• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Anchoring Active Sites by Pt2FeNi Alloy Nanoparticles on NiFe Layered Double Hydroxides for Efficient Electrocatalytic Oxygen Evolution Reaction

    2022-04-15 11:49:26ZhichengZhengYanruGuoHaoWanGenChenNingZhangWeiMaXiaoheLiuShuquanLiangandRenzhiMa
    Energy & Environmental Materials 2022年1期

    Zhicheng Zheng,Yanru Guo*,Hao Wan ,Gen Chen ,Ning Zhang,Wei Ma,Xiaohe Liu*,Shuquan Liang,and Renzhi Ma*

    Strategy of anchoring alloy nanoparticles made up of the efficient catalytic element(e.g.,Ni,Fe)on dodecyl sulfate(DS-)-intercalated NiFe layered double hydroxides(DS--NiFe LDH)obtained by a convenient one-step hydrothermal coprecipitation method for essentially enhancing oxygen evolution reaction(OER)performance was proposed.The results of structural characterization indicate Pt2FeNi alloy nanoparticles evenly distribute on the surface of DS--NiFe LDH.The sizes of the Pt2FeNi nanoparticles,closely related to their OER performance,could be wellcontrolled by adjusting the amount of H2PtCl6addition.The composite structure of as-prepared product was stable during processes of synthesis,exfoliation,self-assembly,and subsequent electrocatalytic OER.Rigorous electrochemical test proving the contributing catalytic active sites was located at the interface between Pt2FeNi and DS--NiFe LDH,and the Ni and Fe were the major active elements while O atoms are adsorption sites.The formation of Pt2FeNi nanoparticles could greatly prompt the reduction of Tafel slope.The best-performing Pt2FeNi/DS--NiFe LDH with a Pt content of 0.98 wt% achieved low overpotential of 204 mV at 10 mA cm-2and 262 mV at 50 mA cm-2.This work provides a convenient and effective strategy to create additional active sites for enhancing OER performance of NiFe LDH and make contribution to its wide application.

    Keywords

    electrocatalysis,NiFe Layered double hydroxides,oxygen evolution reaction,Pt2FeNi nanoparticles

    1.Introduction

    With the aggravation of energy crisis and environmental pollution,it is significant to seek sustainable and eco-friendly energy.[1-3]Oxygen evolution reaction(OER)has attracted extensive research interests as a kinetically sluggish process in water splitting[4-6]and metal air batteries.[7-9]In the electrocatalytic water splitting,compared with hydrogen evolution reaction(HER),OER demands a higher overpotential to drive the complex four proton coupled electron transfers and the formation of oxygen-oxygen bond.[10-12]Normally,noble metal-based catalysts,such as iridium oxide(IrO2)and ruthenium oxide (RuO2), possess efficient electrocatalytic OER performance under alkaline conditions.However,scarcity and high cost vastly limited their wide application.[13]Accordingly,earth-abundant non-noble metals,such as tradition metals,were extensively researched for achieving high OER performance.

    NiFe-based LDH are the most promising materials to substitute the noble metal-based catalyst owing to its low cost,layered structure,and efficient OER performance.[14,15]The OER performance of NiFe LDH could be optimized by adjusting Ni2+/Fe3+ratio,interlayer spacing,and degree of crystallinity.[16]However,the single NiFe LDH is of poor electronic conductivity and intrinsic catalytic activity,restricting its practical application.[17,18]To further reduce the overpotential of electrocatalytic OER,abundant approaches were developed such as exfoliation[19-21]for increasing specific surface area,superlattice structure[16,22,23]for improving electron conductivity and activity,in-situ growth on metal surface[24,25]for optimizing spatial structure and third-metal element doping[13,17,26]for adjusting local electronic structure.Recently,a new efficient approach for modifying the surface of LDH was proposed by introducing heterogeneous nanoparticles over its surface.[27-29]With the help of heterogeneous nanoparticles,additional active sites were formed at the interface,resulting in the lower overpotential.Up to now,various heterogeneous nanoparticles were proposed, such as FeOOH,[27]CeOx,[29]Co0.85Se.[30]Gao et al.[28]found that Ni cation locate at NiO/NiFe LDH intersection and neighbor upon the lattice O of LDH atop Fe-Ni-Ni triangle,displayed a unique catalytic behavior and delivered a very low overpotential.That work well demonstrated that catalytic active sites could locate at outside the NiFe LDH host via suitable design and thus get rid of intrinsic activity of NiFe LDH.

    Normally,noble metal Pt is chemical inert,while H2PtCl6and other Pt-based salts are not stable under heating.Conventional Pt-based bimetallic or polymetallic alloy nanoparticles were obtained via coreduction of Pt and other metallic elements to form Pt3Mn,[31]Pt3Ni-Fe,[32]Pt2CuNi[33]and Pt3(NiCo)2.[34]The synergistic effect between Pt and other metallic elements helps to improve the catalytic performance largely.Nonetheless,most reports of Pt-based alloys focused on their ORR or HER performance,and performance for OER was rarely studied.[35]Furthermore,the addition of other metals could decrease the total cost of Pt-based alloys.

    In this work,a strategy of anchoring Pt2FeNi alloy nanoparticles on surface of DS--NiFe LDH to intrinsically enhance its OER performance was proposed via a simple one-step hydrothermal coprecipitation method.Similar to classical coprecipitation method,PtCl62-,Ni2+,and Fe2+coexisted in precursor solution which contains intercalated anion(sodium dodecyl sulfate,DS-)and alkali source(hexamethylenetetramine,HMT).As the temperature increases,the pyrolyzation of hexamethylenetetramine resulted in the rise of pH and generation of formaldehyde.[36]PtCl62-united the efficient catalytic element(Ni2+and Fe2+)and formed hybrid hydroxides with the concurrent reaction of crystallization of DS--NiFe LDH.and then the hybrid hydroxides were reduced by formaldehyde and formed Pt2FeNi alloy nanoparticles supported by DS--NiFe LDH.Characterization analysis indicated Pt2FeNi alloy nanoparticles evenly distribute on the surface of DS--NiFe LDH with a great affinity.The as-prepared electrocatalyst requires overpotentials of only 204 mV and 262 mV to achieve benchmarks of 10 mA cm-2and 50 mA cm-2,respectively.The key active sites were verified to be the Ni and Fe on surface of Pt2FeNi/DS--NiFe LDH.This work provides a convenient and effective strategy of creating additional active sites for enhancing the OER performance of NiFe LDH.

