• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Coordination of Networked Nonlinear Multi-Agents Using a High-Order Fully Actuated Predictive Control Strategy

    2022-04-15 04:19:14GuoPingLiu
    IEEE/CAA Journal of Automatica Sinica 2022年4期

    Guo-Ping Liu,

    Abstract—This paper is concerned with the coordinative control problem of networked nonlinear multi-agents (NNM)with communication delays. A high-order fully actuated (HOFA)model is introduced to describe the nonlinear multi-agents. Based on this model, a HOFA predictive coordination method is proposed to compensate for the communication delays actively and achieve simultaneous stability and consensus. This method largely simplifies the design of networked nonlinear multi-agents and makes the control performance be same for networked nonlinear multi-agents with and without communication delays.The analysis on the closed-loop systems derives the simultaneous stability and consensus criteria of networked nonlinear multiagents using the HOFA predictive coordination method. With the presented way of designing HOFA predictive coordination controllers, a simulated example demonstrates the advantages of the proposed method.

    I. INTRODUCTION

    THE rapid development of network technology accelerates the development of networked multi-agent systems, such as the Internet of things and industrial Internet systems. A networked multi-agent system is a multi-dimensional complex system integrating communication networks and physical environments. Through the integration of computing,communication and control technologies, it can realize the real-time perception, dynamic control and information service of large-scale engineering systems, make the systems more efficient and coordinative, and have important and wide application prospects [1]–[3]. Networked multi-agent systems have widely been used in the fields of energy, manufacturing,aerospace, telemedicine, etc. Due to the introduction of networks, there are inevitably communication constraints,such as delays, loss, disorder and attacks on data, which bring great challenges to the design and analysis of networked multi-agent control systems [1].

    Much research work has been carried out on the influence of communication constraints (particularly, network delays)on the control performance (e.g., consensus) of networked multi-agent systems [4], [5]. The main methods of dealing with the consensus problem of networked multi-agent systems are the time-delay system method, switching system method,Markov jump system method, stochastic system method,event-triggered control method, etc. The time-delay system method transforms the networked multi-agent control system into a system with variable time-delays so that the system can tolerate a maximum time-delay upper bound and maintain a certain expected system performance [6]. The switching system method describes the networked multi-agent system under bounded uncertain data delay and packet loss effects as a discrete-time system with arbitrary switching so that the existing switching control system theory can be applied directly [7]. The Markov jump system method focuses on the Markov chain characteristics of network delays, and constructs the networked multi-agent system as a Markov jump system for consensus analysis [8]. The stochastic system method provides a powerful tool for analysing the system consensus of networked multi-agent systems with random communication constraints [9]. The event-triggered control method can greatly improve the resource utilization of the networked multi-agent system, but the control performance changes little [10]–[12]. Generally speaking, most control methods of networked multi-agent systems use a passive way to suppress communication constraints, which makes the consensus conditions of the system relatively conservative.

    For the communication constraints in networked multi-agent systems, the predictive control strategy has incomparable advantages over other control methods. Considering how to compensate for communication constraints actively and taking advantage of the characteristics that a network can transmit data in packets, the networked predictive control method has been proposed [13]. This method breaks through the traditional control mode of point-to-point single data transmission, and adopts the idea of predictive control to compensate actively for the communication constraints in a networked multi-agent system so that its control performance is almost the same as that of the system without networks.Following the networked predictive control strategy, a networked multi-agent predictive control method has been proposed to compensate for network delays of multi-agents with a directed topology and non-uniform agents via a distributed dynamic output feedback protocol [14]. To solve the simultaneous stability and consensus problem of networked multi-agent systems with communication delays and data loss, further design and analysis of the networked multi-agent predictive control systems has provided the necessary and sufficient conditions of achieving both output consensus and input–output stability [15]. Then, a cloud predictive control scheme for networked multi-agent systems has been presented to reduce the expenses for establishment,operation, and maintenance of the systems tremendously based on its computational efficiency and speed via cloud computing [16]. Although a great number of research achievements have been made in networked multi-agent predictive control [17], [18], most of them focus on linear multi-agents. How to deal with nonlinearities of multi-agents needs further research.

    Nowadays, most of nonlinear control systems are generally described in the form of a first-order state space model. Based on this model, several nonlinear control methods have been applied to networked nonlinear multi-agent systems, such as the feedback linearization method [19], the back-stepping method [20], the sliding mode method [21], [22], the Lyapunov method [23]. But, there are still various restrictions on those methods. For example, the feedback linearization method needs strong Lie differentiable conditions, the backstepping method is employed only for a special class of systems with a triangular model form, and the Lyapunov method needs to find appropriate Lyapunov functions which are not unique. Generally, it is hardly to realize the global stabilisation and consensus of networked nonlinear multiagent control systems even in the case of no communication constraint.

