• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Coordination of Networked Nonlinear Multi-Agents Using a High-Order Fully Actuated Predictive Control Strategy

    2022-04-15 04:19:14GuoPingLiu
    IEEE/CAA Journal of Automatica Sinica 2022年4期

    Guo-Ping Liu,

    Abstract—This paper is concerned with the coordinative control problem of networked nonlinear multi-agents (NNM)with communication delays. A high-order fully actuated (HOFA)model is introduced to describe the nonlinear multi-agents. Based on this model, a HOFA predictive coordination method is proposed to compensate for the communication delays actively and achieve simultaneous stability and consensus. This method largely simplifies the design of networked nonlinear multi-agents and makes the control performance be same for networked nonlinear multi-agents with and without communication delays.The analysis on the closed-loop systems derives the simultaneous stability and consensus criteria of networked nonlinear multiagents using the HOFA predictive coordination method. With the presented way of designing HOFA predictive coordination controllers, a simulated example demonstrates the advantages of the proposed method.

    I. INTRODUCTION

    THE rapid development of network technology accelerates the development of networked multi-agent systems, such as the Internet of things and industrial Internet systems. A networked multi-agent system is a multi-dimensional complex system integrating communication networks and physical environments. Through the integration of computing,communication and control technologies, it can realize the real-time perception, dynamic control and information service of large-scale engineering systems, make the systems more efficient and coordinative, and have important and wide application prospects [1]–[3]. Networked multi-agent systems have widely been used in the fields of energy, manufacturing,aerospace, telemedicine, etc. Due to the introduction of networks, there are inevitably communication constraints,such as delays, loss, disorder and attacks on data, which bring great challenges to the design and analysis of networked multi-agent control systems [1].

    Much research work has been carried out on the influence of communication constraints (particularly, network delays)on the control performance (e.g., consensus) of networked multi-agent systems [4], [5]. The main methods of dealing with the consensus problem of networked multi-agent systems are the time-delay system method, switching system method,Markov jump system method, stochastic system method,event-triggered control method, etc. The time-delay system method transforms the networked multi-agent control system into a system with variable time-delays so that the system can tolerate a maximum time-delay upper bound and maintain a certain expected system performance [6]. The switching system method describes the networked multi-agent system under bounded uncertain data delay and packet loss effects as a discrete-time system with arbitrary switching so that the existing switching control system theory can be applied directly [7]. The Markov jump system method focuses on the Markov chain characteristics of network delays, and constructs the networked multi-agent system as a Markov jump system for consensus analysis [8]. The stochastic system method provides a powerful tool for analysing the system consensus of networked multi-agent systems with random communication constraints [9]. The event-triggered control method can greatly improve the resource utilization of the networked multi-agent system, but the control performance changes little [10]–[12]. Generally speaking, most control methods of networked multi-agent systems use a passive way to suppress communication constraints, which makes the consensus conditions of the system relatively conservative.

    For the communication constraints in networked multi-agent systems, the predictive control strategy has incomparable advantages over other control methods. Considering how to compensate for communication constraints actively and taking advantage of the characteristics that a network can transmit data in packets, the networked predictive control method has been proposed [13]. This method breaks through the traditional control mode of point-to-point single data transmission, and adopts the idea of predictive control to compensate actively for the communication constraints in a networked multi-agent system so that its control performance is almost the same as that of the system without networks.Following the networked predictive control strategy, a networked multi-agent predictive control method has been proposed to compensate for network delays of multi-agents with a directed topology and non-uniform agents via a distributed dynamic output feedback protocol [14]. To solve the simultaneous stability and consensus problem of networked multi-agent systems with communication delays and data loss, further design and analysis of the networked multi-agent predictive control systems has provided the necessary and sufficient conditions of achieving both output consensus and input–output stability [15]. Then, a cloud predictive control scheme for networked multi-agent systems has been presented to reduce the expenses for establishment,operation, and maintenance of the systems tremendously based on its computational efficiency and speed via cloud computing [16]. Although a great number of research achievements have been made in networked multi-agent predictive control [17], [18], most of them focus on linear multi-agents. How to deal with nonlinearities of multi-agents needs further research.

