• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Recent Advances on Graphene Quantum Dots for Electrochemical Energy Storage Devices

    2022-04-15 11:49:08NouraZahirPierreMagriWenLuoJeanJacquesGaumetandPhilippePierrat
    Energy & Environmental Materials 2022年1期

    Noura Zahir,Pierre Magri ,Wen Luo,Jean Jacques Gaumet*,and Philippe Pierrat

    Graphene quantum dots(GQDs)which are nanofragments of graphene with an average size between 2 and 50 nm have attracted much attention due to their outstanding properties such as high conductivity,high surface area,and good solubility in various solvents.GQDs combine the quantum confinement and edges effects and the properties of graphene.Therefore,GQDs offers a broad range of applications in various fields(medicine,energy conversion,and energy storage devices).This review will present the recent research based on the introduction of GQDs in batteries,supercapacitors,and microsupercapacitors as electrodes materials or mixed with an active material as an auxiliary agent.Tables,discussed on selected examples,summarize the electrochemical performances and finally,challenges and perspectives are recalled for the subsequent optimization strategy of electrode materials.This review is expected to appeal a broad interest on functional GQDs materials and promote the further development of high-performance energy storage device.

    Keywords

    energy storage,graphene quantum dots,lithium ion batteries,sodium ion batteries,supercapacitor

    1.Introduction

    Graphene as a material is not only the thinnest ever but also the strongest.It corresponds to an infinite 2D monolayer of hexagonal sp2bonded carbon network,which shows interesting properties of zero band gap due to the delocalized electrons.This gives it a semi-metallic behavior and,consequently,electrons move through graphene with virtually no resistance leading to electrical conductivity that is higher than copper.While displaying other outstanding features such as high strength,lightness,and high thermal conductivity,graphene fabrication nevertheless still constitutes the key technical hurdle to overcome in order to permit graphene to reach industry.Indeed,it is still a major challenge to set up stable and homogeneous dispersions of graphene without agglomeration.The recent discovery of graphene quantum dots(GQDs),[1]a new member of the allotropic carbon family(diamond,graphite,fullerene,nanotube,graphene etc.),and the rapid advances in their synthetic preparation do offer a unique opportunity for investigating their applications.These carbonaceous quantum dots combine several favorable attributes of traditional semiconductor-based quantum dots(namely nanoscale size,size-and wavelengthdependent luminescence emission,resistance to photobleaching,ease of bioconjugation)without incurring the burden of intrinsic toxicity or elemental scarcity,and without the need for stringent,costly,or inefficient preparation steps.Moreover,GQDs are highly soluble graphene substitutes,which is a crucial property for an easy transfer to industrial development.

    GQDs are functionalized nanofragments of graphene with lateral size generally below 10 nm.Their anisotropic morphology originates from lateral dimension larger than their height.GQDs systematically possess graphitic lattices within their structures,as evidenced by high-resolution transmission electron microscopy HRTEM(Figure 1).Their height is usually ranging from 0.4 to 4 nm as evidenced by statistical AFM analysis,which corresponds to few GQDs(from 1 to 10)stacked on the top of each other.Chemists have developed GQDs synthetic approaches(either bottom-up or top-down method),in most cases in one step,which end in the preparation of a mixture of GQDs having statistical size and chemistry distribution.Consequently,macroscopic properties arise from the whole GQDs population.

    Figure 1.HRTEM images(and related FFT image in the inset)of in-house fabricated GQDs(unpublished results).

    GQDs preparation methods could be classified in two distinct categories and thus rely either on top-down or bottom-up synthetic approaches.We invite readers interested in further details to consult selected reviews which give an overview of the synthetic possibilities toward the access of GQDs.[2-7]Brie fly,the top-down synthesis deals with chemical breakdown of large carbon-based materials(carbon fibers,[8]graphene oxide GO,[9]coal,[10]fullerenes,[11]graphite,[12]...)into small fragments with concentrated acids.GO is typically the ideal starting material according to the presence of many oxygen-containing functional groups,which facilitate the chemical cleavage toward nanosized GQDs.Nevertheless,GO does not naturally occur and has thus to be prepared from various materials such as coal or anthracite by the complex Hummer’s chemical approach.In that context,the use of graphite as natural source has been evaluated as GO substitute with lesser success to date according to lower synthetic yields.Top-down syntheses are reported to be possible through hydrothermal or solvothermal cutting,[13]microwave-assisted exfoliation,[14]electrochemical methods,[15]and oxidation.[16]On the other hand,one-step bottom-up synthesis deals with the carbonization of organic precursors(citric acid,[17]glucose,[18]glutamic acid,[19]hexa-peri-hexabenzocoronene,[20]...)by microwave-assisted pyrolysis,solvothermal heating or under pulsed laser irradiation.However,bottom-up approaches generally suffer from lower yields associated with purification hurdles to remove unreacted small organic materials.

    In the particular context of global warming and increasing energy demand,it is very appealing to develop efficient and stable energy storage technologies in order to respond to the intermittency of alternative renewable energy sources(wind,sunlight,tides...)under development.In general,electrochemical energy storage(EES)systems,beyond their intrinsic performances,could display some limitations such as capacity fading and increased charge transfer resistance during cycles.Rapidly,next to the first paper reporting their first synthesis,[1]GQDs have been studied as an advanced material for electrodes in EES systems such as batteries and supercapacitors.Herein,we collected the literature results in different tables,highlighting the main appropriate metrics that give a real picture of the performance of related EES systems.For each system,both reaction type(top-down/bottom-up)and precursors are systematically given in all tables.

