state functions(LSFs)were established with the structural reliability theory.A power-law function was applied to model the growth of corrosion defects, and the effect of external environmental factors on the growth of the pipeline’s defect was considered.Moreover, the result was compared with the commonly used linear growth model.After that, a finite element simulation model was established to calculate the burst pressure of the pipeline with corrosion defects, and its accuracy was verified through hydraulic burst test and by comparison with international criteria.On that basis, the probability that the pipeline may fail was calculated with Monte Carlo simulation(MCS)and by considering the LSFs, and the pipeline’s RUL was obtained accordingly.Furthermore, sensitivity analysis was conducted to determine the sensitivity parameters for the corrosion and RUL of the pipeline.The results indicate that the radial corrosion rate, wall thickness and working pressure have a great influence on the failure probability of the pipeline.Thus, corresponding measures should be adopted during the operation process of the pipeline to reduce the corrosion rate and increase the wall thickness, so as to prolong the pipeline’s RUL.

    Key words:pipeline; burst pressure; finite element method; remaining useful life; Monte Carlo simulation

    Long-distance pipeline is an efficient way to transport petroleum and natural gas.The pipeline needs to go through wide areas and experience various types of topographic and geological environments.Moreover, the pipeline will erode gradually due to various corrosive elements in petroleum and gas.Thus, when the operating pressure is greater than the wall’s carrying capacity, the pipeline will rupture and ultimately lead to leakage, environmental pollution, and ecological damage[1].Statistical results indicate that in the petrochemical industry, around 1/4 to 2/3 of the pipeline’s shutdown time was due to corrosion.

    In the last decades, research on the evaluation of pipeline’sreliability and remaining useful life(RUL)has attracted much attention[2-3].Among them, the first-order reliability method(FORM), second-order reliability method(SORM), and Monte Carlo simulation(MCS)are the commonly used assessment methods.Mosallam et al.[4]assessed the corroded pipeline’s life, and a probability model was established to characterize the pipeline’s performance and corrosion size.Gong et al.[5]applied FORM to evaluate the reliability of the pipeline with corrosion defects.Nahal et al.[6]proposed an empirical mechanical behavior model to evaluate the pipeline’s structural reliability under different corrosion rates, where the leakage, burst failure mode, and the limit state function(LSF)under different corrosion defects were considered.Bouledroua et al.[7]applied the SORM approach to evaluate the reliability of the corroded pipeline under excessive internal pressure.Hasan et al.[8]adopted MCS and first-order second-moment method to analyze the pipeline’s limit state and failure probability.Leira et al.[9]applied the enhanced MCS method to evaluate the reliability of the pipeline with multiple corrosion defects.Mohamed et al.[10]analyzed the structural reliability of corroded pipelines under different operating pressures, and the influence of the corrosion defects’ size on the pipeline’s failure probability was considered.Tee et al.[11]investigated the correlation between time-varying failure modes(which were caused by corrosion deformation, buckling, and wall thrust)and bending stress, and the failure probability was obtained with MCS.

    Besides, international criteria were also used to predict the burst pressure of corroded pipelines, including the modified ASME B31G, DNV RP-F101, and PCORRC[12].Zelmati et al.[13]used the modified ASME B31G to calculate the burst pressure of the pipeline.To calculate the burst pressure more accurately, simulation approaches were also widely applied, including the finite element method(FEM).Shuai et al.[14]used FEM to calculate the burst pressure, which showed good precision for corroded pipelines.Nahal et al.[15]adopted FEM and MCS to assess the pipeline’s reliability, where the dual action of corrosion and residual stress were taken into account.

    Recently, some novel approaches were proposed to assess the pipeline’s failure.Tee et al.[16]combined line sampling and importance sampling methods to estimate the time-varying reliability for the buried pipelines under internal and external stresses.Al-Amin et al.[17]evaluated the corroded pipeline’s reliability based on the detection data and Markov chain Monte Carlo.By using the pure birth Markov model, Ossai et al.[18]established a model for the internal pitting corrosion of the pipeline, and a negative binomial distribution was applied to estimate the future pit depth growth.Pesinis et al.[19]integrated empirical risk model and non-linear quantile regression approach to calculate the fracture reliability of natural gas pipeline.Taking four typical American onshore gas pipelines as examples, Gong et al.[20]evaluated the pipeline’s reliability with the approach of importance sampling, and two types of competing failure modes(i.e., small leakage and burst)were considered.Wen et al.[21]proposed an artificial neural network modeling method to evaluate the corroded pipeline’s reliability.Palencia et al.[22]described the degradation of the corroded pipeline through dynamic Bayesian network(DBN)method, and a probabilistic model of the fracture failure was established.Wang et al.[23]evaluated the pipeline’s RUL by considering the corrosion depth and residual strength, where the joint probability density function of the pipeline’s RUL was established with the Copula function, and the expectation maximization algorithm was used to obtain the model’s parameters and RUL.

