• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Recent Advances on Graphene Quantum Dots for Electrochemical Energy Storage Devices

    2022-04-15 11:49:08NouraZahirPierreMagriWenLuoJeanJacquesGaumetandPhilippePierrat
    Energy & Environmental Materials 2022年1期

    Noura Zahir,Pierre Magri ,Wen Luo,Jean Jacques Gaumet*,and Philippe Pierrat

    Graphene quantum dots(GQDs)which are nanofragments of graphene with an average size between 2 and 50 nm have attracted much attention due to their outstanding properties such as high conductivity,high surface area,and good solubility in various solvents.GQDs combine the quantum confinement and edges effects and the properties of graphene.Therefore,GQDs offers a broad range of applications in various fields(medicine,energy conversion,and energy storage devices).This review will present the recent research based on the introduction of GQDs in batteries,supercapacitors,and microsupercapacitors as electrodes materials or mixed with an active material as an auxiliary agent.Tables,discussed on selected examples,summarize the electrochemical performances and finally,challenges and perspectives are recalled for the subsequent optimization strategy of electrode materials.This review is expected to appeal a broad interest on functional GQDs materials and promote the further development of high-performance energy storage device.

    Keywords

    energy storage,graphene quantum dots,lithium ion batteries,sodium ion batteries,supercapacitor

    1.Introduction

    Graphene as a material is not only the thinnest ever but also the strongest.It corresponds to an infinite 2D monolayer of hexagonal sp2bonded carbon network,which shows interesting properties of zero band gap due to the delocalized electrons.This gives it a semi-metallic behavior and,consequently,electrons move through graphene with virtually no resistance leading to electrical conductivity that is higher than copper.While displaying other outstanding features such as high strength,lightness,and high thermal conductivity,graphene fabrication nevertheless still constitutes the key technical hurdle to overcome in order to permit graphene to reach industry.Indeed,it is still a major challenge to set up stable and homogeneous dispersions of graphene without agglomeration.The recent discovery of graphene quantum dots(GQDs),[1]a new member of the allotropic carbon family(diamond,graphite,fullerene,nanotube,graphene etc.),and the rapid advances in their synthetic preparation do offer a unique opportunity for investigating their applications.These carbonaceous quantum dots combine several favorable attributes of traditional semiconductor-based quantum dots(namely nanoscale size,size-and wavelengthdependent luminescence emission,resistance to photobleaching,ease of bioconjugation)without incurring the burden of intrinsic toxicity or elemental scarcity,and without the need for stringent,costly,or inefficient preparation steps.Moreover,GQDs are highly soluble graphene substitutes,which is a crucial property for an easy transfer to industrial development.

    GQDs are functionalized nanofragments of graphene with lateral size generally below 10 nm.Their anisotropic morphology originates from lateral dimension larger than their height.GQDs systematically possess graphitic lattices within their structures,as evidenced by high-resolution transmission electron microscopy HRTEM(Figure 1).Their height is usually ranging from 0.4 to 4 nm as evidenced by statistical AFM analysis,which corresponds to few GQDs(from 1 to 10)stacked on the top of each other.Chemists have developed GQDs synthetic approaches(either bottom-up or top-down method),in most cases in one step,which end in the preparation of a mixture of GQDs having statistical size and chemistry distribution.Consequently,macroscopic properties arise from the whole GQDs population.

    Figure 1.HRTEM images(and related FFT image in the inset)of in-house fabricated GQDs(unpublished results).

    GQDs preparation methods could be classified in two distinct categories and thus rely either on top-down or bottom-up synthetic approaches.We invite readers interested in further details to consult selected reviews which give an overview of the synthetic possibilities toward the access of GQDs.[2-7]Brie fly,the top-down synthesis deals with chemical breakdown of large carbon-based materials(carbon fibers,[8]graphene oxide GO,[9]coal,[10]fullerenes,[11]graphite,[12]...)into small fragments with concentrated acids.GO is typically the ideal starting material according to the presence of many oxygen-containing functional groups,which facilitate the chemical cleavage toward nanosized GQDs.Nevertheless,GO does not naturally occur and has thus to be prepared from various materials such as coal or anthracite by the complex Hummer’s chemical approach.In that context,the use of graphite as natural source has been evaluated as GO substitute with lesser success to date according to lower synthetic yields.Top-down syntheses are reported to be possible through hydrothermal or solvothermal cutting,[13]microwave-assisted exfoliation,[14]electrochemical methods,[15]and oxidation.[16]On the other hand,one-step bottom-up synthesis deals with the carbonization of organic precursors(citric acid,[17]glucose,[18]glutamic acid,[19]hexa-peri-hexabenzocoronene,[20]...)by microwave-assisted pyrolysis,solvothermal heating or under pulsed laser irradiation.However,bottom-up approaches generally suffer from lower yields associated with purification hurdles to remove unreacted small organic materials.

    In the particular context of global warming and increasing energy demand,it is very appealing to develop efficient and stable energy storage technologies in order to respond to the intermittency of alternative renewable energy sources(wind,sunlight,tides...)under development.In general,electrochemical energy storage(EES)systems,beyond their intrinsic performances,could display some limitations such as capacity fading and increased charge transfer resistance during cycles.Rapidly,next to the first paper reporting their first synthesis,[1]GQDs have been studied as an advanced material for electrodes in EES systems such as batteries and supercapacitors.Herein,we collected the literature results in different tables,highlighting the main appropriate metrics that give a real picture of the performance of related EES systems.For each system,both reaction type(top-down/bottom-up)and precursors are systematically given in all tables.

