• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Coordination of Networked Nonlinear Multi-Agents Using a High-Order Fully Actuated Predictive Control Strategy

    2022-04-15 04:19:14GuoPingLiu
    IEEE/CAA Journal of Automatica Sinica 2022年4期

    Guo-Ping Liu,

    Abstract—This paper is concerned with the coordinative control problem of networked nonlinear multi-agents (NNM)with communication delays. A high-order fully actuated (HOFA)model is introduced to describe the nonlinear multi-agents. Based on this model, a HOFA predictive coordination method is proposed to compensate for the communication delays actively and achieve simultaneous stability and consensus. This method largely simplifies the design of networked nonlinear multi-agents and makes the control performance be same for networked nonlinear multi-agents with and without communication delays.The analysis on the closed-loop systems derives the simultaneous stability and consensus criteria of networked nonlinear multiagents using the HOFA predictive coordination method. With the presented way of designing HOFA predictive coordination controllers, a simulated example demonstrates the advantages of the proposed method.

    I. INTRODUCTION

    THE rapid development of network technology accelerates the development of networked multi-agent systems, such as the Internet of things and industrial Internet systems. A networked multi-agent system is a multi-dimensional complex system integrating communication networks and physical environments. Through the integration of computing,communication and control technologies, it can realize the real-time perception, dynamic control and information service of large-scale engineering systems, make the systems more efficient and coordinative, and have important and wide application prospects [1]–[3]. Networked multi-agent systems have widely been used in the fields of energy, manufacturing,aerospace, telemedicine, etc. Due to the introduction of networks, there are inevitably communication constraints,such as delays, loss, disorder and attacks on data, which bring great challenges to the design and analysis of networked multi-agent control systems [1].

    Much research work has been carried out on the influence of communication constraints (particularly, network delays)on the control performance (e.g., consensus) of networked multi-agent systems [4], [5]. The main methods of dealing with the consensus problem of networked multi-agent systems are the time-delay system method, switching system method,Markov jump system method, stochastic system method,event-triggered control method, etc. The time-delay system method transforms the networked multi-agent control system into a system with variable time-delays so that the system can tolerate a maximum time-delay upper bound and maintain a certain expected system performance [6]. The switching system method describes the networked multi-agent system under bounded uncertain data delay and packet loss effects as a discrete-time system with arbitrary switching so that the existing switching control system theory can be applied directly [7]. The Markov jump system method focuses on the Markov chain characteristics of network delays, and constructs the networked multi-agent system as a Markov jump system for consensus analysis [8]. The stochastic system method provides a powerful tool for analysing the system consensus of networked multi-agent systems with random communication constraints [9]. The event-triggered control method can greatly improve the resource utilization of the networked multi-agent system, but the control performance changes little [10]–[12]. Generally speaking, most control methods of networked multi-agent systems use a passive way to suppress communication constraints, which makes the consensus conditions of the system relatively conservative.

    For the communication constraints in networked multi-agent systems, the predictive control strategy has incomparable advantages over other control methods. Considering how to compensate for communication constraints actively and taking advantage of the characteristics that a network can transmit data in packets, the networked predictive control method has been proposed [13]. This method breaks through the traditional control mode of point-to-point single data transmission, and adopts the idea of predictive control to compensate actively for the communication constraints in a networked multi-agent system so that its control performance is almost the same as that of the system without networks.Following the networked predictive control strategy, a networked multi-agent predictive control method has been proposed to compensate for network delays of multi-agents with a directed topology and non-uniform agents via a distributed dynamic output feedback protocol [14]. To solve the simultaneous stability and consensus problem of networked multi-agent systems with communication delays and data loss, further design and analysis of the networked multi-agent predictive control systems has provided the necessary and sufficient conditions of achieving both output consensus and input–output stability [15]. Then, a cloud predictive control scheme for networked multi-agent systems has been presented to reduce the expenses for establishment,operation, and maintenance of the systems tremendously based on its computational efficiency and speed via cloud computing [16]. Although a great number of research achievements have been made in networked multi-agent predictive control [17], [18], most of them focus on linear multi-agents. How to deal with nonlinearities of multi-agents needs further research.