    2.Batteries

    Batteries represent one of the energy storage devices that stored the energy in form of chemical energy and converted it to electricity via redox reactions or intercalation processes as observed generally in lithium ion batteries(LIBs)and in sodium ion batteries(SIBs)(Figure 2a,b).They consist of two electrodes separated by an electrolyte.[21]There is a large range of different battery types such as leadacid,Nickel-Cadmium,and Nickel-Metal-hydride(NiMH),lithium ion,and lithium metal batteries.They display different properties in terms of volumetric and gravimetric energy densities(Figure 2c).

    Figure 2.Schematic diagrams of batteries working principle:a)LIBs.[22]Copyright 2018,The Royal Society of Chemistry.b)SIBs.[23]open access 2019,MDPI.c)Parameters value range for common batteries(energy density vs gravimetric energy density).[24]Copyright 2012,Elsevier.

    Among all of them,LIBs are already in our daily life as they are powering our portable devices(phones,tablets,laptops...)and electric vehicles.They display many advantages such as high cycling stability,high capacity,and high operating voltage.[25]Recently,the utilization of GQDs as anode material or mixed with an active material as an auxiliary agent in secondary rechargeable batteries has attracted much attention.[26]Table 1 summarized the LIBs performances using GQDs.For example,Yin et al.[27]designed a multilayered bimetal oxides NiO@Co3O4modified with GQDs and they used it as an anode material for LIBs.The NiO@Co3O4@GQDs exhibits excellent cycling property and a large reversible capacity of 1158 mA h g-1that remain stable even after 250 cycles at 0.1 A g-1as shown in Figure 3a.This result should be compared with the device made of pure NiO@Co3O4as an anode material,for which,the charge capacity decreased from 1093 to 521 mA h g-1after 250 cycles.

    Figure 3.a)Preparation route and structural illustration of the multilayer NiO@Co3O4@GQDs microspheres and cycling capabilities of NiO@Co3O4and NiO@Co3O4@GQDs.[27]Copyright 2019,The Royal Society of Chemistry.b)Schematic illustration for the preparation of Co3O4@CuO@GQDs and cyclic performance of Co3O4@CuO and Co3O4@CuO@GQDs.[28]Copyright 2019,Elsevier.

    Table 1.Comparison of LIBs performances using GQDs.

    Wu et al.[28]prepared a GQDs modified yolk shell Co3O4@CuO microspheres(Co3O4@CuO@GQDs).The Co3O4@CuO@GQDs as an anode material displays an initial discharge/charge capacities of 1352/816 mA h g-1at 0.1 A g-1(Figure 3b).Furthermore,it exhibits good cycling performance,no capacity fading during charging/discharging process and a reversible charging specific capacity of 1054 mA h g-1was remained after 200 cycles.By comparison,for Co3O4@CuO without GQDs as an anode material,a capacity fading was observed at the 15th cycle and only 414 mA h g-1of capacity was measured after 200 cycles at 0.1 A g-1.

    GQDs doped with nitrogen or boron atoms were also evaluated in lithium battery storage.In that context,Vijaya et al.prepared undoped GQDs,boron GQDs(B-GQDs),and nitrogen GQDs(N-GQDs)and used them as pure anode materials for LIBs.[29]Figure 4 illustrates the preparation methods(Figure 4a),TEM images of B-GQDs,N-GQDs,and GQDs(Figure 4b)and the electrochemical performances as well.B-GQDs and N-GQDs exhibit higher specific capacity compared to undoped GQDs, 1896 mA h g-1, 1500 mA h g-1, and 697 mA h g-1at 50 mA g-1,respectively(Figure 4c).Moreover,as depicted in Figure 4d,B-GQDs and N-GQDs retain 95.7% and 90% from the initial capacity,respectively,while undoped GQDs maintain only 86% of their initial capacity.It is postulated that the addition of heteroatoms enhances the Li ions storage capacity.A consistent explanation is the doping of graphene backbone with boron and nitrogen creates electron-deficient and electron-rich sites in carbon lattices which permits to improve Li ions adsorption and storage capacity.

    Figure 4.a)Preparation route of B-GQDs,N-GQDs,and GQDs.b)TEM images of i)GQDs,ii)B-GQDs,and iii)N-GQDs.c)Galvanostatic charge-discharge profiles of i)B-GQD,ii)N-GQDs,and iii)GQDs for the first cycles at 50 mA g-1for LIB anodes.d)Cyclic stability for B-GQD,N-GQD,and GQD at 200 mA g-1.[29]Copyright 2020,Elsevier.

