• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Understanding the Coffee ring Effect on Self-discharge Behavior of Printed micro-Supercapacitors

    2022-04-15 11:49:38JingzhiHuZhaohuaXuKaiYuanChaoShenKeyuXieandBingqingWei
    Energy & Environmental Materials 2022年1期

    Jingzhi Hu ,Zhaohua Xu,Kai Yuan,Chao Shen,Keyu Xie*,and Bingqing Wei*

    Printed micro-supercapacitor exhibits its flexibility in geometry design and integration,showing unprecedented potential in powering the internet of things and portable devices.However,the printing process brings undesired processing defects(e.g.,coffee ring effect),resulting in severe self-discharge of the printed micro-supercapacitors.The impact of such problems on device performance is poorly understood,limiting further development of microsupercapacitors.Herein,by analyzing the self-discharge behavior of fully printed micro-supercapacitors,the severe self-discharge problem is accelerated by the ohmic leakage caused by the coffee ring effect on an ultrathin polymer electrolyte.Based on this understanding,the coffee ring effect was successfully eradicated by introducing graphene oxide in the polymer electrolyte,achieving a decline of 99% in the self-discharge rate.Moreover,the micro-supercapacitors with uniformly printed polymer electrolyte present 7.64 F cm-3volumetric capacitance(14.37 mF cm-2areal capacitance),exhibiting about 50% increase compared to the one without graphene oxide addition.This work provides a new insight to understand the relationship between processing defects and device performance,which will help improve the performance and promote the application of printed micro-supercapacitors.

    Keywords

    coffee ring effect,hybrid printing,micro-supercapacitor,polymer electrolyte,self-discharge

    1.Introduction

    With the fast-growing wearable devices and internet of things,[1,2]it is highly desired to integrate more powerful energy storage devices with miniaturized sizes into entire device systems.[3,4]Owing to their advantages in power density,long cycle life,and safe operation,micro-supercapacitors(MSCs)have been considered as one of the most promising candidates,which can be solely or combined with micro-batteries to power portable microelectronics or be compatible with micro-energy harvesting systems.[5,6]However,the requirement of μm-level feature size and easy integration makes it necessary to apply advanced fabrication methods.[7,8]Printing technology,which has excellent process flexibility and geometry controllability,is an emerging technology in MSC fabricating.[9,10]Up to now,impressive progress of manufacturing MSCs with complex structures and specific applications has been achieved via printing.[11-14]However,the introduction of new fabrication methods brings unconventional problems(e.g.,the coffee ring effect),and the influence of processing defects on device performance is poorly understood.

    The coffee ring effect is a common phenomenon during printing.[15,16]Due to the solvent’s non-uniform evaporation rate at the center and the verge and the pinned contact line’s formation,the solute in the droplet will migrate from the center to the verge,resulting in the ring-like deposition.[17]While for MSCs,these non-uniform defects will occur in both electrodes and polymer electrolytes.[18]Compared to electrodes,the coffee ring effect in polymer electrolytes is often neglected.This is because the small inhomogeneity of morphology(thickness variation within 5-10 μm)has little impact on thick polymer electrolyte films(over 100 μm via casting).[19,20]However,the inhomogeneity induced by the coffee ring effect will cause severe problems in device assembly and performance when it is comparable to the thickness of ultrathin polymer electrolyte films(≤10 μm)in the development of flexible and three dimensional MSCs.[21,22]

    To understand the coffee ring effect on MSCs,herein,we fabricated carbon nanotube(CNT)-based MSCs with sandwich configuration via hybrid printing.The coffee ring effect was observed in the printed poly(vinyl alcohol)(PVA)-based polymer electrolytes.Compared to the MSC with a thicker PVA polymer electrolyte film(~30 μm),the MSC with a thinner one(~10 μm)exhibits better volumetric capacitance but suffers from severe self-discharge induced by ohmic leakage.This phenomenon was due to the uneven polymer electrolyte caused by the coffee ring effect.The thinnest thickness is close to the CNT diffuse depth that has been verified by Raman line scanning,leading to low leakage resistance and fast self-discharge behavior.To tackle the severe self-discharge issue,graphene oxide(GO)nanosheets were added to the polymer electrolyte to suppress the coffee ring effect.The resultant MSC shows a decline of 99% in the self-discharge rate and presents better electrochemical performance,achieving high volumetric capacitance(7.64 F cm-3at 0.1 A cm-3for a full device)and good rate ability(68% retention from 0.1 to 2 A cm-3).

    2.Results and Discussion

    2.1.Fabrication and characterization of MSCs

    The schematic of the MSC printing process is shown in Figure 1.A hybrid printing strategy was applied based on ink rheology to obtain the devices with ultrathin polymer electrolytes.Inkjet printing was used to print the CNT-based electrode ink for its advantages in controlling thickness.At the same time,the PVA-based polymer electrolyte has to be printed by direct ink writing technology due to its high viscosity.Firstly,a uniform CNT electrode film with a thickness of about 4-5 μm was printed on a glass substrate by repeating the printing process(Figure S1).The PVA polymer electrolyte was then directly written on the printed electrode,followed by evaporation to get the 10 μm thick polymer electrolyte film.After the film formation,another CNT electrode was printed onto it,fabricating the whole MSC device without any post-processing(named PVA-10).For comparison,another MSC with a 30 μm thick polymer electrolyte film was also fabricated(PVA-30).

