• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Finite rate of innovation sparse sampling for a binary frequency-coded ultrasonic signal

    2022-04-19 06:48:48SongShoupengChenYiqianXuBaowenQiuYue

    Song Shoupeng Chen Yiqian Xu Baowen Qiu Yue

    (School of Mechanical Engineering, Jiangsu University, Zhenjiang 212013, China)

    Abstract:To achieve sparse sampling on a coded ultrasonic signal, the finite rate of innovation(FRI)sparse sampling technique is proposed on a binary frequency-coded(BFC)ultrasonic signal.A framework of FRI-based sparse sampling for an ultrasonic signal pulse is presented.Differences between the pulse and the coded ultrasonic signal are analyzed, and a response mathematical model of the coded ultrasonic signal is established.A time-domain transform algorithm, called the high-order moment method, is applied to obtain a pulse stream signal to assist BFC ultrasonic signal sparse sampling.A sampling of the output signal with a uniform interval is then performed after modulating the pulse stream signal by a sampling kernel.FRI-based sparse sampling is performed using a self-made circuit on an aluminum alloy sample.Experimental results show that the sampling rate reduces to 0.5 MHz, which is at least 12.8 MHz in the Nyquist sampling mode.The echo peak amplitude and the time of flight are estimated from the sparse sampling data with maximum errors of 9.324% and 0.031%, respectively.This research can provide a theoretical basis and practical application reference for reducing the sampling rate and data volume in coded ultrasonic testing.

    Key words:coded ultrasonic signal; finite rate of innovation; high-order moment; sparse sampling; circuit implementation

    Ultrasonic waves are generally generated using a single-pulse excitation technique with existing ultrasonic testing equipment, and their peak acoustic power is directly determined using the pulse amplitude.Even if the emission voltage increases to its upper limit, the average acoustic power is low, which results in a low signal-to-noise ratio(SNR)of the echo signal.A coded excitation method can effectively solve this problem.The duration of a continuous coding sequence is longer than that of a single pulse in the time domain.Thus, the average sound power and echo SNR are effectively improved without increasing the emission voltage[1-2].Most common ultrasonic coded forms include the M-sequence pseudo-random coding[3], Huffman sequence[4], Barker code[5], Golay code[6], and linear and nonlinear frequency modulation[7].

    Unlike the traditional Nyquist sampling, the finite rate of innovation(FRI)sampling theory was first proposed by Vetterli et al.[8]in 2002.However, this theory is just for FRI signals, which can be represented by finite degrees of freedom, and the degree of freedom per unit time is called the rate of innovation(ROI).According to the FRI sampling theory, sparse sampling data are obtained by uniform space sampling of the signal that is processed using a properly designed sampling kernel whose sampling frequency is much lower than that of a traditional sampling technique.Using this method, the A/D sampling rate can be greatly reduced and the key parameters of a signal, such as the echo amplitude and time of flight, can be accurately estimated from the sparse sampling data.Therefore, the sampling technique can be applied to cases that require a great reduction of a large amount of sampling data[9].Until now, the FRI sampling theory has been applied to fields of super-wideband communication, GPS, radar, medical ultrasonic imaging, and industrial ultrasonic testing[10-12].

    The FRI sampling theory was originally proposed for four typical FRI signals, namely the Dirac stream signal, differential Dirac stream signal, non-uniform spline, and piecewise polynomial signal[8].In subsequent research, the piecewise sinusoidal signal[13]and a pulse signal of known shape[14]were incorporated into the types of signals that can be FRI-sampled.

    The ultrasonic signal in the form of a single-pulse excitation can be transformed into a pulse stream signal to satisfy FRI sampling requirements.Tur et al.[15]introduced the FRI sampling method to the medical ultrasonic imaging field in 2011.Peng[16]first applied this method to the field of pipeline flaw ultrasonic array testing in 2015.Since the coded ultrasonic signal does not satisfy FRI sampling requirements, it cannot be directly FRI-sampled.To solve this problem, this paper proposes a novel signal transformation technique to obtain a pulse stream of the coded ultrasonic signal to satisfy FRI sparse sampling conditions.Meanwhile, a circuit has been designed to perform the proposed method.

    1 FRI Sparse Sampling of a Pulse-Excited Ultrasonic Signal

    The mathematical model of a pulse-excited ultrasonic signal can be expressed as a Gaussian modulated signal and expressed as[16]

    (1)

    whereLis the number of echoes in one signal;βlis the amplitude coefficient of the echo;αlis the pulse width factor of the echo;tlis the time of flight of the echo;f0is the center frequency of the ultrasonic transducer; andφlis the initial phase.