    Nowadays, most of nonlinear control systems are generally described in the form of a first-order state space model. Based on this model, several nonlinear control methods have been applied to networked nonlinear multi-agent systems, such as the feedback linearization method [19], the back-stepping method [20], the sliding mode method [21], [22], the Lyapunov method [23]. But, there are still various restrictions on those methods. For example, the feedback linearization method needs strong Lie differentiable conditions, the backstepping method is employed only for a special class of systems with a triangular model form, and the Lyapunov method needs to find appropriate Lyapunov functions which are not unique. Generally, it is hardly to realize the global stabilisation and consensus of networked nonlinear multiagent control systems even in the case of no communication constraint.

    According to the high-order fully actuated (HOFA) system approach [24], most of physical nonlinear systems can be expressed as a HOFA model, which is another system description form and has more universality, simplicity and flexibility for nonlinear system design and analysis. Based on the HOFA model, this paper studies the coordinative control problem of networked nonlinear multi-agents. Two cases are studied: One is the multi-agents without communication delays and the other is the multi-agents with communication delays. For the first case, a HOFA coordination scheme is presented. For the second case, a HOFA predictive coordination method is proposed to compensate for communication delays actively. Both the HOFA coordination scheme and HOFA predictive coordination method achieve simultaneous stability and consensus of networked nonlinear multi-agents.

    II. COORDINATED CONTROL OF MULTI-AGENTS WITHOUT COMMUNICATION CONSTRAINTS

    There are various mathematical models to describe physical control systems, such as the first order state space model and the transfer function model. Following the HOFA system approach [24], then-th order fully actuated discrete-time model is utilised to represent nonlinear multi-agents as follows:

    Actually, the combination of (9) and (10) forms the closedloop networked nonlinear multi-agent system without communication constraints using the HOFA coordination scheme.

    III. COORDINATED CONTROL OF MULTI-AGENTS WITH COMMUNICATION DELAYS

    In networked multi-agents, there usually exist various communication constraints, for example, delays, data loss,attacks, quantisation, synchronisation, etc. For the sake of simplicity, only the communication delays are considered here. Let the communication delay from thej-th agent to thei-th agent be fixed and denoted bysij, and

    be the largest communication delay from all other agents to thei-th agent.

    To simplify the presentation, it is also assumed that all the agents of networked nonlinear multi-agents are fully connected via communication networks. This will also make the calculations of the output predictions of all the agents much easier. The most effective way of compensating for the communication delays is the predictive control strategy. In the case of the communication delays, following scheme (6), a HOFA predictive coordination scheme of the agents is proposed as follows:

    which is needed in (13). The stability and consensus of the closed-loop networked nonlinear multi-agent system using the HOFA predictive coordination method proposed in this section will be analysed in the next section.

    and

    IV. SIMULTANEOUS STABILITY AND CONSENSUS ANALYSIS OF CLOSED-LOOP MULTI-AGENT CONTROL SYSTEMS

    A networked multi-agent control system can achieve consensus, but it does not imply that the stability of the system is guaranteed, which is usually ignored by most researchers.For practical applications, both the consensus and stability of a networked multi-agent control system should simultaneously be analysed. Following Definition 1 in [15], a definition is introduced below.

    Definition 1:Networked multi-agent control system (1) with controller (12) achieves input-output stability and output consensus simultaneously if

    which are induced from (9) and (10), respectively. Similarly,the following results for (20) and (21) can recursively be derived:

    which is the same as (10) of the networked nonlinear multiagents without communication delays. So, the closed-loop systems for the two cases (one is with communication delays and the other is without communication delays) are exactly the same when the HOFA coordination scheme or HOFA predictive coordination method is employed.

    Equation (38) can compactly be expressed as

    Clearly, all the networked nonlinear agents achieve consensus. According to Definition 1, it can be concluded that the networked nonlinear multi-agents are of simultaneous stability and consensus using the HOFA predictive coordination method. Therefore, summarising the above gives the following theorem.

    Theorem 1:Networked nonlinear multi-agent (1) with the HOFA coordination controller (6)–(8) or HOFA predictive coordination controller (12)–(14) achieves simultaneous stability and consensus if and only if matrixHin (43) is Schur stable.

    Remark 1:The key advantage of the HOFA system approach is to remove the nonlinearities of a nonlinear system and transform it to a desired linear system through the controller design. When this approach is applied to design the controller of a networked nonlinear multi-agent system,Theorem 1 shows that the stability and consensus conditions of the closed-loop system are related only to both its transformed linear system and the linear part parameters of the controller.

    V. DESIGN OF THE AGENT CONTROLLER PARAMETERS

    There are many ways to design the parameters of the HOFA predictive coordination controllers of networked nonlinear multi-agents. This section presents two steps to determine those parameters.