    Nowadays, most of nonlinear control systems are generally described in the form of a first-order state space model. Based on this model, several nonlinear control methods have been applied to networked nonlinear multi-agent systems, such as the feedback linearization method [19], the back-stepping method [20], the sliding mode method [21], [22], the Lyapunov method [23]. But, there are still various restrictions on those methods. For example, the feedback linearization method needs strong Lie differentiable conditions, the backstepping method is employed only for a special class of systems with a triangular model form, and the Lyapunov method needs to find appropriate Lyapunov functions which are not unique. Generally, it is hardly to realize the global stabilisation and consensus of networked nonlinear multiagent control systems even in the case of no communication constraint.

    According to the high-order fully actuated (HOFA) system approach [24], most of physical nonlinear systems can be expressed as a HOFA model, which is another system description form and has more universality, simplicity and flexibility for nonlinear system design and analysis. Based on the HOFA model, this paper studies the coordinative control problem of networked nonlinear multi-agents. Two cases are studied: One is the multi-agents without communication delays and the other is the multi-agents with communication delays. For the first case, a HOFA coordination scheme is presented. For the second case, a HOFA predictive coordination method is proposed to compensate for communication delays actively. Both the HOFA coordination scheme and HOFA predictive coordination method achieve simultaneous stability and consensus of networked nonlinear multi-agents.

    II. COORDINATED CONTROL OF MULTI-AGENTS WITHOUT COMMUNICATION CONSTRAINTS

    There are various mathematical models to describe physical control systems, such as the first order state space model and the transfer function model. Following the HOFA system approach [24], then-th order fully actuated discrete-time model is utilised to represent nonlinear multi-agents as follows:

    Actually, the combination of (9) and (10) forms the closedloop networked nonlinear multi-agent system without communication constraints using the HOFA coordination scheme.

    III. COORDINATED CONTROL OF MULTI-AGENTS WITH COMMUNICATION DELAYS

    In networked multi-agents, there usually exist various communication constraints, for example, delays, data loss,attacks, quantisation, synchronisation, etc. For the sake of simplicity, only the communication delays are considered here. Let the communication delay from thej-th agent to thei-th agent be fixed and denoted bysij, and

    be the largest communication delay from all other agents to thei-th agent.

    To simplify the presentation, it is also assumed that all the agents of networked nonlinear multi-agents are fully connected via communication networks. This will also make the calculations of the output predictions of all the agents much easier. The most effective way of compensating for the communication delays is the predictive control strategy. In the case of the communication delays, following scheme (6), a HOFA predictive coordination scheme of the agents is proposed as follows:

    which is needed in (13). The stability and consensus of the closed-loop networked nonlinear multi-agent system using the HOFA predictive coordination method proposed in this section will be analysed in the next section.

    and

    IV. SIMULTANEOUS STABILITY AND CONSENSUS ANALYSIS OF CLOSED-LOOP MULTI-AGENT CONTROL SYSTEMS

    A networked multi-agent control system can achieve consensus, but it does not imply that the stability of the system is guaranteed, which is usually ignored by most researchers.For practical applications, both the consensus and stability of a networked multi-agent control system should simultaneously be analysed. Following Definition 1 in [15], a definition is introduced below.

    Definition 1:Networked multi-agent control system (1) with controller (12) achieves input-output stability and output consensus simultaneously if

    which are induced from (9) and (10), respectively. Similarly,the following results for (20) and (21) can recursively be derived:

    which is the same as (10) of the networked nonlinear multiagents without communication delays. So, the closed-loop systems for the two cases (one is with communication delays and the other is without communication delays) are exactly the same when the HOFA coordination scheme or HOFA predictive coordination method is employed.

    Equation (38) can compactly be expressed as

    Clearly, all the networked nonlinear agents achieve consensus. According to Definition 1, it can be concluded that the networked nonlinear multi-agents are of simultaneous stability and consensus using the HOFA predictive coordination method. Therefore, summarising the above gives the following theorem.

    Theorem 1:Networked nonlinear multi-agent (1) with the HOFA coordination controller (6)–(8) or HOFA predictive coordination controller (12)–(14) achieves simultaneous stability and consensus if and only if matrixHin (43) is Schur stable.

    Remark 1:The key advantage of the HOFA system approach is to remove the nonlinearities of a nonlinear system and transform it to a desired linear system through the controller design. When this approach is applied to design the controller of a networked nonlinear multi-agent system,Theorem 1 shows that the stability and consensus conditions of the closed-loop system are related only to both its transformed linear system and the linear part parameters of the controller.

