• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Detection of solar radio burst intensity based on a modified multifactor SVM algorithm

    2022-04-19 03:29:48LuoYimeiZhuXuefenLinMengyingYangFanTuGangyi

    Luo Yimei Zhu Xuefen Lin Mengying Yang Fan Tu Gangyi

    (1School of Instrument Science and Engineering, Southeast University, Nanjing 210096, China)(2School of Electronic and Information Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China)

    Abstract:To realize the automatic detection of solar radio burst(SRB)intensity, detection based on a modified multifactor support vector machine(SVM)algorithm is proposed.First, the influence of SRB on global navigation satellite system(GNSS)signals is analyzed.Feature vectors, which can reflect the SRB intensity of stations, are also extracted.SRB intensity is classified according to the solar radio flux, and different class labels correspond to different SRB intensity types.The training samples are composed of feature vectors and their corresponding class labels.Second, training samples are input into SVM classifiers to one-against-one training to obtain the optimal classification models.Finally, the optimal classification model is synthesized into a modified multifactor SVM classifier, which is used to automatically detect the SRB intensity of new data.Experimental results indicate that for historical SRB events, the average accuracy of SRB intensity detection is greater than 90% when the solar incident angle is higher than 20°.Compared with other methods, the proposed method considers many factors with higher accuracy and does not rely on radio telescopes, thereby saving cost.

    Key words:global navigation satellite system; solar radio burst; modified multifactor SVM algorithm; detection accuracy

    With the wide application of global navigation satellite systems(GNSS)in modern society, the influence of solar radio burst(SRB)on GNSS signals has attracted the extensive attention of scholars.SRBs are intense radio wave emissions, usually related to solar flares[1].Previous studies revealed that the satellite carrier-to-noise ratio(C/N0)decreases, the positioning error and the geometry dilution of precision(GDOP)increase, and the navigation signals are lost to varying degrees during severe SRBs[2].Chen et al.[3]presented that the flux density threshold of SRBs affecting GPS signals is between 4 000 and 12 000 solar flux units(SFU).Huang et al.[4]analyzed the SRB event on December 13, 2006, and found that in this event, the number of satellites locked of multiple stations was less than 4.Berdermann et al.[5], Linty et al.[6], and Sato et al.[7]analyzed the impact of the SRB event on September 6, 2017, following its effects on the ionosphere and the resulting serious problems for precise positioning and GNSS signals.

    For mainly relying on manual, the traditional detection and classification of SRBs have a huge workload and low efficiency.In recent years, many methods for automatic detection and classification of SRBs have been proposed.Ma et al.[8]proposed a new SRB classification method on the basis of multimodal deep learning.Chen et al.[9]used the convolution neural network to classify the solar radio spectrum.Singh et al.[10]utilized a novel statistical method to automatically distinguish the dynamic spectrum with or without SRBs.However, this method does not classify the types of SRBs.

    At present,certain methods for the automatic detection and classification of SRBs are available; most of them must be realized by radio telescope data.Given that radio telescopes are expensive and sparsely distributed, a real-time and efficient method is urgently needed to detect SRBs without utilizing radio telescopes.Yang et al.[11]proposed an intense L-band SRB detection method without the aid of a radio telescope.This method detects the valley period of theC/N0of multiple satellites and combines it with multiple stations to realize SRB detection.However, the detection feature is single and can only detect SRBs when they are severe.Huang et al.[12]gave the threshold range to define SRB intensity, providing a basis for its classification.However, they did not conduct detection.

    In the present study, a method to detect SRB intensity on the basis of a modified multifactor SVM algorithm is proposed.This method detects the multiple effects of SRBs on GNSS signals, includingC/N0, GDOP, horizontal dilution of precision(HDOP), vertical dilution of precision(VDOP), and the number of satellites locked, to detect SRB intensity.To solve the multiple classification problems, a one-against-one method[13]is adopted.Every two types are combined into a binary classifier, and the classification results are obtained by voting statistics.When new data enter the classifier, it will be classified automatically.

    The main advantage of this method is that it can classify SRB intensity automatically in real-time, with high efficiency.Compared with the methods proposed in previous research, the current one only uses the previous radio flux data provided by radio telescopes as the classification standard to establish the model.The subsequent classification needs the data provided by GNSS receivers, which do not rely on radio telescopes, thereby saving cost and having strong practicability.In addition, it considers many factors and has high accuracy.