    2.Batteries

    Batteries represent one of the energy storage devices that stored the energy in form of chemical energy and converted it to electricity via redox reactions or intercalation processes as observed generally in lithium ion batteries(LIBs)and in sodium ion batteries(SIBs)(Figure 2a,b).They consist of two electrodes separated by an electrolyte.[21]There is a large range of different battery types such as leadacid,Nickel-Cadmium,and Nickel-Metal-hydride(NiMH),lithium ion,and lithium metal batteries.They display different properties in terms of volumetric and gravimetric energy densities(Figure 2c).

    Figure 2.Schematic diagrams of batteries working principle:a)LIBs.[22]Copyright 2018,The Royal Society of Chemistry.b)SIBs.[23]open access 2019,MDPI.c)Parameters value range for common batteries(energy density vs gravimetric energy density).[24]Copyright 2012,Elsevier.

    Among all of them,LIBs are already in our daily life as they are powering our portable devices(phones,tablets,laptops...)and electric vehicles.They display many advantages such as high cycling stability,high capacity,and high operating voltage.[25]Recently,the utilization of GQDs as anode material or mixed with an active material as an auxiliary agent in secondary rechargeable batteries has attracted much attention.[26]Table 1 summarized the LIBs performances using GQDs.For example,Yin et al.[27]designed a multilayered bimetal oxides NiO@Co3O4modified with GQDs and they used it as an anode material for LIBs.The NiO@Co3O4@GQDs exhibits excellent cycling property and a large reversible capacity of 1158 mA h g-1that remain stable even after 250 cycles at 0.1 A g-1as shown in Figure 3a.This result should be compared with the device made of pure NiO@Co3O4as an anode material,for which,the charge capacity decreased from 1093 to 521 mA h g-1after 250 cycles.

    Figure 3.a)Preparation route and structural illustration of the multilayer NiO@Co3O4@GQDs microspheres and cycling capabilities of NiO@Co3O4and NiO@Co3O4@GQDs.[27]Copyright 2019,The Royal Society of Chemistry.b)Schematic illustration for the preparation of Co3O4@CuO@GQDs and cyclic performance of Co3O4@CuO and Co3O4@CuO@GQDs.[28]Copyright 2019,Elsevier.

    Table 1.Comparison of LIBs performances using GQDs.

    Wu et al.[28]prepared a GQDs modified yolk shell Co3O4@CuO microspheres(Co3O4@CuO@GQDs).The Co3O4@CuO@GQDs as an anode material displays an initial discharge/charge capacities of 1352/816 mA h g-1at 0.1 A g-1(Figure 3b).Furthermore,it exhibits good cycling performance,no capacity fading during charging/discharging process and a reversible charging specific capacity of 1054 mA h g-1was remained after 200 cycles.By comparison,for Co3O4@CuO without GQDs as an anode material,a capacity fading was observed at the 15th cycle and only 414 mA h g-1of capacity was measured after 200 cycles at 0.1 A g-1.

    GQDs doped with nitrogen or boron atoms were also evaluated in lithium battery storage.In that context,Vijaya et al.prepared undoped GQDs,boron GQDs(B-GQDs),and nitrogen GQDs(N-GQDs)and used them as pure anode materials for LIBs.[29]Figure 4 illustrates the preparation methods(Figure 4a),TEM images of B-GQDs,N-GQDs,and GQDs(Figure 4b)and the electrochemical performances as well.B-GQDs and N-GQDs exhibit higher specific capacity compared to undoped GQDs, 1896 mA h g-1, 1500 mA h g-1, and 697 mA h g-1at 50 mA g-1,respectively(Figure 4c).Moreover,as depicted in Figure 4d,B-GQDs and N-GQDs retain 95.7% and 90% from the initial capacity,respectively,while undoped GQDs maintain only 86% of their initial capacity.It is postulated that the addition of heteroatoms enhances the Li ions storage capacity.A consistent explanation is the doping of graphene backbone with boron and nitrogen creates electron-deficient and electron-rich sites in carbon lattices which permits to improve Li ions adsorption and storage capacity.

    Figure 4.a)Preparation route of B-GQDs,N-GQDs,and GQDs.b)TEM images of i)GQDs,ii)B-GQDs,and iii)N-GQDs.c)Galvanostatic charge-discharge profiles of i)B-GQD,ii)N-GQDs,and iii)GQDs for the first cycles at 50 mA g-1for LIB anodes.d)Cyclic stability for B-GQD,N-GQD,and GQD at 200 mA g-1.[29]Copyright 2020,Elsevier.

    To conclude,the addition/coupling of GQDs has systematically a positive impact on lithium storage capacity as it offers more catalytically active site and increases the specific surface area.It enhances the contact area between the electrolyte and the active layer and increases the electrochemical conductivity and thus improves the cycling stability of the electrode as well as the specific capacity.[28,35,36]

