• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Ultrathin Metal Silicate Hydroxide Nanosheets with Moderate Metal-Oxygen Covalency Enables Efficient Oxygen Evolution

    2022-04-15 11:49:16JiexinZhuShikunLiZechaoZhuangShanGaoXufengHongXueleiPanRuohanYuLiangZhouLyudmilaMoskalevaandLiqiangMai
    Energy & Environmental Materials 2022年1期

    Jiexin Zhu,Shikun Li,Zechao Zhuang,Shan Gao,Xufeng Hong,Xuelei Pan,Ruohan Yu,Liang Zhou*,Lyudmila V.Moskaleva*,and Liqiang Mai*

    AbstractExploring efficient,cost-effective,and durable electrocatalysts for electrochemical oxygen evolution reaction(OER)is pivotal for the large-scale application of water electrolysis.Recent advance has demonstrated that the activity of electrocatalysts exhibits a strong dependence on the surface electronic structure.Herein,a series of ultrathin metal silicate hydroxide nanosheets(UMSHNs)M3Si2O5(OH)4(M=Fe,Co,and Ni)synthesized without surfactant are introduced as highly active OER electrocatalysts.Cobalt silicate hydroxide nanosheets show an optimal OER activity with overpotentials of 287 and 358 mV at 1 and 10 mA cm-2,respectively.Combining experimental and theoretical studies,it is found that the OER activity of UMSHNs is dominated by the metal-oxygen covalency(MOC).High OER activity can be achieved by having a moderate MOC as reflected by a σ*-orbital(eg) filling near unity and moderate[3d]/[2p]ratio.Moreover,the UMSHNs exhibit favorable chemical stability under oxidation potential.This contribution provides a scientific guidance for further development of active metal silicate hydroxide catalysts.

    Keywords

    electrocatalysis,metal silicate hydroxide,metal-oxygen covalency,oxygen evolution reaction,ultrathin nanosheet

    1.Introduction

    Oxygen evolution reaction (OER)is often regarded as the bottleneck of electrolytic water splitting because of its sluggish kinetics caused by multi-electron transfer process with large overpotentials.[1-3]Precious metal oxides,such as RuO2and IrO2,[4,5]have been identified as benchmark OER catalysts on account of their superior catalytic activity.Unfortunately,scarcity and high-cost prohibit the broad applications of these materials.To address this issue,immense efforts have been focused on exploring new candidates.[6-10]

    Recently,transition metal(TM)oxides and hydroxides,particularly cobalt-based compounds,have emerged as promising alternatives due to their earth abundance and considerable OER activities.[11-17]It has been generally accepted that a high catalytic activity can be achieved only if absorbed species bind to the catalyst surface with moderate strength.[18]Thus,further enhancing the OER activity of TM oxides and hydroxides strictly depends on optimizing their electronic structure.[19-21]Wei and co-workers have found that in an atomically thin CoOOH,the formation of CoO6-xwith a structural distortion provokes the rearrangement of Co 3d electron population,resulting in the t2g5eg1.2configuration.[22]The hole in t2gorbital and an increase in egfilling both facilitate the adsorption of hydroxy species at active sites and the electron transfer between the surface cations and adsorbates.For oxides,such a structure-activity relationship is directly linked to metal-oxygen covalency(MOC)strength,as has been demonstrated in perovskites and spinel oxides.In octahedral coordination environment,a high catalytic activity can be achieved by having the egorbital filling near unity and the O pband center located at a suitable position with respect to the Fermi level.[11,12]Because the egorbital interacts with the frontier orbitals of a binding OER intermediate(such as OH-,,and O2-)and has an antibonding character(M-O,σ*),its partial filling reduces the bond strength.The position of the O p-band center,on the other hand,is indicative of the degree of covalent orbital overlap between M 3d and O 2p levels.Besides,Whangbo and co-workers introduced the[3d]/[2p](relative contribution of M 3d and O 2p orbitals to molecular orbitals)as another descriptor of the MOC.[23]As the[3d]/[2p]ratio decreases,the covalent character of metal-oxygen interaction increases.Furthermore,it has been suggested that the stronger covalency of the M-O bond could possibly promote the charge transfer between the metal cation and the adsorbed oxygenated intermediates.

    Recently,earth-abundant TM silicate hydroxides with[MO6]octahedral and[SiO4]tetrahedral motifs have been employed as efficient OER electrocatalysts.[24-27]Kang and co-workers explained how local environment of the active site in silicate hydroxides helps in stabilizing the OOH*intermediate.[25]Comparing cobalt silicate hydroxide and oxyhydroxide,they found that the lack of interlayer O-H··O bonds in the silicate hydroxide(because of the presence of silicate groups in the interlayer space)affords more flexibility to the oxygen motion of the M-OH moiety.An additional hydrogen bond is formed between the oxygen of[SiO4]tetrahedron and the hydrogen of metal-hydroxy,reducing the formation energy of the OOH*intermediate.Their groundbreaking work demonstrates that silicate hydroxides represent a family of promising OER catalysts that could become a strong alternative to precious metal oxides.Nevertheless,the intrinsic specific activity of silicate hydroxides is poorly understood up to now.The lack of fundamental understanding on OER mechanism and a meaningful activity descriptor hamper the development of highly efficient metal silicate hydroxide electrocatalysts.