    Clearly, the first step guarantees that the individual agents are stable and have the desired control performance when there is no coordination between the agents. The second step ensures that all the networked multi-agents coordinate with simultaneous stability and consensus.

    VI. AN EXAMPLE

    To illustrate the performance of the HOFA predictive coordination method for networked nonlinear multi-agents with communication delays proposed in this paper, an example is provided in this section. Three different order fullyactuated discrete nonlinear agents are considered as follows:l

    The communication graph of the networked three-agent system is assumed to be fully connected, as shown in Fig.1.

    Fig. 1. The communication graph.

    Following the two steps of designing the PI and coordinative parameters introduced in Section V, firstly, let the coordinative parameters be zeros and chooseq1=q2=q3=0in (8) to make the characteristic equation (49) of the individual agents become

    To assign the closed-loop poles of the three agents at 0.91±0.21j(Agent 1), 0.92±0.22j(Agent 2) and 0.93±0.23j(Agent 3), which provide good transient dynamical performance, using the pole assignment method leads to the following PI parameters:

    which are within the unit circle. So, according to Theorem 1,the closed-loop networked three-agent system is stable and all the three agents also achieve the output consensus.

    Let the reference inputr(t) be a given square wave with the period of 300 steps and amplitude between 1 and –1. Four cases are illustrated here to compare the performance of the different control strategies: no coordination, coordination without communication delays, coordination without compensating for communication delays, and coordination with compensating for communication delays.

    Fig. 2. The output responses of the three agents (Case 1).

    Fig. 3. The control inputs of the three agents (Case 1).

    Case 1:No coordination fori= 1, 2, 3. The output responses of the three agents shown in Fig. 4 illustrate that there exists not only the large steadystate error between the reference and the output of each agent but also the significant difference between three agent outputs.

    Fig. 4. The output responses of the three agents without the integrator(Case 1).

    Case 2:Coordination without delays

    This case assumes that there is no communication delay between networked three agents, i.e., the communication delayssij= 0, fori,j= 1, 2, 3,i≠j. Then, from (12) and (13),the controllers of the three agents are

    fori= 1, 2, 3. Using those controllers, the output responses and control inputs of the three agents are shown in Figs. 5 and 6. The simulation results demonstrate that all the outputs of the three agents are almost the same. So, the coordination of the three agents is achieved.

    Fig. 5. The output responses of the three agents (Case 2).

    Fig. 6. The control inputs of the three agents (Case 2).

    Case 3:Coordination without compensating for delays

    There usually exist communication delays between networked multi-agents. Here, it is assumed that the communication delays between the three agents are below:

    fori= 1, 2, 3. For this case, the output responses and control inputs of the networked three agents are shown in Figs. 7 and 8. The results indicate that all the three agents without compensating for the communication delays between the agents are unstable.

    Case 4:Coordination with compensating for delays

    Fig. 7. The output responses of the three agents (Case 3).

    Fig. 8. The control inputs of the three agents (Case 3).

    The active compensation strategy for delays is applied when there exist communication delays between networked three agents. The proposed HOFA predictive coordination controllers (12) and (13) of the agents for this case are fori= 1, 2, 3. Employing the above controllers, the output responses and control inputs of the three agents with communication delays given in Case 3 are shown in Figs. 9 and 10. The simulation results demonstrate that all the three agents achieve simultaneous stability and consensus, and the control performance is exactly the same as the one of Case 2.It also shows that the communication delays between the three agents are completely compensated by the HOFA predictive coordination method presented in Section III.

    Fig. 9. The output responses of the three agents (Case 4).

    Fig. 10. The control inputs of the three agents (Case 4).

    VII. CONCLUSIONS

    This paper has addressed the coordinative control problem of a class of networked nonlinear multi-agents. To compensate for communication delays, a HOFA predictive coordination method has been proposed to make the closedloop networked nonlinear multi-agent system achieve simultaneous stability and consensus. Compared with other existing coordination methods of networked nonlinear multiagents, the HOFA predictive coordination method is simple,active and universal. Also, it has two important advantages:firstly, the control performance of the closed-loop networked multi-agents is the same in the two cases: with communication delays and without communication delays; Secondly, the necessary and sufficient conditions derived for the simultaneous stability and consensus of networked nonlinear multi-agents are independent of communication delays. The parameters of the HOFA predictive coordination controller are designed in two steps. The simulation results illustrated in this paper have confirmed the above advantages. In fact, there still exist various challenges on the HOFA predictive coordination of networked nonlinear multi-agents. They include the internal nonlinear uncertainties (such as modelling error), external uncertainties (such as random disturbances), and time-varying communication constraints in most practical multi-agent systems. A possible way to overcome those challenges will be to combine the proposed method in this paper with other existing control methods, for example, robust control methods, adaptive control methods, disturbance rejection methods, networked control methods and so on. The proposed HOFA predictive coordination method still needs further research to deal with those challenging issues.