    1 Effects of SRBs on GNSS

    Taking the SRB event on December 13, 2006, as an example, the effects of SRBs on GNSS signals are analyzed.At 02:14:00, an X3.4 solar X-ray flare erupted.The peak time and end time of the flare were 02:40:00 and 02:57:00 , respectively, lasting for 43 min.The ground-based radio monitoring telescope recorded the whole process of the burst.Fig.1 shows the monitoring results of L-band radio flux(represented by 1 415 MHz)provided by the Radio Solar Telescope Network(RSTN).The sampling frequency was 1 Hz.The maximum peak flux was greater than 1.1×105SFU, which is nearly a thousand times higher than that during the quiet period[4].

    Fig.1 Solar radio flux at 1 415 MHz provided by RSTN on December 13, 2006

    To investigate the effects of SRBs on GNSS, the NNOR station is selected as an example for analysis.Fig.2 illustrates the variation ofC/N0at GPS L1 frequency for different satellites at the NNOR station.During the SRBs, theC/N0of GPS satellites locked by the receivers of the NNOR decreased significantly, their change trend was almost identical, and the corresponding relationship with solar radio flux was obvious.The analysis reveals that theC/N0variation trend of other satellites locked at different stations is similar during SRBs.

    Fig.2 C/N0 at the GPS L1 frequency for the NNOR station during the SRBs that occurred on December 13, 2006

    GDOP, HDOP, and VDOP respectively represent the amplification factor of the total positioning timing error, horizontal position error, and vertical position error to the ranging error.The NNOR station is located in a plain area with flat terrain.Considering the obstructions in the signal propagation path, the elevation mask angle is set to 15° to avoid selecting invisible satellites as far as possible[14].

    Fig.3 demonstrates that during the SRB event, the GDOP, HDOP, and VDOP of NNOR increased significantly, and the maximum GDOP reached over 30.

    Fig.3 GDOP, HDOP, and VDOP variations for the NNOR station during the SRBs that occurred on December 13, 2006

    Fig.4 shows that the number of satellites locked at NNOR decreased during SRBs, which mainly occurred at 03:31:00—03:37:00.

    Fig.4 Number of satellites locked for the NNOR station during the SRBs that occurred on December 13, 2006

    The analysis of several other stations shows that GDOP, HDOP, VDOP, and satellite lock numbers are also affected by SRBs.The above changes provide a basis for the selection of feature vector composition.

    2 Methodology

    2.1 System schema of SRB intensity detection

    The system schema of the proposed method is displayed in Fig.5, which includes training sample acquisition, model training, and SRB intensity detection.

    Fig.5 System schema of the SRB intensity detection based on a modified multifactor SVM algorithm

    First,C/N0, GDOP, HDOP, VDOP, and the number of satellites locked are extracted.SRB intensity is labeled according to the solar radio flux.The feature vectors and labels are combined to obtain training samples.

    On the basis of the fact that SVM is a binary classifier, a one-against-one method is adopted.Samples with different labels are combined in pairs.Then, the SVM binary classification model is trained for each combination to obtain the corresponding optimal classification model.Classification models form the final modified multifactor SVM classifier.

    Once the modified multifactor SVM classifier is confirmed, new feature vectors are preprocessed and input into the trained modified multifactor SVM classifier.The classifier automatically inputs the feature vectors into the trained optimal classification models.Each model outputs labels corresponding to the feature vectors.For each feature vector, the most frequent label is its corresponding intensity type by voting.

    2.2 Training sample acquisition

    Take the average of the currentC/N0of each satellite captured as theC/N0of the station at the current time, recorded asx1, measured in unit dB·Hz.

    (1)

    wheresiis theC/N0of each satellite captured,i=1,2,…,N.Nis the number of satellites captured.

    The GDOP, VDOP, HDOP, and the number of satellites locked at the observation station do not have to be dealt with.Only the original data released by the International GNSS Service(IGS)are used.

    The feature vectors are formed as

    (2)

    wherex1,x2,…,x5represent theC/N0, GDOP, HDOP, VDOP, and the number of satellites locked, respectively.

    Tab.1 lists the SRB intensity types, radio flux thresholds, and corresponding labels[12].

    Tab.1 Classification of SRB intensity types

    x(i)represents the feature vector of the sample, andy(i)represents the label of the sample,i=1,2,…,n.x(i)and

    2.3 Model training

    One-against-many and one-against-one methods are the commonly used SVM multiple classification methods.SVM optimization problems in the one-against-many method have high computational complexity and its gaining speed slower than the one-against-one method[13].In this study, SRBs are divided into three types, and no classification overlap occurs.Therefore, the one-against-one method for multiple classification is selected.

    First, suppose that a nonlinear SVM binary classifier is constructed for the training samples with labelsuandv(u,v=1, 2, 3, andu

    f(x)=wTφ(x)+b

    (3)

    wherewTis defined as the normal vector, andbis defined as the intercept of the classification hyperplane.φ(x)is a high-dimensional linear mapping.