    To conclude,the addition/coupling of GQDs has systematically a positive impact on lithium storage capacity as it offers more catalytically active site and increases the specific surface area.It enhances the contact area between the electrolyte and the active layer and increases the electrochemical conductivity and thus improves the cycling stability of the electrode as well as the specific capacity.[28,35,36]

    Although LIBs devices are widely used nowadays,many reports suggest a supply scarcity of lithium as the demand increases exponentially.Some estimates expected that the demand will reach to 900 thousand tons per year by 2025 which will be three times higher than 2018 and considering that Li is not a naturally abundant element its price will skyrocket.[42]In that context,sodium ion batteries(SIBs)has attracted more and more attention as an alternative to LIBs due to sodium higher natural abundance and low cost.In terms of cathode materials during the discharge or anode materials during the charge,SIBs have the same working principle than LIBs,that is based on intercalation of sodium ions[43,44](Figure 2a,b).Recently,various materials for SIBs have been studied.Concerning the cathode,a wide range of potential efficient materials are available.[45]In that context,Chao et al.used graphene foam supported VO2@GQDs as cathode material.The electrode displays a high discharge capacity of 306 mA h g-1at 100 mA g-1(1/3 C).[31]The most challenging task in SIBs batteries development relates on the finding of appropriate anode materials.In this review,we present the recent developments for anodes incorporating GQDs as dopant material,with the main properties depicted in Table 2.For example,Kong et al.fabricated a binder free anode via N-doped GQDs decorated Na2Ti3O7nanofibers arrays directly grown on flexible carbon textiles(Na2Ti3O7@N-GQDs/CTs).The results showed that the anode material delivers a high initial discharge capacity of~488 mA h g-1at 1 C,while the anode without GQDs(Na2Ti3O7/CTs)displays~300 mA h g-1at 1 C(Figure 5).Regarding the cycling stability performances,the Na2Ti3O7@N-GQDs/CT retained 92.5% of its initial reversible capacity after 1000 cycles,which is much higher than the capacity retention of Na2Ti3O7/CTs(68% of its initial capacity after 1000 cycles).[44]Thus,the introduction of GQDs enhances the electrochemical performance of SIBs and,as outlined in the cases of LIBs,is particularly beneficial on the cycling stability of SIBs devices.

    Table 2.Electrochemical performances of SIBs using GQDs.

    Figure 5.a)TEM image of N-GQDs with the size distribution in the inset.b)HRTEM images of NTO@N-GQD NFAs with the FFT pattern in inset.c)schematic illustration of the prepared material Na2Ti3O7@N-GQD NFAs on the flexible carbon textile.d)SEM image of Na2Ti3O7@N-GQD NFAs.e)longterm cycling performances of Na2Ti3O7@N-GQDs/CTs-20 and Na2Ti3O7/CT electrodes at different current densities of 0.5 C and 4 C,respectively.f)galvanostatic charge/discharge profiles during the first five cycles of the Na2Ti3O7@N-GQDs/CTs-20 at a current density of 1 C.g)Schematic illustration of the as-fabricated full cell.[44]Copyright 2019,The Royal Society of Chemistry.

    Kong et al.fabricated also a flexible full battery using the prepared material as an anode(Figure 5g).The Na2Ti3O7@N-GQDs//Na3V2(-PO4)3@N-doped carbon full cell provides high discharge capacity of 104.8 mA h g-1and a remarkable cycling performance with approximately 95.7% of the initial capacity which was retained after 50 cycles.Furthermore,the full battery displays a higher energy density 273.5 W h kg-1and at power density 5097.6 W kg-1.In terms of comparison,Chao et al.studied the electrochemical performances of the graphene foam supported VO2@GQDs electrode for both LIBs and SIBs.For LIBs,the specific capacity of the electrode was 421 mA h g-1at 100 A g-1,and the capacity retention is 94% after 1500 cycles at 18 A g-1.And for sodium storage performance,the specific capacity was 306 mA h g-1at 100 A g-1and 88% of the initial capacity was retained after 1500 cycles at 18 A g-1.[31]In summary,the SIBs storage technology seems to be a promising candidate for the replacement of LIBs but still need to be developed to have the same performances than LIBs.

    3.Supercapacitors

    Supercapacitors(SCs)also called as electrochemical capacitors or ultracapacitors have been attracting much attention due to their outstanding properties such as high-power density,fast charge and discharge and long cycle life.SCs consist of two electrodes separated by an ion permeable separator and an electrolyte(Figure 6a).There are two main types of SCs,electrical double layer capacitance(EDLC)and pseudocapacitors.In EDLC,the charge is stored in Helmholtz double layer at the electrode-electrolyte interface while,in pseudocapacitors,the charge is stored through redox reactions.[21,47]The major challenge to overcome for SCs is their low-energy density compared to batteries(Figure 6b)which limits their use in some applications.[48]As a result,tremendous research efforts have been devoted to develop and enhance SCs performances.This part of the review will concern more specifically designed supercapacitors using GQDs-based materials.

    Figure 6.a)Schematic representation of a supercapacitor and b)Ragone plot showing the specific power vs specific energy of various energy storage devices.[21]Copyright 2019,The Royal Society of Chemistry.

