• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Oxygen-deficient TiO2 Yolk-shell Spheres for Enhanced Lithium Storage Properties

    2022-04-15 11:49:18ZhaoqianLiYuqiPengChaofengLiuXianxiZhangXiulingLiYangHuangYingkeRenDenghuiJiandGuozhongCao
    Energy & Environmental Materials 2022年1期

    Zhaoqian Li,Yuqi Peng,Chaofeng Liu,Xianxi Zhang,Xiuling Li,Yang Huang*,Yingke Ren*,Denghui Ji*,and Guozhong Cao*

    Anatase TiO2is a promising anode material for lithium-ion batteries(LIBs)owing to its low cost and stability.However,the intrinsically kinetic limits seriously hindered its lithium-ion storage capability.Here we present that anatase TiO2with rich oxygen vacancies can enhance its lithium-ion storage performance.We synthesize anatase TiO2with well-retained hierarchical structure by annealing the H2Ti5O11·3H2O yolk-shell spheres precursor in nitrogen atmosphere.EPR and XPS data evidence that the oxygen-deficient environment could generate abundant oxygen vacancies in the as-derived anatase TiO2,which leads to improved electron conductivity and reduced charge-transfer resistance.The rich oxygen vacancies and high structural integrity of the hierarchical yolk-shell spheres enable the as-derived anatase TiO2yolk-shell spheres with a high specific capacity of 280 mAh g-1at 100 mA g-1and 71% of capacity retention after 5000 cycles at 2 A g-1.

    Keywords

    anatase TiO2,lithium-ion batteries,oxygen vacancies,yolk-shell spheres

    1.Introduction

    Pursuing high power and energy densities for lithium-ion batteries(LIBs)drive academia and industry to develop novel electrode materials for practical applications.Benefiting from its low cost,environmental benignity,wide availability,and chemical stability,TiO2attracts broad interests and becomes a promising anode material for LIBs.[1-6]However,TiO2anode materials still suffer from lower capacity and poor capacity retention over long-term chargedischarge cycles caused by the low ionic and electrical conductivity as well as the intrinsic insertion kinetics limit.[7,8]Engineering TiO2nanostructures has been demonstrated to be an efficient approach to resolve or alleviate these issues.[7-10]Nanoparticles can provide shorter transport paths for both electronic and Li+ions,larger electrode-electrolyte contact area,and in some cases extra interfacial or surface low voltage insertion host for Li+ions.[11-13]However,severe aggregation of nanoparticles and breaking of particle connections often occurs during the charge-discharge process,leading to new challenges in practical applications.[10,14]Recent studies show that hollow structures could mitigate or partly resolve these problems.[15-23]Hollow structures including yolk-shell and multi-shell structures composed of nanosized primary building blocks not only hold the advantages of nanoparticles,for example,high surface area and large electrode/electrolyte interface,short electron transfer,and lithium-ion diffusion pathways,but also preserve the integrity of the electrode morphology and possess enhanced volume change accommodation,thus improving lithium-ion storage capability and stability of the electrode materials.[24-26]

    Another viable strategy to alleviate the low electrical conductivity of anatase TiO2is introducing oxygen vacancies.The atomic structure defects resulted from oxygen vacancies can trigger unexpected electronic states changes in TiO2electrode materials,thereby providing higher charge mobility.A few studies have been done to explore the effect of oxygen vacancies on the electronic structure and energy storage properties of TiO2materials and enhanced electrical conduction on energy storage properties.These results reveal that anatase TiO2with rich oxygen vacancies provide greatly improved electrical conductivity and energy storage performance.[27-29]Therefore,the combination of primary nanostructures,yolk-shell structure,and abundant oxygen vacancies is a promising approach to improve lithium-ion storage properties of anatase TiO2.

    In this work,H2Ti5O11·3H2O precursor with uniform yolk-shell spherical structure were synthesized by a solvothermal method.The precursor can be converted to high crystallinity anatase TiO2with perfectly retained morphology and structure through annealing in a nitrogen atmosphere.The formation of the residual carbon species can efficiently restrict the growth of TiO2crystallites,leading to small primary particles.Synchronously,abundant oxygen vacancies are produced due to the oxygen-deficient environment,which renders improved electrical conductivity and charge transport kinetics.Owing to the abundant oxygen vacancies and high structural integrity yolkshell spheres structure,the oxygen-deficient TiO2yolk-shell spheres(BYST)gives rise to enhanced lithium-ion storage performance when compared with the white TiO2yolk-shell spheres(W-YST).

    2.Results and Discussion

    The atomic and electronic properties of pristine TiO2and doped TiO2were first investigated using first-principles calculations.Figure 1a,b show the crystal structure of the two models.From the density of states(DOS)in Figure 1c and Figure S1a,the bandgap of undoped TiO2was calculated to be 3.204 eV,very close to the experimental bandgap value of anatase TiO2,demonstrating the accuracy of our theoretical calculation method.After doping,the VO-doping decrease the bandgap by 0.493 eV,corresponding to a bandgap of 2.711 eV(Figure 1d and Figure S1b).The narrowed bandgap will lead to an improved electrical conductivity of the VOdoped TiO2.

    Figure 1.Crystal lattice models for a)TiO2and b)VO-TiO2(Ti16O31).Total density of states(DOS)plots for c)TiO2and d)VO-TiO2obtained by performing PBE+U calculations.