    2.Results and Discussion

    A high efficiency composite catalyst of Pt2FeNi alloy nanoparticles supported by DS--NiFe LDH was prepared via a simple one-step hydrothermal coprecipitation method.The XRD patterns of catalysts are shown in Figure 1a.Typical characteristic peaks of DS--intercalated NiFe LDH are observed and consistent with the literature.[16,37]The position of(003)diffraction peak is 3.39°and corresponding d(003)is about 2.6 nm which is larger than that of the LDH synthesized by ion-exchange reaction(about 2.4 nm[16,37]).As the addition of trace amount of H2PtCl6(0.1 at% and 1 at% ),diffraction peaks have no obvious changes due to the low content of Pt2FeNi nanoparticles.FT-IR spectra show(as shown in Figure S2)that a stretching vibration at 2362 cm-1stand out and suggests the formation of new phase(Pt2FeNi)which could bonds with air molecules.[34]And stretching vibration at 653 cm-1corresponding to M-O[38]attributed to the oxidation of Pt2FeNi nanoparticles or the oxygen atom bonded to NiFe LDH and Pt2FeNi nanoparticles.As observed in the XRD pattern of DS--NiFe LDH-0.05Pt,three strong diffraction peaks at 41.1°,46.9°,and 71.2°appear which are fully in accord with crystallography structure of Pt2FeNi(PDF#350702).Results of XRD pattern prove that the obtained products are consist of DS--NiFe LDH and Pt2FeNi alloy.The EDS data(as shown in Table S1)indicate NiFe element ratios of as-prepared samples are similar(close to 3:1).As exhibited in the HAADF-STEM image of DS--NiFe LDH-0.01Pt(Figure 1b),a mass of tiny bright particles corresponding to Pt2FeNi nanoparticles distribute in the darker LDH carrier homogenously.Figure S3 displays similar distribution while the other two sizes of Pt2FeNi nanoparticles(DS--NiFe LDH-0.001Pt and DS--NiFe LDH-0.05Pt).The size of Pt2FeNi nanoparticles is about dozens of nanometers.The HRTEM image(see Figure 1c)shows distinct lattice fringes with spacing values of 0.219 and 0.193 nm,corresponding to the interplanar crystal spacing of Pt2FeNi(111)and(020)planes,respectively.The EDS mapping images exhibit that the compositional distributions of the three elements(Pt,Fe,and Ni)are uniform,verifying the presence of Pt2FeNi nanoparticles.The binding strength between Pt2FeNi nanoparticles and DS--NiFe LDH was evaluated qualitatively via processes of exfoliation and assembly.As shown in Figure S4,the thickness of NiFe LDH nanosheets is about 1 nm and that of Pt2FeNi nanoparticles is about 6 nm(representative thickness).Meanwhile,most of Pt2FeNi nanoparticles were located on the surface of the DS--NiFe LDH nanosheets.After self-assembled by KOH,HAADF-STEM image seems similar to the previous one,showing Pt2FeNi nanoparticles are still homogenously distributed in DS--NiFe LDH,confirming the tight adhesion between Pt2FeNi nanoparticles and DS--NiFe LDH.Elemental analysis given by inductively coupled plasma(ICP)spectroscopy indicates that the Pt content changes slightly from 0.98 wt% to 1.40 wt% after exfoliation and self-assembly,confirming the great affinity between Pt2FeNi and DS--NiFe LDH.

    Figure 1.a)XRD patterns of(i)DS--NiFe LDH,(ii)DS--NiFe LDH-0.001Pt,(iii)DS--NiFe LDH-0.01Pt and(iv)DS--NiFe LDH-0.05Pt;b)HAADF-STEM;and c)HRTEM image of DS--NiFe LDH-0.05Pt;d)EDS elemental mapping images of Pt2FeNi/DS--NiFe LDH composite structure.

    The XPS measurements were further carried out on DS--NiFe LDH and DS--NiFe LDH-xPt to investigate the surface chemical information.The high-resolution Ni 2p spectrum(as shown in Figure 2a)can be fitted with two spin-orbit doublets of Ni 2p1/2at 873.8 eV and Ni 2p3/2at 856.2 eV.Two shakeup satellite with a lower intensity(identified as“Sat.”)locate at 862.2 eV and 880.2 eV,respectively.[29,39]The fine fitting peaks of Ni2+and Ni3+certify the coexistence of Ni2+and Ni3+in NiFe LDH,and the peak at 867.5 eV might be shakeup satellite corresponding to Ni3+.[40-42]In the case of Fe 2p spectrum(Figure 2b),two main peaks at 726.8 eV and 713.4 eV corresponded to Fe 2p1/2and Fe 2p3/2,respectively.And two shakeup satellite at 715.8 eV and 734.3 eV,respectively.[43,44]Figure S5a and Figure S4b show Ni 2p and Fe 2p curves of DS--NiFe LDH and DS--NiFe LDH-xPt.The great similarity suggests the great stability of the DS--NiFe LDH in all of asprepared samples.Figure 2c shows O 1s XPS spectra of DS--NiFe LDH and DS--NiFe LDH-0.05Pt.In the DS--NiFe LDH,two peaks at 531.7 eV and 532.8 eV assigned to M-O-H(M stands for metal atoms,H stands for hydrogen atoms)and H-O-H molecule.[10,27]Importantly,the O 1s of DS--NiFe LDH-0.05Pt displays an additional characteristic peak at 530.8 eV corresponding to M-O-M,[10,29,45]which attributed to the oxidation of Pt2FeNi nanoparticles and the oxygen atom binding DS--NiFe LDH and Pt2FeNi nanoparticles.The appearance of M-O-M characteristic peak is consistent with the enhancement of M-O in FT-IR spectra(Figure S2).Pt 4f fine XPS spectra can be fitted with two spin-orbit doubles of Pt 4f5/2and Pt 4f7/2at 74.4 eV and 70.2 eV,respectively.Compared with Pt nanoparticles(Pt 4f7/2at about 70.8 eV)in other reports,[45,46]the Pt 4f7/2of Pt2FeNi nanoparticles in this work have a negative shift of about 0.6 eV,which suggest the difference between Pt nanoparticles and Pt2FeNi nanoparticles.

    Figure 2.XPS fine spectra.a)Fe 2p of DS--NiFe LDH-0.01Pt,b)Ni 2p of DS--NiFe LDH-0.01Pt,c)O 1s of(i)DS--NiFe LDH and(ii)DS--NiFe LDH-0.05Pt,d)Pt 4f of(i)DS--NiFe LDH-0.001Pt,(ii)DS--NiFe LDH-0.01Pt and(iii)DS--NiFe LDH-0.05Pt.