    By now, the prediction of the pipeline’s residual life is mainly achieved by establishing corrosion growth rate model.Linear model is popularly adopted for the growth of the corrosion rate.However, results in most cases are conservative[24].Due to diversities in actual situations, large errors may exist.Thus, it is crucial to find a more effective and accurate method to predict the pipeline’s RUL.

    This study adopts FEM to calculate the burst pressure and applies MCS to predict the RUL of the corroded pipeline.A new burst prediction model is proposed, and its accuracy is illustrated with numerical experiments.A power-law function is applied to describe the growth of the corrosion defects, and the LSF is constructed, where the influence of soil environmental factors is considered.By combining the FEM and MCS, the pipeline’s reliability and RUL are predicted with high precision.

    1 Evaluation of the Corroded Pipeline’s RUL

    Taking the buried petroleum pipeline as the research object, two types of failure modes are considered in this study, i.e.corrosion perforation and fracture failure.The pipeline’s RUL is predicted with FEM and MCS.Moreover, the corrosion perforation failure is characterized with the power-law function, and the corresponding burst pressure of the fracture failure is determined by FEM.The correlation coefficient of LSF is determined, and MCS is applied to calculate the probability of the pipeline’s failure.Sensitivity analysis for the parameters is also conducted.

    1.1 Leakage due to corrosion

    According to the requirement of pipeline’s integrity management, a pipeline should be replaced when the depth of the defect exceeds 80% of the pipeline’s wall thickness[25].Thus, the LSF for the corrosion perforation can be defined as

    G1(t)=0.8ω-d(t)

    (1)

    whereωis the pipeline’s wall thickness; andd(t)is the depth of the corrosion defect at timet.

    G1>0 indicates that the pipeline is in a safe state.On the contrary,G1≤0 means failure of the pipeline.

    1.1.1 Linear growth model

    For quasi-steady-state corrosion, the corrosion growth is a linear function of time.Thus, the corrosion growth model can be defined as follows[26]:

    d(t)=d0+vdt

    (2)

    l(t)=l0+vlt

    (3)

    (4)

    (5)

    whered0is the initial depth of the pipeline’s corrosion defect;l0is the corrosion defect’s initial length;vdis the radial growth rate of the defect; andvlis the axial growth rate of the defect.

    1.1.2 Growth model of the power-law function

    Due to its simple expression and easy determination of the parameters in the model, the linear corrosion growth model is widely used.However, in engineering practice, the corrosion growth of the pipeline is not always simple or linear.In this study, the power-law function growth model is adopted, and the influence of environmental factors is taken into account[27]:

    d(t)=k(t-t0)α

    (6)

    wherekandαare the parameters of the soil characteristic, they are defined as[28]

    k=k0+k1rp+k2pH+k3re+k4cc+k5bc+k6sc

    (7)

    α=α0+α1pp+α2wc+α3bd+α4ct

    (8)

    whererp,re,cc,bc,sc,pp,wc,bd, andctdenote the redox potential, soil resistivity, chloride content, bicarbonate content, sulfate content, tube ground potential, water content, soil density, and the type of the coating, respectively.

    1.2 Calculating the leakage due to burst

    When the internal pressure of the pipeline exceeds its allowable continuous operating pressure, failure will occur.Therefore, the corresponding LSF can be defined as

    G2(t)=Pburst-P0

    (9)

    wherePburstis the burst pressure corresponding to the pipeline’s corrosion defects; andP0is the internal operating pressure of the pipeline.

    G2≤0 indicates that the pipeline has failed.Moreover, the probability of the fracture failure can be obtained with the formula in the criterion, such as the modified ASME B31G, DNV RP-F101, SHELL92, and PCORRC.The mathematical expressions of the burst pressure models for corrosion pipelines[29-30]are as follows:

    ASME B31G-2012

    M=

    DNV RP-F101-2015

    PCORRC

    SHELL92

    whereSis the yield strength, MPa;ωis the pipeline wall thickness;dis the corrosion depth, mm;Dis the pipeline diameter, mm;Mis the Folias factor;lis the corrosion length, mm;Uis the ultimate tensile strength, MPa.

    1.3 FEM modeling for the pipeline’s corrosion

    This study considers the corrosion defects as the objects of study, and FEM is adopted to obtain the pipeline’s burst pressure under internal pressure.Considering that the thermal stress caused by the temperature difference is quite small, here the influence of the thermal stress on the burst pressure is ignored.

    A three-dimensional FEM model is built for the corroded pipeline.During the modeling process, the corrosion defect is simplified as a groove.The corresponding parameters and boundary conditions are set, and the meshing is performed with quadratic tetrahedral elements.Moreover, considering that large deformation may be caused by the defects and non-linearity of materials, the standard Newton iteration method is not stable for solving the model.In this study, a modified RIKS method is applied to calculate the burst pressure using the ABAQUS? 6.12.

