• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A Feature Weighted Mixed Naive Bayes Model for Monitoring Anomalies in the Fan System of a Thermal Power Plant

    2022-04-15 04:18:00MinWangLiShengDonghuaZhouandMaoyinChen
    IEEE/CAA Journal of Automatica Sinica 2022年4期

    Min Wang,, Li Sheng,,Donghua Zhou,, and Maoyin Chen,

    Abstract—With the increasing intelligence and integration, a great number of two-valued variables (generally stored in the form of 0 or 1) often exist in large-scale industrial processes.However, these variables cannot be effectively handled by traditional monitoring methods such as linear discriminant analysis (LDA), principal component analysis (PCA) and partial least square (PLS) analysis. Recently, a mixed hidden naive Bayesian model (MHNBM) is developed for the first time to utilize both two-valued and continuous variables for abnormality monitoring. Although the MHNBM is effective, it still has some shortcomings that need to be improved. For the MHNBM, the variables with greater correlation to other variables have greater weights, which can not guarantee greater weights are assigned to the more discriminating variables. In addition, the conditional probability P(xj|xj′,y=k) must be computed based on historical data. When the training data is scarce, the conditional probability between continuous variables tends to be uniformly distributed,which affects the performance of MHNBM. Here a novel feature weighted mixed naive Bayes model (FWMNBM) is developed to overcome the above shortcomings. For the FWMNBM, the variables that are more correlated to the class have greater weights, which makes the more discriminating variables contribute more to the model. At the same time, FWMNBM does not have to calculate the conditional probability between variables, thus it is less restricted by the number of training data samples. Compared with the MHNBM, the FWMNBM has better performance, and its effectiveness is validated through numerical cases of a simulation example and a practical case of the Zhoushan thermal power plant (ZTPP), China.

    I. INTRODUCTION

    WITH increasing intelligence and integration, a great number of two-valued variables (generally stored as 0 or 1 value) often exist in large-scale industrial processes. For instance, 17381 variables are monitored in the No. 1 generator unit of the Zhoushan thermal power plant (ZTPP), where twovalued variables are more than 8820. These two-valued variables mainly include status monitoring variables and numerical range variables, such as control command signals and vibration over-limit signals, which switch from one state to the other with less influence from process fluctuation noise.

    In order to insure the high safety and reliability of largescale industrial processes, the problem of monitoring anomalies becomes more and more important [1]–[5]. The timely and accurate abnormal monitoring can effectively reduce waste of resources, economic losses, and even casualties [6]–[11]. Among a large number of monitoring methods, data-driven techniques have attracted much attention with the advantages of requiring less system information and prior knowledge than model-based and expert experience methods [12]–[19]. For example, principal component analysis (PCA) and its variants have been widely used in industrial processes [20], [21]. In order to detect qualityrelated faults, approaches based on partial least square (PLS)analysis have been proposed [22], [23]. When the training data contains both normal and abnormal working condition samples, linear discriminant analysis (LDA) has been utilized[24]. Kernel dictionary learning can also achieve excellent performance [18]. In addition, many other machine learning methods, such as K-nearest neighbors (KNN) [25], support vector machine (SVM) [26], etc., have also been applied in abnormal monitoring.

    However, the fact that two-valued variables ubiquitously exist in large-scale industrial processes presents a challenge to traditional monitoring methods. It is well known that the above mentioned methods are strongly based on continuous variables and may be not suitable for two-value variables. For example, PCA, PLS, LDA, etc. obtain a subspace that is convenient for monitoring through decomposition and then construct statistics or hyperplanes. But, these operations are based on Euclidean distance or Mahalanobis distance, which can not effectively mine the process information of twovalued variables. Two-valued variables are usually deleted during the data preprocessing stage [27], [28]. Recently, the mixed hidden naive Bayesian model (MHNBM) was proposed for the first time to combine both two-valued and continuous variables to improve monitoring performance [28]. Although MHNBM is effective, the variables with greater correlation to other variables have greater weights, which can not guarantee that greater weights are assigned to the more discriminating variables. Moreover, the conditional probabilityP(xj|xj′,y=k)betweenxjandxj′ undery=kmust be computed based on the historical data. When training data is scarce, the conditional probability between continuous variables tends to be uniformly distributed, which will affect performance.