    The OER electrochemical activity of as-prepared samples was tested in 1.0 M KOH aqueous solution using a standard three-electrode system.Figure 3a shows the linear sweep voltammetry(LSV)curves of asprepared samples and blank carbon paper electrode,and Figure 3b exhibits the overpotential at geometrical current density of 10 mA cm-2and 50 mA cm-2.For the carbon paper electrode had the slow-rising current density with the rise of applied voltage indicate blank carbon paper electrode,showing feeble contribution for electrochemical OER activity.DS--NiFe LDH exhibited overpotentials of 318 mV and 412 mV at 10 mA cm-2and 50 mA cm-2,respectively,which is similar with other works.[10,13,16]In contrast with DS--NiFe LDH,all of DS--NiFe LDH-xPt show extremely low overpotential and the DS--NiFe LDH-0.01Pt have the lowest overpotential of 204 mV at 10 mA cm-2and 262 mV at 50 mA cm-2,indicating the Pt2FeNi nanoparticles have a great promotion to the OER activity of DS--NiFe LDH.Meanwhile,the OER activity is not in direct proportion to the addition of Pt.As shown in Figure S3,Pt2FeNi nanoparticles in DS--NiFe LDH-0.001Pt are rare and Pt2FeNi nanoparticles in DS--NiFe LDH-0.05Pt agglomerate into large particles,resulting in the lower overpotential compared with DS--NiFe LDH-0.01Pt.As the Pt2FeNi alloys nanoparticles form,the oxidation peaks emerge in the LSV curves,and the intensity increased with the rising amounts of Pt2FeNi nanoparticles.This result suggested the increased oxidation was caused by the oxidation of Pt2FeNi nanoparticles.Obviously,excessive Pt2FeNi nanoparticles inhibited the OER performance.

    Figure 3.The electrochemical activity tests of OER.a)Polarization curves at a scan rate of 10 mV s-1;b)overpotential at geometrical current density of 10 mA cm-2and 50 mA cm-2,(i)DS--NiFe LDH,(ii)DS--NiFe LDH-0.001Pt,(iii)DS--NiFe LDH-0.01Pt,iv)DS--NiFe LDH-0.05Pt;c)the corresponding Tafel plots;d)Nyquist plots of the catalysts recorded at 1.45 V vs RHE;e)difference between anodic and cathodic current densities as a function of the scan rates;f)durability test of DS--NiFe LDH-0.01Pt at a current density of 10 mA cm-2and 50 mA cm-2,insert shows the polarization curves of DS--NiFe LDH-0.01Pt before and after 4000 cycles of CV.

    The OER kinetics of as-prepared samples was evaluated via Tafel slopes obtained from the polarization curves.As shown in Figure 3c,the Tafel slopes of DS--NiFe LDH,DS--NiFe LDH-0.001Pt,DS--NiFe LDH-0.01Pt,and DS--NiFe LDH-0.05Pt are 111.1,103.1,90.3,and 88.4 mV dec-1,respectively.Obviously,with the increase of additive amount of Pt,the value of Tafel slope gradually decrease.DS--NiFe LDH-0.05Pt possesses the lowest Tafel slope,which exhibited the fastest reaction kinetics.This result indicates Pt2FeNi alloy nanoparticles have a promotion on kinetics of OER.To further investigate the kinetics of the electrocatalytic process,electrochemical impedance spectroscopy(EIS)is employed.Figure 3d shows Nyquist plots of the catalysts recorded at 1.45 V vs.RHE.Normally,The semicircles in the EIS curves correspond to the charge transfer resistance(Rct),which is related to the kinetic of OER occurring at the electrode/electrolyte interface.[47,48]All of the DS--NiFe LDH-xPt exhibited much smaller diameter of semicircle than that of the DS--NiFe LDH,suggesting the quicker reaction kinetics.The DS--NiFe LDH-0.01Pt which has the smallest diameter of semicircle shows the optimal kinetic performance.However,the DS--NiFe LDH-0.05Pt with a lower Tafel slope has a wider semicircle indicate process of charge transfer occurs at not surface of Pt2FeNi but at other sites,and further proof will be discussed in detail later.The double-layer capacitance(Cdl)determined on the basis of the CV curves is used to roughly represent the corresponding electrochemical surface area(ECSA)of the samples.As shown in Figure 3e,the linear slope of DS--NiFe LDH-0.01Pt is 0.35 mF cm-2,which is much higher than the linear slope of DS--NiFe LDH(0.20 mF cm-2),exhibited the highest ECSA.

    The stability and durability of the DS--NiFe LDH-0.01Pt catalyst during OER was tested at constant current densities of 10 mA cm-2and 50 mA cm-2.As shown in Figure 3f,DS--NiFe LDH-0.01Pt exhibits a very high stability in all of the cases.The overpotential changed tinily at the constant current densities of 10 mA cm-2and 50 mA cm-2after 15 h.For the CV test,regardless of the part of the oxidation peak,LSV curves of DS--NiFe LDH-0.01Pt before and after 4000 cycles coincide very well,illustrating the great durability of prepared catalyst in alkaline media.The XRD and HRTEM images of DS--NiFe LDH-0.01Pt after 4000 cycles of CV curves are shown in Figure S6.The results indicate that the composite structure between NiFe LDH and Pt2FeNi nanoparticles remain stable even after the continuous 4000 CV cycles.By the way,(003)diffraction peak(as shown in Figure S6a)suggest that the interlayer spacing of NiFe LDH after 4000 cycles was greatly reduced.This is due to ion-exchange reaction occur in the interlayer during OER process and the DS-was replaced by OH-.[49]

    For investigating the location of active sites of Pt2FeNi/DS--NiFe LDH on OER,a comparison test among DS--NiFe LDH,Pt2FeNi/DS--NiFe LDH,Pt/DS--NiFe LDH,and Pt2FeNi nanoparticles was carried out.XRD(as shown in Figure 4a)and TEM(as shown in Figure S7)results indicate that the Pt/DS--NiFe LDH and Pt2FeNi nanoparticles were successfully obtained.According to the LSV curves(as shown in Figure 4b),overpotential of Pt2FeNi/DS--NiFe LDH(204 mV)at 10 mA cm-2is much lower than both Pt2FeNi nanoparticles(294 mV)and DS--NiFe LDH(318 mV),which indicate that Pt2FeNi nanoparticles and DS--NiFe LDH have a synergistic effect on electrocatalytic OER.Importantly,Figure 4c exhibits the Pt2FeNi nanoparticles have an extreme low Tafel slope(60.5 mV dec-1),which is much lower than the DS--NiFe LDH(111.1 mV dec-1)and Pt2FeNi/DS--NiFe LDH(90.3 mV dec-1).While the higher overpotential and larger diameter of Nyquist plot semicircle(as shown in Figure 4d)of Pt2FeNi nanoparticles suggest the high-activity of OER is not occur on the surface of Pt2FeNi nanoparticles.This result is consistent with the previous results of Figure 3 that excessive Pt2FeNi nanoparticles inhibited the OER performance.Obviously,the interface between Pt2FeNi nanoparticles and DS--NiFe LDH is the most significant contributor during OER,as both single Pt2FeNi nanoparticles and DS--NiFe LDH cannot achieve low overpotential.

