• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A Feature Weighted Mixed Naive Bayes Model for Monitoring Anomalies in the Fan System of a Thermal Power Plant

    2022-04-15 04:18:00MinWangLiShengDonghuaZhouandMaoyinChen
    IEEE/CAA Journal of Automatica Sinica 2022年4期

    Min Wang,, Li Sheng,,Donghua Zhou,, and Maoyin Chen,

    Abstract—With the increasing intelligence and integration, a great number of two-valued variables (generally stored in the form of 0 or 1) often exist in large-scale industrial processes.However, these variables cannot be effectively handled by traditional monitoring methods such as linear discriminant analysis (LDA), principal component analysis (PCA) and partial least square (PLS) analysis. Recently, a mixed hidden naive Bayesian model (MHNBM) is developed for the first time to utilize both two-valued and continuous variables for abnormality monitoring. Although the MHNBM is effective, it still has some shortcomings that need to be improved. For the MHNBM, the variables with greater correlation to other variables have greater weights, which can not guarantee greater weights are assigned to the more discriminating variables. In addition, the conditional probability P(xj|xj′,y=k) must be computed based on historical data. When the training data is scarce, the conditional probability between continuous variables tends to be uniformly distributed,which affects the performance of MHNBM. Here a novel feature weighted mixed naive Bayes model (FWMNBM) is developed to overcome the above shortcomings. For the FWMNBM, the variables that are more correlated to the class have greater weights, which makes the more discriminating variables contribute more to the model. At the same time, FWMNBM does not have to calculate the conditional probability between variables, thus it is less restricted by the number of training data samples. Compared with the MHNBM, the FWMNBM has better performance, and its effectiveness is validated through numerical cases of a simulation example and a practical case of the Zhoushan thermal power plant (ZTPP), China.

    I. INTRODUCTION

    WITH increasing intelligence and integration, a great number of two-valued variables (generally stored as 0 or 1 value) often exist in large-scale industrial processes. For instance, 17381 variables are monitored in the No. 1 generator unit of the Zhoushan thermal power plant (ZTPP), where twovalued variables are more than 8820. These two-valued variables mainly include status monitoring variables and numerical range variables, such as control command signals and vibration over-limit signals, which switch from one state to the other with less influence from process fluctuation noise.

    In order to insure the high safety and reliability of largescale industrial processes, the problem of monitoring anomalies becomes more and more important [1]–[5]. The timely and accurate abnormal monitoring can effectively reduce waste of resources, economic losses, and even casualties [6]–[11]. Among a large number of monitoring methods, data-driven techniques have attracted much attention with the advantages of requiring less system information and prior knowledge than model-based and expert experience methods [12]–[19]. For example, principal component analysis (PCA) and its variants have been widely used in industrial processes [20], [21]. In order to detect qualityrelated faults, approaches based on partial least square (PLS)analysis have been proposed [22], [23]. When the training data contains both normal and abnormal working condition samples, linear discriminant analysis (LDA) has been utilized[24]. Kernel dictionary learning can also achieve excellent performance [18]. In addition, many other machine learning methods, such as K-nearest neighbors (KNN) [25], support vector machine (SVM) [26], etc., have also been applied in abnormal monitoring.

    However, the fact that two-valued variables ubiquitously exist in large-scale industrial processes presents a challenge to traditional monitoring methods. It is well known that the above mentioned methods are strongly based on continuous variables and may be not suitable for two-value variables. For example, PCA, PLS, LDA, etc. obtain a subspace that is convenient for monitoring through decomposition and then construct statistics or hyperplanes. But, these operations are based on Euclidean distance or Mahalanobis distance, which can not effectively mine the process information of twovalued variables. Two-valued variables are usually deleted during the data preprocessing stage [27], [28]. Recently, the mixed hidden naive Bayesian model (MHNBM) was proposed for the first time to combine both two-valued and continuous variables to improve monitoring performance [28]. Although MHNBM is effective, the variables with greater correlation to other variables have greater weights, which can not guarantee that greater weights are assigned to the more discriminating variables. Moreover, the conditional probabilityP(xj|xj′,y=k)betweenxjandxj′ undery=kmust be computed based on the historical data. When training data is scarce, the conditional probability between continuous variables tends to be uniformly distributed, which will affect performance.

    Motivated by the above discussions, a model known as the feature weighted mixed naive Bayes model (FWMNBM) is proposed to overcome the shortcomings of MHNBM. In FWMNBM, the variables that are more correlated to the class have greater weights which results in variables with greater differences under different working conditions contribute more to the model. Meanwhile, FWMNBM can avoid calculating the conditional probability between variables such that it can still be used when there is not enough training data.In addition, a more effective consistent characterization technique is developed for the correlation of mixed variables,and the corresponding feasibility analysis is conducted.Compared with MHNBM, FWMNBM has better performance, and the effectiveness of FWMNBM is validated through the simulations of a numerical example and a practical vibration fault case.