    Motivated by the above discussions, a model known as the feature weighted mixed naive Bayes model (FWMNBM) is proposed to overcome the shortcomings of MHNBM. In FWMNBM, the variables that are more correlated to the class have greater weights which results in variables with greater differences under different working conditions contribute more to the model. Meanwhile, FWMNBM can avoid calculating the conditional probability between variables such that it can still be used when there is not enough training data.In addition, a more effective consistent characterization technique is developed for the correlation of mixed variables,and the corresponding feasibility analysis is conducted.Compared with MHNBM, FWMNBM has better performance, and the effectiveness of FWMNBM is validated through the simulations of a numerical example and a practical vibration fault case.

    In this paper, the remainder is organized as follows. Some preliminaries are briefly outlined in Section II. In Section III-A,FWMNBM is elaborated on. The estimation of parameters is introduced in Section III-B. In Section IV, the effectiveness of FWMNBM is verified. Finally, conclusions are drawn in Section V.

    II. PRELIMINARY

    III. MAIN ALGORITHM

    A. FWMNBM

    correlation between thexjandyas accurately as possible. The mutual information (MI)MI(xj,y) is used to characterize the correlation betweenxjandy.MI(xj,y) can effectively describe the correlation betweenxjandy, but it also contains some correlational information betweenxjand other variables(such asxj′) because variables are coupled. Then, the average feature-feature intercorrelation is introduced to compute the feature weight [32]

    B. Parameters Estimation

    In this subsection,Xis used for parameter estimation.According to maximum likelihood estimation (MLE) [35], the prior probability can be given as

    where

    Algorithm FWMNBM Offline modeling:X,yXt Xc Step 1: Divide the training data () into two-valued variables and continuous variables .Step 2: Construct the auxiliary two-valued variable for each continuous variable according to (12).Step 3: Calculate the estimates of each probability via (30) and(32).Step 4: Calculate the mutual information between variables and between variables and labels.FWj Step 5: Calculate the weight of the feature ().?θk j ?pk Step 6: Estimate the response functions ( ) and the prior probabilities ( ) of two-valued variables.?μk j?σk j Step 7: Estimate the mean ( ) and the standard deviation () of continuous variables.Step 8: Build the model with the estimated parameters.Online detection:?x Step 9: Select the sampled data and construct vector via (17).φkφk Step 10: Calculate , via (18) and (19).?x·φk+φkkargmaxk(?x·φk+φk)Step 11: Calculate for every , then is the predicted label.

    IV. SIMULATION

    In this section, the numerical cases of a numerical simulation example and a practical vibration fault case of ZTPP are utilized to validate the effectiveness of FWMNBM.

    A. Numerical Simulation

    The numerical simulation data contains 5 continuous variables and 5 two-valued variables. The means of continuous variables are shown in Table I and corresponding standard deviations (stds) are displayed in Table II. The twovalued variable values under different classes are depicted in Table III. In order to make the case more general, the twovalued variable values under different classes are randomly adjusted. The adjustment percentages are listed in Table III.For instance, some values ofv6under normal working conditions, which are set as 0, are changed to be 1 after adjusting. Under each working condition, 1500 samples are randomly generated according to the parameters. The samples under normal 1 and fault 1 are used for training the model,and the other instances are used for testing.

    TABLE I THE PRESET MEANS OF CONTINUOUS VARIABLES

    TABLE II THE PRESET STDS OF CONTINUOUS VARIABLES

    TABLE III THE VALUES AND ADJUSTMENT PERCENTAGE OF TWO-VALUED VARIABLES

    The Gaussian naive Bayesian model (GNBM) is used for the continuous variables and the Bernoulli naive Bayesian model (BNBM) is utilized to two-valued variables. That is onlyv1,...,v5are used for build and test GNBM, and BNBM just utilize the information ofv6,...,v10for modeling and verification. Different from GNBM and BNBM, MHNBM and FWHNBM are utilized for modeling and anomaly detection with both two-valued and continuous variables. The first 1500 samples of test data are normal data, and the rest are marked as faults. The test results of all above models for the testing data are depicted in Figs. 1(a)–1(d). There are a lot of false alarms and missing faults when only continuous or twovalued variables are used, which can be seen in Figs. 1(a) and 1(b). MHNBM and FWHNBM have better performance because they can simultaneously mine continuous and twovalued information at the same time. Compared to MHNBM,FWHNBM has the lower false alarm rate (FARs) and a higher fault detection rate (FDR) which are depicted in Figs. 2(e) and 2(f).