    Figure 4.Comparison of Pt2FeNi/DS--NiFe LDH,Pt/DS--NiFe LDH and Pt2FeNi nanoparticles.a)XRD,(i)Pt2FeNi/DS--NiFe LDH,(ii)Pt/DS--NiFe LDH,(iii)Pt2FeNi nanoparticles;b)LSV curves;c)Tafel slopes and d)Nyquist plots.

    Figure 5 reveals the schematic diagram of the proposed process of OER on the Pt2FeNi/DS--NiFe LDH.As a result of hydrothermal treatment,chemical bonds would be formed between Pt2FeNi and NiFe LDH,resulting in the considerable change of the chemical environment of metal atoms on the surface of Pt2FeNi nanoparticles and thus a great enhancement of OER performance.The Nyquist plots(as shown in Figure 4d)indicate the Rctof Pt2FeNi nanoparticles is higher than the composite structure of Pt2FeNi/DS--NiFe LDH,which suggests a promotion for DS--NiFe LDH on the reaction rates occurring at the electrode/electrolyte interface.Compared with Pt/DS--NiFe LDH,the lower overpotential and Tafel slope of Pt2FeNi/DS--NiFe LDH manifest that element of nickel and iron have a pivotal effect on improving the intrinsic activity of active sites.This result is consistent with the observation that the amounts of loaded Pt2FeNi lead to different OER performance.The quantity and area of interface between Pt2FeNi and DS--NiFe LDH should be optimal.In the one case,with the increase of the amount of Pt,the quantity of nucleation of Pt2FeNi and corresponding quantity of interface increased,lead to an increasing OER activity.In the other case,when the amount of Pt was excess(DS--NiFe LDH-0.05Pt),agglomeration occur after the initial nucleation and the OER performance becomes worse.To further explore the active sites,we used DS--NiFe LDH-0.01Pt-loaded carbon paper after 4000 cycles of CV to get XPS spectra.As shown in Figure S10,there are no shifts on Ni 2p,Fe 2p,and Pt 4f before and after 4000 cycles of CV.However,the satellite peaks of Ni 2p3/2and Fe 2p3/2have a significant increase in relative intensity after 4000 cycles CV test.This result indicates the electronic structure of Ni and Fe had changed greatly.Hence,we regard as the Ni and Fe are the active element in OER process.On the other hand,there is slight shift of O 1s between before and after stability test.And a wide peak emerged at near 535.5 eV.It suggests some intermediates during OER adsorbed on the O atoms and we regard O atoms as important adsorption sites.The possible reason of synergistic effect between Pt2FeNi and NiFe LDH is that Ni and Fe in Pt2FeNi could change density of charge distribution of O atom binding Pt2FeNi and NiFe LDH,and then promoting the process of mass transfer and heightening the activity of OER.

    Figure 5.Schematic diagram of the proposed process of OER on the Pt2FeNi/NiFe LDH.

    3.Conclusion

    In summary,Pt2FeNi alloy nanoparticles stably supported by DS--NiFe LDH was successfully obtained by a convenient one-step hydrothermal coprecipitation method.The sizes of Pt2FeNi nanoparticles,which have a great influence on OER performance in alkaline electrolyte,could be controlled by adjusting the amount of H2PtCl6without affecting the structure of DS--NiFe LDH.The DS--NiFe LDH-0.01Pt nanocomposites shows the best OER performance with an overpotential of 204 mV at 10 mA cm-2and 262 mV at 50 mA cm-2in 1 M KOH.The excellent OER activity could be attributed to the synergistic effect and highly active interfacial surface between Pt2FeNi and DS--NiFe LDH.This work provides a convenient and effective strategy to create abundant active sites for enhancing OER performance of NiFe LDH.

    4.Experimental Section

    Materials:Nickel(II)chloride hexahydrate(NiCl2·6H2O,Sinopharm Group Co.Ltd,China),ferrous chloride tetrahydrate(FeCl2·4H2O,Wako Pure Chemical Industrial Ltd,Japan),sodium dodecyl sulfate(SDS,Wako Pure Chemical Industrial Ltd),hexamethylenetetramine(HMT,Alfa Aesar,China),chloroplatinic acid(H2PtCl6,Sinopharm Group Co.Ltd,China),isopropanol(Sinopharm Group Co.Ltd,China),nafion solution(10 wt% ,Sigma-Aldrich,Inc.),carbon paper(TORAY,Japan),potassium hydroxide(KOH,Sinopharm Group Co.Ltd).

    Synthesis of DS--NiFe LDH:DS--intercalated Nickel Iron layered double hydroxides(DS--NiFe LDH)was synthesized via a simple one-step hydrothermal coprecipitation with oil bath and re fluxing.Deionized water was purged with nitrogen gas for 1 h to remove carbon dioxide under continuous magnetic stirring.Then,2.801 g HMT and 2.160 g SDS was dissolved into the 300 mL DI water.Subsequently,0.446 g NiCl2·6H2O and 0.124 g FeCl2·4H2O(the molar ratio of Ni and Fe is 3:1)was added to the solution.The final mixed solution was heated at 120°C for 8 h with continuous nitrogen protection.After cooling down naturally,the precipitate was collected by centrifugation,washed 3 times with deionized water and ethanol,and eventually dried at 60°C for 12 h.

    Synthesis of DS--NiFe LDH-xPt:The synthesis method of DS--NiFe LDH-xPt is similar with the synthesis of DS--NiFe LDH.Before adding SDS and HMT,a certain volume of H2PtCl6aqueous solution(0.01 g mL-1)was mixed into the water,and the rest of steps same as above.In this work,the addition of volume of H2PtCl6was 0.130 mL,1.295 mL,and 6.475 mL,the corresponding atomic ratio of Pt is 0.1% ,1% ,and 5% of total of the additive Ni and Fe.The collected precipitate noted as DS--NiFe LDH-0.001Pt,DS--NiFe LDH-0.01Pt,and DS--NiFe LDH-0.05Pt,respectively.