    Second, solve the following optimization problems:

    (4)

    s.t.y(i)(wTφ(x(i))+b)≥1-ξi,ξi≥0i=1,2,…,n

    (5)

    whereξiis the slack variable of each sample, andCis a hyperparameter.

    Third, solve the Lagrangian multipliers,

    (6)

    (7)

    whereαi,y(i)are the Lagrangian multipliers and data classification label, respectively,i=1,2,…,n.

    Furthermore,

    (8)

    (9)

    wherex(s)is the support vector, andy(s)is the corresponding label.

    Fourth, the calculatedwandbare substituted into the nonlinear SVM classifier model expression.

    (10)

    where the kernel function can be expressed ask(x(i),x)=φT(x(i))φ(x).The radial basis function(RBF)is selected as the kernel function.In the absence of prior knowledge of the training samples, as long as the parameters are selected appropriately, SVM with RBF can achieve strong learning ability.RBF is defined as

    (11)

    whereσis the kernel parameter.

    Selectk-fold cross validation, which enables the model to encounter various data through multiple division and training to improve its generalization ability.

    Select the Gaussian nonlinear SVM classifier model and set parametersC, 1/(2σ2).After training, the average accuracy of these parameter settings is obtained.

    Change the value of parameters:

    C=2mm=-5,-4,…,10

    By comparing the average accuracy of all parameter settings, parametersCandσwith the maximum accuracy are found as the optimal parameters.The trained model under the optimal parameter setting is the optimal classification model.Three optimal classification models form the final modified multifactor SVM classifier.

    2.4 SRB intensity detection

    The feature vectors of the newly observed data are expressed asX={x(1),x(2),…,x(N)}.Nis the total number of samples to be detected.

    InputXinto the modified multifactor SVM classifier, and the voting strategy is adopted.For each feature vectorx(i), if labelP(P=1,2,3)outputs after an optimal classification model of the modified multifactor SVM classifier completes the work, the number of labelPis added by one.The label that appears the most is the detected type of SRB intensity at that time at the station.

    3 Results and Discussion

    3.1 Single station detection process

    Take KUNM as an example.To train the modified multifactor SVM classifier, the data of KUNM at 01:30:00—03:59:30 on December 13, 2006, are selected, includingC/N0, GDOP, HDOP, VDOP, and locked satellites.After data preprocessing and label allocation, the training samples of KUNM are obtained from the IGS Data Center of Wuhan University.The sampling interval is 30 s, and each station has 300 times in total.Tab.2 lists five relatively representative sample points.

    Tab.2 Sample points corresponding to different times of the KUNM station

    The training samples are input into the SVM classification learner, cross validation is conducted, and thek-fold number is set tok=5.Through training, three classification models under the optimal parameter setting are obtained.WhenC=8, 1/(2σ2)=1, the classifiers of Types 1 and 2 have the highest average accuracy of 96.8%.WhenC=2, 1/(2σ2)=0.5, the average accuracy of the optimal classifiers of Types 1 and 3 is 98.8%.WhenC=8, 1/(2σ2)=1, the average accuracy of the optimal classifiers of Types 2 and 3 is 94.0%.

    The confusion matrix and ROC curve of optimal classification models are shown in Fig.6.Each column of the confusion matrix represents the prediction type, whereas each row represents the actual type.As displayed on the left in Figs.6(a)to(c), 94% with Type 1 and 99% of the sample points with Type 2 SRB intensity are detected correctly.

    (a)

    The ROC curve reflects the relationship between sensitivity and specificity.The area under the curve(AUC)is used to indicate the detection accuracy.The higher the AUC value(the maximum value is 1)and the closer the curve is to the upper left corner, the higher the prediction accuracy.According to Figs.6(d)to(f), each model has high detection accuracy.

    3.2 Detection results of multiple stations

    To expand data coverage, two additional typical SRBs are analyzed, that is, SRBs on September 24, 2011, and September 6, 2017.

    For each event, four stations are selected.Tabs.3 to 5 list the station detail and the average accuracy corresponding to the optimal model.

    As can be seen from Tabs.3 to 5, for three different SRB events, the average accuracy of any classifier at different stations is between 91% and 100%.

    3.3 Influence of feature vector composition on average accuracy

    To simplify the data preprocessing, this study tests whether a higher average accuracy can still be obtained when there were fewer combined feature vectors during the SRBs on December 13, 2006.TheC/N0, GDOP, HDOP, VDOP, and the number of satellites locked of the station are removed.