    Figure 2a shows the SEM image of the precursor.The as-obtained sample consists of uniform spheres with an average size of~900 nm.Their yolk-shell characteristic and interior core can be directly observed by SEM in the cracked spheres(Figure 2b).Nanosheets are visible and show random orientations in the enlarged SEM image(Figure 2c).The TEM images(Figure 2d,e)provide direct evidence for the yolk-shell structures by showing the apparent contrast difference between the hollow shell and the solid core parts.HRTEM observation(Figure 2f)near the edge of the yolk-shell sphere reveals that the constituted nanosheets are almost transparent,implying the ultrathin character.The invisible lattice fringe in Figure S2 demonstrates poor crystallinity of the yolk-shell spheres.XRD pattern(Figure S3)can be indexed to the H2Ti5O11·3H2O(JCPDS NO.44-0130).The broad diffraction peaks with low intensity suggests a poor crystallinity which agrees with the HRTEM observations(Figure S2).Thermogravimetric analysis(TG)was conducted to confirm the change of organic residues in the H2Ti5O11·3H2O yolkshell spheres with temperature.As shown in Figure S4,TG curve can be divided into two stages.The weight loss of ca.15.2 wt% from room temperature to 250°C can be assigned to the loss of water,[30,31]while the weight loss of ca.11.2 wt% after 250°C belongs to the decomposition of organic species,suggesting a ca.11.2 wt% organic residue existed in the as-obtained sample.The weight loss ending at around 500°C implies that the residual organic species can be removed at 500°C.

    Figure 2.a-c)SEM and d-f)TEM images of the H2Ti5O11·3H2O yolk-shell spheres.

    To elucidate the formation mechanism of such yolk-shell spheres,time-dependent solvothermal experiments were performed.The morphologies and structures of the products obtained at different solvothermal reaction stages were characterized by SEM and TEM.Prior to the heating process,the solution containing IPA,DETA,and TBT maintained a yellow transparent state.At the early solvothermal stage(6 h),as shown in Figure 3a-d,the hierarchical spheres formed with a solid core and randomly oriented nanosheets on the surface.After reaction for 12 h,the yolk-shelled spheres with partial interior hollowing appeared(Figure 3e-h).A gap distance of~100 nm can be clearly seen by the TEM between the core and the shell(Figure 3h).Further extending the reaction time to 24 h gave rise to well-defined yolk-shelled spheres with an enlarged gap distance of ca.180 nm,accompanied by the shrunken core and increased thickness of the growth of nanosheets on the shell(Figure 2a-d).The evolution from the solid to the yolk-shelled spheres stems from an interior etching and outward recrystallization process,namely the inside-out Ostwald-ripening mechanism.[32,33]Notably,the existence of diethylenetriamine(DETA)has a great influence on the formation of constituted nanosheets and the uniformity of products.The amino on DETA has a strong coordination effect which can coordinate with titanium source.[34]The coordination effect of amino can stabilize the titanium source and inhibit its hydrolysis.Meanwhile,the strong coordination effect of amino on DETA will affect the formation of primary nanostructures and prefer to lead to a nanosheets structure.[35]As schematically illustrated in Figure 3i,before heating reaction,due to the strong coordination effect of the diethylenetriamine(DETA),the initial solution is transparent,suggesting that no hydrolysis of TBT occurred in this stage.Generally,titanium sources,such as,TBT,TIP can be easily hydrolyzed even trace amounts of water,which will induce irregular morphologies.The transparent titanium source solution stabilized by DETA can ensure the bottom-up formation of nanostructures during the crystallization process,thus resulted in uniform spheres.Under heating,nucleation and crystallization of Ti composites occur accompanied by the hydrolysis of Ti source due to the etherification of IPA[36,37]and the destroyed coordination state of the Ti source,leading to the formation of hierarchical solid spheres.Because the outside nanosheets were protected by the DETA molecules owing to the strong coordination effect,with ongoing the reaction,the interior unstable nanocrystalline will first dissolve and recrystallized on the outward surface,thereby leading the enlarge sphere sizes and increased thickness of the growth of nanosheets on the shell.Meanwhile,the strong coordination effect of DETA molecular with Ti source restricts the primary crystalline growth of the yolkshelled spheres,resulted in the ultrathin thickness of nanosheets and poor crystallinity as confirmed by XRD analysis(Figure S3).

    Figure 3.SEM and TEM images of the samples prepared at 200°C for different reaction times:a-d)6 h,e-h)12 h.i)Schematic of the formation of yolkshell spherical precursor.IPA,DETA,and TBT represent isopropyl alcohol,diethylenetriamine,and tetra-n-butyl titanate,respectively.

    The pristine H2Ti5O11·3H2O yolk-shell spheres can be converted to high crystallinity TiO2upon calcination.Previous studies have shown that the selection of annealing atmosphere plays a great role in the morphologies,structure,and properties of the final products.[38-40]The formation of residual carbon species by annealing the sample in Ar,N2,or vacuum efficiently affect the growth of TiO2crystallites,leading to different morphologies,structure and the concentration of defects with that annealed in air.[40,41]XRD pattern presents sharp characteristic peaks,verifying the improved crystallinity of B-YST and W-YST after calcination(Figure 4a and Figure S5).All the diffraction peaks can be readily indexed well with the anatase TiO2phase(JCPDS No.21-1272).Compared with W-YST,B-YST shows broader peaks and weaker crystallinity,demonstrating a restrained growth of crystallites.The grain size was calculated to be ca.10.5 nm according to the Scherrer formula,while the W-YST is ca.20.3 nm.The existence of residual carbon in B-YST is confirmed by the TG analysis and the content is examined to be ca.5.6 wt% (Figure 4b)in a flowing air test.The yolkshell spherical structure was perfectly retained after annealing(Figure 4c,d).The nanosheets subunits of these yolk-shell spheres can endure the calcination process and still maintain the similar structure with the pristine H2Ti5O11·3H2O spheres(Figure S6a).Figure 4e,f,and Figure S6b show the hierarchical yolk-shell sphere structure observed by TEM.The smooth and nearly transparent shell edge in Figure S6b demonstrates the ultrathin character of the constituted nanosheets that are almost identical to the pristine H2Ti5O11·3H2O yolk-shell spheres(Figure 2f).The clear lattice fringes(Figure 4g)demonstrate that B-YST has a high crystallinity after thermal calcination as confirmed by XRD results in Figure 4a.The interplanar distance is measured to be ca.0.351 nm,corresponding to(101)lattice plane of anatase TiO2(JCPDS No.21-1272).In contrast to B-YST,although the yolk-shelled spherical morphology is reserved after annealing in air(Figure S7),the constituted nanosheets of the W-YST sample are destroyed and transformed to the coarse particles(Figure S7c,f).As confirmed by the HRTEM(Figure S7g,h),the primary nanoparticles possess a large particle size of>20 nm and high crystallinity with perfect lattice planes.