    Exfoliation and Self-assembly of DS--NiFe LDH-0.01Pt:30 mg of as-prepared DS--NiFe LDH-0.01Pt was dispersed in 50 mL formamide.The suspension was shaken for 8 h with a speed of 100 rpm,and then, the NiFe LDH nanosheets(NiFe LDH NSs)colloidal solution were collected by centrifugation to remove the bulk and polylaminate LDH. For self-assembly,1 M KOH solution was dropwise added to colloidal solution,and then floccule(noted as NiFe LDH/Pt2FeNi)was formed.The floccule was collected by centrifugation and washed for one time with ethanol and 2 times with deionized water, and eventually dried by vacuum freeze-drying.

    Synthesis of Pt/DS--NiFe LDH:20 mg as-prepared DS--NiFe LDH was dispersed in the mixed solution of 30 mL deionized water and 10 mL ethanol.Subsequently,2 mL K2PtCl6aqueous solution with a concentration of 2 mg mL-1was added in above suspension liquid.The mixtures were stirred intensely and illuminated by a 300 W mercury amp for 120 min with a distance of 10 cm at room temperature.The black precipitates were collected by centrifugation and washed with deionized water for five times.

    Synthesis of Pt2FeNi Nanoparticles:29.7 mg glucose,3.838 mg FeCl2·4H2O,4.588 mg NiCl2·6H2O,and 1 mL 0.01 g mL-1H2PtCl6aqueous solution were dissolved into 10 mL deionized water.Stirring well for 10 min.Adjusting pH to 11.0 and then stirring into a homogeneous solution for 10 min.10 mL 0.01 M sodium borohydride was slowly added into above solution for reduction reaction.The final Pt2FeNi powder was collected by centrifugation and vacuum drying.

    Materials Characterization: The crystallographic composition was investigated by X-ray diffraction (XRD, Rigaku D/max 2500) with Cu Kα radiation(λ = 1.54178 ?A) and 40 kV/15 mA. Nicolet 6700 Fourier Transform Infrared (FT-IR)spectrometer in KBr matrix was employed to record IR spectrums. A Tecnai G2 F20transmission electron microscope (TEM) is used to record more detailed information of microstructural and element. Inductively coupled plasma (ICP) spectroscopywas carried out on Optima 5300 DV. X-ray photoelectron spectroscopy (XPS) wasrecorded on a Thermo Fisher ESCALAB 250Xi spectrophotometer.

    Electrochemical Measurements:Electrochemical measurements were obtained on a CHI 760E electrochemical analyzer(CH Instruments,Inc.,Shanghai)in a standard three-electrode system.3 mg as-prepared catalyst was dissolved into 1 mL of the mixed solution of isopropanol and deionized water(volume ratio is 1:1),and then 20 μL 10 wt% nafion aqueous solution was added.The suspension was dispersed by ultrasound for 30 minutes to obtain a homogeneous ink.The work electrode was prepared by dripping the catalyst ink onto a carbon paper with a size of 1×2 cm2(a surface of the carbon paper was covered completely by Teflon tape and the other one surface was covered partly,and the area of catalytic reaction region is 1×1 cm2,as shown in Supporting Information Figure S1).The catalyst loading in this work was unified 0.6 mg cm-2.Hg/HgO electrode and platinum plate with a size of 1×1 cm2as reference and counter electrodes,respectively.All potentials in this study were calibrated with respect to the reversible hydrogen electrode(RHE)scale according to the following equation:

    40 cycles of cyclic voltammetry(CV)scan were used to activate the catalysts.The polarization curves were measured in 1 M KOH aqueous solution at room temperature with a scan rate of 10 mV s-1and 95% iR correction.Electrochemical surface area(ECSA)was measured by cyclic voltammetry(CV)using the same working electrodes at a potential window of 0.35-0.4 V vs Hg/HgO(1 M KOH).CV curves were obtained at different scan rates of 20,30,40,50 and 60 mV s-1.After plotting charging current density differences(Δj=ja-jcat 0.375 V vs Hg/HgO,where jais the anode current density and jcis the cathode current density)versus the scan rates,the slope,twice of the double-layer capacitance Cdl,is used to represent ECSA.Electrochemical impedance spectra were investigated at 1.45 V vs.RHE in the frequency range of 0.1-100000 Hz with an AC voltage amplitude of 5 mV.

    Acknowledgment

    The authors acknowledge the financial support by the National Natural Science Foundation of China(51874357,51872333,U20A20123)and Innovative Research Group of Hunan Provincial Natural Science Foundation of China(2019JJ10006).X.L.acknowledges support from Shenghua Scholar Program of Central South University.R.M.acknowledges support from JSPS KAKENNHI(18H03869).

    Conflict of Interests

    The authors declare no conflict of interest.

    Supporting Information

    Supporting Information is available from the Wiley Online Library or from the author.