    B. Actual Data Validation

    A vibration fault of ZTPP is also used to illustrate the effectiveness of FWMNBM. At 11:35 on September 3, 2017,a hydraulic cylinder vibration fault of the primary air fan occurred, and it was recovered after 26 hours. The data,containing 495 two-valued variables and 260 continuous variables, is sampled every 5 seconds and collected from 11:35, September 1, 2017. A total of 53280 instances are collected for model training and testing.

    The first 60% instances under normal conditions and first 60% fault instances are utilized for modeling, and the remaining data is used for testing. In this article, we used 35 two-valued variables and continuous variables respectively.The detailed variable selection process can refer to article[28]. In the traditional methods, LDA [24], decision trees(DT) [37], SVM [26], k-nearest neighbors (KNN) [25] are adopted to detect anomaly with the continuous variables.MHNBM and FWMNBM are used with both two-valued and continuous variables. The testing results of all methods are shown in Figs. 2(a)–2(f).

    Excepting for DT, the performance of other methods in terms of FDR are very satisfactory. DT has omission of fault and all methods have false alarms. In order to compare the performance of various methods, the FDRs and FARs of all methods are shown in Table IV. From the experimental results, the addition of two-valued variables can reduce the impact of parameter fluctuations before a fault occurs.Affected by anomaly evolution, some normal instances are misclassified into fault. However, MHNBM and FWMNBM effectively reduce FAR through combining multiple process data sources, because the advantages of both two-valued and continuous variables are taken into consideration. Among all methods, FWMNBM has the best detection performance.

    V. CONCLUSIONS

    A data-driven anomaly detection method called FWMNBM is proposed with both two-valued and continuous variables.For FWMNBM, the variables more correlated to class have greater weights, which makes the more discriminating variables contribute more to the model. At the same time,FWMNBM can effectively avoid calculating the conditional probability between variables so that it can still be used when the amount of training data is not sufficient. In addition, a more effective consistent characterization method for the correlation of mixed variables is provided, and the corresponding feasibility analysis is conducted. The superior performance of FWMNBM is verified by the numerical cases of a numerical simulation example and an actual plant’s case.Compared to traditional classical approaches, MHNBM and FWMNBM significantly improve the anomaly monitoring performance by increasing the information of two-valued variables. Furthermore, FWMNBM has more outstanding performance because greater weights are assigned to variables with greater difference under different working conditions.

    Fig. 1. The label results of different methods. (a) GNBM; (b) BNBM; (c) MHNBM; (d) FWMNBM.

    Fig. 2. The testing results. (a) LDA; (b) KNN; (c) DT; (d) SVM; (e) MHNBM; (f) FWMNBM.

    APPENDIX A ANALYSIS OF DEFINITION 1

    Definition 1 unifies the correlation analysis between variables containing both two-valued and continuous variables by the same standard. The correlation between two-valued variables and two-valued variables or between continuous variables and continuous variables can be effectively characterized, and the original two-valued variables do not change. Therefore, the rationality of Definition 1 can be proved when a quantitative relationship exists between the correlation index of the auxiliary two-valued variables and that of original continuous variables.