    又爽又黄a免费视频| 少妇人妻精品综合一区二区| 一区在线观看完整版| 99re6热这里在线精品视频| 亚洲丝袜综合中文字幕| 99热这里只有是精品50| 国产精品伦人一区二区| 性色av一级| 狂野欧美激情性xxxx在线观看| 久久精品久久久久久噜噜老黄| 国产av码专区亚洲av| 亚洲av中文字字幕乱码综合| 妹子高潮喷水视频| 日韩免费高清中文字幕av| 青春草亚洲视频在线观看| 久久久久精品久久久久真实原创| 日本免费在线观看一区| 日韩成人伦理影院| 国产乱人偷精品视频| 男人爽女人下面视频在线观看| 舔av片在线| 亚洲av.av天堂| 国内少妇人妻偷人精品xxx网站| 99国产精品免费福利视频| 精品亚洲成国产av| 中文乱码字字幕精品一区二区三区| 成人18禁高潮啪啪吃奶动态图 | 看十八女毛片水多多多| 亚洲熟女精品中文字幕| 久久久精品免费免费高清| 亚洲成人一二三区av| 春色校园在线视频观看| 免费大片18禁| 国产一区亚洲一区在线观看| 日本色播在线视频| 男女边摸边吃奶| 只有这里有精品99| 日韩欧美一区视频在线观看 | 亚洲欧美一区二区三区国产| 日本一二三区视频观看| 亚洲欧美日韩卡通动漫| 色视频在线一区二区三区| 国产黄片视频在线免费观看| 狂野欧美激情性xxxx在线观看| 少妇的逼好多水| 色吧在线观看| 97超视频在线观看视频| 国产精品福利在线免费观看| 成人黄色视频免费在线看| 国产午夜精品久久久久久一区二区三区| 只有这里有精品99| av国产免费在线观看| 汤姆久久久久久久影院中文字幕| 伦精品一区二区三区| 亚洲欧美成人精品一区二区| 人人妻人人看人人澡| av播播在线观看一区| 日本vs欧美在线观看视频 | 亚洲,欧美,日韩| tube8黄色片| 国产日韩欧美亚洲二区| 免费黄频网站在线观看国产| av黄色大香蕉| 国产色爽女视频免费观看| 51国产日韩欧美| a 毛片基地| 国产淫片久久久久久久久| 亚洲婷婷狠狠爱综合网| 一级二级三级毛片免费看| 成人影院久久| 成人18禁高潮啪啪吃奶动态图 | 色视频www国产| 在线免费观看不下载黄p国产| 亚洲国产最新在线播放| 在线观看免费高清a一片| 丰满少妇做爰视频| 亚洲国产最新在线播放| 欧美成人a在线观看| 天堂8中文在线网| 国产精品免费大片| 高清日韩中文字幕在线| 国产亚洲午夜精品一区二区久久| 亚洲av.av天堂| 国产亚洲午夜精品一区二区久久| 国产高清国产精品国产三级 | 成人综合一区亚洲| 亚洲国产日韩一区二区| 亚洲成人av在线免费| 亚洲精品自拍成人| 亚洲国产欧美在线一区| 美女福利国产在线 | 国产欧美亚洲国产| 欧美精品人与动牲交sv欧美| 少妇被粗大猛烈的视频| 亚洲av成人精品一二三区| 26uuu在线亚洲综合色| 一本色道久久久久久精品综合| 色视频在线一区二区三区| 日本欧美国产在线视频| 欧美xxxx性猛交bbbb| 婷婷色av中文字幕| 成人综合一区亚洲| 九九在线视频观看精品| 精品久久久久久久久亚洲| 国产精品爽爽va在线观看网站| 简卡轻食公司| av不卡在线播放| 亚洲精品456在线播放app| 亚洲av不卡在线观看| 国产精品久久久久久av不卡| av在线播放精品| 久久久久国产精品人妻一区二区| 亚洲图色成人| 亚洲在久久综合| 久久久亚洲精品成人影院| av免费在线看不卡| 91在线精品国自产拍蜜月| 亚洲精品第二区| 精品一区二区三卡| 久久女婷五月综合色啪小说| 亚洲美女黄色视频免费看| 日本猛色少妇xxxxx猛交久久| 欧美日韩国产mv在线观看视频 | 成人亚洲欧美一区二区av| 精品人妻视频免费看| 亚洲国产欧美人成| 五月天丁香电影| 亚洲av综合色区一区| 久久99热这里只频精品6学生| 王馨瑶露胸无遮挡在线观看| 99热全是精品| 免费看日本二区| 久久韩国三级中文字幕| 少妇猛男粗大的猛烈进出视频| 天美传媒精品一区二区| 女性被躁到高潮视频| 亚洲国产精品国产精品| .