    According to the high-order fully actuated (HOFA) system approach [24], most of physical nonlinear systems can be expressed as a HOFA model, which is another system description form and has more universality, simplicity and flexibility for nonlinear system design and analysis. Based on the HOFA model, this paper studies the coordinative control problem of networked nonlinear multi-agents. Two cases are studied: One is the multi-agents without communication delays and the other is the multi-agents with communication delays. For the first case, a HOFA coordination scheme is presented. For the second case, a HOFA predictive coordination method is proposed to compensate for communication delays actively. Both the HOFA coordination scheme and HOFA predictive coordination method achieve simultaneous stability and consensus of networked nonlinear multi-agents.

    II. COORDINATED CONTROL OF MULTI-AGENTS WITHOUT COMMUNICATION CONSTRAINTS

    There are various mathematical models to describe physical control systems, such as the first order state space model and the transfer function model. Following the HOFA system approach [24], then-th order fully actuated discrete-time model is utilised to represent nonlinear multi-agents as follows:

    Actually, the combination of (9) and (10) forms the closedloop networked nonlinear multi-agent system without communication constraints using the HOFA coordination scheme.

    III. COORDINATED CONTROL OF MULTI-AGENTS WITH COMMUNICATION DELAYS

    In networked multi-agents, there usually exist various communication constraints, for example, delays, data loss,attacks, quantisation, synchronisation, etc. For the sake of simplicity, only the communication delays are considered here. Let the communication delay from thej-th agent to thei-th agent be fixed and denoted bysij, and

    be the largest communication delay from all other agents to thei-th agent.

    To simplify the presentation, it is also assumed that all the agents of networked nonlinear multi-agents are fully connected via communication networks. This will also make the calculations of the output predictions of all the agents much easier. The most effective way of compensating for the communication delays is the predictive control strategy. In the case of the communication delays, following scheme (6), a HOFA predictive coordination scheme of the agents is proposed as follows:

    which is needed in (13). The stability and consensus of the closed-loop networked nonlinear multi-agent system using the HOFA predictive coordination method proposed in this section will be analysed in the next section.

    and

    IV. SIMULTANEOUS STABILITY AND CONSENSUS ANALYSIS OF CLOSED-LOOP MULTI-AGENT CONTROL SYSTEMS

    A networked multi-agent control system can achieve consensus, but it does not imply that the stability of the system is guaranteed, which is usually ignored by most researchers.For practical applications, both the consensus and stability of a networked multi-agent control system should simultaneously be analysed. Following Definition 1 in [15], a definition is introduced below.

    Definition 1:Networked multi-agent control system (1) with controller (12) achieves input-output stability and output consensus simultaneously if

    which are induced from (9) and (10), respectively. Similarly,the following results for (20) and (21) can recursively be derived:

    which is the same as (10) of the networked nonlinear multiagents without communication delays. So, the closed-loop systems for the two cases (one is with communication delays and the other is without communication delays) are exactly the same when the HOFA coordination scheme or HOFA predictive coordination method is employed.

    Equation (38) can compactly be expressed as

    Clearly, all the networked nonlinear agents achieve consensus. According to Definition 1, it can be concluded that the networked nonlinear multi-agents are of simultaneous stability and consensus using the HOFA predictive coordination method. Therefore, summarising the above gives the following theorem.

    Theorem 1:Networked nonlinear multi-agent (1) with the HOFA coordination controller (6)–(8) or HOFA predictive coordination controller (12)–(14) achieves simultaneous stability and consensus if and only if matrixHin (43) is Schur stable.

    Remark 1:The key advantage of the HOFA system approach is to remove the nonlinearities of a nonlinear system and transform it to a desired linear system through the controller design. When this approach is applied to design the controller of a networked nonlinear multi-agent system,Theorem 1 shows that the stability and consensus conditions of the closed-loop system are related only to both its transformed linear system and the linear part parameters of the controller.

    V. DESIGN OF THE AGENT CONTROLLER PARAMETERS

    There are many ways to design the parameters of the HOFA predictive coordination controllers of networked nonlinear multi-agents. This section presents two steps to determine those parameters.