    Figure 4.a)XRD patterns,b)TG curve,c,d)SEM,e,f)TEM and g)HRTEM images of B-YST.h)EPR,i)O1s XPS and j)UV-Vis absorbance spectra of B-YST and W-YST.The inset of j)is the digital photos of B-YST and W-YST.k)Illustration of the feature changes from the H2Ti5O11·3H2O precursor to B-YST and W-YST by annealing in N2and air at 500°C.

    The presence of oxygen vacancies in the B-YST sample was validated by electron paramagnetic resonance spectroscopy(Figure 4h).Compared with the silent EPR signal in W-YST,the strong EPR signal response with a g value of 2.002 indicate that rich oxygen vacancies are present in the B-YST sample.[42-44]X-ray photoelectron spectroscopy(XPS)analysis of the O1s region evidenced significant differences in the surface of B-YST and W-YST(Figure 4i).As often reported in the case of the oxygen-deficient state,the presence of two O 1s components attributed to Ti-O-Ti in TiO2(529.5±0.2 eV)and surface OH(OOH)species associated with O defects(531.0±0.2 eV).[45]The result revealed by Figure 4i indicates that abundant O vacancies existed in the B-YST sample after heating treatment in N2.The proportion of the oxygen vacancies in the B-YST is calculated to be~33.4% according to the XPS fitting data of O1s,higher than that of W-YST(22.5% ).UV-visible absorption spectra(Figure 4j)display that,in comparison with the W-YST sample with an intrinsic absorption edge of ca.400 nm,the B-YST showed and additional visible light absorptions up to 800 nm,implying a reduced bandgap which agree well with the DFT calculation results.Accordingly,the B-YST and W-YST show black and white color,respectively,as displayed in the inset of Figure 4j.The morphology and structure differences induced by changing the annealing atmosphere are depicted in Figure 4k.The significant difference in two samples demonstrates the great impact of residue carbon species on the structure and properties control of TiO2nanomaterials.[41]

    Figure 5a displays discharge-charge voltage profiles at a current density of 100 mA g-1.The initial discharge and charge capacities of B-YST are 280 and 224 mAh g-1,respectively,corresponding to an irreversible capacity loss of 20% .The discharge capacity then decays to 254 and 244 mAh g-1in the second and third discharge,and remained at 218 mAh g-1in the 50th cycle(Figure 5b).This discharge capacity value in the voltage range 1-3 V is higher than previously reported TiO2materials, for example, microboxes,[2]nanoparticles,[46]nanofiber,[47]and oxygen-deficient blue TiO2.[48]However,only an initial capacity of 140 mAh g-1(Figure 5a)is obtained by W-YST sample,and then,the capacity decayed to 128 mAh g-1in the second discharge and maintained 110 mAh g-1in the 50th cycle(Figure 5c).The B-YST exhibits superior rate capability and long-term cyclic performance.When cycled at 0.2-2.0 A g-1,capacities of 92-198 mAh g-1can be delivered(Figure 5d and Figure S8a).The discharge capacities at each current are higher than those of W-YST(65-108 mAh g-1)(Figure 5d and Figure S8b).After cycling at a high rate of 2.0 A g-1,a capacity of 196 mAh g-1can be recovered upon reducing the current density to 0.2 A g-1.Figure 5e shows the cyclic performance of B-YST at 2 A g-1,the capacity starts at 90 mAh g-1and still maintains at 64 mAh g-1after 5000 cycles,corresponding to a capacity retention of 71% .The long-term cycling stability of B-YST demonstrates the robust structural stability of the yolk-shell sphere structure.

    Figure 5.a)Charge-discharge curves at 100 mA g-1of B-TST and W-YST.b,c)Discharge,charge,and Coulombic efficiency curves of B-YST(b)and W-YST(c)at the current density of 100 mA g-1.d)Rate performance of B-YST and W-YST.e)Long-term cycling performance of B-YST at 2 A g-1.