    V. DESIGN OF THE AGENT CONTROLLER PARAMETERS

    There are many ways to design the parameters of the HOFA predictive coordination controllers of networked nonlinear multi-agents. This section presents two steps to determine those parameters.

    Clearly, the first step guarantees that the individual agents are stable and have the desired control performance when there is no coordination between the agents. The second step ensures that all the networked multi-agents coordinate with simultaneous stability and consensus.

    VI. AN EXAMPLE

    To illustrate the performance of the HOFA predictive coordination method for networked nonlinear multi-agents with communication delays proposed in this paper, an example is provided in this section. Three different order fullyactuated discrete nonlinear agents are considered as follows:l

    The communication graph of the networked three-agent system is assumed to be fully connected, as shown in Fig.1.

    Fig. 1. The communication graph.

    Following the two steps of designing the PI and coordinative parameters introduced in Section V, firstly, let the coordinative parameters be zeros and chooseq1=q2=q3=0in (8) to make the characteristic equation (49) of the individual agents become

    To assign the closed-loop poles of the three agents at 0.91±0.21j(Agent 1), 0.92±0.22j(Agent 2) and 0.93±0.23j(Agent 3), which provide good transient dynamical performance, using the pole assignment method leads to the following PI parameters:

    which are within the unit circle. So, according to Theorem 1,the closed-loop networked three-agent system is stable and all the three agents also achieve the output consensus.

    Let the reference inputr(t) be a given square wave with the period of 300 steps and amplitude between 1 and –1. Four cases are illustrated here to compare the performance of the different control strategies: no coordination, coordination without communication delays, coordination without compensating for communication delays, and coordination with compensating for communication delays.

    Fig. 2. The output responses of the three agents (Case 1).

    Fig. 3. The control inputs of the three agents (Case 1).

    Case 1:No coordination fori= 1, 2, 3. The output responses of the three agents shown in Fig. 4 illustrate that there exists not only the large steadystate error between the reference and the output of each agent but also the significant difference between three agent outputs.

    Fig. 4. The output responses of the three agents without the integrator(Case 1).

    Case 2:Coordination without delays

    This case assumes that there is no communication delay between networked three agents, i.e., the communication delayssij= 0, fori,j= 1, 2, 3,i≠j. Then, from (12) and (13),the controllers of the three agents are

    fori= 1, 2, 3. Using those controllers, the output responses and control inputs of the three agents are shown in Figs. 5 and 6. The simulation results demonstrate that all the outputs of the three agents are almost the same. So, the coordination of the three agents is achieved.

    Fig. 5. The output responses of the three agents (Case 2).

    Fig. 6. The control inputs of the three agents (Case 2).

    Case 3:Coordination without compensating for delays

    There usually exist communication delays between networked multi-agents. Here, it is assumed that the communication delays between the three agents are below:

    fori= 1, 2, 3. For this case, the output responses and control inputs of the networked three agents are shown in Figs. 7 and 8. The results indicate that all the three agents without compensating for the communication delays between the agents are unstable.

    Case 4:Coordination with compensating for delays

    Fig. 7. The output responses of the three agents (Case 3).

    Fig. 8. The control inputs of the three agents (Case 3).

    The active compensation strategy for delays is applied when there exist communication delays between networked three agents. The proposed HOFA predictive coordination controllers (12) and (13) of the agents for this case are fori= 1, 2, 3. Employing the above controllers, the output responses and control inputs of the three agents with communication delays given in Case 3 are shown in Figs. 9 and 10. The simulation results demonstrate that all the three agents achieve simultaneous stability and consensus, and the control performance is exactly the same as the one of Case 2.It also shows that the communication delays between the three agents are completely compensated by the HOFA predictive coordination method presented in Section III.

    Fig. 9. The output responses of the three agents (Case 4).

    Fig. 10. The control inputs of the three agents (Case 4).