国产精品久久| 草草在线视频免费看| 精品少妇久久久久久888优播| 久久精品久久久久久久性| 麻豆成人av视频| 免费观看a级毛片全部| 国产黄片视频在线免费观看| 中文乱码字字幕精品一区二区三区| 精品亚洲成国产av| 美女脱内裤让男人舔精品视频| 免费播放大片免费观看视频在线观看| 青青草视频在线视频观看| 人妻少妇偷人精品九色| 精品视频人人做人人爽| 肉色欧美久久久久久久蜜桃| 观看av在线不卡| 国产精品无大码| 久久久久久久久久人人人人人人| 久久久午夜欧美精品| 日韩制服骚丝袜av| 成人特级av手机在线观看| 午夜福利网站1000一区二区三区| 日韩伦理黄色片| 嫩草影院入口| 国产 一区 欧美 日韩| 国产精品一区二区在线观看99| 99热网站在线观看| 亚洲欧美清纯卡通| 亚洲第一av免费看| 人妻夜夜爽99麻豆av| 久久久久久久久大av| 丰满少妇做爰视频| 在线观看一区二区三区激情| 欧美精品人与动牲交sv欧美| 777米奇影视久久| videossex国产| 如何舔出高潮| 成人高潮视频无遮挡免费网站| 五月伊人婷婷丁香| 91久久精品国产一区二区成人| 天堂俺去俺来也www色官网| 久久亚洲国产成人精品v| 亚洲熟女精品中文字幕| 欧美zozozo另类| 直男gayav资源| 高清午夜精品一区二区三区| 久久久久视频综合| 下体分泌物呈黄色| 久久久欧美国产精品| 国产午夜精品久久久久久一区二区三区| 午夜免费鲁丝| 国产欧美日韩一区二区三区在线 | 免费观看性生交大片5| 国产91av在线免费观看| 老司机影院毛片| 最近最新中文字幕免费大全7| 五月天丁香电影| 日韩欧美一区视频在线观看 | 亚洲av成人精品一二三区| 18禁裸乳无遮挡免费网站照片| 少妇精品久久久久久久| 国产高潮美女av| 免费久久久久久久精品成人欧美视频 | 国产男人的电影天堂91| 好男人视频免费观看在线| 内地一区二区视频在线| 女人久久www免费人成看片| 精品国产三级普通话版| 六月丁香七月| 国产乱人偷精品视频| 欧美日韩综合久久久久久| 亚洲伊人久久精品综合| 国模一区二区三区四区视频| videos熟女内射| 永久网站在线| 日韩av免费高清视频| 国产成人aa在线观看| av视频免费观看在线观看| 久久精品人妻少妇| 成人影院久久| 中文字幕亚洲精品专区| 久久女婷五月综合色啪小说| 国产精品成人在线| 国产精品国产三级专区第一集| 午夜激情福利司机影院| 亚洲国产毛片av蜜桃av| 肉色欧美久久久久久久蜜桃| 国产真实伦视频高清在线观看| 久久久精品94久久精品| 亚洲精品成人av观看孕妇| 小蜜桃在线观看免费完整版高清| 久久av网站| 中国美白少妇内射xxxbb| 午夜福利高清视频| 丰满乱子伦码专区| 99热全是精品| 91精品一卡2卡3卡4卡| 最黄视频免费看| 亚洲欧美日韩卡通动漫| 久久精品国产亚洲av天美| 国产免费福利视频在线观看| 舔av片在线| 久久人人爽人人片av| 国产在线男女| 亚洲一区二区三区欧美精品| 亚洲av电影在线观看一区二区三区| 久久精品久久久久久久性| 久热这里只有精品99| 在线观看av片永久免费下载| 国产一区亚洲一区在线观看| 熟女人妻精品中文字幕| 欧美成人精品欧美一级黄| 人人妻人人看人人澡| 午夜福利网站1000一区二区三区| 一区二区av电影网| 一二三四中文在线观看免费高清| 午夜激情福利司机影院| 久久国产精品男人的天堂亚洲 | 国产av一区二区精品久久 | freevideosex欧美| 色吧在线观看| 18禁裸乳无遮挡免费网站照片| tube8黄色片| av网站免费在线观看视频| 精品久久久久久电影网| 99国产精品免费福利视频| www.