    Clearly, the first step guarantees that the individual agents are stable and have the desired control performance when there is no coordination between the agents. The second step ensures that all the networked multi-agents coordinate with simultaneous stability and consensus.

    VI. AN EXAMPLE

    To illustrate the performance of the HOFA predictive coordination method for networked nonlinear multi-agents with communication delays proposed in this paper, an example is provided in this section. Three different order fullyactuated discrete nonlinear agents are considered as follows:l

    The communication graph of the networked three-agent system is assumed to be fully connected, as shown in Fig.1.

    Fig. 1. The communication graph.

    Following the two steps of designing the PI and coordinative parameters introduced in Section V, firstly, let the coordinative parameters be zeros and chooseq1=q2=q3=0in (8) to make the characteristic equation (49) of the individual agents become

    To assign the closed-loop poles of the three agents at 0.91±0.21j(Agent 1), 0.92±0.22j(Agent 2) and 0.93±0.23j(Agent 3), which provide good transient dynamical performance, using the pole assignment method leads to the following PI parameters:

    which are within the unit circle. So, according to Theorem 1,the closed-loop networked three-agent system is stable and all the three agents also achieve the output consensus.

    Let the reference inputr(t) be a given square wave with the period of 300 steps and amplitude between 1 and –1. Four cases are illustrated here to compare the performance of the different control strategies: no coordination, coordination without communication delays, coordination without compensating for communication delays, and coordination with compensating for communication delays.

    Fig. 2. The output responses of the three agents (Case 1).

    Fig. 3. The control inputs of the three agents (Case 1).

    Case 1:No coordination fori= 1, 2, 3. The output responses of the three agents shown in Fig. 4 illustrate that there exists not only the large steadystate error between the reference and the output of each agent but also the significant difference between three agent outputs.

    Fig. 4. The output responses of the three agents without the integrator(Case 1).

    Case 2:Coordination without delays

    This case assumes that there is no communication delay between networked three agents, i.e., the communication delayssij= 0, fori,j= 1, 2, 3,i≠j. Then, from (12) and (13),the controllers of the three agents are

    fori= 1, 2, 3. Using those controllers, the output responses and control inputs of the three agents are shown in Figs. 5 and 6. The simulation results demonstrate that all the outputs of the three agents are almost the same. So, the coordination of the three agents is achieved.

    Fig. 5. The output responses of the three agents (Case 2).

    Fig. 6. The control inputs of the three agents (Case 2).

    Case 3:Coordination without compensating for delays

    There usually exist communication delays between networked multi-agents. Here, it is assumed that the communication delays between the three agents are below:

    fori= 1, 2, 3. For this case, the output responses and control inputs of the networked three agents are shown in Figs. 7 and 8. The results indicate that all the three agents without compensating for the communication delays between the agents are unstable.

    Case 4:Coordination with compensating for delays

    Fig. 7. The output responses of the three agents (Case 3).

    Fig. 8. The control inputs of the three agents (Case 3).

    The active compensation strategy for delays is applied when there exist communication delays between networked three agents. The proposed HOFA predictive coordination controllers (12) and (13) of the agents for this case are fori= 1, 2, 3. Employing the above controllers, the output responses and control inputs of the three agents with communication delays given in Case 3 are shown in Figs. 9 and 10. The simulation results demonstrate that all the three agents achieve simultaneous stability and consensus, and the control performance is exactly the same as the one of Case 2.It also shows that the communication delays between the three agents are completely compensated by the HOFA predictive coordination method presented in Section III.

    Fig. 9. The output responses of the three agents (Case 4).

    Fig. 10. The control inputs of the three agents (Case 4).

    VII. CONCLUSIONS

    This paper has addressed the coordinative control problem of a class of networked nonlinear multi-agents. To compensate for communication delays, a HOFA predictive coordination method has been proposed to make the closedloop networked nonlinear multi-agent system achieve simultaneous stability and consensus. Compared with other existing coordination methods of networked nonlinear multiagents, the HOFA predictive coordination method is simple,active and universal. Also, it has two important advantages:firstly, the control performance of the closed-loop networked multi-agents is the same in the two cases: with communication delays and without communication delays; Secondly, the necessary and sufficient conditions derived for the simultaneous stability and consensus of networked nonlinear multi-agents are independent of communication delays. The parameters of the HOFA predictive coordination controller are designed in two steps. The simulation results illustrated in this paper have confirmed the above advantages. In fact, there still exist various challenges on the HOFA predictive coordination of networked nonlinear multi-agents. They include the internal nonlinear uncertainties (such as modelling error), external uncertainties (such as random disturbances), and time-varying communication constraints in most practical multi-agent systems. A possible way to overcome those challenges will be to combine the proposed method in this paper with other existing control methods, for example, robust control methods, adaptive control methods, disturbance rejection methods, networked control methods and so on. The proposed HOFA predictive coordination method still needs further research to deal with those challenging issues.