    The outstanding lithium-ion storage performance of the oxygen-deficient TiO2yolk-shell spheres can be ascribed to the structure and properties control in the calcination process and the advantages of hierarchical yolk-shelled structures.The yolk-shell spheres are composed of primary nanoparticles which can shorten the transport path for the diffusion of Li+ions.The existence of oxygen vacancies in B-YST can provide more accessible active sites for Li+insertion and act as shallow donors,narrowing the bandgap(Eg),raising the density of states below the Fermi level,and reducing the charge-transfer resistance,as evidenced by the DFT theoretical calculation,UV-Vis absorption spectra,and EIS measurements(Figure S9).GITT(Figure S10)test confirms that the introduction of oxygen vacancies can enhance Li+diffusion in B-YST,leading to higher Li+diffusion coefficient ranging from 10-8to 10-10cm2S-1than that of W-YST(10-11-10-8cm2S-1).The residual carbon in B-YST favor the electrical conductivity of the electrode,leading to improved diffusion coefficient of Li+and fast electron transfer.[32]The robust yolk-shell structure effectively inhibits the aggregation of nanoparticles and offers vast space to accommodate the volume change during the charge-discharge process which is responsible for the long-term cycling stability of the electrode and long-term cycling.These features promote the lithium-ion insertion and extraction process and give rise to high-performance lithium-ion storage capability of BYST.

    3.Conclusion

    A solvothermal approach is presented to synthesized hierarchical H2Ti5O11·3H2O yolk-shell spheres.Calcined in nitrogen,the precursor can be converted to high crystalline anatase TiO2with well-retained hierarchical yolk-shell sphere structure.The formation of residual carbon species can effectively affect the structure and properties of final TiO2nanomaterials.EPR and XPS data proved that the oxygen-deficient environment leads to the formation of oxygen vacancies in anatase TiO2,which gives rise to improved electron conductivity and reduced charge-transfer resistance.Owing to the rich oxygen vacancies and robust yolk-shell structures,the as-derived TiO2spheres manifest superior lithium storage capabilities with a high and stable capacity of 280 mAh g-1at a current rate of 100 mA g-1and excellent longterm cyclic stability with a capacity retention of 71% over 5000 cycles at 2 A g-1.

    4.Experimental and Methods

    Calculation Methods:All calculations were carried out employing the CASTEP plane-wave DFT code.[49,50]The generalized gradient approximation functional developed by Perdew and Wang(PW91)[51]was chosen as the correlation function,and DFT+U method with a value of Ti was set as 7.0 eV(U)based on the Ref.[52]For geometric optimization calculations,a plane-wave basis with a kinetic energy cutoff of was set as 340 eV.The k-points were sampled on Monkhorst-Pack grid of 2×2×1 for the unit cell or super cell.The max ionic force,max ionic displacement, and max stress component tolerance were 8.0 × 10-2eV °A-1,2.0 × 10-3°A,and 0.1 GPa,respectively.It was similar with the method reported by Zhao et al.[52]

    Material Preparation:Synthesis of H2Ti5O11·3H2O Yolk-shell spheres.In a typical procedure,diethylenetriamine(DETA,Sigma-Aldrich,0.05 mL)was added dropwise to isopropyl alcohol(IPA,Sigma-Aldrich,50 mL)with vigorously stirring.After continuous stirring for 10 min,tetra-n-butyl titanate(TBT,Sigma-Aldrich,2 mL)was added.Continue stirring for 10 min,the resulted transparent yellowish solution was transferred to a 100 mL of autoclave and heated at 200°C for 24 h in an electric oven.After the reaction,the product was collected and washed with ethanol several times,then dried at 80°C for 24 h.

    Synthesis of B-YST(Black yolk-shell TiO2spheres):The as-synthesized yolk-shell spheres were calcined at 500°C for 1 h in nitrogen with a ramping rate of 2°C min-1.

    Synthesis of W-YST(White yolk-shell TiO2spheres):The as-synthesized yolk-shell spheres were calcined at 500°C for 1 h in air with a ramping rate of 2°C min-1.

    Material Characterization:XRD patterns of the products were performed on a Rigaku smartLab X-ray diffractometer 9 kW(Cu Kα radiation,λ =1.540593).The morphologies and structures were examined by FE-SEM(Helios Nanolab 600i,FEI)and TEM(JEOL,JEM-2100F,200 kV).N2adsorption-desorption isotherms were measured at 77 K on an ASAP 2460,Micromeritics Instrument.TG analysis was performed using a TA Instruments SDT Q600 from room temperature to 600 °C with a heating rate of 10 °C min-1under a flow of air.XPS analysis was conducted on ESCALAB 250,Thermo-VG Scientific to obtain the chemical states of the oxygen element.The electron paramagnetic resonance(EPR)spectra were taken on a Bruker EMX plus 10/12(equipped with Oxford ESR910 Liquid Helium cryostat)at 2 K.The UV-Vis absorbance spectra were carried out on a Japan Shimadzu UV-Vis spectrophotometer(UV-2600).Electrochemical Measurements:Electrochemical properties were tested using 2032-type coin cells in the voltage window of 1-3 V.The working electrode was fabricated by mixing and grinding active material(B-YST and W-YST),conductive agent(carbon black,Super-P),and polymer binder(poly(vinylidene difluoride),PVDF,Aldrich)at a weight ratio of 7:2:1.The homogeneous slurry was then coated on a stainless steel mesh and dried at 80°C for 12 h under vacuum.The mass loading of active materials is 2-3 mg cm-2.The electrode was assembled in an Ar- filled glovebox with the concentrations of moisture and oxygen below 0.5 ppm.Lithium metal was used as the counter electrode.1 M LiPF6 in a mixture of dimethyl carbonate,ethylene carbonate,and diethyl carbonate(1:1:1 vol% )was used as the electrolyte.Polypropylene film(Celgard 2400)was used as the separator.The galvanostatic discharge/charge was performed on a Neware Battery Testing System(BTS 3000,Shenzhen Neware,China).Cyclic voltammograms(CV)were tested on an electrochemical workstation(CHI600E).EIS spectra were carried out in a frequency range from 100 kHz to 100 mHz with an applied amplitude voltage of 10 mV on a Solartron 1260 Multistat impedance analyzer.