    As illustrated in Fig.7, the height of each column is the difference between the average accuracy of the original vectors and that of the vectors with a feature removed.If it is a positive number, then the average accuracy decreases.On the contrary, the average accuracy increases.

    Fig.7 Difference in average accuracy between original vectors and vectors with any feature removed

    Tab.3 Average accuracy of different stations during the SRBs on December 13, 2006(detection period 00:00—10:00)

    Tab.4 Average accuracy of different stations during the SRBs on September 24, 2011(detection period 10:26—21:50)

    Tab.5 Average accuracy of different stations during the SRBs on September 6, 2017(detection period 05:00—15:21)

    When the influence ofC/N0or the number of satellites locked is removed, the average accuracy decreases mostly, with a maximum decrease of 20.3%.The average accuracy loss is less than any classifier with one of GDOP, HDOP, and VDOP removed at different stations and can still reach 85%.In sum, when the average accuracy requirement is not strict, one of the GDOP, HDOP, and VDOP can be removed from the feature vectors.

    Fig.8 demonstrates that the average accuracy of any model is reduced if two of the three less influential feature vectors are removed at the same time.

    Fig.8 Difference in average accuracy between the original vectors and vectors with two features removed

    4 Conclusions

    1)SRB intensity detection based on a modified multifactor SVM algorithm can process a large amount of data simultaneously and detect SRB intensity in multiple stations at the same time.

    2)The proposed method not only improves detection reliability, efficiency, and accuracy by considering various factors but also saves cost, as it does not require the use of radio telescopes.Thus, it is expected to be a useful tool in the normal operation of the satellite navigation system.

    3)Using the original feature vectors in this study, the average accuracy can reach more than 90%.If the accuracy requirement is not strict, then one of GDOP, HDOP, and VDOP can be removed from the feature vectors.However, two features cannot be removed at the same time, as it can lead to inaccurate detection results.