    GQDs are promising and attractive materials for their uses in supercapacitors due to their excellent electrical properties,high surface area,abundant active sites,high conductivity,and their high solubility in various solvents.[49,50]Therefore,much research has been developed on novel capacitors including all-solid-state supercapacitors and microsupercapacitors(MSCs)using GQDs materials.The GQDs-based supercapacitors can deliver an energy density close to that of batteries.[51]Table 3 summarizes electrochemical performances parameters of the assembled SCs such as specific capacitance,stability,energy,and power density found in recent literature.GQDs have been used as an electrode material for SCs,MSCs and even as an electrolyte.Zhang et al.[52]developed SCs employing GQD film as solid-state electrolyte with a specific capacitance of 6 F g-1at a current density of 1 A g-1.Very interestingly,the specific capacitance for GQDs film neutralized with KOH was 45 F g-1at 1 A g-1.The full ionization of the weak acidic oxygenbearing functional groups may explain this improvement allowing a high enhancement of the ionic conductivity and ion-donating ability of GQDs.In general,SCs and MSCs having GQDs as electrode material correspond to electrochemical double layer type.Xu et al.developed electrodes materials-based N-doped reduced graphene oxide(NrGO)combined with GQD.The obtained NrGO/GQD exhibits a high specific capacitance of 344 F g-1at current density 0.25 A g-1with a good 82% cycling stability of its capacitance which was retained after 3000 cycles.The elaborated electrodes display remarkably improved electrochemical performance compared to NrGO without GQD which exhibit a specific capacitance of 254 F g-1at 0.25 A g-1.[53]Moreover,Liu et al.[54]designed symmetric micro-supercapacitor using GQDs//GQDs as electrodes with 534.7 μF cm-2at current density 15 μA cm-2,and 98% of the initial capacitance retained after 5000 cycles.The electrochemical test of the assembled SC reveals that the introduction of GQDs enhances the electrochemical performance of SCs and leads to high rate capability and excellent cycling stability.Qing et al.[55]further developed a new strategy to enhance the electrochemical performances of activated carbon by embedding crystallized GQDs.The assembled symmetric SC shows high capacitance of 388 F g-1at a current density of 1 A g-1and achieves excellent cycle stability with no obvious capacitance fading after 10 000 cycles.Moreover,the symmetric SCs show high energy density of 13.47 Wh kg-1at a power density of 125 W kg-1.[55]

    Table 3.Comparison of electrochemical performances of the assembled SCs.

    Table 3.Continued

    Table 3.Continued

    On the other hand,SCs and MSCs designed using GQDs doped with nitrogen or sulfur and asymmetric SCs belong to pseudocapacitors.Yin et al.[27]prepared multilayer NiO@Co3O4hollow spheres modified with GQDs(NiO@Co3O4@GQDs)and investigated their electrochemical performance.As a working electrode in a conventional three-electrode cell,NiO@Co3O4@GQDs shows an impressive capacitance of 1361 F g-1at 1 A g-1,and a capacity retention rate of~76.4% after 3000 cycles at 10 A g-1.This is much higher than NiO@Co3O4,which maintains only 54.7% of its initial capacitance(Table 4).Moreover,they fabricated all-solid-state asymmetric SC,NiO@Co3O4@GQDs//Activated Carbon(AC)using polyvinyl alcohol(PVA/KOH)as an electrolyte.The asymmetric supercapacitor(ASC)device exhibits a specific capacitance of 123 F g-1at 1 A g-1and an energy density of 38.44 Wh kg-1at a power density of 750 W kg-1and a high cycle stability(84% retention of its initial capacitance after 10 000 cycles).The superior performances can be ascribed to the bimetallic oxides(NiO and Co3O4)together with the introduction of carboxyl functionalized GQDs which provide more electrochemical active sites,facilitate ion accessibility and enhance the electronic conductivity.Qiu et al.[56]fabricated an ASC,based on a flower like ball histidine functionalized GQDs/Ni-Co layered double hydroxides(LDH)(His-GQDs/LDH)//AC(Figure 7).The specific capacitance of the device is 138 F g-1at 1 A g-1.The assembled ASC delivers a high energy density of48.89 Wh kg-1at a power density of 0.80 kW kg-1and shows good cycling performances(93% of the initial capacitance was retained after 6000 cycles).The ASC exhibits good electrochemical properties,probably due to the special structure of His-GQDs/LDH,which can facilitate electrolyte ions transfer according to its high surface area.This is also due to the introduction of His-GQDs,which improves the electrical conductivity of the electrode,and prevents the volume expansion of nickel and cobalt ions during charge and discharge processes.

    Table 4.Electrochemical performance of typical GQD-based electrodes for supercapacitors.

    Figure 7.a)HRTEM.b)TEM images of His-GQD/LDH.c)performances supercapacitors:GCD.d)cycling property.[56]Copyright 2020,Elsevier.

    Interestingly,some authors[88-91,99,100]use the term carbon dots(CDs)or carbon nanodots(CNDs)to the prepared materials and according to high-resolution TEM results,these materials have a similar crystallinity to GQDs.For example,Wei et al.[90]have synthesized CDs and the high-resolution TEM images(Figure 8)reveals the CDs with a lattice spacing of 0.34 nm which corresponds to the(002)plane of graphite.

    Figure 8.a)TEM and b)HRTEM images of CDs.[90]Copyright 2016,Wiley.

    4.Conclusions and Perspectives

    We have reviewed the interesting potentiality of combining GQDs in electrochemical energy storage devices focusing on batteries and supercapacitors.From all papers described herein,the addition of GQDs brings nearly systematically enhancement of lifetime and electrochemical performances.For instance,the specific capacity of lithium ion batteries has an increase of a 1.4 factor.Furthermore,the cycling stability after addition of GQDs has an increase≈15% in lithium ion batteries.Among the large number of articles dedicated to the use of GQDs-based electrodes for EES systems,it appears that GQDs improve the electrical conductivity and thus facilitate the charge transfer within the composite electrodes evaluated.It is also postulated that incorporating GQDs within the electrode matrix is acting as a binder,which sustain the overall electrode microstructure leading to enhanced cycling stability.Moreover,from the published results,it is clear that the interaction between the electrolyte,with the electrode material,and the electron charge transfer are enhanced by the addition of GQDs within the active matrix.This could be explained by a higher specific area or by the enhanced porosity of the electrode.