    VII. CONCLUSIONS

    This paper has addressed the coordinative control problem of a class of networked nonlinear multi-agents. To compensate for communication delays, a HOFA predictive coordination method has been proposed to make the closedloop networked nonlinear multi-agent system achieve simultaneous stability and consensus. Compared with other existing coordination methods of networked nonlinear multiagents, the HOFA predictive coordination method is simple,active and universal. Also, it has two important advantages:firstly, the control performance of the closed-loop networked multi-agents is the same in the two cases: with communication delays and without communication delays; Secondly, the necessary and sufficient conditions derived for the simultaneous stability and consensus of networked nonlinear multi-agents are independent of communication delays. The parameters of the HOFA predictive coordination controller are designed in two steps. The simulation results illustrated in this paper have confirmed the above advantages. In fact, there still exist various challenges on the HOFA predictive coordination of networked nonlinear multi-agents. They include the internal nonlinear uncertainties (such as modelling error), external uncertainties (such as random disturbances), and time-varying communication constraints in most practical multi-agent systems. A possible way to overcome those challenges will be to combine the proposed method in this paper with other existing control methods, for example, robust control methods, adaptive control methods, disturbance rejection methods, networked control methods and so on. The proposed HOFA predictive coordination method still needs further research to deal with those challenging issues.