    www.色视频.com| 国产精华一区二区三区| 欧洲精品卡2卡3卡4卡5卡区| 老熟妇乱子伦视频在线观看| 亚洲精品日韩av片在线观看| 超碰av人人做人人爽久久| 一进一出抽搐动态| 国产av麻豆久久久久久久| 永久网站在线| 91麻豆精品激情在线观看国产| 免费人成视频x8x8入口观看| 成熟少妇高潮喷水视频| 网址你懂的国产日韩在线| 亚洲精品在线观看二区| 国产精品精品国产色婷婷| 一本一本综合久久| 日韩大尺度精品在线看网址| 成人毛片a级毛片在线播放| 国产精品国产三级国产av玫瑰| 嫩草影院入口| 人妻久久中文字幕网| 亚洲无线观看免费| 精品人妻视频免费看| 九色成人免费人妻av| 免费观看的影片在线观看| 国产乱人偷精品视频| 日韩精品中文字幕看吧| 亚洲成人中文字幕在线播放| 免费搜索国产男女视频| 国产乱人偷精品视频| 国语自产精品视频在线第100页| 一级a爱片免费观看的视频| 国产精品精品国产色婷婷| 在线看三级毛片| 99久久精品一区二区三区| 两个人的视频大全免费| 欧美日韩在线观看h| 九九久久精品国产亚洲av麻豆| 久久久久久伊人网av| 国产国拍精品亚洲av在线观看| 一级毛片久久久久久久久女| 亚洲国产精品成人综合色| а√天堂www在线а√下载| 久久6这里有精品| 观看美女的网站| 亚洲高清免费不卡视频| 一区二区三区免费毛片| 久99久视频精品免费| 久久精品国产99精品国产亚洲性色| 免费看av在线观看网站| 女人被狂操c到高潮| 男女那种视频在线观看| 尤物成人国产欧美一区二区三区| 精品人妻一区二区三区麻豆 | 国产精品亚洲一级av第二区| 成人毛片a级毛片在线播放| 国产av不卡久久| 国产精品嫩草影院av在线观看| 乱码一卡2卡4卡精品| 亚洲成人av在线免费| 久久婷婷人人爽人人干人人爱| 亚洲高清免费不卡视频| 国产又黄又爽又无遮挡在线| 成人毛片a级毛片在线播放| 有码 亚洲区| 熟女人妻精品中文字幕| 99久久精品一区二区三区| 91午夜精品亚洲一区二区三区| 丰满乱子伦码专区| 三级毛片av免费| 成人精品一区二区免费| 精品人妻视频免费看| 搡老妇女老女人老熟妇| 内地一区二区视频在线| 国语自产精品视频在线第100页| 男女做爰动态图高潮gif福利片| 一个人观看的视频www高清免费观看| 成人亚洲精品av一区二区| 久久久久国产网址| 国内揄拍国产精品人妻在线| 春色校园在线视频观看| 99热精品在线国产| 亚洲精品日韩av片在线观看| 亚洲欧美清纯卡通| 午夜视频国产福利| 美女免费视频网站| 97热精品久久久久久| 久久精品国产鲁丝片午夜精品| 黄色日韩在线| 国产国拍精品亚洲av在线观看| 久99久视频精品免费| 小蜜桃在线观看免费完整版高清| 无遮挡黄片免费观看| 国产黄色小视频在线观看| 亚洲av不卡在线观看| 色综合色国产| 国产精品一区二区三区四区久久| 狂野欧美白嫩少妇大欣赏| 亚洲成av人片在线播放无| 国产精品福利在线免费观看| 欧美xxxx黑人xx丫x性爽| 国产综合懂色| 午夜福利高清视频| 国产精品精品国产色婷婷| 亚洲精品456在线播放app| 天天一区二区日本电影三级| www.色视频.com| 久久国内精品自在自线图片| 在线国产一区二区在线| 黄片wwwwww| 国产精品久久久久久av不卡| 亚洲欧美日韩高清在线视频| 亚洲乱码一区二区免费版| 天美传媒精品一区二区| 乱码一卡2卡4卡精品| 悠悠久久av| a级毛片免费高清观看在线播放| 国产精品一二三区在线看| 国产免费男女视频| 美女黄网站色视频| 秋霞在线观看毛片| 国产白丝娇喘喷水9色精品| 久久99热这里只有精品18| 99riav亚洲国产免费| 国产高清三级在线| av天堂在线播放| 岛国在线免费视频观看| 亚洲在线自拍视频| 日本与韩国留学比较| av视频在线观看入口| 午夜精品国产一区二区电影 | 日本黄大片高清| 色哟哟·www| 97超级碰碰碰精品色视频在线观看| 国产免费男女视频| 久久99热这里只有精品18| 亚洲av免费高清在线观看| 少妇的逼水好多| 亚洲成人精品中文字幕电影| 国模一区二区三区四区视频| 国产色婷婷99| 少妇人妻一区二区三区视频| 男人的好看免费观看在线视频| 色5月婷婷丁香| 村上凉子中文字幕在线| 性色avwww在线观看| 99精品在免费线老司机午夜| 国产真实伦视频高清在线观看| 日韩av在线大香蕉| 国产色婷婷99| 大型黄色视频在线免费观看| 