    2 Reliability Assessment for the Pipeline

    2.1 Failure probability analysis with MCS

    To calculate the pipeline’s failure probability with MCS, the basic procedures are as follows[31]:

    1)Set the number of simulations.

    2)Determine the mean and standard deviation for each variable based on the pipeline’s historical statistics.

    3)Generate samples by using the statistical property of random variables in Step 2).

    4)Integrate the generated samples into the LSF, and calculate the probability that the failure is less than 0.

    5)Obtain the probability of the pipeline’s failure.

    2.2 Model of the pipeline’s failure probability

    As mentioned above, there are mainly two types of failure modes for the pipelines with corrosion defects, i.e., corrosion perforation and fracture failure.When either the pipeline’s corrosion depth reaches its critical wall thickness, or when the operating pressure exceeds the burst pressure, failure will occur.Therefore, the total failure probability for the pipeline(i.e.,Pf)can be expressed as

    Pf=P(G1(t)≤0∪G2(t)≤0)=

    1-P(G1(t)>0∩G2(t)>0)

    (10)

    3 Case Study

    In this section, a petroleum pipeline in China is taken as the object of the study, its reliability and RUL are evaluated, and the result is also compared with that obtained from other models.The pipeline was put in operation in 1986, with a total length of 171.663 km and material of Grade API5LX60 steel.Moreover, its diameter is 711.2 mm, its wall thickness is 7.14 mm, and the operating pressure is 4.80 MPa.Up to now, two times of on-line inspections have been carried out, and the magnetic flux leakage detector was applied to detect the corrosion defects.The first inspection was carried out from June 5 to July 25 in 2015, and the second inspection was carried out from March 5 to April 25 in 2017.Tab.1 lists the corresponding parameters of the pipeline.

    Tab.1 Parameters of the pipeline

    3.1 Burst pressure simulation and experimental verification

    For the pipeline, its stress and deformation distribution can be obtained with FEM simulation, as shown in Fig.1.To verify the accuracy of the simulation results, a hydraulic burst test is conducted to obtain the pipeline burst pressure, and the corresponding test platform is shown in Fig.2.Moreover, the pipeline’s burst pressure is also calculated with international criteria, including the B31Gmod, DNV RP-F101, SHELL92, and PCORRC, as shown in Fig.3.According to the four international criteria, the calculated burst pressure shows a downward trend with the increase ofd/t, i.e., the ratio of the defect depth(d)to the wall thickness(t).The observed trend is consistent with the actual situation.

    Fig.1 Cloud diagrams of the pipeline’s stress

    Fig.2 Hydraulic burst test for the pipeline

    From Fig.3, the results obtained with FEM are very close to the results of field test, with a maximum error of 10.7%.According to the degree of closeness between the calculated results of the criteria as well as the result of the field test, the rank order from the best to the worst is PCORRC, DNV RP-F101, B31Gmod, SHELL92.Moreover, even though the results of the PCORRC are closer to the test results, the maximum error is still as high as 18.4%.Thus, compared with the results of the criteria, more accurate burst pressure can be obtained with FEM.

    Fig.3 Comparison of the pipeline’s failure pressures

    3.2 Determination of the corrosion growth

    On the basis of Eqs.(2)and(4), the linear corrosion growth model is obtained, i.e.,d(t)=0.8ω-(d0+0.13t).The parameters in Eqs.(7)and(8)are set as follows:k0=0.608;k1=-0.000 18;k2=-0.065 4;k3=-0.000 26;k4=0.000 874;k5=-0.000 639;k6=-0.000 122;α0=0.896;α1=0.519;α2=0.004 65;α3=-0.099; andα4=0.431[25].Based on Eqs.(6)to(8)and Tab.2, the expression of power-law function for the corrosion growth model is obtained, i.e.,d(t)=0.094(t-3)0.88.Fig.4 shows the failure probability curves that are obtained with the linear growth model and power-law function growth model.

    Tab.2 Parameters of the soil environmental variables of pipelines

    As shown in Fig.4, the predicted results of the two models have similar variation tendency.With the increase of the running time, the probability that the pipeline may fail tends to increase.However, the predicted failure probability with the linear model is smaller than the result of the power-law function model.Thus, the power-law function model is more suitable, and more accurate results can be obtained with considering the environmental factors.

    Fig.4 Failure curves of the pipeline with corrosion

    3.3 Comparison of corrosion failure probabilities

    Fig.5 shows the failure probability calculated with different models.Obviously, there is a difference among the prediction results.The largest failure probability is obtained with the SHELL92 model, which will result in a smaller estimation of the burst pressure.