    Acknowledgements

    This work was supported by the National Key R&D Program of China(2019YFB1503200),the National Science Foundation(CBET-1803256),the Anhui Provincial Natural Science Foundation(1908085QB52),the CASHIPS Director’s Fund(YZJJ2018QN21),Shijiazhuang University Doctoral Scientific Research Startup Fund Project(20BS019),Colleges and universities in Shandong Province science and technology projects(J17KA097),and CAS Key Laboratory of Photovoltaic and Energy Conservation,Chinese Academy of Sciences(PECL2018QN006).A portion of this work was performed on the Steady High Magnetic Field Facilities,High Magnetic Field Laboratory,Chinese Academy of Sciences.

    Conflict of Interest

    The authors declare no conflict of interest.

    Supporting Information

    Supporting Information is available from the Wiley Online Library or from the author.

    国产激情久久老熟女| 中文字幕精品免费在线观看视频| 黄频高清免费视频| 国产精品一二三区在线看| 久久久久久久精品精品| 啦啦啦在线观看免费高清www| 亚洲av成人精品一二三区| 色精品久久人妻99蜜桃| 国产伦人伦偷精品视频| av天堂在线播放| 人人妻人人添人人爽欧美一区卜| 欧美成狂野欧美在线观看| 91麻豆精品激情在线观看国产 | 成人午夜精彩视频在线观看| 少妇 在线观看| 国产亚洲欧美精品永久| av视频免费观看在线观看| 在现免费观看毛片| 高清av免费在线| 午夜福利免费观看在线| www.精华液| 国产亚洲欧美在线一区二区| 欧美日韩亚洲高清精品| 欧美日韩av久久| 中国国产av一级| 国产精品久久久久久人妻精品电影 | 啦啦啦 在线观看视频| 亚洲av成人不卡在线观看播放网 | 国产免费福利视频在线观看| 80岁老熟妇乱子伦牲交| 手机成人av网站| 极品人妻少妇av视频| 美女大奶头黄色视频| 91麻豆精品激情在线观看国产 | 男男h啪啪无遮挡| 久久久精品94久久精品| 后天国语完整版免费观看| 男女之事视频高清在线观看 | 国产精品久久久av美女十八| 午夜福利影视在线免费观看| 亚洲欧洲日产国产| 久久久久国产一级毛片高清牌| 欧美精品一区二区免费开放| 视频区欧美日本亚洲| 日本91视频免费播放| 男人爽女人下面视频在线观看| 国产成人av激情在线播放| 另类精品久久| 亚洲精品美女久久av网站| 国产成人欧美| 欧美日韩一级在线毛片| 国产免费现黄频在线看| 国产日韩欧美亚洲二区| 午夜福利视频精品| 国产一区二区三区av在线| 日韩,欧美,国产一区二区三区| 亚洲国产成人一精品久久久| 日日爽夜夜爽网站| 桃花免费在线播放| 天堂中文最新版在线下载| 成人午夜精彩视频在线观看| 少妇粗大呻吟视频| 亚洲精品av麻豆狂野| 少妇人妻久久综合中文| 在线看a的网站| 国产主播在线观看一区二区 | 黑人欧美特级aaaaaa片| 极品人妻少妇av视频| 美女大奶头黄色视频| 香蕉丝袜av| 亚洲成人国产一区在线观看 | 黄片小视频在线播放| 欧美日韩黄片免| 久久精品国产综合久久久| 一级片'在线观看视频| 成年人黄色毛片网站| 亚洲成色77777| 亚洲第一av免费看| 日韩 亚洲 欧美在线| 精品高清国产在线一区| 国产人伦9x9x在线观看| 国产高清国产精品国产三级| 国产精品免费大片| 黄频高清免费视频| 国产伦人伦偷精品视频| 一级片免费观看大全| 天天操日日干夜夜撸| 欧美精品一区二区大全| 在线看a的网站| 国产黄频视频在线观看| 亚洲人成电影观看| 免费看十八禁软件| 久久99精品国语久久久| 国产黄频视频在线观看| 亚洲五月婷婷丁香| 麻豆国产av国片精品| 欧美亚洲 丝袜 人妻 在线| 一级片免费观看大全| 麻豆av在线久日| 国产黄频视频在线观看| 成年人黄色毛片网站| 