    Although LIBs devices are widely used nowadays,many reports suggest a supply scarcity of lithium as the demand increases exponentially.Some estimates expected that the demand will reach to 900 thousand tons per year by 2025 which will be three times higher than 2018 and considering that Li is not a naturally abundant element its price will skyrocket.[42]In that context,sodium ion batteries(SIBs)has attracted more and more attention as an alternative to LIBs due to sodium higher natural abundance and low cost.In terms of cathode materials during the discharge or anode materials during the charge,SIBs have the same working principle than LIBs,that is based on intercalation of sodium ions[43,44](Figure 2a,b).Recently,various materials for SIBs have been studied.Concerning the cathode,a wide range of potential efficient materials are available.[45]In that context,Chao et al.used graphene foam supported VO2@GQDs as cathode material.The electrode displays a high discharge capacity of 306 mA h g-1at 100 mA g-1(1/3 C).[31]The most challenging task in SIBs batteries development relates on the finding of appropriate anode materials.In this review,we present the recent developments for anodes incorporating GQDs as dopant material,with the main properties depicted in Table 2.For example,Kong et al.fabricated a binder free anode via N-doped GQDs decorated Na2Ti3O7nanofibers arrays directly grown on flexible carbon textiles(Na2Ti3O7@N-GQDs/CTs).The results showed that the anode material delivers a high initial discharge capacity of~488 mA h g-1at 1 C,while the anode without GQDs(Na2Ti3O7/CTs)displays~300 mA h g-1at 1 C(Figure 5).Regarding the cycling stability performances,the Na2Ti3O7@N-GQDs/CT retained 92.5% of its initial reversible capacity after 1000 cycles,which is much higher than the capacity retention of Na2Ti3O7/CTs(68% of its initial capacity after 1000 cycles).[44]Thus,the introduction of GQDs enhances the electrochemical performance of SIBs and,as outlined in the cases of LIBs,is particularly beneficial on the cycling stability of SIBs devices.

    Table 2.Electrochemical performances of SIBs using GQDs.

    Figure 5.a)TEM image of N-GQDs with the size distribution in the inset.b)HRTEM images of NTO@N-GQD NFAs with the FFT pattern in inset.c)schematic illustration of the prepared material Na2Ti3O7@N-GQD NFAs on the flexible carbon textile.d)SEM image of Na2Ti3O7@N-GQD NFAs.e)longterm cycling performances of Na2Ti3O7@N-GQDs/CTs-20 and Na2Ti3O7/CT electrodes at different current densities of 0.5 C and 4 C,respectively.f)galvanostatic charge/discharge profiles during the first five cycles of the Na2Ti3O7@N-GQDs/CTs-20 at a current density of 1 C.g)Schematic illustration of the as-fabricated full cell.[44]Copyright 2019,The Royal Society of Chemistry.

    Kong et al.fabricated also a flexible full battery using the prepared material as an anode(Figure 5g).The Na2Ti3O7@N-GQDs//Na3V2(-PO4)3@N-doped carbon full cell provides high discharge capacity of 104.8 mA h g-1and a remarkable cycling performance with approximately 95.7% of the initial capacity which was retained after 50 cycles.Furthermore,the full battery displays a higher energy density 273.5 W h kg-1and at power density 5097.6 W kg-1.In terms of comparison,Chao et al.studied the electrochemical performances of the graphene foam supported VO2@GQDs electrode for both LIBs and SIBs.For LIBs,the specific capacity of the electrode was 421 mA h g-1at 100 A g-1,and the capacity retention is 94% after 1500 cycles at 18 A g-1.And for sodium storage performance,the specific capacity was 306 mA h g-1at 100 A g-1and 88% of the initial capacity was retained after 1500 cycles at 18 A g-1.[31]In summary,the SIBs storage technology seems to be a promising candidate for the replacement of LIBs but still need to be developed to have the same performances than LIBs.

    3.Supercapacitors

    Supercapacitors(SCs)also called as electrochemical capacitors or ultracapacitors have been attracting much attention due to their outstanding properties such as high-power density,fast charge and discharge and long cycle life.SCs consist of two electrodes separated by an ion permeable separator and an electrolyte(Figure 6a).There are two main types of SCs,electrical double layer capacitance(EDLC)and pseudocapacitors.In EDLC,the charge is stored in Helmholtz double layer at the electrode-electrolyte interface while,in pseudocapacitors,the charge is stored through redox reactions.[21,47]The major challenge to overcome for SCs is their low-energy density compared to batteries(Figure 6b)which limits their use in some applications.[48]As a result,tremendous research efforts have been devoted to develop and enhance SCs performances.This part of the review will concern more specifically designed supercapacitors using GQDs-based materials.

    Figure 6.a)Schematic representation of a supercapacitor and b)Ragone plot showing the specific power vs specific energy of various energy storage devices.[21]Copyright 2019,The Royal Society of Chemistry.