    In this work,we uncover the correlation between the electronic structure of metal silicate hydroxides and their OER catalytic activity through combined experimental and theoretical studies.A series of ultrathin metal silicate hydroxide nanosheets with various filling of the d shell are synthesized by a surfactant-free one-step hydrothermal method.Benefited by the rapid precipitation and ultrathin nature,oxygen-deficiency is formed on the surface of nanosheets,resulting in tunable MOC.Among the investigated compounds,including Fe,Co and Ni silicate hydroxides,the cobalt silicate hydroxide with well-suited egfilling exhibits the highest OER activity.The theoretical calculations further demonstrate that the cobalt silicate hydroxide possesses moderate[3dz2/2p]and[3dx2-y2/2p]ratio which is closely related to MOC.Besides,all the silicate hydroxide samples show favorable chemical stability under oxidation potential.This work highlights the significance of surface electronic structure and establishes the relationship between the MOC and OER activity of metal silicate hydroxide,which provides a scientific guidance for further development of active metal silicate hydroxide catalysts.

    2.Results and discussion

    2.1.Characterization of UMSHNs

    To achieve more unsaturated ligand sites,which are likely to serve as active sites,three TM(Fe,Co,and Ni)silicate hydroxide nanosheet samples have been synthesized through a simple one-step hydrothermal method.The surfactant-free synthesis makes the active sites on the surface of the nanosheets fully exposed.Metal silicate hydroxides show a typical layered structure:each layer is comprised of an edge-sharing[MO2(OH)4]sublayer and a corner-sharing[SiO4]sublayer,as illustrated in Figure 1a.[28]Owing to the rapid precipitation,the obtained silicate hydroxides lack long-range ordering,and the oxygen-deficient octahedra are formed on the surface,which leads to further splitting of the metal 3d energy levels.[12,29]Representative transmission electron microscope(TEM)images indicate that the prepared cobalt silicate hydroxide(CoSHN,Figure S1a,Supporting Information),iron silicate hydroxide(FeSHN,Figure S1b,Supporting Information),and nickel silicate hydroxide(NiSHN,Figure S1c,Supporting Information)possess a similar nanosheet morphology.Selected area electron diffraction(SAED,Figure S1d-f,Supporting Information)and X-ray diffraction(XRD,Figure S2,Supporting Information)patterns indicate the asprepared samples can be generally indexed to the orthorhombic crystal phase,despite the weak intensities of the diffractions.High-resolution TEM images(Figure 1b and Figure S3,Supporting Information)reveal that the as-prepared UMSHNs possess local orderings but lack longrange ordering as previously reported.[25]In addition,Fourier transform infrared(FT-IR)(Figure S4,Supporting Information)spectra also verify the characteristic local environment of the silicate hydroxides.The peaks at 3630-3550 cm-1and 660-650 cm-1correspond to the νOHvibration mode and superimposition of δOHvibration of M-OH group,while the peaks at 1010-1000 cm-1and 460-450 cm-1are attributed to the νSi-Ovibration mode and asymmetric Si-O bending vibration.[30]The energy-dispersive X-ray(EDX)(Figure 1c,and Figures S5 and S6,Supporting Information)elemental mappings confirm the existence and uniform distribution of TM(M=Co,Fe,Ni),Si,and O elements.The high-resolution X-ray photoelectron spectroscopy(XPS)(Figure S7,Supporting Information)spectra of Co 2p,Fe 2p,and Ni 2p show 2p1/2and 2p2/3components for Co2+,Fe2+,and Ni2+,respectively.[31,32]Atomic force microscope(AFM)images(Figure 1d,e and Figure S8,Supporting Information)demonstrate the ultrathin structure of UMSHNs,which have a thickness of<10 nm,corresponding to about 10 times of the unit cell parameter c(0.74 nm).Moreover,due to the ultrathin nature,the UMSHNs remain well-dispersed in aqueous solution for at least one month,as confirmed by TEM images and the Tyndall light scattering under laser irradiation(Figure 1f and Figure S9,Supporting Information).[33]

    Figure 1.a)Crystal structure of silicate hydroxide.b)High-resolution TEM images of CoSHN.c)EDX elemental mappings of Co,Si,O.d,e)AFM image and the corresponding height profiles(the numbers from 1 to 3 in e correspond to the numbers from 1 to 3 in d).f)TEM image of CoSHN;The inset shows the Tyndall light scattering of CoSHN in an aqueous solution.

    2.2.Electrocatalytic Properties of UMSHN Toward OER

    The intrinsic OER activity of the metal silicate hydroxides containing typical metal ions(Co,Fe,and Ni)is explored by cyclic voltammetry(CV)with and without iR correction(Figure 2a and Figure S10,Supporting Information).To avoid the influence of trace amount of Fe on the activity of CoSHN and NiSHN,we have suspended Ni(OH)2powder in electrolyte to absorb the Fe-containing impurities.[34]The CoSHN supported on glassy-carbon electrode(GCE)exhibits the highest OER activity among the considered UMSHNs.Notably,the recorded overpotential(η)required to reach an OER current density of 1 mA cm-2for CoSHN is 287 mV with a standard deviation of 3 mV,indicating a superior catalytic activity compared with the other electrodes(313 mV for FeSHN and 336 mV for NiSHN).It is worth noting that at a current density of 10 mA cm-2,the CoSHN shows an overpotential of only 358 mV,surpassing that of commercial RuO2(377 mV)(Figure S11,Supporting Information).The corresponding Tafel slopes of CoSHN,FeSHN,NiSHN,and RuO2are 58.6,66.5,74.5,and 110.0 mV dec-1,respectively(Figure 2b).Because the catalytic reaction primarily involves the surface atoms,it is more suitable to take the surface area of the catalysts as a reference rather than that of GCE,although not all surface sites are electrochemically active.[35]The intrinsic kinetic current density for OER normalized to the surface areas of the catalysts,which are measured by N2sorption(Figure S12,Supporting Information),is shown in Figure 2c.This further confirms the reliability of the activity trend by our electrochemical measurement.The overpotentials and Tafel slopes of all samples are comparable to those of previously reported single metal oxide-based OER electrocatalysts(Table S1,Supporting Information).