    The Gaussian pulse envelopeg(t)can be extracted as

    (2)

    Suppose the time duration of the ultrasonic echo signal isτ, the ROI of the pulse stream can then be calculated as follows[8]:

    (3)

    Fig.1 Framework of FRI sparse sampling for a pulse-excited ultrasonic signal

    2 FRI Sparse Sampling Framework of a Coded Ultrasonic Signal

    2.1 Mathematical model of a binary frequency-coded ultrasonic signal

    A coded ultrasonic signal is applied to improve the average sound power and echo SNR.This is more convenient for frequency selection and debugging.Therefore, it was selected as the coding increasing the emission voltage.Moreover, a frequency coding form can impart abundant frequency information to an ultrasonic detection signal, which can improve the frequency sensitivity of the ultrasonic detection signal to different sizes and types of defects, thereby improving the defect detection rate.

    The binary frequency-coded(BFC)signalc(t)is expressed as

    (4)

    Let us assume that the response function of an ultrasonic transducer is as follows[12]:

    h(t)=βe-ct2cos(ω0t+φ)

    (5)

    whereβis the amplitude coefficient;c=1/γ2;γis the pulse width coefficient;ω0is the center frequency of the ultrasonic transducer; andφis the initial phase.

    Then, the response of the coded signalc(t)through the ultrasonic transducer is as follows:

    x(t)=F-1[X(ω)]=F-1[C(ω)H(ω)]=

    (6)

    whereF-1[·]denotes the inverse Fourier transform;X(ω),C(ω), andH(ω)are the Fourier transforms ofx(t),c(t), andh(t), respectively.

    (7)

    (8)

    Figs.2(a)and(b)illustrate four-bit BFC excitation signals.The frequencies of low-and high-frequency code elements are 3.2 and 6.4 MHz, respectively.Figs.2(c)and(d)illustrate the coded ultrasonic echo signals reflected from the flat bottom aluminum alloy sample.The center frequency of the ultrasonic transducer is 5 MHz with a bandwidth of 4 MHz.Fig.2 indicates that this type of signal has a longer oscillation and a more complicated waveform than a pulse-excited ultrasonic signal.

    (a)

    2.2 High-order moment of coded ultrasonic and FRI sampling

    Let us assume that the coded echo signalxr(t)reflected from the bottom of the test sample is as follows:

    xr(t)=β′x(t)

    (9)

    The pulse compression signalxm(t0)by extracting the second-order moment of the coded echo signal can then be obtained as follows:

    (10)

    whereβ′ is the reflection attenuation coefficient andt0is the amount of delay processing for one of the echo signals.

    To improve the SNR and time resolution of the coded ultrasonic signal, a pulse compression[19]technique is generally performed on its echo signal using a matching filtering method[20-22], which is a second-order moment method.

    Figs.3(a)and(b)present the second-order moment waveforms of Figs.2(c)and(d), respectively.The sidelobe level of the signal that was compressed using the matched filter is still high, because it is difficult to obtain the signal ROI and the accurate parameters of the coded ultrasonic echo signal.To suppress the sidelobes and highlight the mainlobe, a mismatched filter is constructed by adding a window function in the matched filter[24-25]; however, this method increases the mainlobe width and decreases the mainlobe amplitude.

    (a)

    To overcome the shortcomings of the second-order moment method, a high-order momentxH(t0)of coded ultrasonic echo signals is introduced, which can be expressed as

    xH(t0)=[xm(t0)]2nn∈Z+

    (11)

    If the mainlobe amplitudePH≥ 1 and the sidelobe amplitudePL<1, the mainlobe amplitude of a high-order momentxH(t0)is then maintained or increased and each sidelobe is attenuated.The higher the order 2n, the greater the attenuation.If both the mainlobe and sidelobe amplitudesPH<1 andPL<1, the amplitudes of the mainlobe and sidelobe of the high-order momentxH(t0)are attenuated.As the mainlobe concentrates the main energy of the second-order moment, assuming that the minimum ratio of mainlobe to sidelobe amplitudes is ΔP=PH/PL, the attenuation gradient of the sidelobe is then larger than that of the mainlobe.This has the same effect of enhancing the mainlobe and suppressing the sidelobe.

    (a)

    (12)

    where 2nis the order of the high-order moment;tslis the oscillation start time of the coded ultrasonic echo signal;telis the oscillation end time of the coded ultrasonic echo signal; andt0is the time delay of the processing system.

    2.3 FRI sampling method of the coded ultrasonic echo signal

    The FRI sampling process of the coded ultrasonic echo signal can be summarized as follows:

    1)Generating the coded excitation signalc(t)according to coding rules;

    2)Driving the ultrasonic transducer by power amplification to generate the coded ultrasonic detection signalx(t);

    3)Obtaining the reflected echoxr(t)from the test object;

    4)Obtaining the high-order moment signalxH(t0)from the echo signalxr(t);

    5)Performing FRI sparse sampling onxH(t0)to obtain sparse sampling datay[n];

    Fig.5 presents the framework of FRI sparse sampling for the coded ultrasonic echo signal.