    TABLE IV FARS AND FDRS OF ALL METHODS

    我的老师免费观看完整版| 精品熟女少妇av免费看| 欧美日韩在线观看h| 久久人人爽人人爽人人片va| 亚洲国产精品成人久久小说| 日韩欧美一区视频在线观看 | 欧美少妇被猛烈插入视频| 日韩欧美精品免费久久| 欧美成人午夜免费资源| 国产白丝娇喘喷水9色精品| av在线观看视频网站免费| 亚洲国产欧美人成| 毛片女人毛片| 男人添女人高潮全过程视频| 91久久精品电影网| 免费久久久久久久精品成人欧美视频 | 九色成人免费人妻av| 国产成人免费无遮挡视频| 一二三四中文在线观看免费高清| 久久久久久久久久久丰满| 成人高潮视频无遮挡免费网站| 久久久久久九九精品二区国产| 国产欧美另类精品又又久久亚洲欧美| 国产淫片久久久久久久久| 又黄又爽又刺激的免费视频.| 老司机影院毛片| 日本午夜av视频| 激情 狠狠 欧美| 秋霞在线观看毛片| 亚洲最大成人中文| 草草在线视频免费看| av在线播放精品| 久久精品国产亚洲网站| 亚洲精品一二三| 久久久久久九九精品二区国产| 大片电影免费在线观看免费| 久久精品夜色国产| 99国产精品免费福利视频| 亚洲欧美精品专区久久| 国精品久久久久久国模美| 91精品国产九色| 不卡视频在线观看欧美| 又大又黄又爽视频免费| 一本久久精品| 秋霞伦理黄片| 中文欧美无线码| 欧美一区二区亚洲| 妹子高潮喷水视频| 看十八女毛片水多多多| 国产成人免费观看mmmm| 亚洲av免费高清在线观看| 亚洲人成网站高清观看| 日韩一本色道免费dvd| 亚洲国产欧美人成| 男人狂女人下面高潮的视频| 国产在线免费精品| 十分钟在线观看高清视频www | 久久久久国产精品人妻一区二区| 人妻一区二区av| 国产精品无大码| 青青草视频在线视频观看| 国产69精品久久久久777片| 亚洲无线观看免费| 欧美日韩精品成人综合77777| 黄色怎么调成土黄色| 国产v大片淫在线免费观看| 日韩成人伦理影院| 亚洲欧美成人综合另类久久久| 美女福利国产在线 | 日本av免费视频播放| 国产一区亚洲一区在线观看| 91精品伊人久久大香线蕉| 免费观看在线日韩| 亚洲久久久国产精品| 国产成人精品久久久久久| 男人舔奶头视频| 日韩伦理黄色片| 亚洲精品色激情综合| 亚洲精品国产成人久久av| 一二三四中文在线观看免费高清| 日韩亚洲欧美综合| 久久久久久久国产电影| 免费看不卡的av| 亚洲成色77777| 精品亚洲成a人片在线观看 | 亚洲成人中文字幕在线播放| 日韩不卡一区二区三区视频在线| 久久久精品94久久精品| av国产精品久久久久影院| 男人爽女人下面视频在线观看| 成年免费大片在线观看| 久久久久久久大尺度免费视频| 亚洲av不卡在线观看| 老师上课跳d突然被开到最大视频| 欧美97在线视频| 日韩国内少妇激情av| 内射极品少妇av片p| 身体一侧抽搐| 22中文网久久字幕| 欧美精品一区二区免费开放| 久久99热这里只有精品18| 多毛熟女@视频| 婷婷色综合www| 亚洲av不卡在线观看| 国产av一区二区精品久久 | 国产高清国产精品国产三级 | av免费观看日本| 91精品国产国语对白视频| 国产久久久一区二区三区| 你懂的网址亚洲精品在线观看| 亚洲国产欧美在线一区| 美女高潮的动态| 女性生殖器流出的白浆| 亚洲自偷自拍三级| 国产黄色视频一区二区在线观看| 伦理电影大哥的女人| 草草在线视频免费看| 午夜福利影视在线免费观看| 欧美高清成人免费视频www| 