    国产精品不卡视频一区二区| 午夜福利网站1000一区二区三区| 一级毛片黄色毛片免费观看视频| 免费高清在线观看视频在线观看| 亚洲国产精品专区欧美| 久久精品综合一区二区三区| 一二三四中文在线观看免费高清| 欧美日韩亚洲高清精品| 啦啦啦韩国在线观看视频| 美女脱内裤让男人舔精品视频| 日韩欧美 国产精品| 久久久久久伊人网av| 色播亚洲综合网| 日本黄色片子视频| 亚洲最大成人中文| 国产精品无大码| 狂野欧美激情性xxxx在线观看| 成人午夜高清在线视频| 亚洲久久久久久中文字幕| 不卡视频在线观看欧美| 最新中文字幕久久久久| 久久午夜福利片| av女优亚洲男人天堂| 丝袜喷水一区| 日本黄大片高清| 2021天堂中文幕一二区在线观| 激情五月婷婷亚洲| 国产视频内射| 80岁老熟妇乱子伦牲交| 蜜臀久久99精品久久宅男| 欧美另类一区| 国产视频内射| 欧美激情久久久久久爽电影| 久久久久精品久久久久真实原创| 午夜福利视频精品| 国产在线一区二区三区精| 免费大片黄手机在线观看| 欧美日韩在线观看h| 99九九线精品视频在线观看视频| 一级av片app| 国产伦一二天堂av在线观看| 欧美日韩精品成人综合77777| 观看美女的网站| 成年免费大片在线观看| 人妻制服诱惑在线中文字幕| 日本色播在线视频| 国产高清有码在线观看视频| 熟妇人妻不卡中文字幕| 色网站视频免费| 日本wwww免费看| 亚洲aⅴ乱码一区二区在线播放| 如何舔出高潮| 最近中文字幕2019免费版| 精品久久久久久电影网| 国内精品宾馆在线| 日韩欧美一区视频在线观看 | 一二三四中文在线观看免费高清| 中文字幕人妻熟人妻熟丝袜美| 夫妻性生交免费视频一级片| 免费av毛片视频| 女人十人毛片免费观看3o分钟| 国产精品国产三级国产专区5o| 国产淫语在线视频| 国内少妇人妻偷人精品xxx网站| 爱豆传媒免费全集在线观看| 亚洲四区av| av黄色大香蕉| av天堂中文字幕网| 国产精品人妻久久久久久| 日韩人妻高清精品专区| 精品一区在线观看国产| 久久99热6这里只有精品| 中文字幕av在线有码专区| 三级国产精品欧美在线观看| 国产黄a三级三级三级人| 亚洲四区av| 国产 一区 欧美 日韩| 免费无遮挡裸体视频| 精华霜和精华液先用哪个| 舔av片在线| 久久精品夜色国产| a级一级毛片免费在线观看| 国产成人精品久久久久久| 一级毛片 在线播放| 最后的刺客免费高清国语| 亚洲人成网站在线播| 国产一区二区三区综合在线观看 | 成年人午夜在线观看视频 | 纵有疾风起免费观看全集完整版 | 熟女人妻精品中文字幕| 中文字幕久久专区| 日韩精品青青久久久久久| 男女边吃奶边做爰视频| 亚洲成人久久爱视频| 成年女人在线观看亚洲视频 | 国产 一区精品| 中国国产av一级| 狂野欧美白嫩少妇大欣赏| 亚洲丝袜综合中文字幕| av网站免费在线观看视频 | 秋霞在线观看毛片| 国产午夜精品论理片| 只有这里有精品99| 啦啦啦中文免费视频观看日本| 欧美3d第一页| 国产探花极品一区二区| 国产不卡一卡二| 少妇猛男粗大的猛烈进出视频 | 夜夜看夜夜爽夜夜摸| av又黄又爽大尺度在线免费看| 国产片特级美女逼逼视频| 久久这里有精品视频免费| 久久久午夜欧美精品| 综合色丁香网| 国产 一区 欧美 日韩| 成人毛片60女人毛片免费| 久久久久久久午夜电影| 女的被弄到高潮叫床怎么办| 欧美日韩一区二区视频在线观看视频在线 | 在线观看av片永久免费下载| 校园人妻丝袜中文字幕| av在线老鸭窝| 亚洲自拍偷在线| 男女视频在线观看网站免费| 国产在线男女| 久久久久精品久久久久真实原创| 久99久视频精品免费| 国产亚洲精品av在线| 哪个播放器可以免费观看大片| 午夜福利视频精品| 国产午夜精品一二区理论片| 久久精品久久久久久噜噜老黄| 午夜福利在线观看吧| 国产一区有黄有色的免费视频 | 毛片女人毛片| 熟妇人妻久久中文字幕3abv| 爱豆传媒免费全集在线观看| 嘟嘟电影网在线观看| 老司机影院毛片| 亚洲av成人av| 日本黄色片子视频| 黄色日韩在线| 国国产精品蜜臀av免费| 九九爱精品视频在线观看| 国产有黄有色有爽视频| 99九九线精品视频在线观看视频| 国产 一区 欧美 日韩| 精品人妻偷拍中文字幕| 久久韩国三级中文字幕| 午夜视频国产福利| 亚洲国产精品专区欧美| 人妻系列 视频| 黄色配什么色好看| 精品久久国产蜜桃| 熟妇人妻不卡中文字幕| 亚洲av中文av极速乱| 啦啦啦中文免费视频观看日本| 老师上课跳d突然被开到最大视频| 纵有疾风起免费观看全集完整版 | av专区在线播放| 亚洲欧美日韩无卡精品| 午夜精品在线福利| 国产一区二区三区综合在线观看 | 日韩精品有码人妻一区| 亚洲欧美一区二区三区国产| .国产精品久久| 国产精品三级大全| 亚洲精品456在线播放app| 国产男女超爽视频在线观看| 亚洲av电影在线观看一区二区三区 | 亚洲国产精品国产精品| 亚洲真实伦在线观看| 久久韩国三级中文字幕| 亚洲精品一二三| 国产精品av视频在线免费观看| 亚洲最大成人手机在线| 91狼人影院| 菩萨蛮人人尽说江南好唐韦庄| 麻豆成人午夜福利视频| 欧美+日韩+精品| 亚洲国产精品专区欧美| 女人被狂操c到高潮| 欧美日韩综合久久久久久| 久久久久久久午夜电影| 真实男女啪啪啪动态图| 26uuu在线亚洲综合色| 大香蕉97超碰在线| 看十八女毛片水多多多| 一级毛片电影观看| 日本一本二区三区精品| 精华霜和精华液先用哪个| 99久国产av精品国产电影| 日韩成人伦理影院| 欧美精品国产亚洲| 亚洲精品一区蜜桃| 亚洲成人精品中文字幕电影| 男插女下体视频免费在线播放| 国产精品人妻久久久久久| 成人二区视频| 国产高潮美女av| 一夜夜www| 国产一区有黄有色的免费视频 | 日本欧美国产在线视频| 不卡视频在线观看欧美| 麻豆国产97在线/欧美| 91精品国产九色| 国产一级毛片七仙女欲春2| 一个人免费在线观看电影| 