    GQDs are promising and attractive materials for their uses in supercapacitors due to their excellent electrical properties,high surface area,abundant active sites,high conductivity,and their high solubility in various solvents.[49,50]Therefore,much research has been developed on novel capacitors including all-solid-state supercapacitors and microsupercapacitors(MSCs)using GQDs materials.The GQDs-based supercapacitors can deliver an energy density close to that of batteries.[51]Table 3 summarizes electrochemical performances parameters of the assembled SCs such as specific capacitance,stability,energy,and power density found in recent literature.GQDs have been used as an electrode material for SCs,MSCs and even as an electrolyte.Zhang et al.[52]developed SCs employing GQD film as solid-state electrolyte with a specific capacitance of 6 F g-1at a current density of 1 A g-1.Very interestingly,the specific capacitance for GQDs film neutralized with KOH was 45 F g-1at 1 A g-1.The full ionization of the weak acidic oxygenbearing functional groups may explain this improvement allowing a high enhancement of the ionic conductivity and ion-donating ability of GQDs.In general,SCs and MSCs having GQDs as electrode material correspond to electrochemical double layer type.Xu et al.developed electrodes materials-based N-doped reduced graphene oxide(NrGO)combined with GQD.The obtained NrGO/GQD exhibits a high specific capacitance of 344 F g-1at current density 0.25 A g-1with a good 82% cycling stability of its capacitance which was retained after 3000 cycles.The elaborated electrodes display remarkably improved electrochemical performance compared to NrGO without GQD which exhibit a specific capacitance of 254 F g-1at 0.25 A g-1.[53]Moreover,Liu et al.[54]designed symmetric micro-supercapacitor using GQDs//GQDs as electrodes with 534.7 μF cm-2at current density 15 μA cm-2,and 98% of the initial capacitance retained after 5000 cycles.The electrochemical test of the assembled SC reveals that the introduction of GQDs enhances the electrochemical performance of SCs and leads to high rate capability and excellent cycling stability.Qing et al.[55]further developed a new strategy to enhance the electrochemical performances of activated carbon by embedding crystallized GQDs.The assembled symmetric SC shows high capacitance of 388 F g-1at a current density of 1 A g-1and achieves excellent cycle stability with no obvious capacitance fading after 10 000 cycles.Moreover,the symmetric SCs show high energy density of 13.47 Wh kg-1at a power density of 125 W kg-1.[55]

    Table 3.Comparison of electrochemical performances of the assembled SCs.

    Table 3.Continued

    Table 3.Continued

    On the other hand,SCs and MSCs designed using GQDs doped with nitrogen or sulfur and asymmetric SCs belong to pseudocapacitors.Yin et al.[27]prepared multilayer NiO@Co3O4hollow spheres modified with GQDs(NiO@Co3O4@GQDs)and investigated their electrochemical performance.As a working electrode in a conventional three-electrode cell,NiO@Co3O4@GQDs shows an impressive capacitance of 1361 F g-1at 1 A g-1,and a capacity retention rate of~76.4% after 3000 cycles at 10 A g-1.This is much higher than NiO@Co3O4,which maintains only 54.7% of its initial capacitance(Table 4).Moreover,they fabricated all-solid-state asymmetric SC,NiO@Co3O4@GQDs//Activated Carbon(AC)using polyvinyl alcohol(PVA/KOH)as an electrolyte.The asymmetric supercapacitor(ASC)device exhibits a specific capacitance of 123 F g-1at 1 A g-1and an energy density of 38.44 Wh kg-1at a power density of 750 W kg-1and a high cycle stability(84% retention of its initial capacitance after 10 000 cycles).The superior performances can be ascribed to the bimetallic oxides(NiO and Co3O4)together with the introduction of carboxyl functionalized GQDs which provide more electrochemical active sites,facilitate ion accessibility and enhance the electronic conductivity.Qiu et al.[56]fabricated an ASC,based on a flower like ball histidine functionalized GQDs/Ni-Co layered double hydroxides(LDH)(His-GQDs/LDH)//AC(Figure 7).The specific capacitance of the device is 138 F g-1at 1 A g-1.The assembled ASC delivers a high energy density of48.89 Wh kg-1at a power density of 0.80 kW kg-1and shows good cycling performances(93% of the initial capacitance was retained after 6000 cycles).The ASC exhibits good electrochemical properties,probably due to the special structure of His-GQDs/LDH,which can facilitate electrolyte ions transfer according to its high surface area.This is also due to the introduction of His-GQDs,which improves the electrical conductivity of the electrode,and prevents the volume expansion of nickel and cobalt ions during charge and discharge processes.

    Table 4.Electrochemical performance of typical GQD-based electrodes for supercapacitors.

    Figure 7.a)HRTEM.b)TEM images of His-GQD/LDH.c)performances supercapacitors:GCD.d)cycling property.[56]Copyright 2020,Elsevier.

    Interestingly,some authors[88-91,99,100]use the term carbon dots(CDs)or carbon nanodots(CNDs)to the prepared materials and according to high-resolution TEM results,these materials have a similar crystallinity to GQDs.For example,Wei et al.[90]have synthesized CDs and the high-resolution TEM images(Figure 8)reveals the CDs with a lattice spacing of 0.34 nm which corresponds to the(002)plane of graphite.

    Figure 8.a)TEM and b)HRTEM images of CDs.[90]Copyright 2016,Wiley.

    4.Conclusions and Perspectives

    We have reviewed the interesting potentiality of combining GQDs in electrochemical energy storage devices focusing on batteries and supercapacitors.From all papers described herein,the addition of GQDs brings nearly systematically enhancement of lifetime and electrochemical performances.For instance,the specific capacity of lithium ion batteries has an increase of a 1.4 factor.Furthermore,the cycling stability after addition of GQDs has an increase≈15% in lithium ion batteries.Among the large number of articles dedicated to the use of GQDs-based electrodes for EES systems,it appears that GQDs improve the electrical conductivity and thus facilitate the charge transfer within the composite electrodes evaluated.It is also postulated that incorporating GQDs within the electrode matrix is acting as a binder,which sustain the overall electrode microstructure leading to enhanced cycling stability.Moreover,from the published results,it is clear that the interaction between the electrolyte,with the electrode material,and the electron charge transfer are enhanced by the addition of GQDs within the active matrix.This could be explained by a higher specific area or by the enhanced porosity of the electrode.

    GQDs should be considered,as a material with inner and edge functionalized groups with heteroatoms,especially oxygen.The edges are suitable for improving solubility in various solvents and are useful for reducing aggregation phenomena.The inner functional groups,which are mainly epoxy groups,are statistically distributed on the GQDs surface.Controlled reduction of those oxygen-bridges could be a road to further improve the positive impact of GQDs material in EES systems,owing to the formation of larger conductive sp2domains.