    Fig.5 Failure probability curves under different calculation models

    Fig.3 shows that the predicted result with FEM is closest to the test result, followed by DNV RP-F101, PCORRC, B31Gmod, and SHELL92.Moreover, in terms of failure rate prediction, the prediction result of FEM is also the smallest, followed by DNV RP-F101, PCORRC, B31Gmod, and SHELL92.

    The pipeline is considered to be failed, when either of the two types of failure occurs.Thus, we can obtain the pipeline’s RUL according to the maximum acceptable failure probability.As shown in Fig.4, a failure rate of 10-4corresponds to a residual life of about 13 years and 7 years based on the power-law function growth model and linear growth model, respectively.The predicted RUL obtained with the linear growth model is shorter than that of the power-law function growth model.The result is observed to be conservative.

    3.4 Sensitivity analysis of the parameters

    Considering that a variety of factors can affect the pipeline’s failure probability, it is crucial to find the key parameters(e.g., diameter and wall thickness of the pipeline, operation pressure, and corrosion rate in different directions)to predict the pipeline’s failure probability or RUL more accurately, or to prolong the service time and properly draw up a maintenance policy.Here, the coefficient of variation is used to characterize the sensitivity of the parameters, as follows:

    (11)

    Fig.6 shows the pipeline’s failure rate change with the initial corrosion depth.When the variation coefficient of the initial corrosion depth(i.e., cov(d0))changes from 0.01 to 0.3, the failure rate curve remains unchanged.This indicates that the initial corrosion depth of defects has little influence on the failure rate.Moreover, the failure rate change with the axial corrosion rate has a similar tendency.

    Fig.6 Failure probability curve under different cov(d0)

    Figs.7 and 8 show the pipeline’s failure rate changes with the tensile strength and diameter, respectively.It can be seen that these two parameters have certain influences on the failure rate.

    Fig.7 Failure probability curve under different cov(U)

    Fig.8 Failure probability curve under different cov(D)

    Moreover, sensitivity analysis for other parameters, including the radial corrosion rate of defects, the length and wall thickness of the pipeline, and the operating pressure, are also implemented.The results for the above parameters are not discussed detailedly here.It is found that the radial corrosion rate, wall thickness, and operating pressure are closely related to the limit state equation.Moreover, the defect’s length has some effect on the pipeline’s failure rate.However, the effect is not so obvious.

    4 Conclusions

    1)This study integrates FEM and MCS to predict the pipeline’s RUL, and a case study is conducted to analyze the law of corrosion defect’s size change over time.Moreover, the accuracy of the proposed method is verified with the results of hydraulic burst test and major international criteria.

    2)Compared with the results obtained with linear growth model, more accurate results can be obtained by using the power-law function model.

    3)Sensitivity analysis is implemented for the parameters.The results show that the radial corrosion rate, wall thickness, and operating pressure have obvious impact on the failure of the pipeline.Furthermore, as these parameters may correlate with each other, it can be taken into account in future research.