    Fig.5 FRI sparse sampling framework of the coded ultrasonic signal

    3 Circuit Design of the Sparse Sampling Framework

    To verify the effectiveness and performance of the proposed method, a circuit has been designed.Fig.6 shows the circuit block diagram.

    Fig.6 Circuit block diagram of FRI sparse sampling of the coded ultrasonic signal

    The circuit includes a code generation module, echo-receiving module, matched filter module, high-order moment convert module, and FRI sampling kernel circuit model.The coded excitation signal is generated using the code generation module for exciting the ultrasonic transducer, and the coded ultrasonic echo signal is pre-amplified and bandpass-denoised using the echo-receiving module.The second-order moment of the echo signal is then extracted using the matched filter module.The high-order moment of the echo signal is further transformed using the high-order moment convert module to generate the ultrasonic pulse stream with its output signal amplified again by a post-amplifier.Finally, the FRI sampling kernel is applied for subsequent data sampling with a uniform interval at a low sampling rate.

    Code generation module: An FPGA is used as the control chip to generate a BFC signalc(t); the frequency of the low-frequency code element “0” is set to 3.2 MHz, the frequency of the high-frequency code element “1” is set to 6.4 MHz, and the code length is set to 4 bit; i.e., there are 24coding forms from 0000 to 1111.The ultrasonic excitation chip is used to amplify the BFC signal into a high-energy-coded excitation signal with an amplitude of ±60 V, exciting the ultrasonic transducer to generate a coded ultrasonic signal.

    Echo-receiving module: The preamplifier circuit consists of the operational amplifier, which is used for impedance matching and preamplification of the coded ultrasonic echo signalxr(t).Preamplification aims to adjust the amplitude of the coded ultrasonic signal in a proper range to fit subsequent signal processing.The second-order Butterworth bandpass filter circuit consists of the operational amplifier.The central frequency of the passband is set to 5 MHz, the bandwidth is set to 4 MHz with the passband attenuation set to-3 dB, and the stopband attenuation is set to-40 dB.

    Matched filter module: This module divides the echo signal into two signals and delays one of them.The delay circuit consists of a second-order Bessel lowpass filter implemented with the passband cutoff frequency set to 10 MHz, passband attenuation set to-3 dB, and the stopband attenuation set to-40 dB.Because of the large group delay of the Bessel filter, the echo signal can be delayed by hundreds of nanoseconds.The two signals are connected to the four-quadrant multiplier, and the output of the multiplier is connected to an implemented integral circuit.The second-order moment of the coded ultrasonic signalxm(t0)is then obtained.

    High-order moment conversion module: The second-order momentxm(t)is connected to the four-quadrant multiplier for multiplication, and the result of the multiplication is its high-order moment.More multipliers are required for higher orders.The high-order moment of a coded ultrasonic echo signal is finally constructed into an ultrasonic pulse stream signalxH(t0)by gain adjustment.

    Part of the FRI sampling kernel hardware circuit is implemented using a Chebyshev lowpass filter to form a Fourier series coefficient screening circuit for approximation, which then directly samples it using the FRI sparse sampling circuit.According to the characteristics of the input signal and results of the subsequent parameter estimation algorithm, the conditions for a sampling kernel to be satisfied are determined.After the input signal passes through the FRI sampling kernel circuit, sparse sampling can be performed on it at its ROI, and the major parameters can be estimated using the sparse-sampled data through the parameter estimation algorithm.

    4 Experimental Results and Analysis

    An experimental platform was established to verify the effectiveness of the proposed method for pulse stream forming and FRI sampling, as shown in Fig.7.In the experiments, a 4-bit BFC ultrasonic detection signal was adopted, and a test signal was applied to an aluminum alloy sample to obtain the flat bottom echo.The high-order moment of the coded ultrasonic echo signal was then obtained using the pulse stream construction circuit.The ultrasonic pulse stream signal was processed using the FRI sampling kernel circuit to obtain the FRI sampling kernel output signal.Finally, the signal was sparse-sampled at a low sampling rate with uniform intervals to obtain the sparse sampling data.

    Fig.7 Experimental platform

    In the experiment, a T/R immersion normal ultrasonic transducer with a central frequency of 5 MHz and bandwidth of 4 MHz was used.Water was used as a coupling medium.The thickness of the aluminum alloy sample was 20 mm, the frequency of the low-frequency code element “0” was set to 3.2 MHz, the frequency of the high-frequency code element “1” was set to 6.4 MHz, and the code length was set to 4 bit.