    Finally,it is now time to develop maturely this approach and to extend it industrially in the near future.Low-cost industrial production is highly demanded for these applications to be largely developed.Moreover,one has to be able to produce GQDs by controlling as much as possible their size for managing their macroscopic features,as well as their inner and edge chemistry.

    Acknowledgements

    This work was supported by the L2CM,UMR 7053,a partner of the Jean Barriol Institute at the Université de Lorraine(France).

    Conflict of Interest

    The authors declare no conflict of interest.

    国产私拍福利视频在线观看| 国产欧美日韩一区二区精品| 琪琪午夜伦伦电影理论片6080| 国产黄片美女视频| 久久国产亚洲av麻豆专区| 国产99久久九九免费精品| 国产精品野战在线观看| 精品国产超薄肉色丝袜足j| www.精华液| 成人三级做爰电影| svipshipincom国产片| 久久人妻av系列| 日韩欧美国产在线观看| 美女扒开内裤让男人捅视频| 欧美一级毛片孕妇| 午夜久久久在线观看| 久久精品国产99精品国产亚洲性色| 在线观看免费午夜福利视频| 国产精品美女特级片免费视频播放器 | 在线永久观看黄色视频| 久久婷婷人人爽人人干人人爱| 在线视频色国产色| 国产又色又爽无遮挡免费看| 日本 av在线| 91麻豆精品激情在线观看国产| av欧美777| 91麻豆精品激情在线观看国产| 在线免费观看的www视频| 免费在线观看完整版高清| 午夜免费观看网址| 精品乱码久久久久久99久播| 99在线人妻在线中文字幕| 欧美性猛交╳xxx乱大交人| 午夜免费观看网址| 国产精品久久久人人做人人爽| 一级a爱片免费观看的视频| 免费av毛片视频| 亚洲av美国av| 天堂√8在线中文| 久久久久久大精品| av在线天堂中文字幕| 国产高清有码在线观看视频 | 2021天堂中文幕一二区在线观 | 国产精品久久视频播放| 满18在线观看网站| 中文字幕人妻丝袜一区二区| 91成年电影在线观看| 精品国产乱码久久久久久男人| 少妇裸体淫交视频免费看高清 | 国产精品久久久人人做人人爽| 国产免费av片在线观看野外av| 1024香蕉在线观看| 免费在线观看完整版高清| 久久99热这里只有精品18| 88av欧美| 女生性感内裤真人,穿戴方法视频| 一区福利在线观看| 国产又色又爽无遮挡免费看| 国产一卡二卡三卡精品| 亚洲熟妇中文字幕五十中出| 久久久水蜜桃国产精品网| 午夜福利免费观看在线| 欧美日韩乱码在线| 欧美成人一区二区免费高清观看 | 老熟妇仑乱视频hdxx| 男人舔奶头视频| 村上凉子中文字幕在线| av欧美777| 老汉色av国产亚洲站长工具| 长腿黑丝高跟| 99国产综合亚洲精品| 欧美在线一区亚洲| 99riav亚洲国产免费| 国产av又大| xxxwww97欧美| 在线播放国产精品三级| 日日摸夜夜添夜夜添小说| 无限看片的www在线观看| 日本成人三级电影网站| 亚洲成人久久性| 国产在线观看jvid| 精品国产美女av久久久久小说| 草草在线视频免费看| 99热只有精品国产| 免费高清在线观看日韩| 亚洲性夜色夜夜综合| 亚洲av第一区精品v没综合| 十八禁人妻一区二区| 亚洲人成电影免费在线| 国产精品亚洲av一区麻豆| 国内久久婷婷六月综合欲色啪| 亚洲第一欧美日韩一区二区三区| 精品无人区乱码1区二区| 精品久久蜜臀av无| √禁漫天堂资源中文www| 校园春色视频在线观看| 观看免费一级毛片| 午夜日韩欧美国产| 在线十欧美十亚洲十日本专区| 在线观看66精品国产| 夜夜看夜夜爽夜夜摸| 午夜影院日韩av| 美女免费视频网站| 中文字幕av电影在线播放| 欧美乱码精品一区二区三区| 黑人操中国人逼视频| 一级黄色大片毛片| 成人国产一区最新在线观看| 男女午夜视频在线观看| 欧美在线黄色| 亚洲精品色激情综合| 久久久精品欧美日韩精品| 黄频高清免费视频| a级毛片在线看网站| 欧美日韩福利视频一区二区| 老司机午夜福利在线观看视频| 国产久久久一区二区三区| 久久青草综合色| 欧美精品啪啪一区二区三区| 中文亚洲av片在线观看爽| 国产爱豆传媒在线观看 | 午夜免费成人在线视频| 久久精品国产清高在天天线| 91av网站免费观看| 成年人黄色毛片网站| 精品午夜福利视频在线观看一区| www.