    Figure 1.Schematic diagram of the fabrication process of a fully printed micro-supercapacitor.

    Step profiler and scanning electron microscopy(SEM)were used to measure the polymer electrolyte’s thickness of the MSCs.Figure 2a,b are the height profiles of PVA-10 and PVA-30,respectively,and the electrode and electrolyte parts are each labeled for easier distinguish.For the PVA-10 MSC,the whole device is about 20 μm thick on average with about 10 μm electrodes and 10 μm electrolyte.In contrast,for the PVA-30 MSC,the entire device exhibits an average thickness of 40 μm with 10 μm electrodes and 30 μm electrolyte.Both have about 8 μm sunken in the middle of the devices due to the coffee ring effect when the PVA films are forming.The sandwich structures are clear from the cross-sectional images,as shown in Figure 2c and d,in which the thicknesses of the two MSCs are in accord with the height profiles.The electrochemical performance of the two MSCs is presented in Figure 2e,f,and Figure S2,S3.Both MSCs display near rectangle shape for the cyclic voltammetry(CV)test at 20 mV s-1,and PVA-10 shows nearly twice volumetric current density compared to PVA-30,simply due to the reduction of the thickness.The cycle performance concludes the same results;after 10 000 cycles,the PVA-10 MSC still presents 3.11 F cm-3volumetric capacitance,nearly double the value of the PVA-30 MSC(1.48 F cm-3).

    Figure 2.Height profiles of MSCs with a)PVA-10 and b)PVA-30 polymer electrolytes.The cross-section SEM photographs of MSCs with c)PVA-10 and d)PVA-30 polymer electrolytes.e)The cyclic voltammetry(at 20 mV s-1)and f)cycle performance(at 1 A cm-3)of MSCs with PVA-10 and PVA-30 polymer electrolytes.

    2.2.Self-discharge analysis of ultrathin MSCs

    The self-discharge curves with different thicknesses of polymer electrolytes are given in Figure 3a.The PVA-10 device shows a swift selfdischarge process;the voltage drops from 0.8 to 0 V only after 2000 s,while the PVA-30 device maintains more than one-third of the initial voltage even after 36 000 s.Typically,the supercapacitor’s self-discharge phenomenon is mainly caused by three mechanisms:ohmic leakage,faradic reaction,and charge redistribution.[23]The ohmic leakage refers to the leakage resistance between the electrodes,which is similar to the dielectric capacitor.Under this mechanism,the relationship between the voltage of MSC U and the self-discharge time t can be expressed as

    Figure 3.a)The self-discharge performance of MSCs with PVA-10 and PVA-30 polymer electrolytes.b)The fitted curve of self-discharge of MSC with PVA-10 polymer electrolyte.c)The potential decay of two self-discharge mechanisms in MSCs with different polymer electrolytes.d)The illustration of the coffee ring relates to self-discharge problems.e)The Raman line scans of the cross-section of a micro-supercapacitor at different depths.f)Raman intensity of the g-band as a function of MSC’s cross-section depth from the upper CNT electrode.

    where U0is the origin voltage of MSC,and RC is the time constant of the MSC self-discharge process.

    The faradic reaction indicates the redox reaction of impurities or functional groups at the electrode surface due to the overpotential;it is controlled by activation as

    where a,b,and c are the constants and i0is the exchange current.

    Unlike the above two mechanisms,charge redistribution refers to the inequality charging state between the electrode surface and bulk.It is mainly controlled by diffusion and can be expressed as where m is the diffusion parameter and denotes the diffusion rates of ions near the electrode surface.

    Combined the above self-discharge mechanisms,one can get[24]

    Based on Equation(4),one can fit a self-discharge curve,and the results are shown in Figure 3b and Figure S4.The contributions of ohmic leakage and faradic reaction in each device are presented in Figure 3c(the PVA-GO-10 MSC is shown in Section 2.3).It can be noticed that activation controlled faradic reaction exists in all MSCs with similar potential decay due to the self-discharge process caused by functional groups(i.e.,-OH)attached to the electrodes.[25]However,ohmic leakage is the main reason for the different self-discharge behaviors of the three MSCs.As ohmic leakage is often related to incomplete sealing of electrodes or inter-electrode contacts,it is speculated that this phenomenon might be caused by two reasons.[26]On the one hand,the coffee ring effect will result in a considerable nonuniformity of the polymer electrolyte.The limited mechanical strength in the ultrathin region will bring ohmic leakage passage.[22]On the other hand,as illustrated in Figure 3d,when printing the second electrode layer on top of the uneven electrolyte film,the CNT ink prefers to be absorbed by the concave portion of the polymer electrolyte and diffuses into it.When the diffuse distance is comparable to the polymer electrolyte’s thickness,it will lead to the ohmic leaking and fast self-discharge problem.