    Using the coded ultrasonic signal 0010 and 0101 as examples, Figs.8(a)and(b)show the initial pulse and bottom echo of the coded ultrasonic signals 0010 and 0101.Figs.8(c)and(d)show the pulse stream, FRI sampling kernel output, and FRI sampling points of the two coded signals, respectively.Figs.8(e)and(f)present a comparison of the pulse stream and the estimated signal with the parameters estimated using the FRI sparse sampling data, respectively.According to the Nyquist-Shannon sampling theorem, the A/D sampling rate of the coded ultrasonic detection signal needs to be no less than 12.8 MHz.In the experiment, the number of pulse echoes isL1=2, the signal duration isτ1≈8 μs, and the local maximum innovation rate of the ultrasonic pulse stream is ROI1=2L1/τ1≈0.5×106, that is only 4% of the conventional sampling frequency.The high-order moment in this experiment was the twelfth one.Clearly, the mainlobe amplitude of the coded ultrasonic echo signal was greatly increased and the sidelobe amplitude was greatly attenuated.An annihilating filter algorithm was used to estimate the signal peak amplitude and time of flight of the pulse stream using the sparse-sampled data.

    (a)

    (a)

    The converted pulse stream signal could be FRI sparse-sampled, and the amplitude and time of flight of the high-order moment signal could be accurately estimated using the sparse-sampled data.The maximum error of the amplitude was 9.324%.This may be due to the saturation phenomenon when the amplitude of the ultrasonic pulse stream signal exceeds the rated value of analog devices.The maximum error of the time of flight was 0.031%.The FRI sparse sampling frequency was performed at the local maximum innovation rate of the high-order moment pulse stream signal, which was 0.5 MHz.Therefore, the sparse sampling rate was considerably lower than that using the conventional Nyquist sampling method, and the amount of sampling data was considerably reduced.

    At the same time, the echo pulse amplitude of the original coded ultrasonic signal is compared with the echo pulse amplitude of the high-order moment pulse stream.If there are multiple echoes in one detection, the minimum amplitude value is taken, as shown in Fig.10.When the noise level is constant, extracting the high-order moment pulse stream can improve the SNR by increasing the echo amplitude of the detection signal.

    Fig.10 Comparison of echo amplitudes

    5 Conclusions

    1)In response to the problem of coded ultrasonic FRI sparse sampling, this study proposed a novel framework by converting the coded ultrasonic echo into a pulse stream to satisfy the requirements of FRI sparse sampling.

    2)A circuit has been designed to implement the proposed framework using a high-order-moment-based converting method of twelfth to convert the signal.

    3)Experiments have been performed on an aluminum alloy sample using a binary frequency-coded ultrasonic signal with an encoding length of 4.Experimental results show that the coded ultrasonic signal can be FRI sparse-sampled using a high-order-moment-based converting method, and the amplitude and the time of flight of the echo signal can be estimated using the sparse-sampled data with maximum errors of 9.324% and 0.031%, respectively.

    4)The sparse sampling rate was 0.5 MHz in the experiments, which is considerably lower than the conventional Nyquist sampling rate of at least 12.8 MHz.