    精品国产一区二区久久| 女人高潮潮喷娇喘18禁视频| 王馨瑶露胸无遮挡在线观看| 夜夜夜夜夜久久久久| 国产精品成人在线| 男人操女人黄网站| 国产黄色免费在线视频| 亚洲av欧美aⅴ国产| 亚洲av日韩精品久久久久久密| 国产精品免费一区二区三区在线 | 国产精品免费大片| 欧美日韩黄片免| 不卡一级毛片| 日韩制服丝袜自拍偷拍| 18禁国产床啪视频网站| 18禁美女被吸乳视频| 久久精品91无色码中文字幕| 久久精品91无色码中文字幕| 国产极品粉嫩免费观看在线| 国精品久久久久久国模美| 激情视频va一区二区三区| 国产精品久久久人人做人人爽| 少妇裸体淫交视频免费看高清 | 中文字幕人妻丝袜一区二区| 久久精品亚洲av国产电影网| 国产成人av激情在线播放| 黄网站色视频无遮挡免费观看| 久久亚洲精品不卡| av网站免费在线观看视频| 亚洲成国产人片在线观看| 99久久99久久久精品蜜桃| 欧美+亚洲+日韩+国产| 精品少妇黑人巨大在线播放| 久久九九热精品免费| 正在播放国产对白刺激| 国产视频一区二区在线看| 国产主播在线观看一区二区| 这个男人来自地球电影免费观看| 国产在线精品亚洲第一网站| 中文字幕制服av| 19禁男女啪啪无遮挡网站| 制服诱惑二区| xxxhd国产人妻xxx| 伊人久久大香线蕉亚洲五| 成年人免费黄色播放视频| 国产av又大| 国产精品一区二区在线不卡| 亚洲精品中文字幕在线视频| 岛国毛片在线播放| 国产精品秋霞免费鲁丝片| 亚洲精品av麻豆狂野| 美女视频免费永久观看网站| www.999成人在线观看| 欧美日韩视频精品一区| 精品一区二区三区av网在线观看 | 在线看a的网站| 91麻豆av在线| 亚洲午夜精品一区,二区,三区| 在线观看一区二区三区激情| 电影成人av| 多毛熟女@视频| 成年版毛片免费区| 欧美黄色片欧美黄色片| 日本一区二区免费在线视频| 一级毛片女人18水好多| av天堂在线播放| 国产精品自产拍在线观看55亚洲 | 中文字幕精品免费在线观看视频| 新久久久久国产一级毛片| 精品久久久久久久毛片微露脸| 黄色片一级片一级黄色片| 久久 成人 亚洲| 三上悠亚av全集在线观看| 国产精品九九99| 一区在线观看完整版| 久久人人爽av亚洲精品天堂| 精品国产国语对白av| 亚洲国产中文字幕在线视频| 亚洲男人天堂网一区| 日韩三级视频一区二区三区| 十八禁网站免费在线| 亚洲,欧美精品.| 欧美午夜高清在线| 久久久欧美国产精品| 人人妻,人人澡人人爽秒播| 女人高潮潮喷娇喘18禁视频| 欧美精品高潮呻吟av久久| 国产伦理片在线播放av一区| 精品国产一区二区三区久久久樱花| 99国产精品一区二区蜜桃av | 18禁国产床啪视频网站| 一个人免费在线观看的高清视频| 久久久久久久精品吃奶| 亚洲精华国产精华精| 国产一区二区在线观看av| 黄片播放在线免费| 欧美精品啪啪一区二区三区| 欧美日韩亚洲高清精品| 99久久人妻综合| 他把我摸到了高潮在线观看 | 精品卡一卡二卡四卡免费| 亚洲欧美日韩另类电影网站| 啦啦啦免费观看视频1| 五月开心婷婷网| av超薄肉色丝袜交足视频| 久久久精品国产亚洲av高清涩受| 久久久久精品国产欧美久久久| 黑人操中国人逼视频| 亚洲精品在线美女| 久久国产精品男人的天堂亚洲| 国产午夜精品久久久久久| 国产国语露脸激情在线看| 成人精品一区二区免费| 在线观看人妻少妇| 99riav亚洲国产免费| 免费在线观看日本一区| 日本欧美视频一区| 电影成人av| 久久人人爽av亚洲精品天堂| 99国产极品粉嫩在线观看| 久久人妻福利社区极品人妻图片| 成人18禁高潮啪啪吃奶动态图| 老汉色∧v一级毛片| 欧美日韩中文字幕国产精品一区二区三区 | 亚洲精品美女久久av网站| 男女下面插进去视频免费观看| 欧美另类亚洲清纯唯美| 又紧又爽又黄一区二区| 99精国产麻豆久久婷婷| 亚洲精品国产色婷婷电影| 国产精品久久久久久精品古装| 国产精品.