色视频.com| 精品久久久精品久久久| 免费看不卡的av| 亚洲欧美精品专区久久| 久久国产亚洲av麻豆专区| 免费黄频网站在线观看国产| 亚洲精品亚洲一区二区| 少妇猛男粗大的猛烈进出视频| 伊人久久国产一区二区| 日韩国内少妇激情av| 99热网站在线观看| 国产精品一区www在线观看| 中国美白少妇内射xxxbb| 国产黄频视频在线观看| 一区二区三区四区激情视频| videos熟女内射| 亚洲一区二区三区欧美精品| 亚洲欧美日韩卡通动漫| 日本欧美视频一区| 欧美精品人与动牲交sv欧美| 多毛熟女@视频| 久久久久性生活片| 久久精品国产亚洲av涩爱| 3wmmmm亚洲av在线观看| 亚洲婷婷狠狠爱综合网| 精品亚洲成国产av| 寂寞人妻少妇视频99o| 色吧在线观看| 欧美xxxx黑人xx丫x性爽| 国产精品国产av在线观看| 美女主播在线视频| 日韩 亚洲 欧美在线| 99视频精品全部免费 在线| 亚洲国产精品一区三区| 18禁动态无遮挡网站| 国产熟女欧美一区二区| 各种免费的搞黄视频| 97精品久久久久久久久久精品| 亚洲,欧美,日韩| 一级毛片 在线播放| 亚洲人与动物交配视频| av专区在线播放| 精品亚洲成a人片在线观看 | 国产精品一及| 国精品久久久久久国模美| 人妻系列 视频| 国产成人午夜福利电影在线观看| 日本免费在线观看一区| 国产精品秋霞免费鲁丝片| videossex国产| 亚洲精品国产av蜜桃| 国产毛片在线视频| 男女啪啪激烈高潮av片| 国产一区亚洲一区在线观看| 好男人视频免费观看在线| 国产精品蜜桃在线观看| 尾随美女入室| 国内少妇人妻偷人精品xxx网站| 日韩大片免费观看网站| av国产久精品久网站免费入址| 狠狠精品人妻久久久久久综合| 欧美+日韩+精品| 2022亚洲国产成人精品| 精品久久国产蜜桃| 高清欧美精品videossex| 涩涩av久久男人的天堂| 国产白丝娇喘喷水9色精品| 久久久久精品久久久久真实原创| 一级毛片久久久久久久久女| 三级国产精品片| 日韩一区二区视频免费看| 欧美xxⅹ黑人| 丰满人妻一区二区三区视频av| 国产精品久久久久久av不卡| 美女视频免费永久观看网站| 日日摸夜夜添夜夜添av毛片| 国产永久视频网站| av在线播放精品| 成年av动漫网址| 你懂的网址亚洲精品在线观看| 我的女老师完整版在线观看| 亚洲欧美一区二区三区国产| 十八禁网站网址无遮挡 | 日本与韩国留学比较| 精品少妇久久久久久888优播| 丝袜喷水一区| 精品熟女少妇av免费看| 高清av免费在线| 99热全是精品| 岛国毛片在线播放| 一本—道久久a久久精品蜜桃钙片| 男人和女人高潮做爰伦理| av视频免费观看在线观看| 国产亚洲5aaaaa淫片| 久久6这里有精品| 亚洲不卡免费看| 精品国产露脸久久av麻豆| av又黄又爽大尺度在线免费看| 男人和女人高潮做爰伦理| 夜夜爽夜夜爽视频| av在线观看视频网站免费| 亚洲,一卡二卡三卡| 高清在线视频一区二区三区| av天堂中文字幕网| xxx大片免费视频| 国产精品99久久99久久久不卡 | 麻豆成人av视频| 日本色播在线视频| 美女内射精品一级片tv| tube8黄色片| 这个男人来自地球电影免费观看 | 日本av手机在线免费观看| 狂野欧美白嫩少妇大欣赏| 日日摸夜夜添夜夜添av毛片| 欧美日韩精品成人综合77777| 免费观看性生交大片5| 亚洲精品一区蜜桃| 国产精品国产三级专区第一集| 国产精品久久久久久av不卡| av视频免费观看在线观看| 亚洲国产av新网站| 国产精品国产三级国产专区5o| 久久国产精品大桥未久av | www.