    久久久久久九九精品二区国产| 久久午夜福利片| 日韩精品青青久久久久久| 成人一区二区视频在线观看| 毛片一级片免费看久久久久| 色吧在线观看| 久久精品夜夜夜夜夜久久蜜豆| 国产免费一级a男人的天堂| 欧美激情国产日韩精品一区| 国产在线一区二区三区精| 国产精品久久久久久精品电影小说 | 九九久久精品国产亚洲av麻豆| 纵有疾风起免费观看全集完整版 | 日韩伦理黄色片| 日本-黄色视频高清免费观看| 精品久久久噜噜| 国产大屁股一区二区在线视频| 青春草国产在线视频| 亚洲欧美日韩卡通动漫| 精品久久久久久久久av| 久久国产乱子免费精品| 欧美日韩一区二区视频在线观看视频在线 | 美女大奶头视频| 在线天堂最新版资源| 亚洲精华国产精华液的使用体验| 99久久人妻综合| 又爽又黄无遮挡网站| 毛片女人毛片| 两个人视频免费观看高清| 国产亚洲午夜精品一区二区久久 | 哪个播放器可以免费观看大片| 永久网站在线| h日本视频在线播放| 亚洲av中文字字幕乱码综合| 欧美成人午夜免费资源| 亚洲精品第二区| 美女cb高潮喷水在线观看| 一个人免费在线观看电影| 亚洲国产欧美在线一区| 美女主播在线视频| 久久久久久九九精品二区国产| 在线a可以看的网站| 日韩国内少妇激情av| 亚洲av中文字字幕乱码综合| 国产亚洲av片在线观看秒播厂 | 中文资源天堂在线| 国产免费又黄又爽又色| 18禁动态无遮挡网站| 午夜激情福利司机影院| 国产精品熟女久久久久浪| 色播亚洲综合网| 欧美性感艳星| 麻豆国产97在线/欧美| 国产成人免费观看mmmm| 美女大奶头视频| 亚洲精品自拍成人| 午夜福利在线观看免费完整高清在| 国产成人精品福利久久| 日韩在线高清观看一区二区三区| av在线老鸭窝| 欧美变态另类bdsm刘玥| 蜜桃久久精品国产亚洲av| 成人鲁丝片一二三区免费| 成人性生交大片免费视频hd| 18禁裸乳无遮挡免费网站照片| 亚洲精品久久午夜乱码| 成人漫画全彩无遮挡| 一级a做视频免费观看| 亚洲av.av天堂| 日本wwww免费看| 美女主播在线视频| 街头女战士在线观看网站| 在线观看av片永久免费下载| 成年女人看的毛片在线观看| 欧美最新免费一区二区三区| 日韩国内少妇激情av| 日日摸夜夜添夜夜添av毛片| 免费人成在线观看视频色| 老师上课跳d突然被开到最大视频| 女的被弄到高潮叫床怎么办| 天堂俺去俺来也www色官网 | 可以在线观看毛片的网站| 观看免费一级毛片| 亚洲不卡免费看| 晚上一个人看的免费电影| 久久久久性生活片| 国产一区有黄有色的免费视频 | 美女脱内裤让男人舔精品视频| 看十八女毛片水多多多| 国内精品美女久久久久久| 日韩av在线免费看完整版不卡| 夜夜看夜夜爽夜夜摸| 大陆偷拍与自拍| .国产精品久久| 欧美不卡视频在线免费观看| 熟妇人妻久久中文字幕3abv| 国产精品人妻久久久久久| 80岁老熟妇乱子伦牲交| 可以在线观看毛片的网站| 午夜精品一区二区三区免费看| 伊人久久国产一区二区| 久久精品国产亚洲av天美| 中文字幕亚洲精品专区| 亚洲精品456在线播放app| 三级国产精品片| 99热全是精品| 99热全是精品| 久久久久性生活片| 免费黄色在线免费观看| 乱系列少妇在线播放| 亚洲国产精品成人久久小说| 2021少妇久久久久久久久久久| 午夜福利视频1000在线观看| 18禁在线无遮挡免费观看视频| 91精品伊人久久大香线蕉| 亚洲欧洲国产日韩| 亚洲精品自拍成人| 久久久久国产网址| 黄色一级大片看看| 国产精品1区2区在线观看.| 国产白丝娇喘喷水9色精品| 99久久九九国产精品国产免费| 不卡视频在线观看欧美| 伊人久久精品亚洲午夜| 看免费成人av毛片| h日本视频在线播放| 波野结衣二区三区在线| 欧美不卡视频在线免费观看| 亚洲色图av天堂| 老司机影院毛片| 国产免费一级a男人的天堂| 久久久亚洲精品成人影院| 国产乱人视频| 免费高清在线观看视频在线观看| 午夜福利在线在线| 人人妻人人澡欧美一区二区| av在线观看视频网站免费| 人人妻人人澡欧美一区二区| 深夜a级毛片| 少妇被粗大猛烈的视频| 国产伦精品一区二区三区视频9| 国产成人91sexporn| 日韩三级伦理在线观看| 亚洲国产欧美在线一区| 色哟哟·www| av在线天堂中文字幕| 一夜夜www| 一个人观看的视频www高清免费观看| av卡一久久| 亚洲综合精品二区| 亚洲最大成人手机在线| 简卡轻食公司| 国产乱来视频区| 国产精品蜜桃在线观看| 蜜桃久久精品国产亚洲av| videos熟女内射| 