    To verify this assumption,the cross-section of MSC was characterized via Raman line scanning to prove the CNT’s diffusion in the PVA electrolyte.Raman spectra at different depths of the polymer electrolyte are presented in Figure 3e.When the depth is 0 μm(i.e.,the interface between CNT electrode and PVA electrolyte,and was determined by the intensity of Raman peak of PVA, as shown in Figure S5), the g-band of carbon at about 1580 cm-1is very strong,indicating the existence of CNTs.It is gradually weakening and diminishing with the depth increase,while the Raman peak at about 914 cm-1,corresponding to the twist of CH2in PVA,is increasing.[27]Figure 3f shows the relationship between the g-band intensity and depth in polymer electrolyte.All these experimental data are well fitted by the exponential function,which is consistent with Fick’s first laws(the fitted parameter can be seen in Table S1).The diffusion depth is very similar to the thinner portion of the electrolyte film,leading to severe ohmic leakage-induced self-discharge of the PVA-10 MSC.For PVA-30 MSC,though considering the coffee ring effect,the CNT diffusion length is still far less than the polymer electrolyte’s thickness,preventing severe self-discharge behavior from ohmic leakage.To control CNT diffusion depth,one can play with the PVA concentration.[28]For 6 wt% and 10 wt% PVA,the diffusion depth is about 10 and 3 μm,respectively(Figure S6).However,the increase of PVA concentration cannot solve the coffee ring effect problems and would make it more challenging to precisely control electrolyte film’s thickness.

    2.3.Slowing self-discharge via eliminating the coffee ring effect

    To solve the ohmic leakage problem without increasing the thickness of polymer electrolytes,graphene oxide(GO)is introduced into the polymer electrolyte to form the 10 μm thick PVA-GO-H3PO4electrolyte(named PVA-GO-10).The size distribution of GO is 26.5 ± 14.8 μm(Figure S7),and Raman,FTIR,and SEM were used to ensure the addition of GO with different concentrations(Figure S8).It is found that the GO introduction can effectively suppress the coffee ring effect.When GO concentration reaches 2 mg mL-1or more,the coffee ring effect is effectively controlled,as shown in Figure 4a-d and Figure S9.Thus,we choose the PVA-H3PO4polymer electrolyte with 2 mg mL-1GO addition in the following experiment.Compared to the PVA-10 polymer electrolyte,the height profile and the two dimensional morphology of the PVAGO-10 polymer electrolyte present a relatively flat film.The weakening of the coffee ring effect can be well explained as the competition between deposition and evaporation(Figure S10).[29]For a solution,when the solute deposition is faster than the droplet evaporation,the deposited solute will pin the contact line and form the coffee ring.Otherwise,the solute does not have enough time to pin the contact line,thus suppressing a coffee ring formation.[30]In the PVA-GOH3PO4electrolyte,the introduction of μm size GO will bind with PVA chains via hydrogen bonding (Figure S8b).[31,32]According to the competition model,the significant increase of solute size by GO addition will hinder its accumulation at the contact line,leading to the uniform deposition with increasing GO concentration.[33]

    Figure 4.a,b)Height profiles of PVA-10 and PVA-GO-10 polymer electrolyte,respectively.c,d)The 2D morphology of PVA-10 and PVA-GO-10 polymer electrolyte,respectively.e)The fitted self-discharge curve of MSC with PVA-GO-10 polymer electrolyte.f)The illustration of the GO effect in PVA-GO-10 based microsupercapacitor.

    Upon eliminating the coffee ring effect in polymer electrolyte,PVA-GO-10 MSC was fabricated and evaluated(the height profile and the cross-sectional SEM are shown in Figure S11).Figure 4e shows the experimental and fitted self-discharge results of PVA-GO-10 MSC.Compared to PVA-10 MSC and PVA-30 MSC(Figure 3c),the PVA-GO-10 MSC exhibits the least ohmic leakage,and after more than 36 000 s,nearly half of the original voltage remains.The leakage current held at 0.8 V with an about tenfold difference can confirm this phenomenon(Figure S12).Moreover,the reciprocal of self-discharge time for half voltage decay was calculated to quantify the self-discharge rate.The decline of 99% and 20% is achieved in PVA-GO-10 compared to PVA-10 and PVA-30,respectively.The result can be schematically explained in Figure 4f.It can be concluded that the GO introduction suppresses the coffee ring effect,and a uniform electrolyte film with 10 μm thick is enough to prevent the CNT penetration.Moreover,the π-stacking interaction between CNT and GO(verified by UV-vis in Figure S13)may reduce the diffuse coefficient of CNT,[34]resulting in slowing self-discharge of the fully printed ultrathin MSC.

    2.4.Electrochemical performance of the ultrathin MSC with PVA-GO electrolyte

    The electrochemical performances of the PVA-GO-10 MSC were researched,including CV tests from 5 mV s-1to 100 mV s-1and galvanostatic charge-discharge(GCD)tests from 0.1 A cm-3to 2 A cm-3with a voltage window from 0 to 0.8 V(Figure S14).Compared to the PVA-10 MSC,the PVA-GO-10 MSC shows a longer charge-discharge time,indicating a higher electrochemical capacitance(Figure 5a).Additionally,the CV rate ability was also tested and compared from 0.1 to 2 A cm-3(Figure 5b).With the current density increase,PVA-10 MSC shows 4.92 F cm-3volumetric capacitance at 0.1 A cm-3and 3.01 F cm-3at 2 A cm-3,about 61% retention.For PVA-GO-10 MSC,the volumetric capacitance is decreased from 7.64 F cm-3(0.1 A cm-3)to 5.19 F cm-3(2 A cm-3),about 68% retention.Besides,both MSCs’cyclic stability has been tested at 1 A cm-3up to 10 000 cycles.The PVA-10 MSC presents 3.11 F cm-3volumetric capacitance and 92% coulombic efficiency,while the PVA-GO-10 MSC exhibits 4.23 F cm-3volumetric capacitance and 96% coulombic efficiency. The better electrochemical performance of PVA-GO-10 MSC is due to improved ion conduction and lower resistance(Figure S15),which come from the GO induced low degree of crystallization and additional ion conduction channels.[32,35]

    Figure 5.a)The galvanostatic charge-discharge(at 0.1 A cm-3)curves,b)CV rate performance,and c)cycle stability performance(at 1 A cm-3)of MSCs with PVA-10 and PVA-GO-10 polymer electrolytes.