    GQDs should be considered,as a material with inner and edge functionalized groups with heteroatoms,especially oxygen.The edges are suitable for improving solubility in various solvents and are useful for reducing aggregation phenomena.The inner functional groups,which are mainly epoxy groups,are statistically distributed on the GQDs surface.Controlled reduction of those oxygen-bridges could be a road to further improve the positive impact of GQDs material in EES systems,owing to the formation of larger conductive sp2domains.

    Finally,it is now time to develop maturely this approach and to extend it industrially in the near future.Low-cost industrial production is highly demanded for these applications to be largely developed.Moreover,one has to be able to produce GQDs by controlling as much as possible their size for managing their macroscopic features,as well as their inner and edge chemistry.

    Acknowledgements

    This work was supported by the L2CM,UMR 7053,a partner of the Jean Barriol Institute at the Université de Lorraine(France).

    Conflict of Interest

    The authors declare no conflict of interest.

    国产激情偷乱视频一区二区| 精品人妻1区二区| 欧美日本亚洲视频在线播放| 日韩欧美精品v在线| 日韩国内少妇激情av| 白带黄色成豆腐渣| 色综合婷婷激情| 级片在线观看| 久久久久性生活片| 成年人黄色毛片网站| 嫩草影院精品99| 女生性感内裤真人,穿戴方法视频| 免费不卡的大黄色大毛片视频在线观看 | 午夜激情欧美在线| 色尼玛亚洲综合影院| 欧美日韩国产亚洲二区| 午夜免费成人在线视频| 最近视频中文字幕2019在线8| 在现免费观看毛片| 成人综合一区亚洲| 黄色日韩在线| 久久国产乱子免费精品| 免费大片18禁| 最新在线观看一区二区三区| 国内毛片毛片毛片毛片毛片| 久99久视频精品免费| 级片在线观看| 亚洲中文字幕日韩| 久久精品国产清高在天天线| 日本爱情动作片www.在线观看 | 免费观看精品视频网站| 国内精品美女久久久久久| 男女做爰动态图高潮gif福利片| 免费观看人在逋| 干丝袜人妻中文字幕| 老司机福利观看| 在线播放无遮挡| 国产免费一级a男人的天堂| 丰满的人妻完整版| 日韩高清综合在线| 中文在线观看免费www的网站| 欧美日韩瑟瑟在线播放| 99国产极品粉嫩在线观看| 亚洲熟妇熟女久久| 能在线免费观看的黄片| 国产探花在线观看一区二区| 国产亚洲精品久久久久久毛片| 一a级毛片在线观看| 深爱激情五月婷婷| 欧美中文日本在线观看视频| 久久精品国产亚洲av涩爱 | 欧美最黄视频在线播放免费| 精品一区二区三区av网在线观看| 午夜福利成人在线免费观看| 免费看日本二区| 国产69精品久久久久777片| 久久国内精品自在自线图片| 我要搜黄色片| 制服丝袜大香蕉在线| 欧美精品国产亚洲| 男女做爰动态图高潮gif福利片| av中文乱码字幕在线| 精品一区二区三区视频在线观看免费| av天堂中文字幕网| 熟女电影av网| 亚洲人成网站在线播放欧美日韩| 国产精品99久久久久久久久| 国产老妇女一区| 久久精品人妻少妇| 午夜a级毛片| 精品午夜福利在线看| 国产精品一及| 美女大奶头视频| 日本免费一区二区三区高清不卡| 国产精品一区二区性色av| 国产一级毛片七仙女欲春2| 一个人看的www免费观看视频| 嫩草影视91久久| 国产av不卡久久| 毛片女人毛片| 99热精品在线国产| 91午夜精品亚洲一区二区三区 | 国产精品野战在线观看| 久久热精品热| 国产精品精品国产色婷婷| 三级毛片av免费| 