色视频.com| 亚洲av免费高清在线观看| 男女无遮挡免费网站观看| 亚洲av国产av综合av卡| 偷拍熟女少妇极品色| 丝袜喷水一区| 深夜a级毛片| 18禁裸乳无遮挡免费网站照片| 一级爰片在线观看| 午夜日本视频在线| 一二三四中文在线观看免费高清| 亚洲av在线观看美女高潮| 久久久久久九九精品二区国产| 高清不卡的av网站| 亚洲精华国产精华液的使用体验| 国产精品国产三级国产av玫瑰| 久久久久性生活片| 插逼视频在线观看| 激情 狠狠 欧美| av黄色大香蕉| 日韩av在线免费看完整版不卡| 国产成人a∨麻豆精品| 人人妻人人爽人人添夜夜欢视频 | 亚洲av国产av综合av卡| 亚洲欧美清纯卡通| 中国美白少妇内射xxxbb| 国产成人91sexporn| 少妇人妻精品综合一区二区| 女人久久www免费人成看片| 一本—道久久a久久精品蜜桃钙片| 亚洲国产精品成人久久小说| 日韩国内少妇激情av| 亚洲综合色惰| 狂野欧美白嫩少妇大欣赏| 尾随美女入室| 亚洲精品乱久久久久久| 直男gayav资源| 男女免费视频国产| 日本av手机在线免费观看| 成年女人在线观看亚洲视频| 国产精品秋霞免费鲁丝片| 天堂俺去俺来也www色官网| 三级国产精品欧美在线观看| 能在线免费看毛片的网站| 看免费成人av毛片| 久久久国产一区二区| 亚洲精品一区蜜桃| 国产一区二区三区av在线| 黄色视频在线播放观看不卡| 国产av码专区亚洲av| 久久 成人 亚洲| 欧美高清成人免费视频www| 18禁裸乳无遮挡动漫免费视频| 丝瓜视频免费看黄片| 少妇人妻一区二区三区视频| 亚洲人与动物交配视频| 成年美女黄网站色视频大全免费 | 亚洲av日韩在线播放| 欧美成人a在线观看| 欧美人与善性xxx| 日本猛色少妇xxxxx猛交久久| 97在线人人人人妻| 免费播放大片免费观看视频在线观看| 久久久久性生活片| 欧美精品人与动牲交sv欧美| 国产69精品久久久久777片| 久热久热在线精品观看| 国产有黄有色有爽视频| 色哟哟·www| 在线观看人妻少妇| 久久精品国产自在天天线| 国产亚洲一区二区精品| 免费观看在线日韩| 91精品国产国语对白视频| 97超碰精品成人国产| 亚洲精品国产色婷婷电影| 免费人成在线观看视频色| 日韩大片免费观看网站| 亚洲av综合色区一区| 日韩欧美 国产精品| 高清欧美精品videossex| 黄色配什么色好看| 久久久久人妻精品一区果冻| 亚洲av成人精品一区久久| 欧美精品一区二区免费开放| 人人妻人人添人人爽欧美一区卜 | 蜜桃在线观看..