    3.Conclusion

    In summary,MSCs with different thicknesses of PVA polymer electrolyte were fully printed,and their self-discharge behaviors were analyzed.Compared to the PVA-30 MSC,PVA-10 MSC exhibits severe ohmic leakage problem due to the coffee ring effect in an ultrathin polymer electrolyte.GO was added into PVA electrolytes to suppress the coffee ring effect successfully.The ohmic leakage in PVA-GO-10 MSC is eliminated and results in a decline of 99% in the self-discharge rate compared to PVA-10 MSC.Besides,the GO addition also improves the electrochemical performance of PVA-GO-10 MSC,a higher volumetric capacitance(7.64 F cm-3vs 4.92 F cm-3at 0.1 A cm-3)and better rate ability(68% vs 61% retention from 0.1 A cm-3to 2 A cm-3)compared to PVA-10 MSC.These findings provide a new perspective to reveal the influence of processing defect on the device performance,facilitating micro-supercapacitor fabrication and application development

    4.Experimental Section

    Ink preparation:The CNT ink was prepared by applying the typical dopamine coating method.[36]80 mg carboxyl-modified multiwalled CNTs(MWCNTs,diameter<8 nm,XFNANO)and 8 mg dopamine hydrochloride(Aladdin)were added into the Tris-HCl buffer solution(pH=8.5,40 mL).Then,the mixture was further dispersed by vigorous agitation for 24 h,followed by 8000 rpm centrifugation for 10 min with water and alcohol,respectively.The PDA-modified CNT powder was got by evaporating at 80°C for 12 h.Finally,1 mg mL-1PDA-modified CNT was added into deionized water and ultrasonicated for 2 h to get the stable CNT ink.

    The PVA-GO-H3PO4polymer electrolyte inks were prepared following a literature report.[37]1.6 g PVA(PVA-124,Sinopharm Chemical Reagent),0,20,40,and 60 mg GO(made by improved Hummer’s method[38]),and 2 g H3PO4(≥85% ,Sinopharm Chemical Reagent)were added into 20 mL deionized water with vigorous stirring and ultrasonication.Then,the mixtures were headed at 90°C for 2 h with stirring to obtain the solution.

    Fabrication of MSCs:The printing process was the combination of inkjet printing and direct ink writing on a 3-axis positioning stage(Xi’an Particle Cloud Biotechnology,PCPrinter NM150),whose motion can be controlled by programming.To fabricate a micro-supercapacitor,the PDA@CNT ink was first printed on glass by an inkjet printer(nozzle diameter is 50 μm),with 50°C heating to avoid ink gathering.The PVA-GO-H3PO4solution was then written through a micro-extruder(260 μm in diameter)to get the polymer electrolyte film on the electrode at ambient temperature.After evaporation of the polymer electrolyte solution,another CNT electrode film was printed on the electrolyte film to fabricate the full device.

    Characterizations:The line and map thicknesses of the devices were characterized by a step profiler(Bruker DaktekXT).The cross-sectional morphologies of the devices were characterized by scanning electron microscope(FEI nova nanosem 450).The Raman spectra with line scanning were carried out on the crosssection of micro-supercapacitor with 0.1 μm step for 16 μm by a confocal Raman microscope(Renishaw inVia)using a 532 nm laser under ambient conditions.The functional groups of PVA-H3PO4polymer electrolytes with different GO concentrations were characterized by FTIR spectroscopy(Thermo Nicolet iS50 FT-IR).The size distribution of graphene oxide nanosheets was tested by laser particle sizer(OMEC Topsizer).

    All electrochemical characterizations were carried out at room temperature with an electrochemical workstation system(Solarton 1470E)in a two-electrode configuration.Galvanostatic charge-discharge curves were measured from 0.1 to 2 A cm-3for one device in the voltage range of 0-0.8 V.Cyclic voltammetry data were obtained with a scan rate from 5 to 100 mV s-1.The self-discharge curve was tested by charging to 0.8 V,holding for 1800 s,and taking open-circuit voltage for 36 000 s.The cycle life was tested at a current density of 1 A cm-3for 10 000 cycles.

    Acknowledgements

    The authors acknowledge the financial support of this work by the Science,Technology,and Innovation Commission of Shenzhen Municipality(Program No.JCYJ20180508151856806,No.JCYJ20180306171355233),and the Innovation Foundation for Doctor Dissertation of Northwestern Polytechnical University(Program No.CX201944)

    Conflict of Interest

    The authors declare no competing interests.

    Supporting Information

    Supporting Information is available from the Wiley Online Library or from the author.