精品久久久噜噜| 免费观看在线日韩| 精品久久国产蜜桃| 日本黄色片子视频| 特级一级黄色大片| 久久99热这里只有精品18| 69av精品久久久久久| 老司机午夜福利在线观看视频| 伦精品一区二区三区| 亚洲乱码一区二区免费版| 俄罗斯特黄特色一大片| 久99久视频精品免费| av专区在线播放| 悠悠久久av| 变态另类丝袜制服| xxxwww97欧美| 亚洲国产精品合色在线| 精品国产三级普通话版| 男人的好看免费观看在线视频| 久久久久精品国产欧美久久久| 内射极品少妇av片p| 久久欧美精品欧美久久欧美| 免费大片18禁| 亚洲精品乱码久久久v下载方式| av在线亚洲专区| 亚洲乱码一区二区免费版| 免费大片18禁| 成熟少妇高潮喷水视频| 国语自产精品视频在线第100页| 亚洲精品成人久久久久久| 成人午夜高清在线视频| 一本精品99久久精品77| 国产高清视频在线播放一区| 黄色视频,在线免费观看| 欧美成人a在线观看| 亚洲无线在线观看| 亚洲一级一片aⅴ在线观看| 亚洲国产欧美人成| 久久九九热精品免费| 可以在线观看的亚洲视频| 18禁裸乳无遮挡免费网站照片| 午夜老司机福利剧场| 色精品久久人妻99蜜桃| 亚洲精品久久国产高清桃花| 亚洲av免费高清在线观看| 女人被狂操c到高潮| 99热这里只有是精品50| 欧美日韩国产亚洲二区| 最好的美女福利视频网| 一区二区三区免费毛片| 国产欧美日韩精品一区二区| 成人国产一区最新在线观看| 午夜视频国产福利| 色噜噜av男人的天堂激情| 性插视频无遮挡在线免费观看| 老师上课跳d突然被开到最大视频| 免费观看在线日韩| 俄罗斯特黄特色一大片| 欧美另类亚洲清纯唯美| 中文亚洲av片在线观看爽| 日本精品一区二区三区蜜桃| 非洲黑人性xxxx精品又粗又长| 日韩国内少妇激情av| 黄色女人牲交| 欧美xxxx性猛交bbbb| 日日摸夜夜添夜夜添av毛片 | 欧美极品一区二区三区四区| 国产熟女欧美一区二区| 国产一区二区在线av高清观看| 在线看三级毛片| 欧美精品啪啪一区二区三区| 久久人人爽人人爽人人片va| 蜜桃亚洲精品一区二区三区| 全区人妻精品视频| av在线天堂中文字幕| 中出人妻视频一区二区| 日本黄色视频三级网站网址| 一级毛片久久久久久久久女| 久久人妻av系列| 91久久精品电影网| 九九热线精品视视频播放| xxxwww97欧美| 免费观看在线日韩| 一夜夜www| 亚洲第一电影网av| 国产精品久久久久久亚洲av鲁大| 中亚洲国语对白在线视频| 亚洲av成人精品一区久久| 又紧又爽又黄一区二区| 变态另类丝袜制服| 国产久久久一区二区三区| 动漫黄色视频在线观看| 国产黄色小视频在线观看| 校园春色视频在线观看| 精品人妻偷拍中文字幕| 日韩欧美免费精品| 国产大屁股一区二区在线视频| 国产精品一区二区性色av| 日本精品一区二区三区蜜桃| 亚洲七黄色美女视频| 亚洲av熟女| 男人和女人高潮做爰伦理| 亚洲一区高清亚洲精品| 亚洲天堂国产精品一区在线| 欧美最黄视频在线播放免费| 美女被艹到高潮喷水动态| 国产精品乱码一区二三区的特点| 国产乱人伦免费视频| 亚洲av五月六月丁香网| 国产精品1区2区在线观看.| 午夜爱爱视频在线播放| 丰满乱子伦码专区| 一个人免费在线观看电影| 最近最新免费中文字幕在线| 特大巨黑吊av在线直播| 国产精品乱码一区二三区的特点| 老熟妇仑乱视频hdxx| 亚洲欧美日韩无卡精品| 99久久九九国产精品国产免费| 国产免费男女视频| 九九在线视频观看精品| 国产精品1区2区在线观看.| 真人一进一出gif抽搐免费| 国产伦人伦偷精品视频| 欧美黑人巨大hd| 校园春色视频在线观看| 啦啦啦韩国在线观看视频| 内射极品少妇av片p| 麻豆成人av在线观看| av在线蜜桃| 国产午夜福利久久久久久| 神马国产精品三级电影在线观看| 无遮挡黄片免费观看| 男女下面进入的视频免费午夜| 91久久精品国产一区二区三区| 国产精品自产拍在线观看55亚洲| 久久99热这里只有精品18| 男女啪啪激烈高潮av片| 国内少妇人妻偷人精品xxx网站| 99久久久亚洲精品蜜臀av| 精品久久久久久久久久久久久| 国产在视频线在精品| 小蜜桃在线观看免费完整版高清| 日本黄大片高清| 久久中文看片网| 久久人人爽人人爽人人片va| 波多野结衣高清作品| 国产精品日韩av在线免费观看| 69人妻影院| 俺也久久电影网| 午夜激情福利司机影院| 久久精品国产鲁丝片午夜精品 | 免费在线观看日本一区| 亚洲色图av天堂| 男人舔奶头视频| 嫩草影院新地址| av在线老鸭窝| 国产精品福利在线免费观看| 99在线视频只有这里精品首页| 色综合婷婷激情| 精华霜和精华液先用哪个| 最近在线观看免费完整版| 看黄色毛片网站| 五月伊人婷婷丁香| 亚洲人与动物交配视频| 亚洲午夜理论影院| ponron亚洲| 一a级毛片在线观看| 国产男人的电影天堂91| 午夜福利在线观看吧| 婷婷丁香在线五月| 淫妇啪啪啪对白视频| 99热这里只有精品一区| 老司机午夜福利在线观看视频| 久久午夜亚洲精品久久| 