十八禁人妻一区二区| 婷婷色麻豆天堂久久| 超色免费av| 成人黄色视频免费在线看| 女警被强在线播放| 日韩制服骚丝袜av| 亚洲国产欧美在线一区| 18禁裸乳无遮挡动漫免费视频| 爱豆传媒免费全集在线观看| 色婷婷av一区二区三区视频| 婷婷丁香在线五月| 可以免费在线观看a视频的电影网站| xxx大片免费视频| 丰满迷人的少妇在线观看| 成人18禁高潮啪啪吃奶动态图| 欧美久久黑人一区二区| 亚洲,一卡二卡三卡| 美女福利国产在线| 无限看片的www在线观看| 亚洲欧美清纯卡通| 老司机影院成人| 777久久人妻少妇嫩草av网站| 欧美日韩精品网址| 亚洲专区国产一区二区| 每晚都被弄得嗷嗷叫到高潮| 赤兔流量卡办理| 欧美日韩亚洲综合一区二区三区_| 亚洲一卡2卡3卡4卡5卡精品中文| 日本vs欧美在线观看视频| 深夜精品福利| 免费看十八禁软件| 日韩一卡2卡3卡4卡2021年| 精品少妇内射三级| 日本色播在线视频| 久久精品久久久久久噜噜老黄| 伦理电影免费视频| 国产精品99久久99久久久不卡| 午夜免费成人在线视频| 久久久国产精品麻豆| 观看av在线不卡| 大码成人一级视频| 99九九在线精品视频| 亚洲五月色婷婷综合| 999精品在线视频| 精品一区二区三卡| 日韩视频在线欧美| 美国免费a级毛片| 精品高清国产在线一区| 亚洲一区中文字幕在线| 精品国产超薄肉色丝袜足j| 亚洲精品国产av蜜桃| 天天躁狠狠躁夜夜躁狠狠躁| 欧美黑人精品巨大| www.999成人在线观看| 国产男女超爽视频在线观看| 国产成人精品无人区| 日韩av在线免费看完整版不卡| 亚洲国产av影院在线观看| 国产成人91sexporn| 777米奇影视久久| av天堂久久9| 中文字幕av电影在线播放| 欧美性长视频在线观看| 妹子高潮喷水视频| 天天躁夜夜躁狠狠躁躁| 精品国产一区二区三区四区第35| 国产一区二区三区综合在线观看| 免费观看人在逋| 青草久久国产| 777米奇影视久久| 50天的宝宝边吃奶边哭怎么回事| 国产精品熟女久久久久浪| 好男人电影高清在线观看| 久久毛片免费看一区二区三区| 老司机影院毛片| 日韩一本色道免费dvd| 国产国语露脸激情在线看| www.熟女人妻精品国产| 丝袜美足系列| 国产黄色视频一区二区在线观看| 国产亚洲一区二区精品| 国产成人系列免费观看| 人人妻人人爽人人添夜夜欢视频| 色网站视频免费| 大香蕉久久成人网| av又黄又爽大尺度在线免费看| 啦啦啦在线免费观看视频4| 下体分泌物呈黄色| 亚洲专区中文字幕在线| 国产精品香港三级国产av潘金莲 | 丝袜美腿诱惑在线| 国产色视频综合| 成人国产av品久久久| 777久久人妻少妇嫩草av网站| 日韩制服丝袜自拍偷拍| 美女中出高潮动态图| 国产精品二区激情视频| 满18在线观看网站| 亚洲人成电影免费在线| 丰满人妻熟妇乱又伦精品不卡| 国产1区2区3区精品| 亚洲av综合色区一区| 午夜影院在线不卡| 欧美日本中文国产一区发布| 日本a在线网址| 免费在线观看黄色视频的| 搡老乐熟女国产| av不卡在线播放| 中文字幕亚洲精品专区| 国产又色又爽无遮挡免| 亚洲九九香蕉| 久久久久久久久久久久大奶| 国产成人一区二区三区免费视频网站 | 99热国产这里只有精品6| 国产亚洲午夜精品一区二区久久| 99国产精品99久久久久| 国产无遮挡羞羞视频在线观看| 午夜影院在线不卡| 精品久久久久久久毛片微露脸 | 免费在线观看完整版高清| 天天添夜夜摸| 最黄视频免费看| 欧美精品av麻豆av| 久久精品亚洲熟妇少妇任你| 亚洲精品在线美女| 国产精品国产av在线观看| 满18在线观看网站| 日韩一卡2卡3卡4卡2021年| 亚洲 欧美一区二区三区| 秋霞在线观看毛片| 久久亚洲精品不卡| 一级毛片黄色毛片免费观看视频| 菩萨蛮人人尽说江南好唐韦庄| 色视频在线一区二区三区| 国产精品一二三区在线看| 国产午夜精品一二区理论片| 少妇裸体淫交视频免费看高清 | 国产欧美亚洲国产| 中文字幕另类日韩欧美亚洲嫩草| 国产精品国产三级专区第一集| 亚洲综合色网址| av国产久精品久网站免费入址| 国产成人欧美| 国产日韩欧美在线精品| 啦啦啦 在线观看视频| 汤姆久久久久久久影院中文字幕| 国产成人欧美在线观看 | 免费一级毛片在线播放高清视频 | 在现免费观看毛片| 涩涩av久久男人的天堂| 九草在线视频观看| 婷婷色麻豆天堂久久| 一边亲一边摸免费视频| 99国产精品一区二区三区| 精品亚洲乱码少妇综合久久| 精品少妇黑人巨大在线播放| 亚洲精品自拍成人| av又黄又爽大尺度在线免费看| 色播在线永久视频| 自线自在国产av| 国产欧美亚洲国产| 如日韩欧美国产精品一区二区三区| 欧美另类一区| 久久精品亚洲熟妇少妇任你| 丝袜喷水一区| 久久精品国产亚洲av高清一级| 99久久精品国产亚洲精品| 美女福利国产在线| 黑人巨大精品欧美一区二区蜜桃| 