    麻豆乱淫一区二区| 亚洲欧美一区二区三区国产| 免费看日本二区| 国产午夜精品一二区理论片| 国内少妇人妻偷人精品xxx网站| 99久久精品热视频| 久久午夜福利片| 蜜桃亚洲精品一区二区三区| 国产精品人妻久久久久久| 人妻夜夜爽99麻豆av| 国产精品久久久久久精品电影| 国产综合精华液| 在线免费十八禁| 又爽又黄a免费视频| 黄色配什么色好看| eeuss影院久久| 成人特级av手机在线观看| 男插女下体视频免费在线播放| 亚洲美女搞黄在线观看| 一个人看的www免费观看视频| 97人妻精品一区二区三区麻豆| 嫩草影院精品99| 18禁裸乳无遮挡免费网站照片| 亚洲最大成人手机在线| 国产精品女同一区二区软件| 亚洲伊人久久精品综合| 国内揄拍国产精品人妻在线| 久久6这里有精品| 久久精品久久久久久久性| 久久久精品免费免费高清| 国产免费福利视频在线观看| 久久人人爽人人爽人人片va| 在线免费十八禁| 亚洲三级黄色毛片| 午夜福利高清视频| 欧美精品国产亚洲| 麻豆精品久久久久久蜜桃| 老师上课跳d突然被开到最大视频| 国产白丝娇喘喷水9色精品| 免费观看a级毛片全部| 国产精品女同一区二区软件| 欧美成人精品欧美一级黄| 少妇的逼水好多| 亚洲色图av天堂| 在线观看av片永久免费下载| 亚洲av成人精品一二三区| 草草在线视频免费看| 久久久久久久久大av| 国产 亚洲一区二区三区 | 九九久久精品国产亚洲av麻豆| 亚洲国产av新网站| 97在线视频观看| 亚洲国产色片| 赤兔流量卡办理| 国产乱人视频| 舔av片在线| 日韩一区二区三区影片| 搞女人的毛片| 亚洲精品,欧美精品| 噜噜噜噜噜久久久久久91| 三级毛片av免费| 亚洲丝袜综合中文字幕| 亚洲第一区二区三区不卡| 亚洲av中文av极速乱| 国产 一区精品| 最新中文字幕久久久久| 免费不卡的大黄色大毛片视频在线观看 | .国产精品久久| av网站免费在线观看视频 | 别揉我奶头 嗯啊视频| 国产精品一区二区在线观看99 | 水蜜桃什么品种好| 成人午夜精彩视频在线观看| 神马国产精品三级电影在线观看| 日韩成人av中文字幕在线观看| 干丝袜人妻中文字幕| 伦精品一区二区三区| 国产午夜精品久久久久久一区二区三区| 青青草视频在线视频观看| 久久精品久久久久久久性| 99re6热这里在线精品视频| 亚洲成人精品中文字幕电影| 欧美激情在线99| 国产91av在线免费观看| 国产午夜福利久久久久久| 免费不卡的大黄色大毛片视频在线观看 | 日韩国内少妇激情av| 91aial.com中文字幕在线观看| 亚洲怡红院男人天堂| 久久久精品欧美日韩精品| 欧美日韩视频高清一区二区三区二| 色视频www国产| 高清视频免费观看一区二区 | 久久久久精品性色| 狠狠精品人妻久久久久久综合| 黄色配什么色好看| 久久久久精品久久久久真实原创| 亚洲精品国产av成人精品| 真实男女啪啪啪动态图| av网站免费在线观看视频 | 国产色婷婷99| 久久热精品热| 一区二区三区四区激情视频| 尤物成人国产欧美一区二区三区| 永久免费av网站大全| 男女国产视频网站| 久久草成人影院| 免费大片黄手机在线观看| 国内揄拍国产精品人妻在线| 精品欧美国产一区二区三| 久久精品熟女亚洲av麻豆精品 | 亚洲四区av| 日韩电影二区| 日本与韩国留学比较| 两个人视频免费观看高清| av线在线观看网站| 国产女主播在线喷水免费视频网站 | 色尼玛亚洲综合影院| 亚洲国产高清在线一区二区三| 亚洲熟妇中文字幕五十中出| 国产一级毛片在线| 三级经典国产精品| 国产精品三级大全| 极品教师在线视频| 亚洲电影在线观看av| 天堂√8在线中文| 51国产日韩欧美| 欧美激情国产日韩精品一区| 男人舔女人下体高潮全视频| 日本欧美国产在线视频| av在线亚洲专区| av免费观看日本| 日韩av在线大香蕉| 免费观看精品视频网站| 国产极品天堂在线| 毛片一级片免费看久久久久| 一级爰片在线观看| 亚洲欧美精品专区久久| 性色avwww在线观看| 黄色欧美视频在线观看| 亚洲欧美日韩无卡精品| 成人午夜高清在线视频| 免费黄频网站在线观看国产| 亚洲真实伦在线观看| 亚洲av一区综合| 中文字幕免费在线视频6| 99热这里只有是精品50| 男人舔奶头视频| videos熟女内射| 青青草视频在线视频观看| 国产视频内射| 欧美激情久久久久久爽电影| 五月玫瑰六月丁香| 三级毛片av免费| 