亚洲aⅴ乱码一区二区在线播放| 国产aⅴ精品一区二区三区波| 1000部很黄的大片| 69人妻影院| 尤物成人国产欧美一区二区三区| 日韩人妻高清精品专区| 少妇猛男粗大的猛烈进出视频 | 老熟妇仑乱视频hdxx| 日韩成人av中文字幕在线观看 | 有码 亚洲区| 女人被狂操c到高潮| 欧美最新免费一区二区三区| 亚洲一级一片aⅴ在线观看| 国产真实乱freesex| 国产伦在线观看视频一区| 亚洲欧美成人综合另类久久久 | 午夜福利在线观看吧| 欧美一级a爱片免费观看看| 亚洲精品日韩在线中文字幕 | 国产精品久久电影中文字幕| 亚洲激情五月婷婷啪啪| 亚洲性夜色夜夜综合| 午夜老司机福利剧场| 婷婷六月久久综合丁香| 色哟哟·www| 欧美一区二区亚洲| 精品欧美国产一区二区三| 99久国产av精品| 级片在线观看| 伦理电影大哥的女人| 人人妻人人澡欧美一区二区| 亚洲精品粉嫩美女一区| 久久久精品欧美日韩精品| 国产精品久久视频播放| 一区二区三区免费毛片| 免费看日本二区| 日韩一区二区视频免费看| 欧美区成人在线视频| 亚洲av中文av极速乱| 中文在线观看免费www的网站| 91狼人影院| 国产成人精品久久久久久| 一a级毛片在线观看| 激情 狠狠 欧美| 给我免费播放毛片高清在线观看| 成人亚洲精品av一区二区| 国产在线男女| 网址你懂的国产日韩在线| 久久精品国产亚洲av香蕉五月| 欧美性猛交╳xxx乱大交人| 久99久视频精品免费| 国产aⅴ精品一区二区三区波| 黄色一级大片看看| 嫩草影视91久久| 亚洲av.av天堂| 哪里可以看免费的av片| 国产精华一区二区三区| 久久精品国产亚洲av天美| 欧美日韩综合久久久久久| 色在线成人网| 午夜福利高清视频| 国产精品女同一区二区软件| 亚洲精品456在线播放app| 99久久精品一区二区三区| 国产熟女欧美一区二区| www.色视频.com| 超碰av人人做人人爽久久| 亚洲精品日韩av片在线观看| 麻豆国产97在线/欧美| a级毛片免费高清观看在线播放| 免费av观看视频| 精品一区二区三区人妻视频| 日日撸夜夜添| 国产精品精品国产色婷婷| 亚洲欧美日韩高清专用| 国产成人a∨麻豆精品| 中文字幕熟女人妻在线| 我要看日韩黄色一级片| 淫秽高清视频在线观看| 黑人高潮一二区| 国产成人a∨麻豆精品| 插阴视频在线观看视频| 丝袜美腿在线中文| 麻豆乱淫一区二区| 精品国内亚洲2022精品成人| 国产精品综合久久久久久久免费| 深夜精品福利| 在线观看美女被高潮喷水网站| 亚洲精品日韩在线中文字幕 | 免费无遮挡裸体视频| 12—13女人毛片做爰片一| 亚洲一级一片aⅴ在线观看| 亚洲高清免费不卡视频| 精品久久久久久久久久久久久| 网址你懂的国产日韩在线| 村上凉子中文字幕在线| 亚洲精品色激情综合| 日韩亚洲欧美综合| 日韩大尺度精品在线看网址| 色综合色国产| 久久人人精品亚洲av| 岛国在线免费视频观看| 蜜桃久久精品国产亚洲av| 97热精品久久久久久| 少妇裸体淫交视频免费看高清| 国产成人一区二区在线| av天堂在线播放| 美女免费视频网站| 在线观看一区二区三区| 国产高清激情床上av| 亚洲av美国av| 长腿黑丝高跟| 丰满人妻一区二区三区视频av| 国产精品爽爽va在线观看网站| 天天躁日日操中文字幕| 亚洲欧美精品综合久久99| 麻豆一二三区av精品| 亚洲美女黄片视频| 麻豆国产97在线/欧美| 俺也久久电影网| 精品午夜福利视频在线观看一区| 中文资源天堂在线| 亚洲自拍偷在线| 免费看美女性在线毛片视频| 精品人妻熟女av久视频| 国产伦精品一区二区三区四那| 国产乱人视频| 日本爱情动作片www.在线观看 | 亚洲一区二区三区色噜噜| 毛片一级片免费看久久久久| 大香蕉久久网| 69av精品久久久久久| 欧美日本视频| 国产一区二区亚洲精品在线观看| 午夜精品一区二区三区免费看| 亚洲欧美成人综合另类久久久 | 狂野欧美白嫩少妇大欣赏| 夜夜看夜夜爽夜夜摸| 99久久无色码亚洲精品果冻| 欧美不卡视频在线免费观看| 舔av片在线| 国内精品久久久久精免费| 日本 av在线| 干丝袜人妻中文字幕| 亚洲激情五月婷婷啪啪| 久久精品夜色国产| 天天躁夜夜躁狠狠久久av| 久久国内精品自在自线图片| 免费观看在线日韩| 国产精华一区二区三区| 欧美日韩一区二区视频在线观看视频在线 | 久久久久久伊人网av| 精品日产1卡2卡| 亚洲精品日韩在线中文字幕 | 