    成年人午夜在线观看视频| 999久久久国产精品视频| 纯流量卡能插随身wifi吗| 18禁动态无遮挡网站| 飞空精品影院首页| 国产在线一区二区三区精| 老熟女久久久| 天天影视国产精品| 亚洲欧美成人精品一区二区| 精品人妻熟女毛片av久久网站| 亚洲成色77777| 国产熟女欧美一区二区| 国产福利在线免费观看视频| 色94色欧美一区二区| 赤兔流量卡办理| 免费黄网站久久成人精品| 9热在线视频观看99| 国产一区二区 视频在线| 99热网站在线观看| 美女大奶头黄色视频| 久久鲁丝午夜福利片| 亚洲欧美色中文字幕在线| 国产乱来视频区| 久久精品国产综合久久久| 国产片内射在线| 午夜老司机福利片| 丝袜人妻中文字幕| 国产高清不卡午夜福利| av视频免费观看在线观看| 亚洲成人一二三区av| 最近手机中文字幕大全| 亚洲国产精品一区三区| 日日撸夜夜添| 大香蕉久久成人网| 国产福利在线免费观看视频| 成人黄色视频免费在线看| 日韩大片免费观看网站| 久久影院123| 欧美变态另类bdsm刘玥| 免费在线观看黄色视频的| 成年美女黄网站色视频大全免费| 老鸭窝网址在线观看| 最黄视频免费看| 精品一区二区免费观看| www.熟女人妻精品国产| 卡戴珊不雅视频在线播放| 国产精品嫩草影院av在线观看| 亚洲成人一二三区av| 欧美av亚洲av综合av国产av | 永久免费av网站大全| 国产精品一国产av| 成人国语在线视频| 两个人看的免费小视频| av国产久精品久网站免费入址| 狂野欧美激情性bbbbbb| 嫩草影视91久久| 日韩欧美一区视频在线观看| 亚洲中文av在线| 视频在线观看一区二区三区| 少妇人妻久久综合中文| 激情五月婷婷亚洲| 久久精品国产综合久久久| 亚洲三区欧美一区| 涩涩av久久男人的天堂| 亚洲欧美成人精品一区二区| 一级毛片黄色毛片免费观看视频| 国产极品天堂在线| 桃花免费在线播放| 青青草视频在线视频观看| 亚洲四区av| 悠悠久久av| 日韩精品免费视频一区二区三区| 国产在线免费精品| 亚洲七黄色美女视频| 一区在线观看完整版| 久久久国产一区二区| 久久韩国三级中文字幕| 国产精品免费视频内射| 亚洲国产精品国产精品| 久久亚洲国产成人精品v| 51午夜福利影视在线观看| 制服诱惑二区| 熟女少妇亚洲综合色aaa.| 久久国产亚洲av麻豆专区| 最近2019中文字幕mv第一页| 乱人伦中国视频| 欧美激情 高清一区二区三区| 黄频高清免费视频| 亚洲一卡2卡3卡4卡5卡精品中文| 中文精品一卡2卡3卡4更新| 各种免费的搞黄视频| 亚洲伊人久久精品综合| av福利片在线| 91aial.com中文字幕在线观看| 永久免费av网站大全| 国产av码专区亚洲av| 九草在线视频观看| 久久亚洲国产成人精品v| 秋霞伦理黄片| 波多野结衣av一区二区av| 十八禁高潮呻吟视频| 亚洲国产成人一精品久久久| 日韩一区二区三区影片| 亚洲精品成人av观看孕妇| 亚洲国产精品成人久久小说| 亚洲欧美清纯卡通| 精品久久久精品久久久| 久久精品国产综合久久久| 男人爽女人下面视频在线观看| 十八禁高潮呻吟视频| 啦啦啦 在线观看视频| 亚洲一区二区三区欧美精品| 国产一区亚洲一区在线观看| 亚洲成人手机| 亚洲精品中文字幕在线视频| 一区二区日韩欧美中文字幕| 欧美xxⅹ黑人| bbb黄色大片| 黄色怎么调成土黄色| 国产精品99久久99久久久不卡 | 少妇人妻久久综合中文| xxxhd国产人妻xxx| 一二三四在线观看免费中文在| 亚洲成人免费av在线播放| 国产一区二区激情短视频 | 在线观看免费视频网站a站| 久久国产精品大桥未久av| 国产精品一国产av| 欧美精品av麻豆av| 在现免费观看毛片| 极品少妇高潮喷水抽搐| 黄色视频不卡| 最新的欧美精品一区二区| 2018国产大陆天天弄谢| 精品久久久精品久久久| 中文字幕制服av| 国产精品麻豆人妻色哟哟久久| 黄色一级大片看看| 久久性视频一级片| 多毛熟女@视频| 国产片特级美女逼逼视频| 涩涩av久久男人的天堂| 夫妻性生交免费视频一级片| 99精品久久久久人妻精品| 中文字幕最新亚洲高清| 丝袜脚勾引网站| 国产精品麻豆人妻色哟哟久久| 成人亚洲欧美一区二区av| 少妇被粗大猛烈的视频| 久久久久久久久免费视频了| 秋霞在线观看毛片| 国产精品香港三级国产av潘金莲 | 