熟女人妻精品国产| 高潮久久久久久久久久久不卡| 人人妻人人看人人澡| 午夜两性在线视频| 久久久国产欧美日韩av| 精品国产美女av久久久久小说| 国产精品自产拍在线观看55亚洲| 18禁美女被吸乳视频| 视频在线观看一区二区三区| 欧美人与性动交α欧美精品济南到| 在线看三级毛片| 黄色a级毛片大全视频| 亚洲国产精品合色在线| 亚洲专区中文字幕在线| 久久精品国产清高在天天线| 亚洲av第一区精品v没综合| 黄色片一级片一级黄色片| 天堂影院成人在线观看| 在线国产一区二区在线| 亚洲三区欧美一区| 波多野结衣高清无吗| 国产精品,欧美在线| 熟女少妇亚洲综合色aaa.| 操出白浆在线播放| 级片在线观看| av电影中文网址| 亚洲专区字幕在线| 999精品在线视频| 国产野战对白在线观看| 欧美在线黄色| 免费电影在线观看免费观看| 免费看美女性在线毛片视频| 给我免费播放毛片高清在线观看| 欧美日韩一级在线毛片| 性欧美人与动物交配| 精品久久久久久久久久免费视频| 久久久国产欧美日韩av| 欧美在线黄色| 一进一出好大好爽视频| 视频区欧美日本亚洲| 免费人成视频x8x8入口观看| 成年人黄色毛片网站| 亚洲第一欧美日韩一区二区三区| 国产人伦9x9x在线观看| 精品久久久久久久人妻蜜臀av| 国产伦一二天堂av在线观看| 亚洲中文字幕日韩| 国产野战对白在线观看| 久久精品夜夜夜夜夜久久蜜豆 | 国产激情偷乱视频一区二区| 91九色精品人成在线观看| 亚洲色图av天堂| 欧美亚洲日本最大视频资源| 人人妻人人澡欧美一区二区| 国产私拍福利视频在线观看| 国产精品自产拍在线观看55亚洲| 午夜老司机福利片| 久99久视频精品免费| 亚洲精品国产一区二区精华液| 国产在线精品亚洲第一网站| 欧美乱码精品一区二区三区| 国产精品免费视频内射| 欧美+亚洲+日韩+国产| 久热这里只有精品99| 久久久久久久午夜电影| 夜夜爽天天搞| 久久这里只有精品19| 午夜福利成人在线免费观看| 中文字幕av电影在线播放| 熟妇人妻久久中文字幕3abv| 久久香蕉精品热| 免费看a级黄色片| 丰满的人妻完整版| 黑丝袜美女国产一区| 中国美女看黄片| 亚洲一区高清亚洲精品| 国产高清videossex| 国产熟女xx| 免费在线观看影片大全网站| xxxwww97欧美| 国产在线精品亚洲第一网站| 又紧又爽又黄一区二区| 亚洲真实伦在线观看| 欧美黑人欧美精品刺激| 国产成人精品久久二区二区91| 色精品久久人妻99蜜桃| 国产亚洲欧美98| 窝窝影院91人妻| 在线观看66精品国产| 亚洲自拍偷在线| 在线天堂中文资源库| 99国产精品一区二区蜜桃av| 国产麻豆成人av免费视频| xxx96com| 精品不卡国产一区二区三区| 18禁黄网站禁片免费观看直播| av有码第一页| 久久精品成人免费网站| 少妇的丰满在线观看| 日日夜夜操网爽| 国产一级毛片七仙女欲春2 | 女人被狂操c到高潮| 亚洲av中文字字幕乱码综合 | 大型av网站在线播放| 在线av久久热| 波多野结衣巨乳人妻| 久久精品91蜜桃| 久久天堂一区二区三区四区| 性色av乱码一区二区三区2| 麻豆成人午夜福利视频| 一本精品99久久精品77| 亚洲欧美精品综合一区二区三区| 嫩草影视91久久| 亚洲精品美女久久久久99蜜臀| 1024视频免费在线观看| www国产在线视频色| 精品卡一卡二卡四卡免费| 成人特级黄色片久久久久久久| 搡老岳熟女国产| 亚洲精品中文字幕一二三四区| 在线看三级毛片| 久久久久久久久中文| 久久久久久九九精品二区国产 | 黄色女人牲交| 日韩av在线大香蕉| 亚洲第一欧美日韩一区二区三区| 亚洲欧美日韩高清在线视频| 亚洲专区国产一区二区| 一区二区日韩欧美中文字幕| 国产高清有码在线观看视频 | 国产精品九九99| 国产精品久久久久久人妻精品电影| 女警被强在线播放| 久久 成人 亚洲| 黄色 视频免费看| 国产欧美日韩一区二区三| 中国美女看黄片| 亚洲天堂国产精品一区在线| 成人亚洲欧美一区二区av| 一a级毛片在线观看| av在线天堂中文字幕| 99热全是精品| 97超碰精品成人国产| 免费看a级黄色片| 亚洲国产欧美人成| 麻豆精品久久久久久蜜桃| 一级毛片aaaaaa免费看小| 一进一出抽搐gif免费好疼| 国产黄a三级三级三级人| 美女cb高潮喷水在线观看| 精品久久久噜噜| 一区二区三区高清视频在线| 精品久久国产蜜桃| 午夜激情欧美在线| 国产午夜精品论理片| 