国产精品偷伦视频观看了| 精品少妇久久久久久888优播| 免费看日本二区| 五月开心婷婷网| 亚洲综合色惰| 一级黄片播放器| 日韩强制内射视频| 啦啦啦啦在线视频资源| 大香蕉久久网| 一级a做视频免费观看| 亚洲精品第二区| 97超碰精品成人国产| av免费观看日本| 18禁裸乳无遮挡免费网站照片| 美女中出高潮动态图| 日韩人妻高清精品专区| 久久韩国三级中文字幕| 国产久久久一区二区三区| 国产成人精品久久久久久| 亚洲精品国产色婷婷电影| 91精品国产九色| 亚洲成人av在线免费| 一级毛片 在线播放| 国产人妻一区二区三区在| 国产伦理片在线播放av一区| 99热网站在线观看| 久久久久国产精品人妻一区二区| 免费大片黄手机在线观看| 日日撸夜夜添| 干丝袜人妻中文字幕| 一个人看的www免费观看视频| 七月丁香在线播放| 国产精品一二三区在线看| 亚洲中文av在线| 在线观看三级黄色| 18禁动态无遮挡网站| 免费观看av网站的网址| 精品久久国产蜜桃| 内地一区二区视频在线| 亚洲精品亚洲一区二区| 国语对白做爰xxxⅹ性视频网站| 成人一区二区视频在线观看| 精品国产三级普通话版| 午夜激情福利司机影院| 成人亚洲欧美一区二区av| 一级毛片 在线播放| 亚洲欧美日韩另类电影网站 | 国产综合精华液| 精品亚洲乱码少妇综合久久| 午夜福利在线在线| 日本一二三区视频观看| 日韩在线高清观看一区二区三区| 最近最新中文字幕免费大全7| 狂野欧美白嫩少妇大欣赏| 岛国毛片在线播放| 久久久久人妻精品一区果冻| 国产精品麻豆人妻色哟哟久久| 天天躁夜夜躁狠狠久久av| 久久精品久久精品一区二区三区| 联通29元200g的流量卡| 精品一区二区免费观看| 日本黄色片子视频| 日本黄大片高清| 欧美性感艳星| 99热这里只有是精品50| 国内揄拍国产精品人妻在线| 久久精品国产亚洲网站| 身体一侧抽搐| 亚洲成人手机| 久久av网站| 久久99热这里只有精品18| 欧美精品亚洲一区二区| 熟女电影av网| 91在线精品国自产拍蜜月| 亚洲av成人精品一区久久| 一区二区三区精品91| 能在线免费看毛片的网站| 午夜免费观看性视频| 日韩伦理黄色片| 人妻少妇偷人精品九色| 黑丝袜美女国产一区| 国产视频首页在线观看| 国产色婷婷99| 久久久久久久久大av| 少妇 在线观看| 波野结衣二区三区在线| 日本av手机在线免费观看| 亚洲国产毛片av蜜桃av| 一区二区三区精品91| 午夜福利影视在线免费观看| 黄色一级大片看看| 一级a做视频免费观看| 蜜桃久久精品国产亚洲av| 午夜福利高清视频| 午夜福利影视在线免费观看| 亚洲色图av天堂| 一级毛片电影观看| 日本欧美视频一区| 亚洲国产精品专区欧美| 亚洲婷婷狠狠爱综合网| 欧美成人午夜免费资源| 人妻一区二区av| 一个人看的www免费观看视频| 哪个播放器可以免费观看大片| 激情 狠狠 欧美| 在线免费观看不下载黄p国产| 欧美97在线视频| 成人毛片60女人毛片免费| 成人国产av品久久久| 最后的刺客免费高清国语| 内地一区二区视频在线| 久久久久国产网址| 久久精品久久久久久噜噜老黄| 91精品伊人久久大香线蕉| 国产 一区 欧美 日韩| 中文天堂在线官网| 久久综合国产亚洲精品| 免费黄色在线免费观看| 人人妻人人看人人澡| 哪个播放器可以免费观看大片| 嫩草影院新地址| 2021少妇久久久久久久久久久| 美女脱内裤让男人舔精品视频| 美女主播在线视频| 少妇裸体淫交视频免费看高清| 妹子高潮喷水视频| 人妻制服诱惑在线中文字幕| 