    Figure 2.a)CV curves of UMSHNs,GCE,and commercial RuO2in O2-saturated 1.0MKOH.b)The corresponding Tafel plots.c)Intrinsic OER activities obtained from the currents in the backward scans and normalized by the true surface area and the inset shows TOF of UMSHNs.d)Δj at 1.175 V versus RHE as a function of the scan rate to evaluate Cdl.e)The summary of OER activity of UMSHNs.f)Long-term stability of CoSHN,FeSHN,and NiSHN at j=10 mA cm-2for 120 min.

    Further,we measured the double-layer capacitance(Cdl),which scales approximately with the effective electrochemical surface area(ECSA,Figure 2d and Figure S13,Supporting Information).The results reveal that the Cdlof CoSHN(0.371 mF cm-2BET)is close to the values determined for FeSHN (0.400 mF cm-2BET) and NiSHN(0.502 mF cm-2BET),suggesting the difference in activity rest with the inherent electronic structure rather than the increase of surface sites.The outstanding electrocatalytic activity of CoSHN is also evidenced by the high turnover frequency(TOF,188.5 h-1at 1.6 V vs RHE),which is remarkably larger than that of FeSHN(99.7 h-1at 1.6 V vs RHE),NiSHN(24.8 h-1at 1.6 V vs RHE)(inset in Figure 2c).From all the activity tests,the CoSHN exhibits the highest OER activity(Figure 2e).Apart from the activity,the robustness and durability are also essential factors for the catalyst.As shown in Figure 2f,the potential of the three electrocatalysts shows trivial change under a constant j=10 mA cm-2over 120 min,suggesting the absence of structural degradation on the surface of silicate hydroxides during test.

    2.3.Correlation between eg filling and OER activity of UMSHNs

    To clarify the origin of OER activity variation in metal silicate hydroxides,electron spin resonance(ESR)and temperature-dependent magnetic susceptibility(M-T)measurements have been conducted to study the coordination environment,spin structures,and egoccupancy of UMSHNs.All three samples possess a typical ESR signal centered at g=2.004(Figure S14,Supporting Information),which corresponds to oxygen vacancies,[36]the presence of which may result in further splitting of t2gand egorbitals.[12]By fitting the temperature dependence of susceptibilities derived from the magnetizations through Curie--Weiss law,one can obtain the effective magnetic moment μeff(Figure 3a).[9]Since Co2+possesses a high-spin state(HS:t2g5eg2)and a low-spin state(LS:t2g6eg1),the calculated μeffof 2.98 μBfor the CoSHN translates to 5% Co2+ions in HS and 95% in LS state,which corresponds to the average egfilling of eg~1.05(Figure 3b).For the Fe2+ions,in principle,three spin states are possible:HS(t2g4eg2),intermediate spin state(IS:t2g5eg1),and LS(t2g6eg0).However,the IS has been rarely reported,while the mixtures of HS and LS are more favorable.[37,38]The μeffof 2.79 μBfor the FeSHN can be decomposed into 32.5% HS and 67.5% LS,resulting in the eg~0.65configuration.Ni2+ions have an electronic configuration 3d8,corresponding to the t2g6eg2configuration and an egfilling of 2.0.As shown in Figure 3c,partial electron transfers from the t2gorbital to egorbital occur in Co2+and Fe2+.The created hole in the t2gorbitals is believed to facilitate the adsorption of hydroxyl group on the active O sites to form adsorbed OOH by enhancing the electrophilicity of the reactive O centers.[22]The metal 3d orbitals of egsymmetry have a σ*antibonding character;therefore,their partial occupancy weakens the M-O bond.Thus,the CoSHN possesses a moderate MOC,while the MOC is stronger in FeSHN and weaker in NiSHN.The relationship between the egfilling and OER activities exhibits a volcano shape and hence the CoSHN with an egfilling of 1.05 shows the highest OER activity among UMSHNs(Figure 3d).As a result of an egfilling of 2.0 which is significantly far away from the optimal value,the NiSHN shows the poorest OER activity,followed by FeSHN.A series of previously reported spinel oxides are also plotted in Figure 3d,further proving the UMSHNs conform to the volcanic rule of egfilling.[39]This observation indicates that the optimal activity of CoSHN is associated with the moderate MOC derived from the optimal egfilling.

    Figure 3.a)Temperature-dependent magnetization under H=2 kOe and the temperature-dependent inverse susceptibilities for all the UMSHN samples.The solid lines are the fitting results by a Curie-Weiss law:χ=C/(T-Θ)above 150 K(C,Curie constant;Θ,Curie-Weiss temperature).b)The calculated effective magnetic moment and eg filling of UMSHNs.c)Schematic representation of egand t2g filling of UMSHNs.d)Comparison of the iR-corrected potential at 25 μA cm-2versus the egelectron occupancy of UMSHNs and various spinel oxides from reference[35].