真人做人爱边吃奶动态| 久久精品综合一区二区三区| 欧美潮喷喷水| 亚州av有码| 亚洲不卡免费看| 亚洲成人精品中文字幕电影| 成人二区视频| 欧美日韩在线观看h| 免费在线观看成人毛片| 亚洲激情五月婷婷啪啪| 午夜激情福利司机影院| 欧美日韩一区二区视频在线观看视频在线 | 丰满乱子伦码专区| 看片在线看免费视频| 日韩三级伦理在线观看| 中文在线观看免费www的网站| 一a级毛片在线观看| 老司机午夜福利在线观看视频| 久久热精品热| 国产美女午夜福利| 欧美一区二区精品小视频在线| 久久午夜亚洲精品久久| 女同久久另类99精品国产91| 国模一区二区三区四区视频| 国产亚洲精品久久久久久毛片| 91久久精品国产一区二区成人| 尾随美女入室| 亚洲最大成人av| 亚洲天堂国产精品一区在线| 国产精品一及| 久久精品国产99精品国产亚洲性色| 国产男靠女视频免费网站| 国产片特级美女逼逼视频| 寂寞人妻少妇视频99o| 最后的刺客免费高清国语| 波野结衣二区三区在线| 18禁裸乳无遮挡免费网站照片| 人人妻人人澡人人爽人人夜夜 | 特级一级黄色大片| 日本a在线网址| 国产精品人妻久久久久久| 麻豆国产97在线/欧美| 99热精品在线国产| 欧美一区二区国产精品久久精品| 国产精品人妻久久久久久| 亚洲精品国产成人久久av| 一级毛片aaaaaa免费看小| 哪里可以看免费的av片| 免费一级毛片在线播放高清视频| 变态另类丝袜制服| 啦啦啦观看免费观看视频高清| 黑人高潮一二区| 国产精品一区二区免费欧美| 国产国拍精品亚洲av在线观看| 亚洲人成网站高清观看| 亚洲国产欧洲综合997久久,| 国产探花在线观看一区二区| 丰满乱子伦码专区| 尾随美女入室| 精品免费久久久久久久清纯| 亚洲色图av天堂| 欧美性感艳星| 亚洲精华国产精华液的使用体验 | 亚洲欧美中文字幕日韩二区| 亚洲激情五月婷婷啪啪| 日本黄色片子视频| 欧美日韩在线观看h| 男人狂女人下面高潮的视频| 日韩精品有码人妻一区| av黄色大香蕉| 色吧在线观看| 精品国内亚洲2022精品成人| 淫秽高清视频在线观看| 亚洲欧美成人精品一区二区| 噜噜噜噜噜久久久久久91| 国产精品野战在线观看| 少妇的逼好多水| 亚洲在线观看片| 国产一区亚洲一区在线观看| 免费人成在线观看视频色| 天堂√8在线中文| 国产色婷婷99| 国国产精品蜜臀av免费| 国产伦在线观看视频一区| 深爱激情五月婷婷| 亚洲无线观看免费| 久久6这里有精品| 国产黄片美女视频| 最近手机中文字幕大全| 免费在线观看影片大全网站| 三级毛片av免费| 国产av在哪里看| 欧美中文日本在线观看视频| 日韩欧美精品v在线| 成人二区视频| 久久精品国产亚洲av香蕉五月| 国产在视频线在精品| 免费电影在线观看免费观看| 可以在线观看毛片的网站| 男女边吃奶边做爰视频| 伦精品一区二区三区| 两个人视频免费观看高清| 国产白丝娇喘喷水9色精品| 久久久久国内视频| 一区二区三区高清视频在线| 美女 人体艺术 gogo| 日日啪夜夜撸| 中出人妻视频一区二区| 久久婷婷人人爽人人干人人爱| 中文在线观看免费www的网站| 五月玫瑰六月丁香| 在线国产一区二区在线| 最近中文字幕高清免费大全6| 国内精品一区二区在线观看| 插阴视频在线观看视频| 午夜福利高清视频| 又爽又黄无遮挡网站| 少妇丰满av| 日韩欧美国产在线观看| 搡女人真爽免费视频火全软件 | 91av网一区二区| 老司机福利观看| www.色视频.com| 久久久精品大字幕| 色综合站精品国产| 国产免费男女视频| 在线观看午夜福利视频| 三级国产精品欧美在线观看| 麻豆精品久久久久久蜜桃| 深夜a级毛片| 亚洲不卡免费看| 国产成年人精品一区二区| 美女被艹到高潮喷水动态| 国产精品精品国产色婷婷| 久久鲁丝午夜福利片| 99国产精品一区二区蜜桃av| 精品不卡国产一区二区三区| 麻豆成人午夜福利视频| 蜜臀久久99精品久久宅男| 性欧美人与动物交配| 色噜噜av男人的天堂激情| 午夜久久久久精精品| 国产高清视频在线观看网站| 久久久久久久久中文| 免费看美女性在线毛片视频| av天堂中文字幕网| 熟女人妻精品中文字幕| 亚洲成人中文字幕在线播放| 观看免费一级毛片| 日韩强制内射视频| 网址你懂的国产日韩在线| 99久久精品国产国产毛片| 男女啪啪激烈高潮av片| 午夜福利成人在线免费观看| 在线免费观看的www视频| 成人一区二区视频在线观看| 深爱激情五月婷婷| 