久久久| 夜夜夜夜夜久久久久| 下体分泌物呈黄色| 国产在线免费精品| 777米奇影视久久| 九色亚洲精品在线播放| 久久精品人人爽人人爽视色| 大码成人一级视频| 国产成人欧美| cao死你这个sao货| 中文字幕av电影在线播放| 波多野结衣av一区二区av| 欧美精品一区二区大全| 青青草视频在线视频观看| 女人被躁到高潮嗷嗷叫费观| 日韩欧美免费精品| 黄片播放在线免费| 日本欧美视频一区| 久久精品亚洲av国产电影网| 国产精品久久久久成人av| 他把我摸到了高潮在线观看 | 国产在线观看jvid| a在线观看视频网站| 真人做人爱边吃奶动态| 国产不卡一卡二| 黄片大片在线免费观看| 91精品国产国语对白视频| 国产一区有黄有色的免费视频| 亚洲av国产av综合av卡| 精品高清国产在线一区| 欧美老熟妇乱子伦牲交| 亚洲免费av在线视频| 亚洲欧美日韩另类电影网站| 欧美日韩亚洲综合一区二区三区_| 亚洲avbb在线观看| 老汉色∧v一级毛片| 香蕉丝袜av| 国产高清国产精品国产三级| 日本五十路高清| 欧美精品人与动牲交sv欧美| 中文字幕av电影在线播放| 国产精品久久久av美女十八| 69精品国产乱码久久久| 777久久人妻少妇嫩草av网站| 91精品三级在线观看| 免费不卡黄色视频| 婷婷成人精品国产| 人成视频在线观看免费观看| 大片免费播放器 马上看| 精品视频人人做人人爽| 99精品久久久久人妻精品| 欧美人与性动交α欧美软件| 19禁男女啪啪无遮挡网站| 欧美一级毛片孕妇| 丝瓜视频免费看黄片| 天天操日日干夜夜撸| 免费在线观看日本一区| 久久国产精品男人的天堂亚洲| 成人手机av| 美女福利国产在线| 国产91精品成人一区二区三区 | 国产高清激情床上av| 国产av又大| 两性午夜刺激爽爽歪歪视频在线观看 | 97人妻天天添夜夜摸| 国产欧美日韩精品亚洲av| 女人精品久久久久毛片| 国产精品久久久久久精品古装| 中文字幕人妻丝袜制服| 国产高清国产精品国产三级| 老熟女久久久| 香蕉国产在线看| 欧美日韩国产mv在线观看视频| 久久精品国产a三级三级三级| 亚洲熟妇熟女久久| av天堂久久9| 欧美精品亚洲一区二区| 国产不卡av网站在线观看| 国产成人av教育| 国产精品久久久久成人av| 亚洲久久久国产精品| av又黄又爽大尺度在线免费看| 丰满饥渴人妻一区二区三| 天天添夜夜摸| 国产片内射在线| 乱人伦中国视频| 亚洲av国产av综合av卡| 欧美激情久久久久久爽电影 | 91九色精品人成在线观看| 亚洲视频免费观看视频| 首页视频小说图片口味搜索| 老熟妇仑乱视频hdxx| 国产免费福利视频在线观看| 午夜成年电影在线免费观看| 无限看片的www在线观看| 视频区图区小说| 欧美黄色淫秽网站| 王馨瑶露胸无遮挡在线观看| 丁香欧美五月| 99国产综合亚洲精品| 久久性视频一级片| 国产片内射在线| 亚洲精品成人av观看孕妇| 人妻 亚洲 视频| 中国美女看黄片| 国产成人欧美在线观看 | 午夜激情久久久久久久| 我要看黄色一级片免费的| 免费看a级黄色片| 波多野结衣av一区二区av| 亚洲精品国产精品久久久不卡| 国产黄色免费在线视频| 久久午夜综合久久蜜桃| 亚洲专区中文字幕在线| 