    2.4.Correlation Between the Calculated Energy Band and OER Activity of UMSHNs

    Our finding is further supported by density functional theory(DFT)calculations.Obviously,the density of states(DOS)of metal silicate hydroxides shows a comparatively small band gap,indicating a semiconductor character(Figure S15,Supporting Information).Additionally,the respective Co 3d and Fe 3d partial densities of states(PDOS)of CoSHN and FeSHN show broader peaks than the Ni 3d peaks of NiSHN(Figure S16,Supporting Information).This demonstrates that CoSHN and FeSHN bear a higher degree of electron delocalization than NiSHN,resulting in an accelerated electron transfer.Similar conclusions are obtained when inspecting the DOS in the specific M 3d PDOS region close to the Fermi level where CoSHN and FeSHN possess a higher amplitude of 3d peaks than NiSHN (Figure S17,Supporting Information).A recent study suggested that the[3d]/[2p]ratio as a measure of the degree of covalent bonding in the metal-oxygen bonds.[23]This descriptor appears to be influencing the OER activities.It is important to highlight that in an octahedral coordination environment,the egorbitals(including 3dz2and 3dx2-y2)of the TM have a stronger overlap with the oxygen 2p orbitals(σ type bonding)than t2gorbitals(weak π type bonding).[11]Therefore,we specifically focus on the egorbitals,which participate in the M-O σ bonding.As can be inferred from Figure 4a,b,the CoSHN exhibits a moderate relative contribution of Co 3dz2and Co 3dx2-y2orbitals and O 2p orbitals to the σ type bonding.The smaller the[3d]/[2p]ratio the higher the covalency of the M-O bond.Thus,the Fe binds to oxygen too strongly in FeSHN,while the Ni binds to oxygen too weakly in NiSHN,whereas the binding strength between Co and O is optimal,thus yielding the best activity.The relation between the[3dz2/2p]or[3dx2-y2/2p]ratio and the OER catalyst activity is compared in terms of the potential required to provide a specific current of 10 μA(Figure 4c and Figure S18,Supporting Information).The optimal OER activity of silicate hydroxide can be achieved in compounds with moderate[3dz2/2p]and[3dx2-y2/2p]ratio,resulting in an appropriate MOC.

    Figure 4.a)PDOS of M 3dz2-band,M 3dx2-y2-band,and O p-band.b)The computed[3dz2]/[2p]and[3dx2-y2/2p]ratios of the UMSHNs.c)The iR-corrected potential at 10 μA cm-2plotted against the[3dz2]/[2p]ratios of UMSHNs.d)O K-edge XAS data and the normalized intensity of the prepeak versus O pband center-Fermi level of UMSHNs.e)O2-TPD pattern of UMSHNs;f-h)in situ Raman spectra.

    2.5.Qualitative Assessment of MOC

    To further support that the OER activity of UMSHNs is governed by the degree of MOC,O K-edge X-ray absorption(XAS,inset in Figure 4d)has been performed.The prepeak around 527 eV reveals a major excitation from the O 1s orbital to unoccupied M 3d-O 2p orbitals and the intensity permits quantification of the covalent character of the bond between metal and oxygen.Clearly,as the[3dz2/2p]and[3dx2-y2/2p]ratio decreases,the normalized intensity of the prepeak increases accordingly.More importantly,medium MOC positively affects the OER activity of UMSHNs,which agrees with the proposed OER mechanism.The conjecture is also evidenced by the onset temperature for liberating oxygen which is detected by O2temperature-programmed desorption(O2-TPD)(Figure 4e).The onset temperature of O2desorption decreases in the row Fe>Co>Ni,indicating a weakening of the M-O bonding and correlates with both the decreasing M-O covalency and increasing egfilling.These results further demonstrate the adsorption ability of different silicate hydroxide to oxygen intermediate and highlight the role of MOC in OER activity of UMSHNs.

    2.6.Post-Catalysts Characterizations

    In situ Raman can explore the structural changes of the catalyst during the reaction(Figure f-h,Figure S19,Supporting Information).In general,silicate hydroxide is medium Raman scatters and the vibrational modes of(SiO4)4-produce the major Raman peaks while M-O bonds contribute weaker Raman signals.The Raman bands in the range of 1000-1400 cm-1can be assigned to the bridge antisymmetric stretching vibrations of Si-O-Si and stretching vibrations of Si-Oterminal.[40,41]The peaks of Si-O-Si bridge symmetric stretching vibrations normally occur in the range of 400-800 cm-1,and those from 290 to 400 cm-1are attributed to the Si-O-Si and O-Si-O bending vibrations.During CV test with the potential from 1.1 to 1.6 V versus RHE,we found that the Raman peaks of the three catalysts did not change significantly,including intensity and location.As Figure S20,Supporting Information shows,no redox peak can be detected in the CV curves of UMSHNs,which means that the valence state of metal in UMSHNs may not be changed and the electron configuration can be maintained.This indicates that the metal silicate hydroxide can maintain the structural stability during the OER process and is superior to the hydroxides.Moreover,the TEM images of silicate hydroxide electrocatalysts after electrolysis show no surface reconstruction,which also confirm the stable surface morphology and structure(Figure S21,Supporting Information).

    3.Conclusion

    This work develops the design principles for metal silicate hydroxidebased OER electrocatalysts based on the idea that the optimal activity can be obtained by designing materials with moderate covalency of the M-O bonds.The ultrathin nanosheets obtained by surfactant-free hydrothermal synthesis can also be stable.With the egfilling near unity,the CoSHN exhibits the highest activity outperforming the FeSHN,NiSHN,and the benchmark RuO2catalyst.Furthermore,the moderate[3dz2/2p]and[3dx2-y2/2p]ratio is indicative the optimal covalent character of Co-O bond.Both the egfilling and the[3d]/[2p]ratio correlate with the MOC,so that we conclude that the activity of UMSHNs is governed by the MOC of the active cation and oxygen-containing intermediates,which is further confirmed by O X-edge XAS and O2-TPD.The structure durability under oxidation potential further verify the enormous potential of metal silicate hydroxide for OER.This work highlights the importance of tuning surface electronic structure of oxygen electrocatalysts and provides an exciting opportunity and guidelines for the development of efficient metal silicate hydroxide electrocatalysts with the potential for practical utilization in water splitting,rechargeable metal-air batteries,and regenerative fuel cells.