    久久久国产成人免费| 成人永久免费在线观看视频| 精品国内亚洲2022精品成人| 夜夜看夜夜爽夜夜摸| 少妇被粗大猛烈的视频| 国产视频首页在线观看| 欧美色欧美亚洲另类二区| 久久精品久久久久久久性| 亚洲va在线va天堂va国产| 一个人观看的视频www高清免费观看| 日韩精品有码人妻一区| 久久99精品国语久久久| 国产精品不卡视频一区二区| 国产精品美女特级片免费视频播放器| 久久午夜亚洲精品久久| 成人鲁丝片一二三区免费| 精品无人区乱码1区二区| 啦啦啦啦在线视频资源| 成人欧美大片| 此物有八面人人有两片| 18禁在线播放成人免费| 日韩一区二区三区影片| 熟妇人妻久久中文字幕3abv| 国产精品无大码| 噜噜噜噜噜久久久久久91| 国产人妻一区二区三区在| 欧美一级a爱片免费观看看| 赤兔流量卡办理| 国产精品野战在线观看| 日日干狠狠操夜夜爽| 人妻夜夜爽99麻豆av| 亚洲欧洲国产日韩| 噜噜噜噜噜久久久久久91| 午夜精品在线福利| 欧美另类亚洲清纯唯美| 波多野结衣巨乳人妻| 亚洲第一区二区三区不卡| 91午夜精品亚洲一区二区三区| 国产三级在线视频| 最好的美女福利视频网| 免费观看a级毛片全部| 日本与韩国留学比较| 五月玫瑰六月丁香| 日韩 亚洲 欧美在线| 99热精品在线国产| 此物有八面人人有两片| 嫩草影院新地址| 女人被狂操c到高潮| 久久亚洲国产成人精品v| 亚洲精品自拍成人| 我要看日韩黄色一级片| 国产精品美女特级片免费视频播放器| 97超碰精品成人国产| 日韩人妻高清精品专区| 超碰av人人做人人爽久久| 国产亚洲欧美98| 亚洲成av人片在线播放无| 国产极品天堂在线| 亚洲最大成人av| 最近的中文字幕免费完整| av专区在线播放| 边亲边吃奶的免费视频| 乱人视频在线观看| 中文字幕免费在线视频6| 少妇高潮的动态图| 国产精品国产三级国产av玫瑰| 一边摸一边抽搐一进一小说| 99热这里只有是精品50| 亚洲精品日韩在线中文字幕 | 丝袜美腿在线中文| 亚洲欧美清纯卡通| 精品日产1卡2卡| 国产精品人妻久久久久久| 亚洲国产日韩欧美精品在线观看| 色哟哟哟哟哟哟| 久久99热这里只有精品18| 国产精品女同一区二区软件| 久久久国产成人免费| 真实男女啪啪啪动态图| 尾随美女入室| 此物有八面人人有两片| av免费在线看不卡| 亚洲高清免费不卡视频| 久久精品夜色国产| 免费黄网站久久成人精品| 国产精品野战在线观看| 国产精品国产高清国产av| 国产精品无大码| 热99在线观看视频| 波多野结衣高清作品| 偷拍熟女少妇极品色| 久久午夜亚洲精品久久| 女的被弄到高潮叫床怎么办| 国产成人午夜福利电影在线观看| 黄色一级大片看看| 久久久久久久午夜电影| 亚洲激情五月婷婷啪啪| 精品一区二区三区人妻视频| 菩萨蛮人人尽说江南好唐韦庄 | 老熟妇乱子伦视频在线观看| 国产一级毛片七仙女欲春2| 亚洲av.av天堂| 六月丁香七月| 久久精品国产亚洲av天美| 欧美变态另类bdsm刘玥| 亚洲欧美精品自产自拍| 久久久成人免费电影| 日韩成人av中文字幕在线观看| 亚洲av熟女| 丰满乱子伦码专区| 超碰av人人做人人爽久久| 日韩成人av中文字幕在线观看| 国产精品久久久久久久电影| 夜夜看夜夜爽夜夜摸| 国产亚洲5aaaaa淫片| 久久人人精品亚洲av| 在线免费观看的www视频| 3wmmmm亚洲av在线观看| 亚洲精品日韩av片在线观看| 男女下面进入的视频免费午夜| 色综合亚洲欧美另类图片| 九九热线精品视视频播放| 国产精品爽爽va在线观看网站| 一区二区三区四区激情视频 | 少妇猛男粗大的猛烈进出视频 | 直男gayav资源| 欧美高清成人免费视频www| 日本熟妇午夜| 亚洲av.av天堂| 1024手机看黄色片| 不卡视频在线观看欧美| 五月玫瑰六月丁香| 亚洲一区高清亚洲精品| 欧美日韩一区二区视频在线观看视频在线 | 亚洲在久久综合| 久久精品夜夜夜夜夜久久蜜豆| 能在线免费看毛片的网站| 日韩大尺度精品在线看网址| 久久99蜜桃精品久久| 91在线精品国自产拍蜜月| 国产精品永久免费网站| 男女啪啪激烈高潮av片| 欧美成人一区二区免费高清观看| 精品久久久噜噜| 男人舔奶头视频| 搡老妇女老女人老熟妇| 老师上课跳d突然被开到最大视频| 欧美三级亚洲精品| 青青草视频在线视频观看| 内地一区二区视频在线| 91午夜精品亚洲一区二区三区| 