免费女性裸体啪啪无遮挡网站| 久久这里只有精品19| 亚洲精品久久午夜乱码| 建设人人有责人人尽责人人享有的| 两个人免费观看高清视频| 亚洲av欧美aⅴ国产| 国产一区亚洲一区在线观看| 一级毛片我不卡| 嫩草影视91久久| 大香蕉久久网| 婷婷色综合大香蕉| 天美传媒精品一区二区| 天堂俺去俺来也www色官网| 国产午夜精品一二区理论片| 亚洲精品aⅴ在线观看| 777米奇影视久久| 日韩免费高清中文字幕av| 丝瓜视频免费看黄片| 国产精品一区二区在线观看99| 精品国产乱码久久久久久小说| 青青草视频在线视频观看| 激情视频va一区二区三区| 黄片小视频在线播放| 免费人妻精品一区二区三区视频| 国产片内射在线| 麻豆乱淫一区二区| 国产午夜精品一二区理论片| 色精品久久人妻99蜜桃| 多毛熟女@视频| 一二三四在线观看免费中文在| 欧美黑人精品巨大| 伊人亚洲综合成人网| 黑人猛操日本美女一级片| a级毛片黄视频| 亚洲国产看品久久| 51午夜福利影视在线观看| 精品久久蜜臀av无| 国产精品熟女久久久久浪| tube8黄色片| 亚洲欧美一区二区三区黑人| 亚洲精品乱久久久久久| av不卡在线播放| 日韩 欧美 亚洲 中文字幕| 中文天堂在线官网| 男女国产视频网站| 亚洲欧美日韩另类电影网站| 两个人免费观看高清视频| 亚洲激情五月婷婷啪啪| 搡老乐熟女国产| 亚洲精品第二区| 国产精品国产av在线观看| 亚洲精品日韩在线中文字幕| www.熟女人妻精品国产| 秋霞在线观看毛片| 宅男免费午夜| 青草久久国产| 91老司机精品| 黄色 视频免费看| 日本黄色日本黄色录像| av福利片在线| 丝袜美足系列| 精品亚洲乱码少妇综合久久| 叶爱在线成人免费视频播放| 最新在线观看一区二区三区 | 精品少妇内射三级| 亚洲精品一区蜜桃| 国产av精品麻豆| 国产精品亚洲av一区麻豆 | 老鸭窝网址在线观看| 国产人伦9x9x在线观看| 另类精品久久| 久久久国产精品麻豆| 女人精品久久久久毛片| av不卡在线播放| 秋霞伦理黄片| 亚洲一区二区三区欧美精品| 久久热在线av| 欧美成人精品欧美一级黄| 看十八女毛片水多多多| 桃花免费在线播放| 99久国产av精品国产电影| 秋霞伦理黄片| 欧美亚洲 丝袜 人妻 在线| 国产成人av激情在线播放| 中文字幕亚洲精品专区| 国产成人精品在线电影| 一本—道久久a久久精品蜜桃钙片| 在线 av 中文字幕| 午夜福利乱码中文字幕| 十八禁人妻一区二区| 日本av手机在线免费观看| www.自偷自拍.com| 一级毛片黄色毛片免费观看视频| 亚洲精品国产一区二区精华液| 狂野欧美激情性bbbbbb| 欧美黄色片欧美黄色片| 亚洲一卡2卡3卡4卡5卡精品中文| 精品国产国语对白av| 天天躁狠狠躁夜夜躁狠狠躁| 日韩一本色道免费dvd| 青青草视频在线视频观看| 伊人久久大香线蕉亚洲五| 99精国产麻豆久久婷婷| 成人三级做爰电影| 国产精品一二三区在线看| 黄色一级大片看看| 99热网站在线观看| 国产片特级美女逼逼视频| 宅男免费午夜| 国产极品粉嫩免费观看在线| 亚洲综合精品二区| 男女无遮挡免费网站观看| 久久天躁狠狠躁夜夜2o2o | www日本在线高清视频| 午夜免费观看性视频| 久久性视频一级片| 男男h啪啪无遮挡| 亚洲欧美色中文字幕在线| 天天躁夜夜躁狠狠久久av| 国产一区二区 视频在线| 久久人人97超碰香蕉20202| 欧美激情高清一区二区三区 | 亚洲精品一二三| 欧美日韩一级在线毛片| 亚洲综合精品二区| 另类亚洲欧美激情| 99热国产这里只有精品6| 咕卡用的链子| 日韩欧美一区视频在线观看| 如日韩欧美国产精品一区二区三区| 亚洲国产欧美网| 精品视频人人做人人爽| 91国产中文字幕| 99九九在线精品视频| h视频一区二区三区| 欧美精品一区二区免费开放| 在线观看免费高清a一片| 中国三级夫妇交换| 久久久久精品性色| 午夜福利,免费看| 少妇人妻久久综合中文| 九色亚洲精品在线播放| 亚洲国产日韩一区二区| av片东京热男人的天堂| 国产片特级美女逼逼视频| 欧美黑人欧美精品刺激| 极品人妻少妇av视频| 久久久久精品性色| 欧美日本中文国产一区发布| 中国三级夫妇交换| 一级黄片播放器| 午夜福利免费观看在线| 熟女少妇亚洲综合色aaa.