    Acknowledgements

    J.Z and S.L contributed equally to this work.This work was supported by the National Natural Science Foundation of China(51832004,51521001,51872218),the National Key Research and Development Program of China(2016YFA0202603),the Programme of Introducing Talents of Discipline to Universities(B17034),the Yellow Crane Talent(Science&Technology)Program of Wuhan City,Foshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory(XHT2020-003),the Fundamental Research Funds for the Central Universities(195101005).We thank the BL10B station for XAS measurements at National Synchrotron Radiation Laboratory(NSRL)in Hefei,China.

    Conflict of Interest

    The authors declare that they have no conflict of interest.

    Supporting Information

    Supporting Information is available from the Wiley Online Library or from the author.

    97在线视频观看| 美女大奶头黄色视频| 在线播放无遮挡| 国产淫语在线视频| 午夜激情福利司机影院| 另类精品久久| 少妇精品久久久久久久| 极品少妇高潮喷水抽搐| 久久狼人影院| 国产免费现黄频在线看| 亚洲色图 男人天堂 中文字幕 | 在线看a的网站| 成人手机av| 日韩三级伦理在线观看| 国产精品久久久久久av不卡| 性色av一级| 午夜影院在线不卡| 欧美日本中文国产一区发布| 国产精品久久久久久久电影| freevideosex欧美| 日本vs欧美在线观看视频| 色吧在线观看| 免费观看性生交大片5| 国精品久久久久久国模美| 久久国产亚洲av麻豆专区| 男女国产视频网站| 最后的刺客免费高清国语| 午夜福利视频精品| 中文字幕精品免费在线观看视频 | 一级二级三级毛片免费看| 久久久久久久精品精品| 校园人妻丝袜中文字幕| 中文乱码字字幕精品一区二区三区| 在线 av 中文字幕| 超碰97精品在线观看| 18禁观看日本| 国产不卡av网站在线观看| 国产探花极品一区二区| 三级国产精品欧美在线观看| 少妇人妻 视频| 少妇的逼好多水| 国产日韩一区二区三区精品不卡 | 特大巨黑吊av在线直播| 国产精品麻豆人妻色哟哟久久| 热99久久久久精品小说推荐| 亚洲第一区二区三区不卡| av在线观看视频网站免费| 婷婷色综合大香蕉| 欧美少妇被猛烈插入视频| 亚洲综合精品二区| av黄色大香蕉| 亚洲,欧美,日韩| 精品熟女少妇av免费看| av福利片在线| 伦理电影免费视频| 欧美日韩国产mv在线观看视频| 日本欧美国产在线视频| 在线观看人妻少妇| 十八禁高潮呻吟视频| 久久这里有精品视频免费| 国产一区有黄有色的免费视频| 日本欧美视频一区| 两个人免费观看高清视频| 午夜福利,免费看| 精品国产露脸久久av麻豆| av网站免费在线观看视频| 色网站视频免费| 日本免费在线观看一区| 久久女婷五月综合色啪小说| 免费高清在线观看视频在线观看| 大码成人一级视频| 精品国产国语对白av| 少妇 在线观看| 亚洲不卡免费看| 日韩在线高清观看一区二区三区| 欧美最新免费一区二区三区| 边亲边吃奶的免费视频| 一本色道久久久久久精品综合| 黑人欧美特级aaaaaa片| 亚洲欧美中文字幕日韩二区| 天天影视国产精品| 成人亚洲欧美一区二区av| 日本av免费视频播放| 国产亚洲欧美精品永久| 国语对白做爰xxxⅹ性视频网站| 99热全是精品| 久久这里有精品视频免费| 精品国产一区二区三区久久久樱花| 久久久亚洲精品成人影院| 我的女老师完整版在线观看| 黑人欧美特级aaaaaa片| 观看av在线不卡| 人妻制服诱惑在线中文字幕| 日韩视频在线欧美| 欧美97在线视频| 青春草视频在线免费观看| 中文字幕制服av| 久久久久国产精品人妻一区二区| 卡戴珊不雅视频在线播放| 九九久久精品国产亚洲av麻豆| 国产极品粉嫩免费观看在线 | 国产成人一区二区在线| 国产精品.