久久鲁丝午夜福利片| 国产精品一国产av| 亚洲欧美日韩高清在线视频 | 亚洲精品自拍成人| 爱豆传媒免费全集在线观看| 日本欧美国产在线视频| av天堂在线播放| 久久国产精品大桥未久av| 亚洲人成电影免费在线| 午夜日韩欧美国产| 少妇粗大呻吟视频| 成人亚洲精品一区在线观看| 久久精品久久久久久噜噜老黄| 日日摸夜夜添夜夜爱| 飞空精品影院首页| 亚洲成av片中文字幕在线观看| 亚洲美女黄色视频免费看| 国产片内射在线| 国产精品国产三级国产专区5o| 成人午夜精彩视频在线观看| 久久天躁狠狠躁夜夜2o2o | 嫩草影视91久久| 在线天堂中文资源库| 观看av在线不卡| 免费一级毛片在线播放高清视频 | 免费在线观看完整版高清| 一级,二级,三级黄色视频| 亚洲国产av影院在线观看| 大片免费播放器 马上看| 欧美成人精品欧美一级黄| 国产精品九九99| 亚洲av成人精品一二三区| 咕卡用的链子| 午夜福利视频在线观看免费| 精品国产一区二区三区久久久樱花| 99热网站在线观看| 99九九在线精品视频| 男女无遮挡免费网站观看| 国产精品国产三级专区第一集| www.熟女人妻精品国产| 老汉色∧v一级毛片| 国产免费现黄频在线看| 色婷婷av一区二区三区视频| 丝袜脚勾引网站| 国产又色又爽无遮挡免| 美女大奶头黄色视频| 夫妻午夜视频| 欧美成人午夜精品| 欧美日本中文国产一区发布| 久久精品久久久久久噜噜老黄| 天天躁日日躁夜夜躁夜夜| 天天影视国产精品| 纵有疾风起免费观看全集完整版| www.精华液| 国产精品免费视频内射| 欧美av亚洲av综合av国产av| 国产亚洲精品久久久久5区| av网站在线播放免费| 亚洲中文字幕日韩| 精品少妇黑人巨大在线播放| 女警被强在线播放| 国产在视频线精品| 日本91视频免费播放| av网站免费在线观看视频| 中文字幕最新亚洲高清| 丝袜在线中文字幕| 国产欧美亚洲国产| 亚洲欧洲国产日韩| 久久精品国产综合久久久| 一区二区日韩欧美中文字幕| 最新的欧美精品一区二区| 午夜免费鲁丝| 亚洲国产精品国产精品| 国产av精品麻豆| 一边亲一边摸免费视频| 亚洲精品日本国产第一区| 国产成人一区二区在线| 欧美日韩福利视频一区二区| 国产免费一区二区三区四区乱码| av在线老鸭窝| 国产黄色免费在线视频| 中文字幕av电影在线播放| 少妇精品久久久久久久| 你懂的网址亚洲精品在线观看| 亚洲欧洲精品一区二区精品久久久| 三上悠亚av全集在线观看| 久久人妻福利社区极品人妻图片 | 国产一级毛片在线| 亚洲精品一卡2卡三卡4卡5卡 | 咕卡用的链子| 精品一区二区三卡| 一区二区三区精品91| 真人做人爱边吃奶动态| 涩涩av久久男人的天堂| 亚洲黑人精品在线| 人人澡人人妻人| 韩国精品一区二区三区| 人成视频在线观看免费观看| 欧美少妇被猛烈插入视频| 热re99久久精品国产66热6| 大陆偷拍与自拍| av一本久久久久| 好男人电影高清在线观看| 大型av网站在线播放| 青青草视频在线视频观看| 中文字幕制服av| 国产成人精品久久久久久| 久久国产精品人妻蜜桃| 亚洲国产精品国产精品| 母亲3免费完整高清在线观看| 久久青草综合色| 亚洲成人免费av在线播放| 国产成人精品无人区| 久久热在线av| 亚洲av在线观看美女高潮| 男女边摸边吃奶| 高清不卡的av网站| 青春草视频在线免费观看| 欧美日韩成人在线一区二区| 亚洲国产欧美网| 少妇被粗大的猛进出69影院| 又大又黄又爽视频免费| 老司机深夜福利视频在线观看 | 久久天堂一区二区三区四区| 亚洲人成电影免费在线| 五月天丁香电影| 久久精品国产亚洲av涩爱| 日韩中文字幕视频在线看片| 亚洲中文字幕日韩| 黑丝袜美女国产一区| 国产一区二区 视频在线| 老熟女久久久| 男的添女的下面高潮视频| 少妇猛男粗大的猛烈进出视频| 无遮挡黄片免费观看| 国产熟女午夜一区二区三区| 亚洲国产精品成人久久小说| 尾随美女入室| 狂野欧美激情性xxxx| 免费看av在线观看网站| 美女脱内裤让男人舔精品视频| 午夜免费鲁丝| 日韩 欧美 亚洲 中文字幕| 精品一区二区三区四区五区乱码 | 午夜免费男女啪啪视频观看| 日韩一卡2卡3卡4卡2021年| 欧美成人午夜精品| av有码第一页| 一边亲一边摸免费视频| 亚洲国产成人一精品久久久| 交换朋友夫妻互换小说| 精品少妇久久久久久888优播| 欧美在线黄色| 亚洲色图 男人天堂 中文字幕| 欧美精品啪啪一区二区三区 | 欧美成人精品欧美一级黄| 国产成人精品无人区| 中文字幕高清在线视频| 国产淫语在线视频| 女警被强在线播放| 亚洲精品第二区| 精品久久久久久久毛片微露脸 | 亚洲人成电影免费在线| 国产精品免费视频内射| 亚洲av电影在线进入| 欧美少妇被猛烈插入视频| 飞空精品影院首页| 大陆偷拍与自拍| 制服人妻中文乱码| 天天躁狠狠躁夜夜躁狠狠躁| 国产精品一国产av| a 