国产精品麻豆人妻色哟哟久久 | 国产成人免费观看mmmm| 午夜福利视频精品| 18禁在线无遮挡免费观看视频| 春色校园在线视频观看| 国产精品久久久久久精品电影小说 | 亚洲精品乱码久久久v下载方式| 欧美极品一区二区三区四区| 国产91av在线免费观看| 久久精品国产亚洲av天美| 在线观看人妻少妇| 免费人成在线观看视频色| 欧美高清成人免费视频www| 欧美激情国产日韩精品一区| 99久久九九国产精品国产免费| 欧美区成人在线视频| 三级国产精品欧美在线观看| 久久久亚洲精品成人影院| 欧美日韩在线观看h| 日韩精品有码人妻一区| 最近最新中文字幕免费大全7| 久久人人爽人人爽人人片va| 久久久久久久午夜电影| 嫩草影院新地址| 久久午夜福利片| 国产精品一区www在线观看| 久久精品久久久久久久性| 午夜福利成人在线免费观看| 美女被艹到高潮喷水动态| 神马国产精品三级电影在线观看| 久久综合国产亚洲精品| 老司机影院成人| 久久人人爽人人片av| 国产精品久久久久久久久免| 国产色爽女视频免费观看| 久久久久国产网址| 免费观看av网站的网址| 18禁裸乳无遮挡免费网站照片| 精品欧美国产一区二区三| 亚洲天堂国产精品一区在线| 中文在线观看免费www的网站| 成人一区二区视频在线观看| 久久精品熟女亚洲av麻豆精品 | 99久久九九国产精品国产免费| 少妇被粗大猛烈的视频| 国产成人a∨麻豆精品| 特大巨黑吊av在线直播| 色5月婷婷丁香| 免费av不卡在线播放| 三级国产精品欧美在线观看| 日韩av不卡免费在线播放| 国内精品美女久久久久久| 欧美三级亚洲精品| 一级毛片黄色毛片免费观看视频| 九九在线视频观看精品| ponron亚洲| 午夜福利高清视频| 日韩av在线免费看完整版不卡| 亚洲av国产av综合av卡| 欧美三级亚洲精品| 91狼人影院| 天堂影院成人在线观看| 久久草成人影院| 99久久人妻综合| 日韩一区二区视频免费看| 人妻制服诱惑在线中文字幕| 国产成人精品久久久久久| 街头女战士在线观看网站| 丰满人妻一区二区三区视频av| 99九九线精品视频在线观看视频| 能在线免费看毛片的网站| 韩国av在线不卡| 中文字幕人妻熟人妻熟丝袜美| 人人妻人人看人人澡| 免费av不卡在线播放| 亚洲精品乱码久久久久久按摩| 99九九线精品视频在线观看视频| 女人被狂操c到高潮| 日韩成人伦理影院| 午夜日本视频在线| 国产亚洲午夜精品一区二区久久 | 午夜福利视频1000在线观看| 美女高潮的动态| 国产成人a区在线观看| 天天一区二区日本电影三级| 我的老师免费观看完整版| 久久精品夜夜夜夜夜久久蜜豆| 丰满乱子伦码专区| 亚洲国产最新在线播放| 99热这里只有是精品在线观看| av在线老鸭窝| 黄色一级大片看看| 国产黄色免费在线视频| 亚洲精品乱久久久久久| 一个人免费在线观看电影| 国产精品久久久久久精品电影小说 | 网址你懂的国产日韩在线| 男女边摸边吃奶| 最近最新中文字幕免费大全7| 嫩草影院新地址| 51国产日韩欧美| 国产精品麻豆人妻色哟哟久久 | 一夜夜www| 日日摸夜夜添夜夜添av毛片| 色综合色国产| 国产黄频视频在线观看| 2018国产大陆天天弄谢| 性插视频无遮挡在线免费观看| 三级国产精品片| 国产 一区 欧美 日韩| 久久鲁丝午夜福利片| 国产黄色免费在线视频| 五月玫瑰六月丁香| 欧美成人a在线观看| 又爽又黄无遮挡网站| 亚洲av中文字字幕乱码综合| 亚洲国产高清在线一区二区三| 久久精品久久久久久噜噜老黄| 国产精品精品国产色婷婷| 久久久久网色| 乱码一卡2卡4卡精品| 日韩,欧美,国产一区二区三区| 亚洲精品久久久久久婷婷小说| 日韩欧美三级三区| 卡戴珊不雅视频在线播放| 人妻系列 视频| 美女被艹到高潮喷水动态| 国产有黄有色有爽视频| 日韩精品有码人妻一区| 视频中文字幕在线观看| 少妇人妻精品综合一区二区| 又黄又爽又刺激的免费视频.