精品不卡国产一区二区三区| 午夜久久久久精精品| 国产成年人精品一区二区| 午夜免费男女啪啪视频观看 | 欧美三级亚洲精品| 最近2019中文字幕mv第一页| 3wmmmm亚洲av在线观看| 精品人妻一区二区三区麻豆 | 丝袜喷水一区| 久久久精品94久久精品| 伦理电影大哥的女人| 给我免费播放毛片高清在线观看| 日产精品乱码卡一卡2卡三| 精品99又大又爽又粗少妇毛片| 深夜精品福利| 国产成人一区二区在线| 一级毛片我不卡| 中文字幕av成人在线电影| 国产v大片淫在线免费观看| 国产精品,欧美在线| 成人精品一区二区免费| 久久韩国三级中文字幕| 国产高清视频在线播放一区| 欧美成人精品欧美一级黄| 日韩欧美三级三区| 搡老熟女国产l中国老女人| 欧美成人a在线观看| 不卡一级毛片| 男人狂女人下面高潮的视频| 亚州av有码| 久久亚洲国产成人精品v| 六月丁香七月| 国产女主播在线喷水免费视频网站 | 国产精品一区二区性色av| 色视频www国产| 久久这里只有精品中国| 亚洲av中文字字幕乱码综合| 两个人视频免费观看高清| 精品熟女少妇av免费看| 色视频www国产| 香蕉av资源在线| 在线国产一区二区在线| 午夜福利在线观看吧| 国产熟女欧美一区二区| 久久99热6这里只有精品| 丰满的人妻完整版| 国产探花在线观看一区二区| 成人特级av手机在线观看| 国产午夜精品论理片| 亚洲国产精品成人综合色| 国产精品一区二区性色av| 一级av片app| 99久久中文字幕三级久久日本| a级一级毛片免费在线观看| 欧美zozozo另类| 成人av一区二区三区在线看| 成人亚洲精品av一区二区| 哪里可以看免费的av片| 少妇熟女aⅴ在线视频| 美女cb高潮喷水在线观看| 日日啪夜夜撸| 老师上课跳d突然被开到最大视频| 亚洲最大成人av| 欧美日韩综合久久久久久| 秋霞在线观看毛片| 国产精品一及| 国产伦一二天堂av在线观看| 亚洲最大成人手机在线| 亚洲成人中文字幕在线播放| 精品国内亚洲2022精品成人| 久久6这里有精品| 国产精品综合久久久久久久免费| 亚洲久久久久久中文字幕| 国产一区二区激情短视频| 国内精品一区二区在线观看| 午夜爱爱视频在线播放| 亚洲美女视频黄频| 午夜视频国产福利| 午夜老司机福利剧场| 此物有八面人人有两片| 亚洲天堂国产精品一区在线| 一级毛片久久久久久久久女| 身体一侧抽搐| 欧美另类亚洲清纯唯美| 亚洲av成人av| 久久久久国产网址| 能在线免费观看的黄片| 婷婷六月久久综合丁香| 亚洲国产日韩欧美精品在线观看| 亚洲精品久久国产高清桃花| 欧美+亚洲+日韩+国产| 久久精品国产亚洲av天美| 久久久久久久午夜电影| 精品不卡国产一区二区三区| 欧美丝袜亚洲另类| 久久精品国产清高在天天线| 成人永久免费在线观看视频| 亚洲欧美日韩高清专用| 久久亚洲精品不卡| 亚洲成av人片在线播放无| 亚洲精品国产av成人精品 | 国产高清三级在线| 69人妻影院| 久久热精品热| 午夜精品国产一区二区电影 | 国模一区二区三区四区视频| 自拍偷自拍亚洲精品老妇| 最近最新中文字幕大全电影3| 成人漫画全彩无遮挡| 亚洲中文字幕一区二区三区有码在线看| 亚洲欧美精品综合久久99| 男女边吃奶边做爰视频| 精品不卡国产一区二区三区| 干丝袜人妻中文字幕| 哪里可以看免费的av片| .国产精品久久| 欧美丝袜亚洲另类| 亚洲av成人av| 亚洲精品一卡2卡三卡4卡5卡| a级毛色黄片| 波多野结衣高清作品| 伦理电影大哥的女人| 久久久久性生活片| 国产精品国产三级国产av玫瑰| 国产成人freesex在线 | 色噜噜av男人的天堂激情| 赤兔流量卡办理| 97热精品久久久久久| 亚洲国产精品sss在线观看| 可以在线观看毛片的网站| 一边摸一边抽搐一进一小说| 亚洲国产精品sss在线观看| 99久久精品一区二区三区| 99riav亚洲国产免费| www日本黄色视频网| a级一级毛片免费在线观看| 国产成人影院久久av| 日韩中字成人| 日韩在线高清观看一区二区三区| 亚洲av免费高清在线观看| 亚洲欧美成人综合另类久久久 | 精品久久久久久久人妻蜜臀av| 午夜老司机福利剧场| 亚洲成人中文字幕在线播放| 少妇的逼水好多| 淫秽高清视频在线观看| 国产成人精品久久久久久| 女人被狂操c到高潮| 国国产精品蜜臀av免费| 女同久久另类99精品国产91| a级毛色黄片| 亚洲精品粉嫩美女一区| 国产亚洲精品久久久久久毛片|