看免费成人av毛片| 亚洲av成人av| 天堂俺去俺来也www色官网 | 九色成人免费人妻av| 非洲黑人性xxxx精品又粗又长| 搞女人的毛片| 欧美精品国产亚洲| 国产视频内射| 天堂中文最新版在线下载 | 成人午夜高清在线视频| av在线老鸭窝| 亚洲国产精品sss在线观看| 18禁在线无遮挡免费观看视频| 成人综合一区亚洲| 免费高清在线观看视频在线观看| 一区二区三区免费毛片| 中国美白少妇内射xxxbb| 久久精品久久久久久噜噜老黄| 高清欧美精品videossex| 免费人成在线观看视频色| 精品人妻视频免费看| 午夜福利在线观看吧| 一级毛片aaaaaa免费看小| 中文欧美无线码| 少妇猛男粗大的猛烈进出视频 | 成人毛片60女人毛片免费| 免费看美女性在线毛片视频| 免费黄频网站在线观看国产| 亚洲国产精品sss在线观看| 亚洲va在线va天堂va国产| 赤兔流量卡办理| 久久久久精品久久久久真实原创| 国产精品美女特级片免费视频播放器| 国产黄片美女视频| 亚洲精品国产成人久久av| 精品99又大又爽又粗少妇毛片| 永久网站在线| 综合色丁香网| 免费观看精品视频网站| 亚洲av成人精品一二三区| 国产精品久久久久久精品电影小说 | 国产精品美女特级片免费视频播放器| 人人妻人人澡人人爽人人夜夜 | 国产大屁股一区二区在线视频| 男女啪啪激烈高潮av片| 91精品伊人久久大香线蕉| 国产色爽女视频免费观看| 婷婷色麻豆天堂久久| 午夜福利视频精品| 国产成人一区二区在线| 国产成人精品婷婷| 欧美成人精品欧美一级黄| 大话2 男鬼变身卡| 好男人视频免费观看在线| 亚洲在线观看片| 国产老妇女一区| 草草在线视频免费看| 国产亚洲精品久久久com| 人妻一区二区av| 99久久中文字幕三级久久日本| 99热全是精品| 日本免费在线观看一区| 免费看美女性在线毛片视频| 观看免费一级毛片| 亚洲自拍偷在线| 日本欧美国产在线视频| 免费无遮挡裸体视频| 国产黄a三级三级三级人| 中文字幕制服av| 男的添女的下面高潮视频| 亚洲欧美日韩卡通动漫| 免费av观看视频| 美女国产视频在线观看| 久久久久性生活片| 身体一侧抽搐| 日韩欧美精品免费久久| 九草在线视频观看| 亚洲欧洲日产国产| 久久精品夜色国产| 免费观看精品视频网站| 老司机影院毛片| 亚洲av成人精品一二三区| 啦啦啦中文免费视频观看日本| 国产v大片淫在线免费观看| 十八禁网站网址无遮挡 | 丰满乱子伦码专区| 最近的中文字幕免费完整| 中文字幕av在线有码专区| 国产三级在线视频| 搡老妇女老女人老熟妇| 欧美日韩亚洲高清精品| 高清午夜精品一区二区三区| 3wmmmm亚洲av在线观看| 少妇熟女欧美另类| 麻豆久久精品国产亚洲av| 亚洲国产精品成人综合色| 80岁老熟妇乱子伦牲交| 亚洲18禁久久av| 午夜精品国产一区二区电影 | 亚洲精品,欧美精品| 毛片女人毛片| 夫妻性生交免费视频一级片| 女人十人毛片免费观看3o分钟| 午夜免费观看性视频| 国产精品久久久久久精品电影| 亚洲一区高清亚洲精品| 一区二区三区高清视频在线| 大香蕉97超碰在线| 夫妻性生交免费视频一级片| 91在线精品国自产拍蜜月| 80岁老熟妇乱子伦牲交| 日韩欧美三级三区| 国产在线一区二区三区精| 久久99精品国语久久久| 亚洲欧美中文字幕日韩二区| 老司机影院毛片| 观看美女的网站| 一级毛片aaaaaa免费看小| 99热网站在线观看| 欧美极品一区二区三区四区| 美女大奶头视频| 亚洲欧美一区二区三区国产| 三级国产精品欧美在线观看| 国产亚洲精品久久久com| 色综合色国产| 一级毛片久久久久久久久女| 亚洲av中文字字幕乱码综合| 午夜激情久久久久久久| 亚洲天堂国产精品一区在线| 亚洲美女视频黄频| 99久国产av精品| 男女啪啪激烈高潮av片| 精品人妻熟女av久视频| av在线蜜桃| 六月丁香七月| 国产毛片a区久久久久| 丰满乱子伦码专区| 午夜免费观看性视频| 97超视频在线观看视频| av黄色大香蕉| 久久久成人免费电影| 又爽又黄无遮挡网站| 亚洲精品视频女| 亚洲最大成人手机在线| 亚洲成人av在线免费| 亚洲精品久久午夜乱码| 国产成人一区二区在线| 久久综合国产亚洲精品| 国产欧美日韩精品一区二区| 又粗又硬又长又爽又黄的视频| 久久精品国产鲁丝片午夜精品| 亚洲成人精品中文字幕电影| 免费看av在线观看网站| 久久99精品国语久久久| 久久精品夜色国产| 