| 伦理电影大哥的女人| 亚洲精品日韩av片在线观看| 搡老乐熟女国产| 国产成人aa在线观看| 天堂网av新在线| av福利片在线观看| 日韩伦理黄色片| 日本av手机在线免费观看| 韩国av在线不卡| 天堂av国产一区二区熟女人妻| 国产午夜福利久久久久久| 久久久成人免费电影| 久久6这里有精品| 亚洲精品456在线播放app| 日韩成人伦理影院| 亚洲av国产av综合av卡| 色哟哟·www| 在线免费十八禁| 国产免费又黄又爽又色| 欧美日韩一区二区视频在线观看视频在线 | 亚洲久久久久久中文字幕| 天天一区二区日本电影三级| 久久99蜜桃精品久久| 男女国产视频网站| 水蜜桃什么品种好| 欧美潮喷喷水| 亚洲av日韩在线播放| 爱豆传媒免费全集在线观看| 插阴视频在线观看视频| 高清在线视频一区二区三区| h日本视频在线播放| 免费播放大片免费观看视频在线观看| 国产综合精华液| 久久精品久久久久久久性| 中国美白少妇内射xxxbb| 汤姆久久久久久久影院中文字幕 | 最近的中文字幕免费完整| 青春草视频在线免费观看| 麻豆久久精品国产亚洲av| 亚州av有码| 午夜福利视频1000在线观看| 91精品国产九色| 国产综合懂色| .国产精品久久| 精品一区二区三区人妻视频| 99热网站在线观看| 午夜老司机福利剧场| 乱码一卡2卡4卡精品| 高清午夜精品一区二区三区| av免费在线看不卡| 亚洲综合精品二区| 国产高清三级在线| 国产免费福利视频在线观看| 国产男人的电影天堂91| 国产老妇伦熟女老妇高清| 免费观看精品视频网站| 午夜福利网站1000一区二区三区| 天堂√8在线中文| 水蜜桃什么品种好| 久久久久久久久中文| 国产av在哪里看| 99九九线精品视频在线观看视频| 韩国高清视频一区二区三区| 亚洲,欧美,日韩| 亚洲精品成人久久久久久| 国精品久久久久久国模美| 亚洲精品乱码久久久v下载方式| .国产精品久久| 亚洲精品乱久久久久久| 好男人在线观看高清免费视频| 成人一区二区视频在线观看| 国产乱人视频| 18禁在线播放成人免费| 一级av片app| 久久久久久久久久久免费av| 99热网站在线观看| 亚洲最大成人手机在线| 久久精品熟女亚洲av麻豆精品 | 一级毛片电影观看| 久久99热6这里只有精品| 国产一区二区三区综合在线观看 | 亚洲av一区综合| 亚洲精品国产av蜜桃| 精品酒店卫生间| 日日撸夜夜添| 精品一区二区三区视频在线| 国产午夜精品一二区理论片| 街头女战士在线观看网站| 日日摸夜夜添夜夜爱| 日本三级黄在线观看| 欧美日韩一区二区视频在线观看视频在线 | 成人一区二区视频在线观看| 婷婷色麻豆天堂久久| 精品人妻偷拍中文字幕| 激情五月婷婷亚洲| 超碰97精品在线观看| 一个人看的www免费观看视频| 亚洲国产精品专区欧美| 老司机影院成人| 亚洲精华国产精华液的使用体验| 国产真实伦视频高清在线观看| 欧美zozozo另类| 极品少妇高潮喷水抽搐| 午夜福利网站1000一区二区三区| 激情 狠狠 欧美| 国产91av在线免费观看| 全区人妻精品视频| 97在线视频观看| 国产v大片淫在线免费观看| h日本视频在线播放| 国产精品一区二区三区四区久久| 午夜激情欧美在线| 一个人看视频在线观看www免费| 菩萨蛮人人尽说江南好唐韦庄| 国产精品嫩草影院av在线观看| 国产又色又爽无遮挡免| 久久久成人免费电影| 日本黄色片子视频| 国产爱豆传媒在线观看| 亚洲va在线va天堂va国产| 少妇熟女aⅴ在线视频| 久久人人爽人人爽人人片va| 午夜精品国产一区二区电影 | 久久久久久久久久成人| 欧美精品国产亚洲| 中文字幕人妻熟人妻熟丝袜美| 最近中文字幕2019免费版| 国产精品一区二区三区四区久久| 非洲黑人性xxxx精品又粗又长| 高清视频免费观看一区二区 | 97精品久久久久久久久久精品| 色5月婷婷丁香| 成人国产麻豆网| 三级国产精品片| 插逼视频在线观看| 国产一区亚洲一区在线观看| 色视频www国产| 色综合色国产| 99久久中文字幕三级久久日本| 建设人人有责人人尽责人人享有的 | 久久这里有精品视频免费| 亚洲乱码一区二区免费版| 美女cb高潮喷水在线观看| 国产精品不卡视频一区二区| 久久精品夜夜夜夜夜久久蜜豆| 久久久色成人| 亚洲精品一二三| 日韩欧美精品v在线| 国产黄片视频在线免费观看| 亚洲精品国产av蜜桃| av福利片在线观看| 亚洲av免费在线观看| 好男人在线观看高清免费视频| 亚洲人成网站高清观看| 三级经典国产精品| 2018国产大陆天天弄谢| 欧美成人精品欧美一级黄| 身体一侧抽搐| 日本av手机在线免费观看| 成人美女网站在线观看视频| 欧美日韩在线观看h| 国产亚洲精品久久久com| 免费少妇av软件| 精品熟女少妇av免费看| 观看美女的网站| 美女高潮的动态| 人妻制服诱惑在线中文字幕| 久久久国产一区二区| 免费黄网站久久成人精品| 亚洲精品亚洲一区二区| 一区二区三区免费毛片| 欧美日本视频| 丰满人妻一区二区三区视频av| 女人被狂操c到高潮| 亚洲av日韩在线播放| 91久久精品国产一区二区成人| 国产伦精品一区二区三区四那| 