九九久久精品国产亚洲av麻豆| 99久国产av精品国产电影| 午夜免费男女啪啪视频观看| 亚洲精品日韩av片在线观看| 一边亲一边摸免费视频| 春色校园在线视频观看| 大香蕉97超碰在线| av在线老鸭窝| 亚洲成人av在线免费| 国产精品一及| 午夜福利视频精品| 又爽又黄a免费视频| 成人亚洲精品一区在线观看 | 美女xxoo啪啪120秒动态图| 国产无遮挡羞羞视频在线观看| 亚洲最大成人中文| 在线观看一区二区三区| 王馨瑶露胸无遮挡在线观看| 涩涩av久久男人的天堂| 两个人的视频大全免费| 有码 亚洲区| 日韩 亚洲 欧美在线| 观看免费一级毛片| 天天躁夜夜躁狠狠久久av| 国语对白做爰xxxⅹ性视频网站| 伊人久久精品亚洲午夜| 国产亚洲最大av| 国产精品麻豆人妻色哟哟久久| 国产一区二区在线观看日韩| 国产精品久久久久久久久免| 国产一区二区三区av在线| 在线免费十八禁| 99精国产麻豆久久婷婷| 国模一区二区三区四区视频| 亚洲中文av在线| 一级毛片久久久久久久久女| 亚洲无线观看免费| 麻豆国产97在线/欧美| 亚洲国产精品国产精品| 最黄视频免费看| 成年免费大片在线观看| 免费人妻精品一区二区三区视频| 免费黄色在线免费观看| 亚洲精品亚洲一区二区| 久久精品夜色国产| 亚洲精品乱码久久久久久按摩| 亚洲av免费高清在线观看| 免费av不卡在线播放| 综合色丁香网| 99re6热这里在线精品视频| 男女国产视频网站| 午夜免费男女啪啪视频观看| 91久久精品国产一区二区三区| 亚洲第一av免费看| 亚洲av福利一区| 中文在线观看免费www的网站| 久久精品国产自在天天线| 久久精品国产亚洲网站| 国产男女超爽视频在线观看| 日本猛色少妇xxxxx猛交久久| 亚洲精品中文字幕在线视频 | 大陆偷拍与自拍| 大码成人一级视频| 国产欧美日韩一区二区三区在线 | 午夜免费男女啪啪视频观看| 视频区图区小说| 欧美精品亚洲一区二区| 国产高清不卡午夜福利| 我要看日韩黄色一级片| 九九爱精品视频在线观看| 女性生殖器流出的白浆| 国产精品一及| 日韩 亚洲 欧美在线| 国产欧美亚洲国产| 五月玫瑰六月丁香| 久久久久性生活片| 国产白丝娇喘喷水9色精品| 777米奇影视久久| 天堂俺去俺来也www色官网| 三级经典国产精品| 少妇的逼好多水| 国产69精品久久久久777片| 夫妻性生交免费视频一级片| 亚洲av.av天堂| 少妇 在线观看| 伦精品一区二区三区| 国产成人免费观看mmmm| 狂野欧美白嫩少妇大欣赏| h日本视频在线播放| 少妇的逼好多水| 久热久热在线精品观看| 一级毛片黄色毛片免费观看视频| 成人影院久久| 国产爽快片一区二区三区| 久久女婷五月综合色啪小说| 七月丁香在线播放| 国产人妻一区二区三区在| 伦精品一区二区三区| 亚洲一级一片aⅴ在线观看| 秋霞在线观看毛片| 久久鲁丝午夜福利片| 国产欧美另类精品又又久久亚洲欧美| 韩国av在线不卡| 少妇高潮的动态图| 日韩三级伦理在线观看| 天堂俺去俺来也www色官网| 久久久久久久久久人人人人人人| 亚洲欧洲日产国产| 内地一区二区视频在线| 1000部很黄的大片| 91精品伊人久久大香线蕉| 国产欧美日韩精品一区二区| 欧美bdsm另类| 成人无遮挡网站| 春色校园在线视频观看| 午夜免费观看性视频| 亚洲成色77777| 青春草视频在线免费观看| 国产精品不卡视频一区二区| 中文天堂在线官网| 久久人人爽av亚洲精品天堂 | 日本-黄色视频高清免费观看| 亚洲精品国产成人久久av| 精品99又大又爽又粗少妇毛片| 