亚洲精品乱码久久久久久按摩| 在现免费观看毛片| 国产午夜福利久久久久久| 国模一区二区三区四区视频| 国产黄片美女视频| 亚洲高清免费不卡视频| 亚洲欧美日韩东京热| 国产精品爽爽va在线观看网站| 精品国内亚洲2022精品成人| 99久久中文字幕三级久久日本| 成人鲁丝片一二三区免费| www.av在线官网国产| 国产精品日韩av在线免费观看| 国产久久久一区二区三区| 身体一侧抽搐| 最后的刺客免费高清国语| 黄色一级大片看看| 亚洲aⅴ乱码一区二区在线播放| 中文资源天堂在线| 乱人视频在线观看| 亚洲精华国产精华液的使用体验| 淫秽高清视频在线观看| 日韩在线高清观看一区二区三区| 舔av片在线| 中文字幕av在线有码专区| 国产成人福利小说| 80岁老熟妇乱子伦牲交| 国产亚洲最大av| 国产欧美日韩精品一区二区| 国产一区二区亚洲精品在线观看| 波多野结衣巨乳人妻| 日韩av免费高清视频| 日本一本二区三区精品| 国产欧美另类精品又又久久亚洲欧美| 精品久久久噜噜| 我的女老师完整版在线观看| 国产亚洲av片在线观看秒播厂 | 特大巨黑吊av在线直播| 少妇丰满av| 久久久久久久大尺度免费视频| 国产精品无大码| 韩国高清视频一区二区三区| 国产午夜精品久久久久久一区二区三区| 久久人人爽人人片av| 在线观看av片永久免费下载| 秋霞在线观看毛片| 街头女战士在线观看网站| 韩国高清视频一区二区三区| 国产 一区精品| 麻豆av噜噜一区二区三区| 久久99精品国语久久久| 男人狂女人下面高潮的视频| 欧美日韩精品成人综合77777| 国产一级毛片在线| 最新中文字幕久久久久| 国产乱人偷精品视频| 婷婷六月久久综合丁香| 国产乱人偷精品视频| 色综合亚洲欧美另类图片| 久久精品国产鲁丝片午夜精品| 久久99热这里只有精品18| 直男gayav资源| 亚洲欧洲国产日韩| videos熟女内射| 亚洲av.av天堂| 又爽又黄a免费视频| 美女国产视频在线观看| 国产成人精品一,二区| 在线免费观看的www视频| 中文在线观看免费www的网站| av免费在线看不卡| 国产成人精品一,二区| 国产男人的电影天堂91| 成人欧美大片| 国产精品精品国产色婷婷| 日日摸夜夜添夜夜添av毛片| 超碰av人人做人人爽久久| 亚洲无线观看免费| 女人十人毛片免费观看3o分钟| 少妇高潮的动态图| 久久午夜福利片| 老司机影院毛片| 一区二区三区乱码不卡18| 欧美日韩综合久久久久久| 午夜免费激情av| 在线天堂最新版资源| 国语对白做爰xxxⅹ性视频网站| 全区人妻精品视频| av女优亚洲男人天堂| 国产乱人视频| 女人被狂操c到高潮| 国产一区二区三区av在线| 嘟嘟电影网在线观看| av国产免费在线观看| 成人亚洲精品av一区二区| 亚洲欧美成人综合另类久久久| 亚洲国产精品国产精品| 亚洲av福利一区| 国产探花在线观看一区二区| 久久久精品欧美日韩精品| 午夜免费男女啪啪视频观看| 国产精品久久久久久精品电影| 建设人人有责人人尽责人人享有的 | 国产精品无大码| 又爽又黄无遮挡网站| 国产一区二区在线观看日韩| 亚洲不卡免费看| 亚洲综合色惰| 啦啦啦韩国在线观看视频| 一级毛片电影观看| 色5月婷婷丁香| 免费观看性生交大片5| 黄色配什么色好看| 国语对白做爰xxxⅹ性视频网站| 国产一级毛片七仙女欲春2| 熟女人妻精品中文字幕| 精品人妻视频免费看| 亚洲久久久久久中文字幕| 亚洲av.av天堂| 日韩视频在线欧美| 亚洲最大成人av| 欧美日韩在线观看h| 天堂俺去俺来也www色官网 | 啦啦啦啦在线视频资源| 婷婷六月久久综合丁香| 国产色婷婷99| 中国国产av一级| 99re6热这里在线精品视频| 在线观看免费高清a一片| 国产有黄有色有爽视频| 国产精品嫩草影院av在线观看| 一区二区三区高清视频在线| 干丝袜人妻中文字幕| 成人国产麻豆网| 午夜久久久久精精品| 五月玫瑰六月丁香| 亚洲欧美成人精品一区二区| 69人妻影院| 久久久久久久久久人人人人人人| 午夜福利在线观看吧| 在线a可以看的网站| 免费观看的影片在线观看| 国内少妇人妻偷人精品xxx网站| 麻豆精品久久久久久蜜桃| 久久精品国产自在天天线| 伊人久久国产一区二区| 少妇的逼好多水| 色5月婷婷丁香| 色播亚洲综合网| 欧美区成人在线视频| 亚洲欧美中文字幕日韩二区| 亚洲自拍偷在线| av线在线观看网站| 国产男人的电影天堂91| 