欧美中文日本在线观看视频| 国产探花在线观看一区二区| 99视频精品全部免费 在线| 精品人妻1区二区| 国产精品三级大全| 天天躁日日操中文字幕| 啦啦啦观看免费观看视频高清| 日韩人妻高清精品专区| 免费人成视频x8x8入口观看| 啦啦啦观看免费观看视频高清| avwww免费| 亚洲欧美清纯卡通| 少妇熟女aⅴ在线视频| 亚洲一级一片aⅴ在线观看| 老司机午夜福利在线观看视频| 在线观看免费视频日本深夜| 国产精品一区二区三区四区久久| 韩国av在线不卡| 国产一级毛片七仙女欲春2| 深爱激情五月婷婷| 联通29元200g的流量卡| 成人国产麻豆网| 久久九九热精品免费| 色综合色国产| 色哟哟·www| 精品人妻一区二区三区麻豆 | 看十八女毛片水多多多| 亚洲精品国产成人久久av| 日韩欧美在线二视频| 悠悠久久av| 搡老妇女老女人老熟妇| 国产成人一区二区在线| 男女边吃奶边做爰视频| 天堂网av新在线| av在线观看视频网站免费| 亚洲av免费高清在线观看| 国产伦精品一区二区三区四那| 伦精品一区二区三区| 波多野结衣高清无吗| 欧美一区二区亚洲| 99久久精品国产国产毛片| 久久人妻av系列| av天堂中文字幕网| 一区福利在线观看| 免费大片18禁| 桃色一区二区三区在线观看| 中文字幕av在线有码专区| 国产爱豆传媒在线观看| 狂野欧美激情性xxxx在线观看| 热99re8久久精品国产| .国产精品久久| 一进一出好大好爽视频| 一a级毛片在线观看| 亚州av有码| 日本爱情动作片www.在线观看 | 在线免费观看的www视频| 久久人人爽人人爽人人片va| 亚洲av熟女| 麻豆av噜噜一区二区三区| 一卡2卡三卡四卡精品乱码亚洲| 国产精品一区二区免费欧美| av在线亚洲专区| 男女啪啪激烈高潮av片| 男女做爰动态图高潮gif福利片| 嫩草影院精品99| 麻豆精品久久久久久蜜桃| 国产精品不卡视频一区二区| 12—13女人毛片做爰片一| 免费高清视频大片| 欧美xxxx性猛交bbbb| 九色国产91popny在线| 黄色配什么色好看| 1000部很黄的大片| 国产精品免费一区二区三区在线| 性插视频无遮挡在线免费观看| 免费黄网站久久成人精品| 免费无遮挡裸体视频| 国产蜜桃级精品一区二区三区| 成人午夜高清在线视频| 欧美中文日本在线观看视频| www.www免费av| 麻豆av噜噜一区二区三区| 亚洲在线自拍视频| 国产熟女欧美一区二区| 日韩欧美精品v在线| 美女高潮喷水抽搐中文字幕| 久久久久九九精品影院| 蜜桃久久精品国产亚洲av| 精品福利观看| 九九久久精品国产亚洲av麻豆| 中国美女看黄片| 最新在线观看一区二区三区| 免费看光身美女| 天堂√8在线中文| 国产精品久久电影中文字幕| 色在线成人网| 久9热在线精品视频| 动漫黄色视频在线观看| 国产私拍福利视频在线观看| 不卡一级毛片| 亚洲精华国产精华精| 亚洲人成网站在线播| 免费观看精品视频网站| 精品国产三级普通话版| 日韩亚洲欧美综合| 麻豆成人av在线观看| 一区二区三区高清视频在线| 我要搜黄色片| 欧美最黄视频在线播放免费| 婷婷精品国产亚洲av| 日本爱情动作片www.在线观看 | 此物有八面人人有两片| 91久久精品国产一区二区成人| 中文字幕久久专区| 亚洲自偷自拍三级| 内地一区二区视频在线| 精品人妻1区二区| 日韩高清综合在线| 国产伦在线观看视频一区| 精品久久久久久久久av| 欧美极品一区二区三区四区| 97碰自拍视频| 毛片女人毛片| 午夜日韩欧美国产| 免费看a级黄色片| 小蜜桃在线观看免费完整版高清| 色综合婷婷激情| 在线a可以看的网站| 久久精品人妻少妇| 成人性生交大片免费视频hd| 18禁黄网站禁片午夜丰满| 中出人妻视频一区二区| 日本黄色视频三级网站网址| 成人午夜高清在线视频| 成人亚洲精品av一区二区| 亚洲成人久久爱视频| 国产在视频线在精品| 欧美国产日韩亚洲一区| 黄色欧美视频在线观看| 亚洲性久久影院| 亚洲av中文av极速乱 | 蜜桃久久精品国产亚洲av| 美女被艹到高潮喷水动态| 国产黄片美女视频| 美女免费视频网站| 最近视频中文字幕2019在线8| 99热网站在线观看| a在线观看视频网站| 日日夜夜操网爽| 1000部很黄的大片| 我要搜黄色片| 最近最新免费中文字幕在线| 两人在一起打扑克的视频| 欧美绝顶高潮抽搐喷水| 国产精品无大码| 一夜夜www| 久久草成人影院| 人妻丰满熟妇av一区二区三区| 国产精品综合久久久久久久免费| 亚洲av成人av| 在线免费观看不下载黄p国产 | 国产在线精品亚洲第一网站| 国产精品久久久久久亚洲av鲁大| 国产精品一区二区三区四区久久| 一边摸一边抽搐一进一小说| 久久久久久久亚洲中文字幕| 九九在线视频观看精品| 免费高清视频大片| 麻豆国产av国片精品| 精品久久久久久久人妻蜜臀av| 国产免费一级a男人的天堂| 97超视频在线观看视频| 久久九九热精品免费| 国产精品电影一区二区三区| 悠悠久久av| a级毛片免费高清观看在线播放| 简卡轻食公司| 亚洲中文日韩欧美视频| 