精品国产一区二区三区久久久樱花| 老司机福利观看| 两性午夜刺激爽爽歪歪视频在线观看 | 欧美黑人精品巨大| 亚洲人成电影观看| 中文字幕最新亚洲高清| 欧美亚洲日本最大视频资源| 亚洲男人天堂网一区| 久久久精品国产亚洲av高清涩受| 欧美乱码精品一区二区三区| 在线观看人妻少妇| 久久精品91无色码中文字幕| 亚洲人成电影免费在线| 真人做人爱边吃奶动态| 少妇粗大呻吟视频| 国产又爽黄色视频| 欧美精品人与动牲交sv欧美| av一本久久久久| 日本黄色视频三级网站网址 | 午夜福利在线免费观看网站| av片东京热男人的天堂| 国产成+人综合+亚洲专区| 国产日韩欧美在线精品| 亚洲av欧美aⅴ国产| 最近最新中文字幕大全电影3 | 午夜福利视频精品| 999久久久国产精品视频| 男女床上黄色一级片免费看| 日韩有码中文字幕| 老司机深夜福利视频在线观看| 80岁老熟妇乱子伦牲交| 香蕉国产在线看| 亚洲色图综合在线观看| 男女午夜视频在线观看| 亚洲国产精品一区二区三区在线| 久久久精品94久久精品| 国产无遮挡羞羞视频在线观看| 亚洲精品粉嫩美女一区| 亚洲人成伊人成综合网2020| 咕卡用的链子| 丁香欧美五月| 最新的欧美精品一区二区| 啦啦啦中文免费视频观看日本| 日韩制服丝袜自拍偷拍| 亚洲av日韩在线播放| 久久久久精品国产欧美久久久| 蜜桃国产av成人99| 亚洲九九香蕉| 国产高清videossex| 999久久久国产精品视频| 免费女性裸体啪啪无遮挡网站| 精品久久蜜臀av无| 黑人巨大精品欧美一区二区mp4| 成人免费观看视频高清| 日韩中文字幕视频在线看片| 亚洲精品国产区一区二| 久久99一区二区三区| 丰满迷人的少妇在线观看| 12—13女人毛片做爰片一| 视频区欧美日本亚洲| 欧美日韩亚洲国产一区二区在线观看 | 国产成人av教育| 亚洲欧美一区二区三区久久| 啦啦啦免费观看视频1| 日韩大码丰满熟妇| 窝窝影院91人妻| 极品少妇高潮喷水抽搐| 交换朋友夫妻互换小说| 久久久久久久久免费视频了| 黑人巨大精品欧美一区二区蜜桃| 99国产精品一区二区蜜桃av | 亚洲成人手机| 日韩精品免费视频一区二区三区| 欧美成狂野欧美在线观看| 精品卡一卡二卡四卡免费| 一区福利在线观看| 欧美成狂野欧美在线观看| 亚洲av片天天在线观看| 女人久久www免费人成看片| 淫妇啪啪啪对白视频| 欧美变态另类bdsm刘玥| 国产精品 欧美亚洲| 日韩视频在线欧美| 777米奇影视久久| 无遮挡黄片免费观看| 99香蕉大伊视频| 夜夜骑夜夜射夜夜干| 中文字幕人妻丝袜一区二区| 人人妻人人添人人爽欧美一区卜| 国产一卡二卡三卡精品| 黑人猛操日本美女一级片| 97在线人人人人妻| 91国产中文字幕| 超碰成人久久| 久久中文字幕一级| 91老司机精品| 精品视频人人做人人爽| √禁漫天堂资源中文www| 午夜福利视频在线观看免费| 久久久久视频综合| 美女午夜性视频免费| 国产精品亚洲av一区麻豆| 午夜免费成人在线视频| 在线av久久热| 欧美精品高潮呻吟av久久| 日韩大片免费观看网站| 国产日韩欧美亚洲二区| 午夜老司机福利片| 久久久久久人人人人人| 亚洲一卡2卡3卡4卡5卡精品中文| 999久久久国产精品视频| 国产熟女午夜一区二区三区| 欧美 日韩 精品 国产| 亚洲天堂av无毛| 精品国产亚洲在线| 成人黄色视频免费在线看| 一区二区三区激情视频| 国产欧美日韩一区二区精品| 狠狠精品人妻久久久久久综合| 最近最新中文字幕大全免费视频| 成年版毛片免费区| 免费看十八禁软件| 中文亚洲av片在线观看爽 | 久久热在线av| 