五月伊人婷婷丁香| 欧美在线一区亚洲| 高清毛片免费看| 在线a可以看的网站| 国产精品一及| 亚洲av免费高清在线观看| 成人综合一区亚洲| 永久网站在线| 九九热线精品视视频播放| 99热这里只有是精品在线观看| 日韩大尺度精品在线看网址| 99久久久亚洲精品蜜臀av| 免费不卡的大黄色大毛片视频在线观看 | 日韩精品青青久久久久久| 久久久久久国产a免费观看| 午夜激情福利司机影院| 国产精品99久久久久久久久| 3wmmmm亚洲av在线观看| 色播亚洲综合网| 级片在线观看| 在线天堂最新版资源| 日韩三级伦理在线观看| 国产精品嫩草影院av在线观看| 真实男女啪啪啪动态图| 精品一区二区三区人妻视频| 亚洲国产欧美人成| 国产单亲对白刺激| 日韩在线高清观看一区二区三区| 久久久午夜欧美精品| 69人妻影院| 亚洲av不卡在线观看| 在线a可以看的网站| 在线免费观看的www视频| 日韩高清综合在线| 老师上课跳d突然被开到最大视频| 变态另类成人亚洲欧美熟女| 久久久久久久久久黄片| 在线免费十八禁| 亚洲精华国产精华液的使用体验 | 97碰自拍视频| 床上黄色一级片| 少妇人妻一区二区三区视频| 我要看日韩黄色一级片| 欧美丝袜亚洲另类| 伦精品一区二区三区| 男女下面进入的视频免费午夜| 亚洲aⅴ乱码一区二区在线播放| 成年免费大片在线观看| 不卡视频在线观看欧美| 国产av一区在线观看免费| 日本熟妇午夜| 久久婷婷人人爽人人干人人爱| 18禁在线无遮挡免费观看视频 | 精品国产三级普通话版| 给我免费播放毛片高清在线观看| 亚洲人成网站高清观看| 夜夜看夜夜爽夜夜摸| 看非洲黑人一级黄片| 亚洲欧美精品自产自拍| 久久婷婷人人爽人人干人人爱| 丰满人妻一区二区三区视频av| 日本一二三区视频观看| 欧美潮喷喷水| 又粗又爽又猛毛片免费看| 日韩成人av中文字幕在线观看 | 国产亚洲精品久久久久久毛片| 九九久久精品国产亚洲av麻豆| 男女之事视频高清在线观看| 在线看三级毛片| 赤兔流量卡办理| 欧美bdsm另类| 欧美成人一区二区免费高清观看| 国产91av在线免费观看| 国内精品美女久久久久久| 露出奶头的视频| 麻豆av噜噜一区二区三区| 三级经典国产精品| 亚洲av成人av| 国产日本99.免费观看| 搞女人的毛片| 美女黄网站色视频| 好男人在线观看高清免费视频| 免费观看精品视频网站| 国产精品久久久久久亚洲av鲁大| 久久久精品欧美日韩精品| 特大巨黑吊av在线直播| 欧美区成人在线视频| 九九久久精品国产亚洲av麻豆| 国产精品爽爽va在线观看网站| 中文字幕熟女人妻在线| 欧美zozozo另类| 久久久久久大精品| 亚洲熟妇熟女久久| 五月玫瑰六月丁香| 国产精品爽爽va在线观看网站| 偷拍熟女少妇极品色| 久久久国产成人精品二区| 一级黄色大片毛片| 久久久精品欧美日韩精品| 国产单亲对白刺激| 熟女电影av网| 久久久精品欧美日韩精品| 如何舔出高潮| 全区人妻精品视频| or卡值多少钱| 直男gayav资源| 神马国产精品三级电影在线观看| 一个人免费在线观看电影| 又黄又爽又刺激的免费视频.| 两个人的视频大全免费| 日韩成人av中文字幕在线观看 | 18禁黄网站禁片免费观看直播| 亚洲aⅴ乱码一区二区在线播放| av黄色大香蕉| 国产乱人视频| 一区二区三区四区激情视频 | 中文字幕免费在线视频6| 亚洲电影在线观看av| 国产精品精品国产色婷婷| 在线播放国产精品三级| av.在线天堂| 深爱激情五月婷婷| 国产成人a区在线观看| 亚洲精品在线观看二区| а√天堂www在线а√下载| 色尼玛亚洲综合影院| 日本黄大片高清| 嫩草影院新地址| 国产在线精品亚洲第一网站| 国产精品久久久久久亚洲av鲁大| 日日摸夜夜添夜夜爱| 可以在线观看毛片的网站| 91av网一区二区| 国产成人aa在线观看| 日韩,欧美,国产一区二区三区 | 啦啦啦观看免费观看视频高清| 自拍偷自拍亚洲精品老妇| 一级毛片我不卡| 尾随美女入室| 日韩三级伦理在线观看| 成年女人毛片免费观看观看9| 亚洲专区国产一区二区| 色综合站精品国产| 色av中文字幕| 国产精品综合久久久久久久免费| 99国产精品一区二区蜜桃av| 久久久久久久亚洲中文字幕| 欧美日韩在线观看h| 亚洲最大成人手机在线| 一个人看视频在线观看www免费| 久久天躁狠狠躁夜夜2o2o| av在线老鸭窝| 美女免费视频网站| 亚洲成人久久爱视频| 亚洲成人av在线免费| 久久久精品欧美日韩精品| 亚洲国产精品国产精品| av天堂在线播放| 亚洲国产色片| 99久久九九国产精品国产免费| 亚洲18禁久久av| 欧洲精品卡2卡3卡4卡5卡区| 午夜福利高清视频| 国产成人a∨麻豆精品| av在线亚洲专区| 有码 亚洲区| av在线老鸭窝| 色噜噜av男人的天堂激情| 亚洲成人久久爱视频| 国产高清不卡午夜福利| 美女xxoo啪啪120秒动态图| 国产成人a区在线观看| 3wmmmm亚洲av在线观看| 99热6这里只有精品| 国产午夜福利久久久久久| 少妇猛男粗大的猛烈进出视频 | 久久久久久久久大av| 久久99热6这里只有精品| 亚洲欧美精品自产自拍| 日日干狠狠操夜夜爽| 午夜精品一区二区三区免费看| 亚洲成人精品中文字幕电影| 午夜爱爱视频在线播放| .