一级毛片黄色毛片免费观看视频| 91久久精品国产一区二区三区| 亚洲不卡免费看| av在线蜜桃| 天堂8中文在线网| 涩涩av久久男人的天堂| 我的老师免费观看完整版| 天美传媒精品一区二区| 国产亚洲av片在线观看秒播厂| 亚洲精品久久久久久婷婷小说| 国产成人a∨麻豆精品| 久久精品熟女亚洲av麻豆精品| 亚洲成人中文字幕在线播放| 色视频www国产| 只有这里有精品99| 男人狂女人下面高潮的视频| 看非洲黑人一级黄片| 18禁动态无遮挡网站| 最黄视频免费看| 午夜精品国产一区二区电影| 免费播放大片免费观看视频在线观看| 国产深夜福利视频在线观看| 久久久成人免费电影| 亚洲精品乱码久久久v下载方式| 成人国产麻豆网| 欧美高清性xxxxhd video| 亚洲欧洲国产日韩| 日日啪夜夜爽| 日韩三级伦理在线观看| 成人综合一区亚洲| 午夜激情久久久久久久| av专区在线播放| 欧美另类一区| 人人妻人人爽人人添夜夜欢视频 | 国语对白做爰xxxⅹ性视频网站| 九九在线视频观看精品| 久久久色成人| 国产高潮美女av| 国产精品99久久99久久久不卡 | 91久久精品电影网| 51国产日韩欧美| 亚洲av中文av极速乱| 三级国产精品片| 国产 一区精品| 欧美日韩亚洲高清精品| 菩萨蛮人人尽说江南好唐韦庄| 国产亚洲av片在线观看秒播厂| 啦啦啦在线观看免费高清www| 精品视频人人做人人爽| 国产高清国产精品国产三级 | 国产精品久久久久成人av| 国产免费福利视频在线观看| 秋霞在线观看毛片| 国产精品精品国产色婷婷| 亚洲精品一二三| 日本爱情动作片www.在线观看| 少妇高潮的动态图| 99久久精品国产国产毛片| 欧美精品一区二区大全| 亚洲精品成人av观看孕妇| 亚洲欧美日韩无卡精品| 国产久久久一区二区三区| 18禁裸乳无遮挡动漫免费视频| 日本欧美视频一区| 国产精品精品国产色婷婷| 九草在线视频观看| 高清欧美精品videossex| 纵有疾风起免费观看全集完整版| 国产乱来视频区| 亚洲精品日韩av片在线观看| 精品人妻一区二区三区麻豆| 国产国拍精品亚洲av在线观看| 国产在线男女| 国产综合精华液| 国产精品国产av在线观看| 啦啦啦在线观看免费高清www| a级一级毛片免费在线观看| 91久久精品国产一区二区三区| 夜夜爽夜夜爽视频| 亚洲国产欧美在线一区| 欧美日本视频| 久久99热这里只频精品6学生| 老司机影院毛片| 中文乱码字字幕精品一区二区三区| 午夜福利高清视频| 极品教师在线视频| 丰满人妻一区二区三区视频av| 日韩欧美一区视频在线观看 | 一级av片app| 亚洲国产av新网站| 秋霞伦理黄片| 国产av国产精品国产| 亚洲最大成人中文| 18禁在线播放成人免费| av黄色大香蕉| av.在线天堂| 欧美日韩国产mv在线观看视频 | 一级片'在线观看视频| 伊人久久国产一区二区| 精品久久久久久久久亚洲| 少妇 在线观看| 成人毛片60女人毛片免费| 我要看黄色一级片免费的| 国产成人一区二区在线| 激情 狠狠 欧美| 午夜免费观看性视频| 大码成人一级视频| 国产日韩欧美亚洲二区| 视频区图区小说| 欧美丝袜亚洲另类| 国内少妇人妻偷人精品xxx网站| 亚洲精品国产av成人精品| 黄色日韩在线| 久久99热这里只频精品6学生| 日韩在线高清观看一区二区三区| 精品久久久久久久久av| 又黄又爽又刺激的免费视频.