    In this paper, the remainder is organized as follows. Some preliminaries are briefly outlined in Section II. In Section III-A,FWMNBM is elaborated on. The estimation of parameters is introduced in Section III-B. In Section IV, the effectiveness of FWMNBM is verified. Finally, conclusions are drawn in Section V.

    II. PRELIMINARY

    III. MAIN ALGORITHM

    A. FWMNBM

    correlation between thexjandyas accurately as possible. The mutual information (MI)MI(xj,y) is used to characterize the correlation betweenxjandy.MI(xj,y) can effectively describe the correlation betweenxjandy, but it also contains some correlational information betweenxjand other variables(such asxj′) because variables are coupled. Then, the average feature-feature intercorrelation is introduced to compute the feature weight [32]

    B. Parameters Estimation

    In this subsection,Xis used for parameter estimation.According to maximum likelihood estimation (MLE) [35], the prior probability can be given as

    where

    Algorithm FWMNBM Offline modeling:X,yXt Xc Step 1: Divide the training data () into two-valued variables and continuous variables .Step 2: Construct the auxiliary two-valued variable for each continuous variable according to (12).Step 3: Calculate the estimates of each probability via (30) and(32).Step 4: Calculate the mutual information between variables and between variables and labels.FWj Step 5: Calculate the weight of the feature ().?θk j ?pk Step 6: Estimate the response functions ( ) and the prior probabilities ( ) of two-valued variables.?μk j?σk j Step 7: Estimate the mean ( ) and the standard deviation () of continuous variables.Step 8: Build the model with the estimated parameters.Online detection:?x Step 9: Select the sampled data and construct vector via (17).φkφk Step 10: Calculate , via (18) and (19).?x·φk+φkkargmaxk(?x·φk+φk)Step 11: Calculate for every , then is the predicted label.

    IV. SIMULATION

    In this section, the numerical cases of a numerical simulation example and a practical vibration fault case of ZTPP are utilized to validate the effectiveness of FWMNBM.

    A. Numerical Simulation

    The numerical simulation data contains 5 continuous variables and 5 two-valued variables. The means of continuous variables are shown in Table I and corresponding standard deviations (stds) are displayed in Table II. The twovalued variable values under different classes are depicted in Table III. In order to make the case more general, the twovalued variable values under different classes are randomly adjusted. The adjustment percentages are listed in Table III.For instance, some values ofv6under normal working conditions, which are set as 0, are changed to be 1 after adjusting. Under each working condition, 1500 samples are randomly generated according to the parameters. The samples under normal 1 and fault 1 are used for training the model,and the other instances are used for testing.

    TABLE I THE PRESET MEANS OF CONTINUOUS VARIABLES

    TABLE II THE PRESET STDS OF CONTINUOUS VARIABLES

    TABLE III THE VALUES AND ADJUSTMENT PERCENTAGE OF TWO-VALUED VARIABLES

    The Gaussian naive Bayesian model (GNBM) is used for the continuous variables and the Bernoulli naive Bayesian model (BNBM) is utilized to two-valued variables. That is onlyv1,...,v5are used for build and test GNBM, and BNBM just utilize the information ofv6,...,v10for modeling and verification. Different from GNBM and BNBM, MHNBM and FWHNBM are utilized for modeling and anomaly detection with both two-valued and continuous variables. The first 1500 samples of test data are normal data, and the rest are marked as faults. The test results of all above models for the testing data are depicted in Figs. 1(a)–1(d). There are a lot of false alarms and missing faults when only continuous or twovalued variables are used, which can be seen in Figs. 1(a) and 1(b). MHNBM and FWHNBM have better performance because they can simultaneously mine continuous and twovalued information at the same time. Compared to MHNBM,FWHNBM has the lower false alarm rate (FARs) and a higher fault detection rate (FDR) which are depicted in Figs. 2(e) and 2(f).

    B. Actual Data Validation

    A vibration fault of ZTPP is also used to illustrate the effectiveness of FWMNBM. At 11:35 on September 3, 2017,a hydraulic cylinder vibration fault of the primary air fan occurred, and it was recovered after 26 hours. The data,containing 495 two-valued variables and 260 continuous variables, is sampled every 5 seconds and collected from 11:35, September 1, 2017. A total of 53280 instances are collected for model training and testing.

    The first 60% instances under normal conditions and first 60% fault instances are utilized for modeling, and the remaining data is used for testing. In this article, we used 35 two-valued variables and continuous variables respectively.The detailed variable selection process can refer to article[28]. In the traditional methods, LDA [24], decision trees(DT) [37], SVM [26], k-nearest neighbors (KNN) [25] are adopted to detect anomaly with the continuous variables.MHNBM and FWMNBM are used with both two-valued and continuous variables. The testing results of all methods are shown in Figs. 2(a)–2(f).