| 亚洲一级一片aⅴ在线观看| 狠狠精品人妻久久久久久综合| 国产精品无大码| 麻豆乱淫一区二区| 永久免费av网站大全| a级毛片免费高清观看在线播放| 熟妇人妻不卡中文字幕| 91午夜精品亚洲一区二区三区| 丝袜脚勾引网站| 插逼视频在线观看| 欧美成人一区二区免费高清观看| 看免费成人av毛片| 国产视频首页在线观看| videos熟女内射| 婷婷色综合大香蕉| 国产老妇伦熟女老妇高清| 国产av码专区亚洲av| 日韩欧美精品免费久久| av福利片在线观看| 大片免费播放器 马上看| 色综合色国产| 最近中文字幕高清免费大全6| 国产精品人妻久久久久久| 十分钟在线观看高清视频www | 美女内射精品一级片tv| 欧美变态另类bdsm刘玥| 丰满人妻一区二区三区视频av| 久久精品国产鲁丝片午夜精品| 搡女人真爽免费视频火全软件| 日韩一区二区三区影片| 一级毛片黄色毛片免费观看视频| 人人妻人人添人人爽欧美一区卜 | 男人舔奶头视频| 亚洲欧美一区二区三区国产| 永久免费av网站大全| 国产精品久久久久久精品电影小说 | 国产伦在线观看视频一区| 日产精品乱码卡一卡2卡三| 亚洲欧美日韩无卡精品| 美女国产视频在线观看| 国产精品久久久久久久久免| 亚洲欧美成人综合另类久久久| 欧美极品一区二区三区四区| 亚洲精品亚洲一区二区| a 毛片基地| 久久热精品热| 久久精品夜色国产| 欧美日韩在线观看h| 亚洲av不卡在线观看| 婷婷色综合大香蕉| 内地一区二区视频在线| 国产 一区精品| 国产69精品久久久久777片| 日本av免费视频播放| 蜜桃亚洲精品一区二区三区| 亚洲欧洲国产日韩| 少妇精品久久久久久久| 国产欧美另类精品又又久久亚洲欧美| 又爽又黄a免费视频| 自拍欧美九色日韩亚洲蝌蚪91 | 乱系列少妇在线播放| 亚洲精品乱码久久久久久按摩| 午夜激情福利司机影院| 国产精品福利在线免费观看| 亚洲成人一二三区av| 男女下面进入的视频免费午夜| 尤物成人国产欧美一区二区三区| 国产欧美另类精品又又久久亚洲欧美| 中文字幕久久专区| 一级毛片电影观看| 久久精品国产亚洲av涩爱| av卡一久久| 天堂中文最新版在线下载| 国内精品宾馆在线| 午夜福利高清视频| 亚洲精品成人av观看孕妇| 一区二区三区精品91| 国产视频内射| 久久久午夜欧美精品| 蜜桃亚洲精品一区二区三区| 精品国产乱码久久久久久小说| 国产乱人偷精品视频| 亚洲av成人精品一二三区| 精品亚洲成a人片在线观看 | 国产日韩欧美在线精品| 一级a做视频免费观看| 欧美人与善性xxx| 欧美xxxx黑人xx丫x性爽| 纵有疾风起免费观看全集完整版| 久久精品夜色国产| 亚洲天堂av无毛| 极品少妇高潮喷水抽搐| 国产精品免费大片| 国产探花极品一区二区| 18禁在线无遮挡免费观看视频| 日本黄大片高清| 久久99热6这里只有精品| 一区二区av电影网| 国产成人精品一,二区| 噜噜噜噜噜久久久久久91| 亚洲在久久综合| 六月丁香七月| 国产av码专区亚洲av| 亚洲欧美一区二区三区国产| 深夜a级毛片| av黄色大香蕉| 多毛熟女@视频| 亚洲最大成人中文| 嫩草影院入口| 夜夜看夜夜爽夜夜摸| 最近2019中文字幕mv第一页| 免费观看a级毛片全部| 如何舔出高潮| 最近最新中文字幕免费大全7| av专区在线播放| 久久久久久久精品精品| 高清午夜精品一区二区三区| 国产 精品1| 国产午夜精品久久久久久一区二区三区| 老熟女久久久| 男女边吃奶边做爰视频| 人妻制服诱惑在线中文字幕| 一区二区三区乱码不卡18| 久久精品人妻少妇| 亚洲精品国产av蜜桃| 国产欧美另类精品又又久久亚洲欧美| 久久亚洲国产成人精品v| 91精品伊人久久大香线蕉| 亚洲第一区二区三区不卡| 国产精品99久久99久久久不卡 | 国精品久久久久久国模美| 精品国产露脸久久av麻豆| 少妇 在线观看| 日韩不卡一区二区三区视频在线| 97在线人人人人妻| 日韩av免费高清视频| 尾随美女入室| 毛片一级片免费看久久久久| 亚洲av日韩在线播放| 久久国产亚洲av麻豆专区| 亚洲精品一区蜜桃| 中文精品一卡2卡3卡4更新|