高清视频免费观看一区二区| 亚洲 欧美一区二区三区| 久久久水蜜桃国产精品网| 精品少妇久久久久久888优播| 91精品三级在线观看| 日本av手机在线免费观看| 精品少妇黑人巨大在线播放| 91精品国产国语对白视频| 五月开心婷婷网| 美女福利国产在线| 久久中文字幕人妻熟女| 在线观看舔阴道视频| 亚洲九九香蕉| 亚洲午夜精品一区,二区,三区| 亚洲av欧美aⅴ国产| 水蜜桃什么品种好| 久久精品91无色码中文字幕| 动漫黄色视频在线观看| 在线观看免费午夜福利视频| 97在线人人人人妻| 精品午夜福利视频在线观看一区 | av片东京热男人的天堂| 在线观看一区二区三区激情| 亚洲欧洲日产国产| 国产不卡av网站在线观看| 丰满迷人的少妇在线观看| 亚洲av美国av| 一级毛片精品| 成人亚洲精品一区在线观看| 无限看片的www在线观看| 亚洲七黄色美女视频| 国产老妇伦熟女老妇高清| 久久亚洲真实| 国产日韩欧美视频二区| 欧美人与性动交α欧美精品济南到| 999精品在线视频| 精品熟女少妇八av免费久了| 精品亚洲乱码少妇综合久久| 亚洲第一欧美日韩一区二区三区 | 国产一区二区在线观看av| videos熟女内射| 成人国产av品久久久| 一区二区av电影网| 新久久久久国产一级毛片| 国产单亲对白刺激| 免费少妇av软件| 大片电影免费在线观看免费| 欧美变态另类bdsm刘玥| 午夜免费鲁丝| 免费高清在线观看日韩| 日韩欧美一区二区三区在线观看 | 亚洲五月婷婷丁香| 欧美精品亚洲一区二区| 国产福利在线免费观看视频| 五月天丁香电影| 精品少妇黑人巨大在线播放| 美女扒开内裤让男人捅视频| 极品少妇高潮喷水抽搐| 麻豆国产av国片精品| 国产精品1区2区在线观看. | 91麻豆精品激情在线观看国产 | 亚洲性夜色夜夜综合| 成人18禁高潮啪啪吃奶动态图| 午夜福利一区二区在线看| 亚洲成国产人片在线观看| 操美女的视频在线观看| 女人爽到高潮嗷嗷叫在线视频| 国产免费av片在线观看野外av| 亚洲精品乱久久久久久| 老汉色∧v一级毛片| 桃红色精品国产亚洲av| 黑人巨大精品欧美一区二区mp4| 18禁美女被吸乳视频| 亚洲中文日韩欧美视频| 国产一卡二卡三卡精品| 少妇裸体淫交视频免费看高清 | 国内毛片毛片毛片毛片毛片| 丰满迷人的少妇在线观看| 99re在线观看精品视频| 日本一区二区免费在线视频| 中文亚洲av片在线观看爽 | 免费人妻精品一区二区三区视频| 高清欧美精品videossex| 国产精品二区激情视频| 可以免费在线观看a视频的电影网站| 精品视频人人做人人爽| 淫妇啪啪啪对白视频| 久久精品人人爽人人爽视色| 岛国在线观看网站| 成人手机av| 成人国产一区最新在线观看| 午夜激情久久久久久久| 欧美黑人欧美精品刺激| 丰满少妇做爰视频| 久久精品91无色码中文字幕| 中文字幕制服av| 首页视频小说图片口味搜索| 国产欧美日韩一区二区三| 午夜免费鲁丝| 欧美激情高清一区二区三区| av免费在线观看网站| 成人黄色视频免费在线看| 精品亚洲乱码少妇综合久久| 夫妻午夜视频| 久久久水蜜桃国产精品网| 一区二区三区乱码不卡18| 亚洲av欧美aⅴ国产| 不卡一级毛片| 欧美黄色淫秽网站| 久久久欧美国产精品| 亚洲精品久久午夜乱码| 中文字幕另类日韩欧美亚洲嫩草| 黑人巨大精品欧美一区二区mp4| 最黄视频免费看| 欧美精品高潮呻吟av久久| 搡老乐熟女国产| 黄色视频不卡| 老司机深夜福利视频在线观看| 久久精品成人免费网站| 成人av一区二区三区在线看| 国产精品亚洲av一区麻豆| 热99久久久久精品小说推荐| 