    Excepting for DT, the performance of other methods in terms of FDR are very satisfactory. DT has omission of fault and all methods have false alarms. In order to compare the performance of various methods, the FDRs and FARs of all methods are shown in Table IV. From the experimental results, the addition of two-valued variables can reduce the impact of parameter fluctuations before a fault occurs.Affected by anomaly evolution, some normal instances are misclassified into fault. However, MHNBM and FWMNBM effectively reduce FAR through combining multiple process data sources, because the advantages of both two-valued and continuous variables are taken into consideration. Among all methods, FWMNBM has the best detection performance.

    V. CONCLUSIONS

    A data-driven anomaly detection method called FWMNBM is proposed with both two-valued and continuous variables.For FWMNBM, the variables more correlated to class have greater weights, which makes the more discriminating variables contribute more to the model. At the same time,FWMNBM can effectively avoid calculating the conditional probability between variables so that it can still be used when the amount of training data is not sufficient. In addition, a more effective consistent characterization method for the correlation of mixed variables is provided, and the corresponding feasibility analysis is conducted. The superior performance of FWMNBM is verified by the numerical cases of a numerical simulation example and an actual plant’s case.Compared to traditional classical approaches, MHNBM and FWMNBM significantly improve the anomaly monitoring performance by increasing the information of two-valued variables. Furthermore, FWMNBM has more outstanding performance because greater weights are assigned to variables with greater difference under different working conditions.

    Fig. 1. The label results of different methods. (a) GNBM; (b) BNBM; (c) MHNBM; (d) FWMNBM.

    Fig. 2. The testing results. (a) LDA; (b) KNN; (c) DT; (d) SVM; (e) MHNBM; (f) FWMNBM.

    APPENDIX A ANALYSIS OF DEFINITION 1

    Definition 1 unifies the correlation analysis between variables containing both two-valued and continuous variables by the same standard. The correlation between two-valued variables and two-valued variables or between continuous variables and continuous variables can be effectively characterized, and the original two-valued variables do not change. Therefore, the rationality of Definition 1 can be proved when a quantitative relationship exists between the correlation index of the auxiliary two-valued variables and that of original continuous variables.