校园人妻丝袜中文字幕| 免费观看精品视频网站| 日韩中字成人| 国产成人aa在线观看| 亚洲,欧美,日韩| 搡女人真爽免费视频火全软件| 日本一二三区视频观看| 麻豆成人av视频| 男女做爰动态图高潮gif福利片| 午夜精品在线福利| 欧美激情久久久久久爽电影| 一边亲一边摸免费视频| 亚洲不卡免费看| 色哟哟哟哟哟哟| 偷拍熟女少妇极品色| 直男gayav资源| ponron亚洲| а√天堂www在线а√下载| 天堂影院成人在线观看| 久久99蜜桃精品久久| 一区二区三区免费毛片| 亚洲成av人片在线播放无| 热99在线观看视频| 国产视频内射| 三级男女做爰猛烈吃奶摸视频| 国产国拍精品亚洲av在线观看| 亚洲成a人片在线一区二区| 国产精品.久久久| 国产成人精品婷婷| 国产精品久久久久久久久免| 边亲边吃奶的免费视频| 午夜福利在线观看吧| 99精品在免费线老司机午夜| 午夜a级毛片| 日韩亚洲欧美综合| 看十八女毛片水多多多| 国产成人福利小说| 欧洲精品卡2卡3卡4卡5卡区| 12—13女人毛片做爰片一| 免费观看人在逋| 国产在视频线在精品| 男女啪啪激烈高潮av片| 男插女下体视频免费在线播放| 麻豆一二三区av精品| 国产一区二区在线观看日韩| 韩国av在线不卡| 亚洲成人av在线免费| 综合色av麻豆| 国产精品麻豆人妻色哟哟久久 | ponron亚洲| 欧美激情在线99| 国产精品电影一区二区三区| 国产私拍福利视频在线观看| 欧美极品一区二区三区四区| 2021天堂中文幕一二区在线观| videossex国产| 免费av观看视频| 亚洲综合色惰| 韩国av在线不卡| 99视频精品全部免费 在线| 亚洲欧洲日产国产| 国产高清三级在线| 黄片无遮挡物在线观看| 国产精品美女特级片免费视频播放器| 在线观看66精品国产| 久久久久久久午夜电影| 精品久久久噜噜| 黄片wwwwww| av女优亚洲男人天堂| 亚洲欧美日韩东京热| 国产亚洲91精品色在线| 国产精品久久电影中文字幕| 国语自产精品视频在线第100页| 欧美+亚洲+日韩+国产| 国产精品人妻久久久影院| 中国美女看黄片| 亚洲国产精品久久男人天堂| av在线亚洲专区| 日韩精品青青久久久久久| 欧美精品国产亚洲| 好男人在线观看高清免费视频| 中文资源天堂在线| 久久亚洲精品不卡| 禁无遮挡网站| 欧美+日韩+精品| 国产一区亚洲一区在线观看| 成年av动漫网址| 男女啪啪激烈高潮av片| 精品欧美国产一区二区三| 人妻制服诱惑在线中文字幕| 欧美一区二区亚洲| 波多野结衣巨乳人妻| 国产精品一及| 免费看av在线观看网站| 久久久午夜欧美精品| 毛片女人毛片| 变态另类成人亚洲欧美熟女| 亚洲av熟女| 午夜免费男女啪啪视频观看| 哪里可以看免费的av片| 观看免费一级毛片| 亚洲美女视频黄频| 久久99热6这里只有精品| 日本黄大片高清| 成人午夜高清在线视频| 免费一级毛片在线播放高清视频| 免费电影在线观看免费观看| 精品久久久久久成人av| 91av网一区二区| 可以在线观看的亚洲视频| 一个人看的www免费观看视频| 日韩强制内射视频| 成人一区二区视频在线观看| 亚洲一级一片aⅴ在线观看| 国产精品久久久久久久久免| 91aial.com中文字幕在线观看| 精品一区二区三区视频在线| 看免费成人av毛片| 久久精品国产亚洲av香蕉五月| 国产高清有码在线观看视频| 精品人妻视频免费看| 亚洲av第一区精品v没综合| 国产精品蜜桃在线观看 | 最好的美女福利视频网| 亚洲av第一区精品v没综合| 亚洲人成网站在线播| 午夜福利在线观看免费完整高清在 | 性色avwww在线观看| 亚洲欧美日韩高清在线视频| 美女大奶头视频| 亚洲高清免费不卡视频| a级一级毛片免费在线观看| 国产三级在线视频| 日韩高清综合在线| 国产在线男女| 久久人人精品亚洲av| 久久韩国三级中文字幕| 久久精品久久久久久久性| 中文亚洲av片在线观看爽| 变态另类丝袜制服| 日韩 亚洲 欧美在线| 伦精品一区二区三区| 亚洲国产精品sss在线观看| 日韩av在线大香蕉| 级片在线观看| av在线蜜桃| 中文字幕熟女人妻在线| 欧美成人免费av一区二区三区| 国产乱人视频| 99久国产av精品国产电影| av福利片在线观看| 国产精品久久视频播放| 国产精品一区二区三区四区免费观看| 国产黄色小视频在线观看| 成人午夜精彩视频在线观看| 床上黄色一级片| 