国产色爽女视频免费观看| av在线观看视频网站免费| 精品久久久精品久久久| 国产一区二区三区综合在线观看 | 免费播放大片免费观看视频在线观看| 欧美xxxx性猛交bbbb| 亚洲色图av天堂| 一级a做视频免费观看| 久久久久久久大尺度免费视频| 我的老师免费观看完整版| 国产黄色小视频在线观看| 久久久久久久亚洲中文字幕| 久久久久精品久久久久真实原创| 麻豆av噜噜一区二区三区| 插逼视频在线观看| 成人午夜高清在线视频| 日日摸夜夜添夜夜添av毛片| 亚洲欧美成人综合另类久久久| 国产成人aa在线观看| 免费无遮挡裸体视频| 激情五月婷婷亚洲| 日日啪夜夜爽| 黄片wwwwww| 水蜜桃什么品种好| 老司机影院毛片| 欧美性猛交╳xxx乱大交人| av在线老鸭窝| 色综合亚洲欧美另类图片| 亚洲精品成人av观看孕妇| 欧美日韩综合久久久久久| 深爱激情五月婷婷| 久久这里有精品视频免费| 成人国产麻豆网| 久久久久性生活片| 在线观看av片永久免费下载| 国产精品熟女久久久久浪| 国内精品一区二区在线观看| 欧美一区二区亚洲| 亚洲av中文字字幕乱码综合| 国产精品一区二区三区四区久久| 高清在线视频一区二区三区| 26uuu在线亚洲综合色| 日韩 亚洲 欧美在线| av福利片在线观看| 日本爱情动作片www.在线观看| 成人一区二区视频在线观看| 菩萨蛮人人尽说江南好唐韦庄| 韩国高清视频一区二区三区| 国产免费福利视频在线观看| 亚洲国产最新在线播放| 国产精品一区二区三区四区免费观看| 欧美另类一区| 成年女人在线观看亚洲视频 | 亚洲va在线va天堂va国产| 欧美激情国产日韩精品一区| 最近视频中文字幕2019在线8| 最近最新中文字幕大全电影3| 日韩中字成人| 亚洲成人一二三区av| 久久久久久九九精品二区国产| 亚洲精品影视一区二区三区av| 91精品一卡2卡3卡4卡| 国产欧美另类精品又又久久亚洲欧美| 精品亚洲乱码少妇综合久久| 免费观看a级毛片全部| 久99久视频精品免费| 国产精品久久久久久久电影| 亚洲国产精品成人综合色| 午夜免费男女啪啪视频观看| 日本猛色少妇xxxxx猛交久久| 精品亚洲乱码少妇综合久久| 男女下面进入的视频免费午夜| 日韩一区二区三区影片| 亚洲精品自拍成人| 乱系列少妇在线播放| 国产熟女欧美一区二区| 午夜老司机福利剧场| 人妻制服诱惑在线中文字幕| 校园人妻丝袜中文字幕| 亚洲,欧美,日韩| 欧美另类一区| 亚洲av中文字字幕乱码综合| 床上黄色一级片| 亚洲天堂国产精品一区在线| 成人国产麻豆网| 女人被狂操c到高潮| 91午夜精品亚洲一区二区三区| 一本久久精品| 精品国产一区二区三区久久久樱花 | 亚洲成色77777| 欧美性感艳星| 国产伦理片在线播放av一区| 亚洲最大成人av| 免费观看精品视频网站| av又黄又爽大尺度在线免费看| 亚洲av在线观看美女高潮| 亚洲成人中文字幕在线播放| 啦啦啦啦在线视频资源| 只有这里有精品99| 韩国高清视频一区二区三区| 自拍偷自拍亚洲精品老妇| 亚洲欧美中文字幕日韩二区| 两个人的视频大全免费| 日韩亚洲欧美综合| 人妻夜夜爽99麻豆av| 午夜免费激情av| 亚洲av二区三区四区| 校园人妻丝袜中文字幕| 免费看光身美女| av在线天堂中文字幕| 80岁老熟妇乱子伦牲交| 男女国产视频网站| 免费av观看视频| 2018国产大陆天天弄谢| 亚洲在线自拍视频| 最近最新中文字幕免费大全7| 免费黄网站久久成人精品| 国产精品无大码| 日韩一区二区三区影片| 婷婷色麻豆天堂久久| 成人av在线播放网站| 午夜福利在线观看免费完整高清在| 精品久久久久久久末码| 波野结衣二区三区在线| 亚洲婷婷狠狠爱综合网| av天堂中文字幕网| 国语对白做爰xxxⅹ性视频网站| 一个人看的www免费观看视频| 一区二区三区四区激情视频| 国产精品一区二区三区四区免费观看| 国产免费视频播放在线视频 | 日韩亚洲欧美综合| 边亲边吃奶的免费视频| 熟女人妻精品中文字幕| 亚洲精品视频女| 乱系列少妇在线播放| 纵有疾风起免费观看全集完整版 | 夫妻性生交免费视频一级片| 97热精品久久久久久| 国产精品1区2区在线观看.| 女人十人毛片免费观看3o分钟| 十八禁网站网址无遮挡 | 真实男女啪啪啪动态图| 国产成人91sexporn| 欧美 日韩 精品 国产| 亚洲电影在线观看av| 嫩草影院新地址| 亚洲在久久综合| 一级二级三级毛片免费看| 国产精品人妻久久久久久| 久久久精品94久久精品| 中文资源天堂在线| 视频中文字幕在线观看| 不卡视频在线观看欧美| 少妇猛男粗大的猛烈进出视频 | 搡女人真爽免费视频火全软件| 中文字幕亚洲精品专区| 久久久精品94久久精品| 免费av观看视频| 搡老乐熟女国产| 亚洲欧美成人精品一区二区| 一个人免费在线观看电影| 亚洲在久久综合| 久久99热这里只频精品6学生| 欧美人与善性xxx| 欧美日韩视频高清一区二区三区二| 在线播放无遮挡| 一级a做视频免费观看| 欧美潮喷喷水| 国产精品爽爽va在线观看网站| 小蜜桃在线观看免费完整版高清| 欧美性猛交╳xxx乱大交人| 中文资源天堂在线| 日日干狠狠操夜夜爽| 九草在线视频观看| 欧美成人一区二区免费高清观看| 欧美三级亚洲精品| 午夜爱爱视频在线播放| 国产极品天堂在线| 99久国产av精品| av免费观看日本| 成人亚洲精品av一区二区| 久久精品久久久久久噜噜老黄| 亚洲美女搞黄在线观看| 丰满人妻一区二区三区视频av| 真实男女啪啪啪动态图| 一边亲一边摸免费视频| 赤兔流量卡办理| 舔av片在线| 欧美+日韩+精品| 最近中文字幕高清免费大全6| 成人高潮视频无遮挡免费网站| 91在线精品国自产拍蜜月| 精品酒店卫生间| 午夜福利在线观看吧| 全区人妻精品视频| 99久国产av精品国产电影| 国产女主播在线喷水免费视频网站 | 亚洲成色77777| 性色avwww在线观看| 日本免费在线观看一区| 精品人妻熟女av久视频| 国产精品福利在线免费观看| 中文字幕免费在线视频6| 精品久久久久久电影网| 日韩视频在线欧美| 最近视频中文字幕2019在线8| 国产精品99久久久久久久久| 毛片一级片免费看久久久久| 熟女电影av网| 水蜜桃什么品种好| 亚洲欧美日韩无卡精品| 99久久人妻综合| 久久久久久久久久黄片| 波多野结衣巨乳人妻| 一级二级三级毛片免费看| 国产成人freesex在线| 两个人视频免费观看高清| 国产精品1区2区在线观看.