久久久| 在线看a的网站| 视频区图区小说| 在线观看国产h片| av女优亚洲男人天堂| 久久精品国产亚洲av天美| 新久久久久国产一级毛片| 99re6热这里在线精品视频| 欧美精品一区二区大全| 在线观看三级黄色| 99久国产av精品国产电影| 久久精品夜色国产| 80岁老熟妇乱子伦牲交| 国产av精品麻豆| 亚洲精品亚洲一区二区| 日韩强制内射视频| 国产亚洲午夜精品一区二区久久| 男男h啪啪无遮挡| 2018国产大陆天天弄谢| 欧美日韩视频高清一区二区三区二| 国产伦理片在线播放av一区| 熟女av电影| 国产伦理片在线播放av一区| 伦精品一区二区三区| 亚洲美女搞黄在线观看| 久久久国产欧美日韩av| 日本黄色片子视频| 一级二级三级毛片免费看| 成人手机av| 老司机影院毛片| 伦精品一区二区三区| 久热这里只有精品99| 精品亚洲乱码少妇综合久久| 亚洲国产色片| 中文乱码字字幕精品一区二区三区| 精品久久久久久久久av| 有码 亚洲区| 啦啦啦视频在线资源免费观看| 亚洲欧美中文字幕日韩二区| 丰满饥渴人妻一区二区三| 五月天丁香电影| 亚洲av综合色区一区| videos熟女内射| 久久精品国产鲁丝片午夜精品| h视频一区二区三区| 少妇高潮的动态图| 色94色欧美一区二区| 满18在线观看网站| 3wmmmm亚洲av在线观看| 午夜久久久在线观看| 少妇猛男粗大的猛烈进出视频| 热99国产精品久久久久久7| 亚洲婷婷狠狠爱综合网| 亚洲综合色惰| 欧美亚洲 丝袜 人妻 在线| 国产成人精品久久久久久| 高清视频免费观看一区二区| 涩涩av久久男人的天堂| 久久久国产一区二区| 成人手机av| 中文天堂在线官网| 亚洲av日韩在线播放| 精品人妻熟女毛片av久久网站| 久久亚洲国产成人精品v| 国产成人精品无人区| 成人国产av品久久久| 99热这里只有是精品在线观看| 亚洲三级黄色毛片| 久久热精品热| 亚洲一级一片aⅴ在线观看| 美女内射精品一级片tv| 精品99又大又爽又粗少妇毛片| 久久久久久久久久成人| 国产熟女午夜一区二区三区 | 成人综合一区亚洲| 黄片无遮挡物在线观看| 午夜免费鲁丝| 纯流量卡能插随身wifi吗| 亚洲,欧美,日韩| av线在线观看网站| 亚洲欧洲国产日韩| 亚洲国产av新网站| 街头女战士在线观看网站| 国产免费一级a男人的天堂| 一个人免费看片子| 日韩一区二区三区影片| 久久 成人 亚洲| 一本—道久久a久久精品蜜桃钙片| 国产亚洲午夜精品一区二区久久| 七月丁香在线播放| 欧美日韩精品成人综合77777| 国产精品国产三级专区第一集| 人人妻人人澡人人爽人人夜夜| 亚洲久久久国产精品| 国产精品一区二区在线观看99| 国产一区二区在线观看日韩| 中文字幕av电影在线播放| 亚洲精品中文字幕在线视频| 国产有黄有色有爽视频| 日本猛色少妇xxxxx猛交久久| 亚洲国产精品成人久久小说| 成人二区视频| 一级a做视频免费观看| 国产熟女欧美一区二区| 欧美激情国产日韩精品一区| 青春草视频在线免费观看| 久热久热在线精品观看| 亚洲欧美中文字幕日韩二区| 99九九在线精品视频| av一本久久久久| 大码成人一级视频| 爱豆传媒免费全集在线观看| 亚洲国产最新在线播放| 又黄又爽又刺激的免费视频.| 欧美最新免费一区二区三区| 午夜激情久久久久久久| 黄色视频在线播放观看不卡| 亚洲成人av在线免费| 国产成人免费观看mmmm| a级毛片黄视频| 精品一区二区三卡| 亚洲美女黄色视频免费看| 插阴视频在线观看视频| 国产精品国产av在线观看| 亚洲精品乱码久久久久久按摩| 狂野欧美激情性xxxx在线观看| 日本黄色片子视频| 久久女婷五月综合色啪小说| 国产精品欧美亚洲77777| 人妻系列 视频| 少妇的逼水好多| 只有这里有精品99| 91精品国产国语对白视频| 午夜精品国产一区二区电影| 国产精品一区二区三区四区免费观看| 看非洲黑人一级黄片| 国产精品人妻久久久影院| 亚洲成人手机| 精品一品国产午夜福利视频| 免费大片黄手机在线观看| 2022亚洲国产成人精品| 亚洲高清免费不卡视频| 亚洲精品乱码久久久v下载方式| 九草在线视频观看| 久久人人爽人人爽人人片va| 黄色视频在线播放观看不卡| av有码第一页| 午夜久久久在线观看| 超碰97精品在线观看| 欧美最新免费一区二区三区| 成人国语在线视频| 晚上一个人看的免费电影| 最近中文字幕2019免费版| 精品久久久久久久久av| 特大巨黑吊av在线直播| 欧美日韩成人在线一区二区| 精品国产国语对白av| 久久狼人影院| 日本色播在线视频| 下体分泌物呈黄色| 亚洲成色77777| 亚洲精品乱久久久久久| 国产精品国产三级国产专区5o| 免费大片黄手机在线观看| 97超视频在线观看视频| 三级国产精品片| 欧美激情极品国产一区二区三区 | 欧美日韩在线观看h| 91精品国产国语对白视频| 黑人巨大精品欧美一区二区蜜桃 | 人妻 亚洲 视频| 亚洲国产av影院在线观看| 亚洲国产精品成人久久小说| videosex国产| 