国产精品久久| 国产精品女同一区二区软件| 久久久久久国产a免费观看| 嫩草影院新地址| 美女被艹到高潮喷水动态| 丰满的人妻完整版| 欧美色视频一区免费| 久久久久国产网址| 久久精品综合一区二区三区| 欧洲精品卡2卡3卡4卡5卡区| 亚洲精品亚洲一区二区| 男人和女人高潮做爰伦理| 99视频精品全部免费 在线| 亚洲七黄色美女视频| 亚洲成av人片在线播放无| 波多野结衣高清作品| 内地一区二区视频在线| 亚洲美女黄片视频| 欧美xxxx黑人xx丫x性爽| 国产成人一区二区在线| 有码 亚洲区| 亚洲欧美日韩高清在线视频| 色噜噜av男人的天堂激情| 久久久国产成人精品二区| 又粗又爽又猛毛片免费看| 久久国内精品自在自线图片| 欧美激情久久久久久爽电影| 欧美一区二区亚洲| 午夜日韩欧美国产| 免费高清视频大片| 校园春色视频在线观看| av天堂在线播放| 日韩 亚洲 欧美在线| 亚洲国产高清在线一区二区三| 国产黄色小视频在线观看| 真人做人爱边吃奶动态| 国产精品一区二区三区四区久久| 人妻久久中文字幕网| 亚洲成人久久性| 一个人观看的视频www高清免费观看| 午夜免费男女啪啪视频观看 | 国产91av在线免费观看| 97人妻精品一区二区三区麻豆| 免费观看的影片在线观看| 日本成人三级电影网站| 一个人观看的视频www高清免费观看| 人人妻人人看人人澡| 国产亚洲91精品色在线| 国产成人a区在线观看| 色吧在线观看| 亚洲图色成人| 日韩中字成人| 干丝袜人妻中文字幕| 国产精品久久久久久亚洲av鲁大| 99久久精品国产国产毛片| 99视频精品全部免费 在线| 亚洲精品影视一区二区三区av| 国产免费男女视频| 丰满乱子伦码专区| a级一级毛片免费在线观看| 国产成年人精品一区二区| 国产乱人偷精品视频| 热99在线观看视频| 蜜桃久久精品国产亚洲av| www日本黄色视频网| 女的被弄到高潮叫床怎么办| 欧美日韩在线观看h| 麻豆乱淫一区二区| 97碰自拍视频| 成人无遮挡网站| 日本成人三级电影网站| 久久午夜福利片| 国产白丝娇喘喷水9色精品| 国产精品久久久久久av不卡| 国语自产精品视频在线第100页| 美女xxoo啪啪120秒动态图| 国产精品不卡视频一区二区| 国国产精品蜜臀av免费| a级一级毛片免费在线观看| 精品久久国产蜜桃| 美女被艹到高潮喷水动态| 国产一区二区在线av高清观看| 亚洲av成人精品一区久久| 亚洲av美国av| 观看免费一级毛片| 国产精品免费一区二区三区在线| 欧美极品一区二区三区四区| 国产不卡一卡二| 国产精品久久久久久久久免| 18禁黄网站禁片免费观看直播| 日本黄色片子视频| 欧美日韩在线观看h| 一级av片app| 亚洲精品日韩av片在线观看| 人妻久久中文字幕网| 搡老岳熟女国产| 成人亚洲精品av一区二区| 日韩中字成人| 欧洲精品卡2卡3卡4卡5卡区| 日韩中字成人| 免费黄网站久久成人精品| 搡女人真爽免费视频火全软件 | 久久精品国产亚洲av涩爱 | 久久久精品94久久精品| 久久亚洲国产成人精品v| 天美传媒精品一区二区| 人妻制服诱惑在线中文字幕| 色播亚洲综合网| .国产精品久久| 亚洲精品国产av成人精品 | 观看美女的网站| 伊人久久精品亚洲午夜| 搡老妇女老女人老熟妇| 色综合色国产| 久久久久国内视频| 日日干狠狠操夜夜爽| 亚洲av中文字字幕乱码综合| 噜噜噜噜噜久久久久久91| 内射极品少妇av片p| av在线播放精品| 国产高清不卡午夜福利| 美女cb高潮喷水在线观看| 国产女主播在线喷水免费视频网站 | 精品一区二区免费观看| 国产精品久久电影中文字幕| 日韩中字成人| 久久精品国产鲁丝片午夜精品| 久久精品久久久久久噜噜老黄 | 97人妻精品一区二区三区麻豆| 一进一出抽搐动态| 老熟妇仑乱视频hdxx| 欧美色视频一区免费| 精品一区二区三区人妻视频| 人妻少妇偷人精品九色| 嫩草影视91久久| 成人二区视频| 久久久成人免费电影| 久久久精品大字幕| 淫秽高清视频在线观看| 赤兔流量卡办理| 搡老妇女老女人老熟妇| 国产精品国产高清国产av| 国产高清有码在线观看视频| 日本成人三级电影网站| 麻豆国产av国片精品| 日韩精品青青久久久久久| 最近的中文字幕免费完整| 亚洲成人精品中文字幕电影| 午夜福利成人在线免费观看| 亚洲综合色惰| 啦啦啦韩国在线观看视频|