| 最近手机中文字幕大全| 国产高潮美女av| 人妻系列 视频| 精华霜和精华液先用哪个| 99久久人妻综合| 国产欧美另类精品又又久久亚洲欧美| 波多野结衣巨乳人妻| 偷拍熟女少妇极品色| 国产精品一区二区三区四区免费观看| 亚洲欧美清纯卡通| 日韩一本色道免费dvd| 麻豆av噜噜一区二区三区| 久久精品国产自在天天线| 精品亚洲乱码少妇综合久久| 九色成人免费人妻av| 国产成人午夜福利电影在线观看| 久久99热这里只频精品6学生| 久久精品久久久久久噜噜老黄| 熟妇人妻不卡中文字幕| 777米奇影视久久| 人人妻人人看人人澡| 搡老妇女老女人老熟妇| 精品国产露脸久久av麻豆 | 熟女电影av网| 狂野欧美白嫩少妇大欣赏| 国产一区二区三区av在线| 高清毛片免费看| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | kizo精华| 午夜福利视频精品| 永久免费av网站大全| 久久精品国产亚洲网站| 欧美bdsm另类| 亚洲在线自拍视频| 99九九线精品视频在线观看视频| 亚洲经典国产精华液单| 在线 av 中文字幕| 亚洲欧美精品专区久久| 高清在线视频一区二区三区| 一级a做视频免费观看| 高清视频免费观看一区二区 | 22中文网久久字幕| 女人被狂操c到高潮| 精品久久久久久电影网| 国产伦精品一区二区三区四那| 欧美性感艳星| 最近中文字幕2019免费版| 午夜爱爱视频在线播放| av国产免费在线观看| 国产亚洲av片在线观看秒播厂 | 国产成人a区在线观看| 淫秽高清视频在线观看| 国产毛片a区久久久久| 一本久久精品| 2022亚洲国产成人精品| 色尼玛亚洲综合影院| 九色成人免费人妻av| 欧美激情国产日韩精品一区| 亚洲va在线va天堂va国产| 日韩av在线免费看完整版不卡| 特大巨黑吊av在线直播| 在线免费观看的www视频| 赤兔流量卡办理| 欧美zozozo另类| 亚洲第一区二区三区不卡| 日韩一区二区三区影片| 色综合亚洲欧美另类图片| 成年女人在线观看亚洲视频 | 中文字幕亚洲精品专区| 国产男人的电影天堂91| 亚洲性久久影院| 丰满少妇做爰视频| 神马国产精品三级电影在线观看| 精品99又大又爽又粗少妇毛片| xxx大片免费视频| 尾随美女入室| 亚洲综合精品二区| 国产av在哪里看| 亚洲不卡免费看| 一级a做视频免费观看| 久久鲁丝午夜福利片| 国产亚洲精品久久久com| 免费看a级黄色片| 尤物成人国产欧美一区二区三区| 综合色av麻豆| 国产男女超爽视频在线观看| 午夜激情欧美在线| 99久久精品热视频| 看黄色毛片网站| av卡一久久| 日韩人妻高清精品专区| 欧美成人午夜免费资源| 精品久久久久久久久av| 欧美不卡视频在线免费观看| 国产精品久久久久久精品电影小说 | 亚洲,欧美,日韩| 国产在视频线精品| 国产三级在线视频| 十八禁国产超污无遮挡网站| 青青草视频在线视频观看| 国产有黄有色有爽视频| 国产69精品久久久久777片| 高清日韩中文字幕在线| 亚洲精品一二三| 性色avwww在线观看| 免费看a级黄色片| 在线观看人妻少妇| 在线观看美女被高潮喷水网站| 欧美日韩一区二区视频在线观看视频在线 | 99久久精品国产国产毛片| 国产精品福利在线免费观看| 男女那种视频在线观看| 免费看美女性在线毛片视频| 免费观看在线日韩| 一级av片app| 亚洲av成人av| 欧美不卡视频在线免费观看| 最近2019中文字幕mv第一页| 日韩制服骚丝袜av| 欧美日本视频| 婷婷色综合www| 精品人妻视频免费看| 日本一本二区三区精品| 日本爱情动作片www.在线观看| 国产精品一区二区性色av| 欧美成人精品欧美一级黄| 一边亲一边摸免费视频| 久久久久久久久久久免费av| 欧美xxxx性猛交bbbb| 精品久久久久久电影网| 尾随美女入室| 亚洲av免费高清在线观看| 美女主播在线视频| 午夜免费观看性视频| 六月丁香七月| 免费看a级黄色片| 男女那种视频在线观看| 啦啦啦中文免费视频观看日本| 91久久精品电影网| 亚洲av在线观看美女高潮| 亚洲av电影在线观看一区二区三区 | 国内少妇人妻偷人精品xxx网站| 内地一区二区视频在线| 亚洲最大成人av| av.在线天堂| 特大巨黑吊av在线直播| 国产精品日韩av在线免费观看| 成年版毛片免费区| 国产精品国产三级国产专区5o| 爱豆传媒免费全集在线观看| 成人高潮视频无遮挡免费网站| 熟女人妻精品中文字幕| 久久久久久伊人网av| 熟妇人妻久久中文字幕3abv| av女优亚洲男人天堂| 99久久精品热视频| 高清视频免费观看一区二区 | 哪个播放器可以免费观看大片| 99久久精品一区二区三区| 久久午夜福利片| 日韩欧美精品v在线| 成人一区二区视频在线观看| 欧美xxxx黑人xx丫x性爽| 亚洲成人精品中文字幕电影| 国产淫语在线视频| 欧美成人一区二区免费高清观看| 欧美日韩在线观看h| 一级毛片aaaaaa免费看小| 美女内射精品一级片tv| 欧美日韩在线观看h| 国产欧美日韩精品一区二区| 日韩欧美精品免费久久| 精品人妻视频免费看| a级一级毛片免费在线观看| 18禁裸乳无遮挡免费网站照片| 精品人妻视频免费看| 国产激情偷乱视频一区二区| 国语对白做爰xxxⅹ性视频网站| 97人妻精品一区二区三区麻豆| 久久久精品免费免费高清| 亚洲欧美清纯卡通| 男人舔女人下体高潮全视频| 日韩在线高清观看一区二区三区| 美女cb高潮喷水在线观看| 久久久久精品久久久久真实原创| 久久亚洲国产成人精品v| 亚洲国产精品成人久久小说| www.色视频.com|