中文字幕av电影在线播放| 夜夜爽夜夜爽视频| 最新中文字幕久久久久| 下体分泌物呈黄色| 欧美日韩一区二区视频在线观看视频在线| 欧美另类一区| 新久久久久国产一级毛片| 日韩av在线免费看完整版不卡| 成人无遮挡网站| 久久久精品免费免费高清| 日本色播在线视频| 最近2019中文字幕mv第一页| 国产不卡av网站在线观看| 欧美bdsm另类| 在线观看免费高清a一片| 国产精品女同一区二区软件| 国产亚洲一区二区精品| 最近中文字幕2019免费版| 国产国拍精品亚洲av在线观看| 青春草国产在线视频| 国产精品一区二区三区四区免费观看| 自拍欧美九色日韩亚洲蝌蚪91| 亚洲精品成人av观看孕妇| 黄色一级大片看看| 男女边吃奶边做爰视频| 久久精品国产a三级三级三级| 男女边摸边吃奶| 国精品久久久久久国模美| 丁香六月天网| 免费高清在线观看视频在线观看| 人妻人人澡人人爽人人| 大陆偷拍与自拍| 久久久国产一区二区| 国产69精品久久久久777片| 夫妻性生交免费视频一级片| 青春草亚洲视频在线观看| 亚洲精品国产av蜜桃| 夜夜看夜夜爽夜夜摸| 男女国产视频网站| 国产欧美日韩一区二区三区在线 | 久久韩国三级中文字幕| 亚洲人成网站在线观看播放| av播播在线观看一区| 中国国产av一级| 中文字幕最新亚洲高清| 伊人亚洲综合成人网| 欧美日韩视频精品一区| 黑人猛操日本美女一级片| 熟女人妻精品中文字幕| 久久精品国产亚洲av天美| 伦理电影大哥的女人| 国产精品国产三级专区第一集| 免费久久久久久久精品成人欧美视频 | 哪个播放器可以免费观看大片| 如日韩欧美国产精品一区二区三区 | 少妇猛男粗大的猛烈进出视频| 性色av一级| av.在线天堂| 中国国产av一级| 乱人伦中国视频| a级毛片在线看网站| 亚洲,一卡二卡三卡| 一级毛片aaaaaa免费看小| 国产精品一国产av| 建设人人有责人人尽责人人享有的| 亚洲人成77777在线视频| 国产视频首页在线观看| 欧美精品高潮呻吟av久久| 高清黄色对白视频在线免费看| 精品久久蜜臀av无| 亚洲精品国产av蜜桃| 两个人的视频大全免费| 啦啦啦视频在线资源免费观看| 赤兔流量卡办理| av免费观看日本| 午夜91福利影院| 在线观看免费视频网站a站| 26uuu在线亚洲综合色| av女优亚洲男人天堂| 亚洲精品美女久久av网站| 亚洲av男天堂| 国产一级毛片在线| 人妻夜夜爽99麻豆av| 久久久久久久精品精品| 两个人免费观看高清视频| 免费av中文字幕在线| 久久精品国产鲁丝片午夜精品| 亚洲精品视频女| 国模一区二区三区四区视频| 久久久欧美国产精品| 一级a做视频免费观看| 内地一区二区视频在线| av在线观看视频网站免费| 亚洲精品日本国产第一区| 夜夜看夜夜爽夜夜摸| 天堂8中文在线网| 久久国产精品男人的天堂亚洲 | 日韩一本色道免费dvd| a 毛片基地| 少妇高潮的动态图| 黑人欧美特级aaaaaa片| 看免费成人av毛片| 丰满乱子伦码专区| 少妇精品久久久久久久| 一区二区av电影网| 国产精品一二三区在线看| 寂寞人妻少妇视频99o| 91精品伊人久久大香线蕉| 波野结衣二区三区在线| 91在线精品国自产拍蜜月| 大香蕉久久网| 久久国产亚洲av麻豆专区| 中国美白少妇内射xxxbb| 99久久中文字幕三级久久日本| 亚洲精品中文字幕在线视频| 日产精品乱码卡一卡2卡三| 国产乱来视频区| 天天操日日干夜夜撸| 天美传媒精品一区二区| 国产又色又爽无遮挡免| 一边亲一边摸免费视频| 精品一品国产午夜福利视频| 最新中文字幕久久久久| 欧美日韩国产mv在线观看视频| 婷婷色综合www| 我要看黄色一级片免费的| 欧美成人精品欧美一级黄| 欧美人与善性xxx| 18在线观看网站| 2018国产大陆天天弄谢| 国产成人免费无遮挡视频| 啦啦啦中文免费视频观看日本| 国产69精品久久久久777片| 国产色婷婷99| videosex国产| 日韩伦理黄色片| 青春草亚洲视频在线观看| 亚洲精品日本国产第一区| 99久久人妻综合| 久久国产精品男人的天堂亚洲 | 欧美日韩一区二区视频在线观看视频在线| 亚洲精品自拍成人| 亚洲av男天堂| 最新中文字幕久久久久| 桃花免费在线播放| 久久久久久伊人网av| 亚洲av.av天堂| 亚洲精品色激情综合| 天堂8中文在线网| 亚洲精品国产av成人精品| 色哟哟·www| 青青草视频在线视频观看| 亚洲精品日本国产第一区| 久久精品国产亚洲av天美| 蜜桃在线观看..