| 久久99热这里只有精品18| 在线亚洲精品国产二区图片欧美 | 人妻一区二区av| 久久午夜福利片| 中文天堂在线官网| 特大巨黑吊av在线直播| 国产成人精品婷婷| 日本黄色日本黄色录像| 美女cb高潮喷水在线观看| 婷婷色麻豆天堂久久| 蜜桃久久精品国产亚洲av| 国产亚洲欧美精品永久| 99re6热这里在线精品视频| 亚洲va在线va天堂va国产| 午夜福利高清视频| 纯流量卡能插随身wifi吗| 啦啦啦在线观看免费高清www| 亚洲久久久国产精品| 婷婷色综合www| 自拍偷自拍亚洲精品老妇| 精品亚洲乱码少妇综合久久| 精品久久国产蜜桃| 国产精品.久久久| 精品一区二区三区视频在线| 观看av在线不卡| av在线老鸭窝| 中国国产av一级| 大陆偷拍与自拍| 在线免费观看不下载黄p国产| 日韩不卡一区二区三区视频在线| 人妻 亚洲 视频| 久久6这里有精品| 成人毛片60女人毛片免费| 91精品国产九色| 在线观看三级黄色| 日韩,欧美,国产一区二区三区| 我要看黄色一级片免费的| 国产精品偷伦视频观看了| 国产大屁股一区二区在线视频| 五月玫瑰六月丁香| 成人综合一区亚洲| 夫妻午夜视频| 亚洲av在线观看美女高潮| 精品亚洲乱码少妇综合久久| 日本av免费视频播放| 国产一级毛片在线| 久久久午夜欧美精品| 偷拍熟女少妇极品色| 久久精品熟女亚洲av麻豆精品| 欧美精品国产亚洲| 丝袜喷水一区| 看非洲黑人一级黄片| 日本黄色片子视频| freevideosex欧美| 亚洲欧美日韩另类电影网站 | 国产成人freesex在线| 观看美女的网站| 伦精品一区二区三区| 亚洲精品国产成人久久av| 久久久精品免费免费高清| 一边亲一边摸免费视频| 男女无遮挡免费网站观看| 各种免费的搞黄视频| 久久久a久久爽久久v久久| 亚洲av男天堂| 国产日韩欧美亚洲二区| 七月丁香在线播放| 一个人免费看片子| 爱豆传媒免费全集在线观看| 国产精品麻豆人妻色哟哟久久| 爱豆传媒免费全集在线观看| 国产日韩欧美在线精品| 国产精品人妻久久久影院| 国产成人a区在线观看| 自拍欧美九色日韩亚洲蝌蚪91 | 国产高清三级在线| 青春草亚洲视频在线观看| 人人妻人人澡人人爽人人夜夜| 51国产日韩欧美| 欧美日韩精品成人综合77777| 大又大粗又爽又黄少妇毛片口| 99九九线精品视频在线观看视频| 99视频精品全部免费 在线| 美女高潮的动态| 啦啦啦在线观看免费高清www| 色综合色国产| 久久久久性生活片| 精品午夜福利在线看| 九草在线视频观看| 国产中年淑女户外野战色| 亚洲一级一片aⅴ在线观看| 免费看光身美女| 最近2019中文字幕mv第一页| 美女国产视频在线观看| 欧美+日韩+精品| 下体分泌物呈黄色| 国产成人91sexporn| 在线精品无人区一区二区三 | 美女主播在线视频| 少妇的逼水好多| 性色avwww在线观看| 免费观看a级毛片全部| 80岁老熟妇乱子伦牲交| 日韩免费高清中文字幕av| 精品久久久久久久久亚洲| 久久毛片免费看一区二区三区| 美女cb高潮喷水在线观看| 日韩伦理黄色片| 国产精品不卡视频一区二区| 老司机影院成人| 草草在线视频免费看| 人人妻人人爽人人添夜夜欢视频 | 成人漫画全彩无遮挡| 国产在线视频一区二区| 天天躁日日操中文字幕| 欧美区成人在线视频| 国产人妻一区二区三区在| 国产一区二区三区av在线| 伊人久久国产一区二区| 高清av免费在线| 欧美激情国产日韩精品一区| 18禁在线无遮挡免费观看视频| 亚洲欧美一区二区三区黑人 | 少妇裸体淫交视频免费看高清| 精品国产一区二区三区久久久樱花 | 亚洲综合精品二区| 国产免费一级a男人的天堂| 啦啦啦啦在线视频资源|