久久久a久久爽久久v久久| 久久欧美精品欧美久久欧美| 搡老妇女老女人老熟妇| 免费黄网站久久成人精品| 熟女电影av网| a级毛片a级免费在线| 亚洲欧美精品综合久久99| 黄色日韩在线| 淫秽高清视频在线观看| 国产在视频线在精品| 欧美日韩在线观看h| 国产老妇伦熟女老妇高清| 国产精品国产高清国产av| 床上黄色一级片| 婷婷色av中文字幕| 人体艺术视频欧美日本| 淫秽高清视频在线观看| 午夜精品国产一区二区电影 | 中文资源天堂在线| 九九久久精品国产亚洲av麻豆| 国产亚洲欧美98| 成人毛片a级毛片在线播放| 欧美xxxx黑人xx丫x性爽| 亚洲,欧美,日韩| 亚洲欧洲日产国产| 又黄又爽又刺激的免费视频.| 日韩中字成人| 99热6这里只有精品| 天堂中文最新版在线下载 | 成人av在线播放网站| 亚洲国产日韩欧美精品在线观看| 日本色播在线视频| 成人性生交大片免费视频hd| .国产精品久久| 久久人人爽人人爽人人片va| 欧美高清性xxxxhd video| 此物有八面人人有两片| 男插女下体视频免费在线播放| 久久久久久久久久成人| 日韩欧美一区二区三区在线观看| 亚洲av免费高清在线观看| 欧美人与善性xxx| 久久这里只有精品中国| 久久午夜福利片| 免费观看精品视频网站| 精品久久久久久久久亚洲| 亚洲最大成人手机在线| 国产成人freesex在线| 深夜精品福利| 极品教师在线视频| 国产一级毛片七仙女欲春2| 丝袜美腿在线中文| 夫妻性生交免费视频一级片| 能在线免费看毛片的网站| 亚洲成人av在线免费| 中国美女看黄片| 国语自产精品视频在线第100页| 亚洲欧美日韩卡通动漫| .国产精品久久| 男人舔女人下体高潮全视频| 成人亚洲精品av一区二区| 人人妻人人澡欧美一区二区| 男的添女的下面高潮视频| 成人av在线播放网站| 国产免费一级a男人的天堂| 春色校园在线视频观看| 日本-黄色视频高清免费观看| 一级毛片我不卡| 亚洲成人av在线免费| 一级毛片我不卡| 中文亚洲av片在线观看爽| av卡一久久| 黄色日韩在线| 99久久精品国产国产毛片| 天堂中文最新版在线下载 | 麻豆一二三区av精品| 国国产精品蜜臀av免费| 亚洲精华国产精华液的使用体验 | 成年版毛片免费区| 最后的刺客免费高清国语| 国产熟女欧美一区二区| av女优亚洲男人天堂| 日本免费一区二区三区高清不卡| 人妻系列 视频| 日韩av不卡免费在线播放| 欧美色视频一区免费| 国内精品美女久久久久久| 久久久色成人| 91午夜精品亚洲一区二区三区| 少妇熟女欧美另类| 日韩欧美精品v在线| 免费看av在线观看网站| av国产免费在线观看| 亚洲人成网站在线播| 婷婷六月久久综合丁香| 国产成人a区在线观看| 哪里可以看免费的av片| 在线播放无遮挡| 少妇裸体淫交视频免费看高清| 少妇熟女aⅴ在线视频| 免费搜索国产男女视频| 九九在线视频观看精品| 久久久久网色| 亚洲激情五月婷婷啪啪| 国产一级毛片在线| 精品一区二区免费观看| 国产综合懂色| 精品久久国产蜜桃| 欧美人与善性xxx| 欧美zozozo另类| 网址你懂的国产日韩在线| 午夜福利在线观看吧| 亚洲电影在线观看av| 国产精品嫩草影院av在线观看| 亚洲成人久久性| 亚洲成人久久爱视频| 免费看a级黄色片| 特大巨黑吊av在线直播| 亚洲av男天堂| 日韩一区二区视频免费看| 嫩草影院精品99| 欧美+日韩+精品| 丝袜美腿在线中文| 亚洲第一区二区三区不卡| 午夜爱爱视频在线播放| 黄片无遮挡物在线观看| 亚洲第一电影网av| 亚洲自偷自拍三级| kizo精华| 欧美在线一区亚洲| 午夜福利在线观看免费完整高清在 | 白带黄色成豆腐渣| 美女cb高潮喷水在线观看| 一进一出抽搐gif免费好疼| 国产中年淑女户外野战色| 村上凉子中文字幕在线| 国产av一区在线观看免费| 国产高清视频在线观看网站| 国产精品不卡视频一区二区| 久久6这里有精品| 久久久久国产网址| 一个人免费在线观看电影| 国产精品人妻久久久久久| 日本色播在线视频| 爱豆传媒免费全集在线观看| 成熟少妇高潮喷水视频| 国产精品福利在线免费观看| 精品一区二区三区视频在线| 成人特级黄色片久久久久久久| 日本爱情动作片www.