| 国产免费福利视频在线观看| 亚洲综合色网址| 王馨瑶露胸无遮挡在线观看| 国产精品久久久久久久久免| 国产伦理片在线播放av一区| 伊人亚洲综合成人网| 国产一区二区在线观看日韩| 久久人人爽av亚洲精品天堂| 久久99热6这里只有精品| 岛国毛片在线播放| 一级毛片 在线播放| 最近2019中文字幕mv第一页| 两个人的视频大全免费| 大话2 男鬼变身卡| 国产精品免费大片| 高清欧美精品videossex| 大又大粗又爽又黄少妇毛片口| 亚洲国产精品一区二区三区在线| 一边亲一边摸免费视频| av卡一久久| 久久精品国产亚洲av天美| 插逼视频在线观看| 菩萨蛮人人尽说江南好唐韦庄| 99九九在线精品视频| 丰满饥渴人妻一区二区三| 国产精品99久久久久久久久| 国产精品国产三级专区第一集| 高清av免费在线| 国产精品一区www在线观看| 成年av动漫网址| 亚洲第一av免费看| 国产男女超爽视频在线观看| 亚洲精品乱码久久久久久按摩| 欧美性感艳星| 韩国高清视频一区二区三区| 国产探花极品一区二区| 91aial.com中文字幕在线观看| 中文字幕av电影在线播放| 丝袜在线中文字幕| 亚洲经典国产精华液单| 大码成人一级视频| 婷婷色av中文字幕| 性高湖久久久久久久久免费观看| 亚洲av中文av极速乱| 18在线观看网站| 国产伦精品一区二区三区视频9| 亚洲国产av新网站| 国产熟女欧美一区二区| 九九久久精品国产亚洲av麻豆| 王馨瑶露胸无遮挡在线观看| 国产精品久久久久久久久免| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 中文字幕最新亚洲高清| 亚洲国产精品一区三区| 狂野欧美激情性bbbbbb| 亚洲性久久影院| 亚洲欧洲国产日韩| 黄色毛片三级朝国网站| 涩涩av久久男人的天堂| 午夜日本视频在线| 日韩 亚洲 欧美在线| 高清黄色对白视频在线免费看| 热99国产精品久久久久久7| 国产男女超爽视频在线观看| 色哟哟·www| 嘟嘟电影网在线观看| 看十八女毛片水多多多| 在线看a的网站| 亚洲av福利一区| 午夜91福利影院| 特大巨黑吊av在线直播| 岛国毛片在线播放| 哪个播放器可以免费观看大片| 大香蕉97超碰在线| 欧美人与善性xxx| 一级片'在线观看视频| 另类精品久久| 制服丝袜香蕉在线| 国内精品宾馆在线| 成人毛片60女人毛片免费| 男人爽女人下面视频在线观看| 一级毛片黄色毛片免费观看视频| 天美传媒精品一区二区| 中文字幕人妻熟人妻熟丝袜美| 国产精品一区二区在线观看99| 最新的欧美精品一区二区| 黑人高潮一二区| 纯流量卡能插随身wifi吗| 99国产综合亚洲精品| 成人影院久久| 亚洲美女搞黄在线观看| 国产免费现黄频在线看| 国产亚洲午夜精品一区二区久久| a 毛片基地| 波野结衣二区三区在线| 大码成人一级视频| 老女人水多毛片| 少妇被粗大猛烈的视频| 日韩一区二区三区影片| 亚洲人成77777在线视频| 免费大片18禁| 内地一区二区视频在线| 日韩av在线免费看完整版不卡| videossex国产| 亚洲在久久综合| 777米奇影视久久| 嘟嘟电影网在线观看| 在线天堂最新版资源| 少妇的逼好多水| 国语对白做爰xxxⅹ性视频网站| 狂野欧美激情性bbbbbb| 亚洲精品美女久久av网站| 亚洲怡红院男人天堂| 欧美日韩国产mv在线观看视频| 亚洲人成网站在线观看播放| 日本wwww免费看| 热re99久久精品国产66热6| 精品国产露脸久久av麻豆| 人人妻人人添人人爽欧美一区卜| 在线观看一区二区三区激情| av免费观看日本| 成年人午夜在线观看视频| 人人妻人人爽人人添夜夜欢视频| 少妇人妻久久综合中文| 插阴视频在线观看视频| 久久人人爽人人片av| kizo精华| av在线观看视频网站免费| 高清不卡的av网站| 丝袜喷水一区| 婷婷色综合大香蕉| 亚洲国产色片| 日韩,欧美,国产一区二区三区| 男人操女人黄网站| 国产精品一区www在线观看| 欧美激情极品国产一区二区三区 | 99久久精品一区二区三区| 亚洲熟女精品中文字幕| 嫩草影院入口| 99国产精品免费福利视频| 亚洲天堂av无毛| 免费观看的影片在线观看| 97超碰精品成人国产| 成人国语在线视频| 熟女人妻精品中文字幕| 日韩电影二区| 亚洲精品亚洲一区二区| 99久久综合免费| 成年女人在线观看亚洲视频| 最新的欧美精品一区二区| 毛片一级片免费看久久久久| 一级毛片aaaaaa免费看小| 婷婷色综合大香蕉| 春色校园在线视频观看| 少妇高潮的动态图| 激情五月婷婷亚洲| 在线观看人妻少妇| 超色免费av| 一区二区三区乱码不卡18| 十八禁高潮呻吟视频| 日本黄大片高清| 久久99热这里只频精品6学生| 午夜影院在线不卡| 亚洲精品日韩av片在线观看| 国产精品99久久99久久久不卡 | 成年人午夜在线观看视频| 九九在线视频观看精品| 精品少妇内射三级| 五月开心婷婷网| 亚洲精品国产av成人精品| 久久久久久久久久人人人人人人| 一级二级三级毛片免费看| 国产精品国产三级国产专区5o| 久久精品国产亚洲av涩爱| 九色成人免费人妻av| 精品亚洲成a人片在线观看| 欧美精品一区二区免费开放| 免费日韩欧美在线观看| 一个人看视频在线观看www免费| 国国产精品蜜臀av免费| 久久久久久人妻| 亚州av有码| 少妇精品久久久久久久| 国产伦精品一区二区三区视频9|