| 超碰97精品在线观看| 国产男女超爽视频在线观看| 日韩av免费高清视频| 啦啦啦啦在线视频资源| 国产av精品麻豆| 久久ye,这里只有精品| 天天躁夜夜躁狠狠躁躁| 久久精品国产亚洲av高清一级| 在线观看国产h片| 亚洲美女搞黄在线观看| 欧美在线一区亚洲| 亚洲色图综合在线观看| 男人添女人高潮全过程视频| 日本色播在线视频| 女人爽到高潮嗷嗷叫在线视频| 少妇被粗大的猛进出69影院| 亚洲欧洲国产日韩| 午夜激情av网站| 国产精品.久久久| 美女扒开内裤让男人捅视频| 18禁动态无遮挡网站| 男的添女的下面高潮视频| 高清不卡的av网站| 一区福利在线观看| 亚洲欧美成人综合另类久久久| 亚洲欧美中文字幕日韩二区| 19禁男女啪啪无遮挡网站| 国产亚洲欧美精品永久| 丝袜在线中文字幕| 久久99一区二区三区| 我的亚洲天堂| 日本欧美视频一区| 午夜av观看不卡| 夜夜骑夜夜射夜夜干| 欧美黄色片欧美黄色片| 中国三级夫妇交换| 久久久久久免费高清国产稀缺| 你懂的网址亚洲精品在线观看| 国产亚洲最大av| 久久久久久人妻| 1024视频免费在线观看| 久久精品国产综合久久久| 尾随美女入室| xxx大片免费视频| 如何舔出高潮| 欧美精品一区二区大全| 久久精品久久精品一区二区三区| 日韩 欧美 亚洲 中文字幕| 少妇被粗大猛烈的视频| 丝袜脚勾引网站| 亚洲av电影在线进入| 成人漫画全彩无遮挡| av在线app专区| 欧美精品一区二区免费开放| 在线 av 中文字幕| 亚洲av日韩精品久久久久久密 | 一级毛片 在线播放| 麻豆精品久久久久久蜜桃| 亚洲成人av在线免费| 久久综合国产亚洲精品| 日本欧美视频一区| 99精品久久久久人妻精品| 亚洲欧美精品综合一区二区三区| 国产高清不卡午夜福利| 久久久久久久久免费视频了| 男人添女人高潮全过程视频| 亚洲欧美成人综合另类久久久| 91老司机精品| 成年动漫av网址| 国产一区二区在线观看av| 黄网站色视频无遮挡免费观看| 久久人妻熟女aⅴ| 国产1区2区3区精品| 秋霞伦理黄片| 亚洲免费av在线视频| 欧美 日韩 精品 国产| 日韩av不卡免费在线播放| 国产免费一区二区三区四区乱码| 一本一本久久a久久精品综合妖精| 精品久久蜜臀av无| 成年av动漫网址| 又大又爽又粗| 最近手机中文字幕大全| 在线天堂中文资源库| 久久久久精品国产欧美久久久 | 视频在线观看一区二区三区| 夜夜骑夜夜射夜夜干| 国产在线视频一区二区| 国产亚洲欧美精品永久| 日日啪夜夜爽| 亚洲熟女精品中文字幕| 亚洲欧美中文字幕日韩二区| 欧美日韩综合久久久久久| 久久青草综合色| 热99久久久久精品小说推荐| 亚洲国产欧美在线一区| 韩国精品一区二区三区| 欧美精品一区二区免费开放| 国产精品99久久99久久久不卡 | 五月天丁香电影| 免费高清在线观看日韩| 啦啦啦中文免费视频观看日本| 赤兔流量卡办理| 一本—道久久a久久精品蜜桃钙片| 狠狠精品人妻久久久久久综合| 日韩一本色道免费dvd| 国语对白做爰xxxⅹ性视频网站| 99re6热这里在线精品视频| av一本久久久久| 精品亚洲成a人片在线观看| 欧美日韩福利视频一区二区| 激情视频va一区二区三区| 伊人亚洲综合成人网| av电影中文网址| 久久久国产精品麻豆| 日本av手机在线免费观看| 一区二区日韩欧美中文字幕| 爱豆传媒免费全集在线观看| 韩国精品一区二区三区| 成人手机av| av不卡在线播放| 国产成人精品在线电影| 久久99热这里只频精品6学生| 久久av网站| 男女高潮啪啪啪动态图| 日本91视频免费播放| 久久精品久久久久久噜噜老黄| 亚洲av综合色区一区| 日韩大码丰满熟妇| 777久久人妻少妇嫩草av网站| videosex国产| 久久热在线av| 亚洲人成网站在线观看播放| 日韩大片免费观看网站| 九九爱精品视频在线观看| 91国产中文字幕| 日韩一区二区三区影片| 国产精品 国内视频| 五月天丁香电影| 欧美日韩一区二区视频在线观看视频在线| 在线观看国产h片| 啦啦啦视频在线资源免费观看| 深夜精品福利| 成人18禁高潮啪啪吃奶动态图| 国产av一区二区精品久久| 成人国产av品久久久| 久久精品久久久久久久性| 日韩av不卡免费在线播放| 国产精品久久久久久精品电影小说| 90打野战视频偷拍视频| 亚洲,一卡二卡三卡| 国产成人一区二区在线| 欧美精品av麻豆av| 亚洲人成网站在线观看播放| 