在线观看| a级一级毛片免费在线观看| 国产精品人妻久久久影院| 亚洲人成网站在线播| 欧美日本亚洲视频在线播放| 最近2019中文字幕mv第一页| 99国产极品粉嫩在线观看| 欧美成人a在线观看| 色综合色国产| 久久久久网色| 国产一区二区三区av在线 | 亚洲欧美精品自产自拍| 99热这里只有是精品在线观看| 3wmmmm亚洲av在线观看| 中文在线观看免费www的网站| 有码 亚洲区| 亚洲在久久综合| 最后的刺客免费高清国语| 国产爱豆传媒在线观看| 如何舔出高潮| 精品午夜福利在线看| 91精品一卡2卡3卡4卡| 夜夜爽天天搞| 成人毛片a级毛片在线播放| 女人被狂操c到高潮| 色综合亚洲欧美另类图片| 欧美最黄视频在线播放免费| 一级毛片久久久久久久久女| 美女脱内裤让男人舔精品视频 | 在线观看66精品国产| 国产真实乱freesex| 欧美日本亚洲视频在线播放| 久久久久久久久久久丰满| 国产成人精品婷婷| 两性午夜刺激爽爽歪歪视频在线观看| 午夜老司机福利剧场| 国产免费一级a男人的天堂| 欧美3d第一页| 婷婷六月久久综合丁香| 成人午夜精彩视频在线观看| 色播亚洲综合网| 我的老师免费观看完整版| 国产精品一二三区在线看| 久久久成人免费电影| 精品久久久久久久人妻蜜臀av| 亚洲av熟女| 精品一区二区三区人妻视频| 日本黄色片子视频| 国产精品,欧美在线| 小蜜桃在线观看免费完整版高清| 男女视频在线观看网站免费| 91久久精品电影网| 国产精品蜜桃在线观看 | 晚上一个人看的免费电影| 黑人高潮一二区| 国产午夜精品论理片| 99riav亚洲国产免费| 2022亚洲国产成人精品| 亚洲第一电影网av| 国产一区二区三区在线臀色熟女| 三级经典国产精品| 精品欧美国产一区二区三| 中文欧美无线码| 老女人水多毛片| 欧美性猛交黑人性爽| 国产毛片a区久久久久| 日本欧美国产在线视频| 美女大奶头视频| 国产成人精品一,二区 | 全区人妻精品视频| 色视频www国产| 久久久久久久久大av| 日韩欧美在线乱码| videossex国产| 日日啪夜夜撸| 国产大屁股一区二区在线视频| 国产精品爽爽va在线观看网站| 国产精品1区2区在线观看.| 一进一出抽搐动态| 久久99热这里只有精品18| 久久久久久久久中文| 一区二区三区免费毛片| 99国产极品粉嫩在线观看| 级片在线观看| 免费看美女性在线毛片视频| 久久精品91蜜桃| 色视频www国产| 亚洲av免费在线观看| 亚洲在久久综合| 1024手机看黄色片| 久久精品久久久久久噜噜老黄 | 欧美又色又爽又黄视频| 中文在线观看免费www的网站| 乱人视频在线观看| 欧美日韩一区二区视频在线观看视频在线 | 日韩在线高清观看一区二区三区| 看黄色毛片网站| 18禁在线无遮挡免费观看视频| 亚洲精品日韩在线中文字幕 | a级毛片a级免费在线| 亚洲成人av在线免费| 夜夜夜夜夜久久久久| 国产精品免费一区二区三区在线| 成人永久免费在线观看视频| 国产亚洲av嫩草精品影院| av免费观看日本| 亚洲丝袜综合中文字幕| 亚洲五月天丁香| 亚洲精品乱码久久久久久按摩| 午夜精品国产一区二区电影 | 亚洲欧美日韩高清在线视频| 日日摸夜夜添夜夜爱| 91午夜精品亚洲一区二区三区| 又爽又黄a免费视频| 青青草视频在线视频观看| 国产精品一区二区性色av| 99热这里只有精品一区| 91久久精品国产一区二区三区| 国产毛片a区久久久久| 久久精品夜色国产| 久久精品夜夜夜夜夜久久蜜豆| 国产成人午夜福利电影在线观看| 男人的好看免费观看在线视频| 91av网一区二区| 免费一级毛片在线播放高清视频| 成人无遮挡网站| 2021天堂中文幕一二区在线观| 久久久精品大字幕| 亚洲欧美日韩卡通动漫| 亚洲精品自拍成人| 日本一本二区三区精品| 欧美激情在线99| 国产精品久久久久久亚洲av鲁大| 观看免费一级毛片| 岛国在线免费视频观看| 亚洲精品日韩在线中文字幕 | av在线天堂中文字幕| 色哟哟哟哟哟哟| 别揉我奶头 嗯啊视频| 成人漫画全彩无遮挡| 我的老师免费观看完整版| 欧美高清性xxxxhd video| 99九九线精品视频在线观看视频| 我的老师免费观看完整版| 久久久久久久久久久丰满| 观看美女的网站| 一区二区三区高清视频在线| 国产乱人偷精品视频| 一级毛片久久久久久久久女| 欧美一区二区精品小视频在线| 亚洲第一电影网av| 日本av手机在线免费观看| 久久精品人妻少妇| 国产综合懂色| 女人十人毛片免费观看3o分钟| 边亲边吃奶的免费视频| 国产在视频线在精品| 久久6这里有精品| 国产亚洲5aaaaa淫片|