久久久久精品国产欧美久久久| 午夜激情欧美在线| 久久国产精品人妻蜜桃| 精品一区二区三区人妻视频| 我的老师免费观看完整版| 中文字幕av成人在线电影| 亚洲18禁久久av| 韩国av在线不卡| 国产色爽女视频免费观看| 欧美区成人在线视频| 丰满的人妻完整版| 亚洲精品久久国产高清桃花| 免费在线观看日本一区| 国产高清视频在线播放一区| 亚洲国产欧美人成| 亚洲人与动物交配视频| 日韩在线高清观看一区二区三区 | 啦啦啦观看免费观看视频高清| 亚洲电影在线观看av| 精品午夜福利在线看| 日韩 亚洲 欧美在线| 日日夜夜操网爽| 91午夜精品亚洲一区二区三区 | 国产一区二区激情短视频| 在线免费十八禁| 国产激情偷乱视频一区二区| 精品福利观看| 亚洲在线观看片| 少妇被粗大猛烈的视频| 国产淫片久久久久久久久| 97超级碰碰碰精品色视频在线观看| 午夜精品在线福利| 又黄又爽又刺激的免费视频.| 免费观看在线日韩| 国产精品国产三级国产av玫瑰| www.www免费av| 黄色丝袜av网址大全| 成年版毛片免费区| 久久精品国产亚洲av香蕉五月| 嫁个100分男人电影在线观看| 成年女人毛片免费观看观看9| 国产av麻豆久久久久久久| 全区人妻精品视频| 国产不卡一卡二| 嫩草影院新地址| 久久久久精品国产欧美久久久| 成人国产综合亚洲| 日韩精品有码人妻一区| 国产精品自产拍在线观看55亚洲| 亚洲欧美精品综合久久99| 变态另类成人亚洲欧美熟女| 久久久久久久午夜电影| 欧美中文日本在线观看视频| 一个人看视频在线观看www免费| 99久久精品热视频| 国模一区二区三区四区视频| 国产色爽女视频免费观看| 欧美区成人在线视频| av天堂在线播放| 久久精品综合一区二区三区| 在现免费观看毛片| 国产大屁股一区二区在线视频| 精品不卡国产一区二区三区| 波多野结衣高清作品| 少妇猛男粗大的猛烈进出视频 | 午夜免费男女啪啪视频观看 | 欧美3d第一页| 日本 欧美在线| 赤兔流量卡办理| 人人妻,人人澡人人爽秒播| 国产午夜福利久久久久久| 搡老妇女老女人老熟妇| 亚洲精品久久国产高清桃花| 在线观看午夜福利视频| 成年女人毛片免费观看观看9| 午夜免费男女啪啪视频观看 | 此物有八面人人有两片| 一级毛片久久久久久久久女| 久久精品国产鲁丝片午夜精品 | 天堂√8在线中文| 成年女人毛片免费观看观看9| 全区人妻精品视频| 国产伦人伦偷精品视频| 99热精品在线国产| 国产高清激情床上av| 春色校园在线视频观看| 国产aⅴ精品一区二区三区波| 久久精品91蜜桃| 成人特级av手机在线观看| 老女人水多毛片| 日韩欧美一区二区三区在线观看| 能在线免费观看的黄片| 日本黄色视频三级网站网址| 亚洲乱码一区二区免费版| 观看美女的网站| 国产美女午夜福利| 美女被艹到高潮喷水动态| 午夜免费成人在线视频| 99国产精品一区二区蜜桃av| 特大巨黑吊av在线直播| 亚洲精华国产精华液的使用体验 | 热99re8久久精品国产| 欧美一区二区精品小视频在线| 免费高清视频大片| 国产精品永久免费网站| 国产午夜福利久久久久久| or卡值多少钱| 亚洲av不卡在线观看| 国产极品精品免费视频能看的| 久久久精品欧美日韩精品| 99热这里只有是精品50| 自拍偷自拍亚洲精品老妇| 久久亚洲真实| 国产精品野战在线观看| 美女免费视频网站| 日本欧美国产在线视频| 91狼人影院| 美女免费视频网站| 精品欧美国产一区二区三| 亚洲最大成人中文| 天堂动漫精品| 亚洲avbb在线观看| 动漫黄色视频在线观看| 一本久久中文字幕| 色综合色国产| 国产av不卡久久| 最近最新中文字幕大全电影3| 久久亚洲精品不卡| 三级毛片av免费| 国内精品美女久久久久久| 99精品久久久久人妻精品| av天堂中文字幕网| 午夜亚洲福利在线播放| 午夜免费男女啪啪视频观看 | 桃红色精品国产亚洲av| 99热这里只有精品一区| 日韩中文字幕欧美一区二区| 欧美日韩中文字幕国产精品一区二区三区| 国产久久久一区二区三区| 大型黄色视频在线免费观看| 欧美成人一区二区免费高清观看| 欧美日本视频| 久久久久国内视频| 日本免费一区二区三区高清不卡| 干丝袜人妻中文字幕| 精品国产三级普通话版| 免费一级毛片在线播放高清视频| 欧美黑人巨大hd| 日本熟妇午夜| 日韩高清综合在线| 久久久久国产精品人妻aⅴ院| 国产精品嫩草影院av在线观看 | 日本黄大片高清| 免费看av在线观看网站| 午夜免费成人在线视频| 桃色一区二区三区在线观看| 欧美日韩综合久久久久久 | 乱人视频在线观看| 小蜜桃在线观看免费完整版高清| 国产91精品成人一区二区三区| 男人狂女人下面高潮的视频| 熟女电影av网| 亚洲性久久影院| 草草在线视频免费看| 99热这里只有精品一区| 欧美+亚洲+日韩+国产| 高清毛片免费观看视频网站| 在线观看66精品国产| 黄片wwwwww| 日韩强制内射视频| 午夜久久久久精精品| 国产不卡一卡二| 欧美另类亚洲清纯唯美| 国产 一区精品| 精品99又大又爽又粗少妇毛片 | 日韩精品青青久久久久久|