毛片基地| 久久中文字幕一级| 亚洲色图综合在线观看| 久热这里只有精品99| 性少妇av在线| a 毛片基地| 国产av精品麻豆| 人人澡人人妻人| 男女无遮挡免费网站观看| 国产一区二区在线观看av| 婷婷色av中文字幕| 大型av网站在线播放| 真人做人爱边吃奶动态| 国产午夜精品一二区理论片| 免费在线观看日本一区| 国产老妇伦熟女老妇高清| 国产欧美日韩精品亚洲av| 欧美国产精品一级二级三级| 91字幕亚洲| 久久天躁狠狠躁夜夜2o2o | 国产一区二区三区综合在线观看| 男女边吃奶边做爰视频| 精品亚洲乱码少妇综合久久| 一区在线观看完整版| 一级黄色大片毛片| 在线看a的网站| 午夜日韩欧美国产| 黄片小视频在线播放| 国产亚洲欧美精品永久| 亚洲伊人色综图| 免费在线观看黄色视频的| 日韩一区二区三区影片| 大话2 男鬼变身卡| 少妇猛男粗大的猛烈进出视频| 人妻一区二区av| 久久久国产一区二区| 国产亚洲精品第一综合不卡| 后天国语完整版免费观看| 亚洲色图综合在线观看| a级片在线免费高清观看视频| 99久久精品国产亚洲精品| 欧美日韩亚洲高清精品| 日韩av在线免费看完整版不卡| 免费在线观看视频国产中文字幕亚洲 | 久久人人爽人人片av| 在线看a的网站| 一级毛片我不卡| 性高湖久久久久久久久免费观看| 亚洲国产精品一区三区| 精品一品国产午夜福利视频| 精品欧美一区二区三区在线| 成年av动漫网址| 欧美成狂野欧美在线观看| 亚洲欧美精品综合一区二区三区| 欧美精品一区二区大全| 免费在线观看视频国产中文字幕亚洲 | 欧美国产精品一级二级三级| 曰老女人黄片| 啦啦啦啦在线视频资源| av天堂在线播放| 午夜福利一区二区在线看| 熟女av电影| 大陆偷拍与自拍| 黄片播放在线免费| 久久狼人影院| 国产成人av教育| 97精品久久久久久久久久精品| 大话2 男鬼变身卡| 国语对白做爰xxxⅹ性视频网站| 亚洲精品美女久久久久99蜜臀 | 久久毛片免费看一区二区三区| 国产男人的电影天堂91| 日韩 欧美 亚洲 中文字幕| 操美女的视频在线观看| 亚洲欧美激情在线| 男女免费视频国产| 丰满少妇做爰视频| 大陆偷拍与自拍| 精品少妇内射三级| 欧美激情极品国产一区二区三区| 黄片播放在线免费| 欧美人与善性xxx| 亚洲国产精品一区三区| 国产91精品成人一区二区三区 | av有码第一页| 啦啦啦视频在线资源免费观看| 人人妻人人爽人人添夜夜欢视频| 免费久久久久久久精品成人欧美视频| 每晚都被弄得嗷嗷叫到高潮| 制服诱惑二区| 热re99久久精品国产66热6| 这个男人来自地球电影免费观看| 国产精品久久久久久精品电影小说| 欧美xxⅹ黑人| 国产片特级美女逼逼视频| 日本a在线网址| 老司机亚洲免费影院| 大型av网站在线播放| 高清欧美精品videossex| 高清黄色对白视频在线免费看| 一本大道久久a久久精品| 天堂中文最新版在线下载| av不卡在线播放| 满18在线观看网站| 欧美国产精品va在线观看不卡| 日本a在线网址| 下体分泌物呈黄色| 母亲3免费完整高清在线观看| 成年人午夜在线观看视频| 交换朋友夫妻互换小说| 精品福利观看| 天天操日日干夜夜撸| 欧美精品亚洲一区二区| 亚洲一码二码三码区别大吗| 下体分泌物呈黄色| 人成视频在线观看免费观看| a 毛片基地| 视频在线观看一区二区三区| 亚洲熟女毛片儿| 后天国语完整版免费观看| 另类精品久久| 别揉我奶头~嗯~啊~动态视频 | 欧美日韩亚洲高清精品| 99香蕉大伊视频| 天天躁夜夜躁狠狠躁躁| 桃花免费在线播放| 精品一区二区三卡| 欧美国产精品一级二级三级| 午夜免费观看性视频| 激情五月婷婷亚洲| 男女无遮挡免费网站观看| 男女国产视频网站| 国产伦理片在线播放av一区| 久久影院123| 亚洲久久久国产精品| 91精品国产国语对白视频| 国产熟女欧美一区二区| 亚洲自偷自拍图片 自拍| 免费女性裸体啪啪无遮挡网站| 九色亚洲精品在线播放| 免费高清在线观看视频在线观看| 欧美亚洲日本最大视频资源| 日韩大码丰满熟妇| 免费看av在线观看网站| 日本一区二区免费在线视频| 精品亚洲成a人片在线观看| 一级片'在线观看视频| 尾随美女入室| 亚洲中文日韩欧美视频| 国产亚洲精品久久久久5区| 97人妻天天添夜夜摸| 成人手机av| 男人舔女人的私密视频| 一本色道久久久久久精品综合| 欧美黑人精品巨大| 9色porny在线观看| 日韩熟女老妇一区二区性免费视频| 丰满少妇做爰视频| 亚洲七黄色美女视频| 97精品久久久久久久久久精品| 日本av免费视频播放| 丝瓜视频免费看黄片| 中文字幕色久视频| 另类亚洲欧美激情| 脱女人内裤的视频| 最近中文字幕2019免费版| 女性被躁到高潮视频| 一区二区三区精品91| 久久久久久久大尺度免费视频| 免费不卡黄色视频| 日韩电影二区| 久久热在线av| 国产高清不卡午夜福利| 老司机影院成人|