国产男人的电影天堂91| 日日啪夜夜爽| 人人妻人人澡人人看| 亚洲精品成人av观看孕妇| 精品国产露脸久久av麻豆| 久久人人爽av亚洲精品天堂| 国产不卡av网站在线观看| 精品午夜福利在线看| 女人高潮潮喷娇喘18禁视频| 在线观看免费日韩欧美大片| 韩国av在线不卡| 国产伦人伦偷精品视频| 午夜福利视频精品| 黄色视频不卡| 天美传媒精品一区二区| 91精品三级在线观看| 激情五月婷婷亚洲| 亚洲精品久久成人aⅴ小说| 美女扒开内裤让男人捅视频| 欧美精品高潮呻吟av久久| 国产麻豆69| 十八禁高潮呻吟视频| 99久久精品国产亚洲精品| 国产乱人偷精品视频| 性少妇av在线| 人人妻,人人澡人人爽秒播 | 亚洲人成电影观看| 亚洲精品第二区| 18在线观看网站| 黄网站色视频无遮挡免费观看| 只有这里有精品99| 韩国av在线不卡| 国产精品偷伦视频观看了| 久久久久久免费高清国产稀缺| 国产精品成人在线| 秋霞在线观看毛片| 汤姆久久久久久久影院中文字幕| 国产亚洲av高清不卡| 视频在线观看一区二区三区| 麻豆乱淫一区二区| 在线观看免费日韩欧美大片| 另类精品久久| 婷婷色综合大香蕉| 成年av动漫网址| 极品人妻少妇av视频| 国产亚洲av片在线观看秒播厂| 午夜福利网站1000一区二区三区| 国产 精品1| 亚洲av国产av综合av卡| 亚洲三区欧美一区| 久久99精品国语久久久| 性色av一级| 一区在线观看完整版| 久久久久久久国产电影| av免费观看日本| 18禁观看日本| 性少妇av在线| 亚洲第一av免费看| 亚洲精品久久久久久婷婷小说| 亚洲精品成人av观看孕妇| 国产精品成人在线| 欧美成人精品欧美一级黄| 国产极品粉嫩免费观看在线| 人人妻,人人澡人人爽秒播 | 日韩不卡一区二区三区视频在线| www.自偷自拍.com| 极品人妻少妇av视频| 国产精品麻豆人妻色哟哟久久| 高清av免费在线| 午夜免费男女啪啪视频观看| 男女国产视频网站| a级片在线免费高清观看视频| 欧美日韩视频高清一区二区三区二| 国产成人一区二区在线| 国产av国产精品国产| 国产一区二区激情短视频 | 色婷婷av一区二区三区视频| 亚洲精品一区蜜桃| 国产成人欧美在线观看 | 老熟女久久久| 国产成人欧美在线观看 | 在线观看人妻少妇| 狂野欧美激情性xxxx| avwww免费| 男女国产视频网站| 在线精品无人区一区二区三| 黄色毛片三级朝国网站| 老司机影院毛片| 超碰成人久久| 精品福利永久在线观看| 麻豆精品久久久久久蜜桃| 99香蕉大伊视频| 97在线人人人人妻| 啦啦啦在线观看免费高清www| 久久久欧美国产精品| 日韩成人av中文字幕在线观看| 久久久国产精品麻豆| 久久精品亚洲熟妇少妇任你| 1024视频免费在线观看| 国产精品蜜桃在线观看| 精品一区二区三区四区五区乱码 | 美女视频免费永久观看网站| 免费在线观看黄色视频的| 精品亚洲成国产av| 亚洲欧洲日产国产| 亚洲久久久国产精品| 男男h啪啪无遮挡| 国产免费现黄频在线看| 五月天丁香电影| 国产黄色免费在线视频| 中文字幕制服av| 色吧在线观看| 免费少妇av软件| 青春草亚洲视频在线观看| 女人久久www免费人成看片| 亚洲自偷自拍图片 自拍| 久久免费观看电影| 性色av一级| 日韩一本色道免费dvd| 亚洲国产欧美日韩在线播放| 操美女的视频在线观看| 一区二区日韩欧美中文字幕| 校园人妻丝袜中文字幕| 久久国产精品大桥未久av| 男人爽女人下面视频在线观看| 亚洲精品,欧美精品| av线在线观看网站| 美女扒开内裤让男人捅视频| 久久av网站| 精品国产国语对白av| 日韩人妻精品一区2区三区| 欧美 日韩 精品 国产| 亚洲成国产人片在线观看| 免费看不卡的av| 男男h啪啪无遮挡| 亚洲精品aⅴ在线观看| 欧美亚洲日本最大视频资源| 国产成人免费观看mmmm| 国产精品国产av在线观看| 少妇猛男粗大的猛烈进出视频| 久久人妻熟女aⅴ| 久久久精品区二区三区| av片东京热男人的天堂| av视频免费观看在线观看| 久久97久久精品| 国产福利在线免费观看视频| 999精品在线视频| 中文字幕色久视频| 午夜福利,免费看| 一区二区三区乱码不卡18| 亚洲精品视频女| 久久久久久人妻| 男女边吃奶边做爰视频| 精品酒店卫生间| 亚洲欧美中文字幕日韩二区| 如日韩欧美国产精品一区二区三区|