人妻一区二区av| 91精品伊人久久大香线蕉| 欧美三级亚洲精品| 99热全是精品| 久久这里只有精品中国| 欧美97在线视频| 国产精品精品国产色婷婷| 白带黄色成豆腐渣| 一本一本综合久久| 国产午夜精品久久久久久一区二区三区| 亚洲久久久久久中文字幕| av又黄又爽大尺度在线免费看| 国产成人午夜福利电影在线观看| 欧美日韩视频高清一区二区三区二| 一个人看的www免费观看视频| 精品欧美国产一区二区三| 国产av在哪里看| 九九爱精品视频在线观看| xxx大片免费视频| 亚洲国产日韩欧美精品在线观看| 嫩草影院入口| 中文字幕av成人在线电影| 99久国产av精品| 国产精品国产三级国产av玫瑰| 国产午夜精品一二区理论片| 国精品久久久久久国模美| 国产熟女欧美一区二区| 麻豆乱淫一区二区| 久久久成人免费电影| av专区在线播放| 国产黄片视频在线免费观看| 午夜福利在线观看免费完整高清在| 狂野欧美白嫩少妇大欣赏| 97人妻精品一区二区三区麻豆| 国产 一区 欧美 日韩| 久久久久久久午夜电影| 国产毛片a区久久久久| 国产精品熟女久久久久浪| 免费看a级黄色片| 九九爱精品视频在线观看| 2018国产大陆天天弄谢| 搞女人的毛片| 亚洲四区av| av播播在线观看一区| 久久久久久久久久久丰满| 亚洲欧洲日产国产| 成年版毛片免费区| 熟女人妻精品中文字幕| 男女下面进入的视频免费午夜| 天堂网av新在线| 国产精品女同一区二区软件| 全区人妻精品视频| 美女高潮的动态| 国产成人91sexporn| 小蜜桃在线观看免费完整版高清| 久久韩国三级中文字幕| 久久热精品热| 亚洲美女搞黄在线观看| 国产精品日韩av在线免费观看| 色综合色国产| 久99久视频精品免费| 少妇丰满av| 久久精品熟女亚洲av麻豆精品 | 免费av观看视频| 18禁在线无遮挡免费观看视频| 日韩人妻高清精品专区| 成年av动漫网址| 国产av不卡久久| 亚洲欧美日韩东京热| 五月天丁香电影| 国产一区二区三区av在线| 99热这里只有是精品50| 嫩草影院新地址| 我的老师免费观看完整版| 特大巨黑吊av在线直播| 一边亲一边摸免费视频| 欧美不卡视频在线免费观看| 国产精品久久久久久精品电影小说 | 免费看光身美女| 日本欧美国产在线视频| 美女主播在线视频| 成人一区二区视频在线观看| 少妇猛男粗大的猛烈进出视频 | 亚洲av成人av| 亚洲人成网站在线观看播放| 日韩成人av中文字幕在线观看| 亚洲经典国产精华液单| 2021少妇久久久久久久久久久| 欧美精品一区二区大全| 成人av在线播放网站| 亚洲国产精品sss在线观看| 午夜精品一区二区三区免费看| 啦啦啦中文免费视频观看日本| 成人毛片60女人毛片免费| 成人亚洲精品av一区二区| 精品久久国产蜜桃| 免费av不卡在线播放| 少妇人妻精品综合一区二区| 久久久久久伊人网av| 亚洲性久久影院| 亚洲最大成人手机在线| 看非洲黑人一级黄片| 成年女人在线观看亚洲视频 | 亚洲国产精品国产精品| 国产精品精品国产色婷婷| 日本-黄色视频高清免费观看| 啦啦啦啦在线视频资源| 99热网站在线观看| 大又大粗又爽又黄少妇毛片口| 91久久精品国产一区二区三区| 91精品一卡2卡3卡4卡| av国产久精品久网站免费入址| 亚洲精品,欧美精品| 免费少妇av软件| 久久97久久精品| 男女啪啪激烈高潮av片| 亚洲天堂国产精品一区在线| 国产黄色小视频在线观看| 边亲边吃奶的免费视频| 亚洲久久久久久中文字幕| 亚洲最大成人av| 亚洲电影在线观看av| 特大巨黑吊av在线直播| a级毛片免费高清观看在线播放| 久久久久久久久久人人人人人人| 亚洲一区高清亚洲精品| 九色成人免费人妻av| av天堂中文字幕网| 国产亚洲一区二区精品| 2018国产大陆天天弄谢| av天堂中文字幕网| 成人二区视频| 国产精品日韩av在线免费观看| 99视频精品全部免费 在线| 免费看av在线观看网站| 精品久久国产蜜桃| 人体艺术视频欧美日本| 国产一级毛片在线| 色综合站精品国产| 免费观看av网站的网址| 欧美日韩亚洲高清精品| 国产精品爽爽va在线观看网站| 国产午夜福利久久久久久| 免费黄网站久久成人精品| 欧美性感艳星| 午夜福利网站1000一区二区三区| 亚洲久久久久久中文字幕| 18禁在线播放成人免费| 91久久精品电影网| 国产亚洲av片在线观看秒播厂 | 国产伦理片在线播放av一区| 麻豆成人午夜福利视频|