婷婷六月久久综合丁香| 麻豆乱淫一区二区| 一级毛片黄色毛片免费观看视频| 超碰av人人做人人爽久久| 精品一区二区三卡| 搡女人真爽免费视频火全软件| 亚洲人与动物交配视频| 精品国产一区二区三区久久久樱花 | 69av精品久久久久久| 波多野结衣巨乳人妻| 免费电影在线观看免费观看| 一级av片app| 中文字幕av成人在线电影| 亚洲综合精品二区| 国产成人freesex在线| 久久久久久久午夜电影| 国产亚洲av片在线观看秒播厂 | 最近中文字幕高清免费大全6| 久久这里有精品视频免费| 久久久久久久久大av| 亚洲精品456在线播放app| av网站免费在线观看视频 | 精品人妻一区二区三区麻豆| 国产 一区精品| 亚洲欧美一区二区三区国产| 在线a可以看的网站| 日本av手机在线免费观看| 小蜜桃在线观看免费完整版高清| 我的女老师完整版在线观看| 亚洲国产成人一精品久久久| 午夜日本视频在线| 在线 av 中文字幕| 成人亚洲欧美一区二区av| 久久精品久久精品一区二区三区| 国产午夜精品一二区理论片| av又黄又爽大尺度在线免费看| 久久久久久久大尺度免费视频| 日韩av在线免费看完整版不卡| 高清欧美精品videossex| 三级经典国产精品| 搡老妇女老女人老熟妇| 国产又色又爽无遮挡免| 午夜激情久久久久久久| 极品少妇高潮喷水抽搐| 欧美bdsm另类| 免费看av在线观看网站| 日韩av在线免费看完整版不卡| 99久国产av精品国产电影| 国产片特级美女逼逼视频| 九草在线视频观看| 超碰av人人做人人爽久久| 80岁老熟妇乱子伦牲交| 国产精品一区二区三区四区久久| 久久精品国产鲁丝片午夜精品| 亚洲精品成人久久久久久| 国产视频内射| 亚洲激情五月婷婷啪啪| 中文乱码字字幕精品一区二区三区 | 亚洲成人中文字幕在线播放| 日韩一区二区三区影片| 天天躁夜夜躁狠狠久久av| 五月天丁香电影| 精品熟女少妇av免费看| 能在线免费看毛片的网站| 免费无遮挡裸体视频| 免费观看性生交大片5| 国产伦在线观看视频一区| 国产精品日韩av在线免费观看| 免费少妇av软件| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 日本av手机在线免费观看| 国产亚洲精品av在线| av一本久久久久| 一级毛片aaaaaa免费看小| 亚洲精品色激情综合| 老师上课跳d突然被开到最大视频| 热99在线观看视频| 欧美日韩亚洲高清精品| 久久国产乱子免费精品| 亚洲一区高清亚洲精品| 国产黄频视频在线观看| 麻豆精品久久久久久蜜桃| 午夜日本视频在线| 狂野欧美白嫩少妇大欣赏| ponron亚洲| 国产精品一区www在线观看| 午夜福利网站1000一区二区三区| 2021少妇久久久久久久久久久| 亚洲国产高清在线一区二区三| 性色avwww在线观看| 插逼视频在线观看| 插阴视频在线观看视频| 九九在线视频观看精品| 日韩欧美精品免费久久| 精品不卡国产一区二区三区| videossex国产| 人体艺术视频欧美日本| 精品久久久精品久久久| 人体艺术视频欧美日本| 亚洲综合精品二区| 免费观看在线日韩| 在现免费观看毛片| 中文天堂在线官网| 国产美女午夜福利| 中文字幕av成人在线电影| 51国产日韩欧美| 汤姆久久久久久久影院中文字幕 | 18+在线观看网站| 国产精品精品国产色婷婷| 亚洲性久久影院| 国产黄片视频在线免费观看| 人妻制服诱惑在线中文字幕| 丝袜美腿在线中文| 老司机影院毛片| 男插女下体视频免费在线播放| 天堂中文最新版在线下载 | 97在线视频观看| 午夜免费男女啪啪视频观看| 一区二区三区四区激情视频| 三级男女做爰猛烈吃奶摸视频| 大香蕉97超碰在线| 国产精品国产三级专区第一集| 丝瓜视频免费看黄片| 日本猛色少妇xxxxx猛交久久| 免费看光身美女| 2021少妇久久久久久久久久久| 久久99精品国语久久久| 亚洲国产精品国产精品| 久久精品综合一区二区三区| 十八禁网站网址无遮挡 | 少妇的逼水好多| 91在线精品国自产拍蜜月| 九九在线视频观看精品| 国产中年淑女户外野战色| 精品久久久久久久久亚洲| 免费少妇av软件| 综合色丁香网| 国产精品久久久久久久电影| 久久精品国产亚洲网站| 亚洲国产av新网站| 秋霞伦理黄片| 嫩草影院精品99| 国产毛片a区久久久久| 精品欧美国产一区二区三| 日韩精品青青久久久久久| av线在线观看网站| 麻豆国产97在线/欧美| 十八禁网站网址无遮挡 | 尤物成人国产欧美一区二区三区| 久久久成人免费电影|