黄色a级毛片大全视频| 大陆偷拍与自拍| 国产精品一区二区精品视频观看| 母亲3免费完整高清在线观看| 老司机亚洲免费影院| 国产福利在线免费观看视频| 欧美日韩亚洲国产一区二区在线观看 | 久久中文字幕一级| 制服人妻中文乱码| 国产又爽黄色视频| 成人三级做爰电影| 国产高清激情床上av| 多毛熟女@视频| 国产欧美日韩一区二区三| 国产高清videossex| 啦啦啦免费观看视频1| 亚洲人成伊人成综合网2020| 国产高清视频在线播放一区| 亚洲av日韩在线播放| 久久精品亚洲精品国产色婷小说| 天天添夜夜摸| 丝袜美足系列| 国产精品自产拍在线观看55亚洲 | 久久影院123| 日韩欧美一区视频在线观看| 精品欧美一区二区三区在线| 国产精品影院久久| 国产成人av教育| 成人av一区二区三区在线看| 欧美日韩福利视频一区二区| 男人舔女人的私密视频| 无人区码免费观看不卡 | 欧美日韩一级在线毛片| 婷婷成人精品国产| 麻豆国产av国片精品| 国产深夜福利视频在线观看| 欧美人与性动交α欧美精品济南到| 久久久久久免费高清国产稀缺| 精品福利永久在线观看| 两性午夜刺激爽爽歪歪视频在线观看 | 两性夫妻黄色片| 日韩中文字幕欧美一区二区| 欧美日韩成人在线一区二区| 亚洲欧美日韩另类电影网站| 日韩欧美免费精品| 欧美人与性动交α欧美软件| 老司机影院毛片| 精品高清国产在线一区| 色94色欧美一区二区| 精品高清国产在线一区| 亚洲九九香蕉| 一边摸一边抽搐一进一出视频| 亚洲一卡2卡3卡4卡5卡精品中文| 日韩精品免费视频一区二区三区| 国产成人免费无遮挡视频| 欧美精品人与动牲交sv欧美| 丝瓜视频免费看黄片| 久久久久精品国产欧美久久久| 日韩视频一区二区在线观看| 一区二区三区激情视频| 可以免费在线观看a视频的电影网站| 99re6热这里在线精品视频| 热99国产精品久久久久久7| 国产色视频综合| 国产又爽黄色视频| 黄色毛片三级朝国网站| av网站免费在线观看视频| 嫩草影视91久久| 久久ye,这里只有精品| 丝袜美腿诱惑在线| 亚洲精品中文字幕在线视频| 美女扒开内裤让男人捅视频| 国产免费现黄频在线看| 欧美精品亚洲一区二区| 色婷婷av一区二区三区视频| 一本一本久久a久久精品综合妖精| 两性午夜刺激爽爽歪歪视频在线观看 | 国产欧美日韩综合在线一区二区| 精品人妻在线不人妻| 亚洲国产欧美网| 大香蕉久久成人网| 天天躁狠狠躁夜夜躁狠狠躁| 午夜免费鲁丝| 夜夜爽天天搞| 韩国精品一区二区三区| 国产日韩一区二区三区精品不卡| 日本a在线网址| 久久久久久久大尺度免费视频| 亚洲国产av新网站| 人妻一区二区av| 成年人午夜在线观看视频| 99久久国产精品久久久| 另类亚洲欧美激情| 搡老熟女国产l中国老女人| 两性夫妻黄色片| 成年动漫av网址| 亚洲午夜理论影院| 黄片大片在线免费观看| 啦啦啦免费观看视频1| 99国产精品99久久久久| 欧美日韩成人在线一区二区| 啦啦啦免费观看视频1| 中文字幕高清在线视频| 欧美亚洲 丝袜 人妻 在线| 免费少妇av软件| 在线观看免费高清a一片| 汤姆久久久久久久影院中文字幕| tube8黄色片| 亚洲精品av麻豆狂野| 18在线观看网站| 欧美在线黄色| 热re99久久国产66热| 老鸭窝网址在线观看| 十八禁高潮呻吟视频| xxxhd国产人妻xxx| 男女边摸边吃奶| 国产亚洲精品第一综合不卡| 脱女人内裤的视频| 一边摸一边抽搐一进一小说 | 男女免费视频国产| 韩国精品一区二区三区| 国产成人av激情在线播放| 老鸭窝网址在线观看| 丝袜喷水一区|