    TABLE IV FARS AND FDRS OF ALL METHODS

    日韩有码中文字幕| 国产成人欧美在线观看| 婷婷丁香在线五月| 99久久综合精品五月天人人| 色av中文字幕| 国产精品久久电影中文字幕| 欧美精品啪啪一区二区三区| 2021天堂中文幕一二区在线观| 国产三级黄色录像| 午夜福利视频1000在线观看| 黄色a级毛片大全视频| 在线十欧美十亚洲十日本专区| 久久久久亚洲av毛片大全| 亚洲熟妇熟女久久| 日本一区二区免费在线视频| 丁香六月欧美| 曰老女人黄片| 一二三四在线观看免费中文在| 91九色精品人成在线观看| 最近最新中文字幕大全免费视频| 免费在线观看完整版高清| 欧美绝顶高潮抽搐喷水| 黄色片一级片一级黄色片| 一进一出好大好爽视频| 午夜免费观看网址| 欧美日韩中文字幕国产精品一区二区三区| 亚洲七黄色美女视频| 99久久综合精品五月天人人| 成人18禁在线播放| 真人做人爱边吃奶动态| 白带黄色成豆腐渣| 午夜视频精品福利| 国产一区二区在线观看日韩 | 日韩精品免费视频一区二区三区| 少妇被粗大的猛进出69影院| 亚洲熟妇中文字幕五十中出| 制服丝袜大香蕉在线| 久久久久久久精品吃奶| 一本久久中文字幕| 国产麻豆成人av免费视频| 女人被狂操c到高潮| 亚洲国产精品久久男人天堂| 亚洲av成人精品一区久久| 一级毛片高清免费大全| 香蕉久久夜色| 少妇人妻一区二区三区视频| 丝袜美腿诱惑在线| 精品久久久久久成人av| 亚洲成人免费电影在线观看| 天堂√8在线中文| 十八禁人妻一区二区| 色尼玛亚洲综合影院| 国产精品一区二区三区四区免费观看 | 亚洲熟妇中文字幕五十中出| 亚洲aⅴ乱码一区二区在线播放 | 琪琪午夜伦伦电影理论片6080| 久9热在线精品视频| 50天的宝宝边吃奶边哭怎么回事| 国产一级毛片七仙女欲春2| 黄片小视频在线播放| 丝袜人妻中文字幕| 啦啦啦韩国在线观看视频| 亚洲一区二区三区色噜噜| 亚洲精品色激情综合| 午夜免费激情av| 亚洲男人的天堂狠狠| 国产激情偷乱视频一区二区| 中亚洲国语对白在线视频| 国产不卡一卡二| 88av欧美| 国产蜜桃级精品一区二区三区| 久久久精品大字幕| 日韩欧美在线乱码| 亚洲人成网站在线播放欧美日韩| 少妇人妻一区二区三区视频| 九色成人免费人妻av| 国产精品 国内视频| 久久九九热精品免费| 免费看日本二区| 99精品在免费线老司机午夜| 国产一区二区三区视频了| 宅男免费午夜| a级毛片在线看网站| 别揉我奶头~嗯~啊~动态视频| 精品午夜福利视频在线观看一区| 黄色毛片三级朝国网站| 全区人妻精品视频| 中文字幕人成人乱码亚洲影| 视频区欧美日本亚洲| 欧美zozozo另类| 一级片免费观看大全| 国模一区二区三区四区视频 | 亚洲电影在线观看av| 两性午夜刺激爽爽歪歪视频在线观看 | 日本三级黄在线观看| aaaaa片日本免费| 中国美女看黄片| 久久久久久大精品| 日韩欧美一区二区三区在线观看| 亚洲精品美女久久久久99蜜臀| 国内毛片毛片毛片毛片毛片| 99riav亚洲国产免费| 在线观看日韩欧美| 久99久视频精品免费| 久久久国产成人精品二区| 桃色一区二区三区在线观看| 国内精品久久久久久久电影| tocl精华| 国产高清有码在线观看视频 | 国产亚洲欧美98| 欧美色欧美亚洲另类二区| 九色国产91popny在线| 国产亚洲精品综合一区在线观看 | 欧美在线一区亚洲| 老司机午夜十八禁免费视频| 99久久精品国产亚洲精品| 久久午夜亚洲精品久久| 色精品久久人妻99蜜桃| 我要搜黄色片| 久久中文字幕一级| 51午夜福利影视在线观看| 久久精品影院6| 久久精品国产清高在天天线| 欧美在线黄色| 神马国产精品三级电影在线观看 | 老司机靠b影院| 此物有八面人人有两片| 国产精品一及| 听说在线观看完整版免费高清| 丝袜人妻中文字幕| bbb黄色大片| 亚洲 欧美一区二区三区| 日本黄大片高清| 搡老岳熟女国产| 亚洲精品美女久久av网站| av在线天堂中文字幕| 久久九九热精品免费| 一级片免费观看大全| 一级片免费观看大全| 一本一本综合久久| 精品午夜福利视频在线观看一区| 脱女人内裤的视频| 亚洲av五月六月丁香网| 亚洲成人久久性| 在线永久观看黄色视频| 极品教师在线免费播放| 青草久久国产| 美女扒开内裤让男人捅视频| 亚洲精品av麻豆狂野| 国产黄片美女视频| 免费看a级黄色片| 黄色视频不卡| 国产欧美日韩一区二区精品| 两性午夜刺激爽爽歪歪视频在线观看 | 国产成人影院久久av| 欧美最黄视频在线播放免费| 欧美在线黄色| 日韩有码中文字幕| 一级黄色大片毛片| 最近视频中文字幕2019在线8| 成人亚洲精品av一区二区| 欧美三级亚洲精品| 一个人免费在线观看电影 | 在线a可以看的网站| 哪里可以看免费的av片| www.精华液| 国产99白浆流出| 黄色视频,在线免费观看| 亚洲国产中文字幕在线视频| 999精品在线视频| 亚洲性夜色夜夜综合| 国产精品 欧美亚洲| 三级国产精品欧美在线观看 | 成年女人毛片免费观看观看9| 午夜激情av网站| www.999成人在线观看| 欧美3d第一页| 久久婷婷成人综合色麻豆| 香蕉丝袜av| www.熟女人妻精品国产| av中文乱码字幕在线| 久久亚洲真实| 国产熟女xx| 久久精品国产亚洲av香蕉五月| 麻豆成人午夜福利视频| 免费无遮挡裸体视频| 变态另类丝袜制服| √禁漫天堂资源中文www| 久久婷婷成人综合色麻豆| 国产伦人伦偷精品视频| 成人一区二区视频在线观看| 18禁黄网站禁片免费观看直播| 午夜免费激情av| 韩国av一区二区三区四区| 久久精品国产亚洲av香蕉五月| 日本一区二区免费在线视频| 成人特级黄色片久久久久久久| 一个人免费在线观看的高清视频| 亚洲人成网站高清观看| 国产精品av视频在线免费观看| 操出白浆在线播放| 全区人妻精品视频| 色播亚洲综合网| 久久 成人 亚洲| 日韩精品免费视频一区二区三区| 夜夜夜夜夜久久久久| 又紧又爽又黄一区二区| 日本a在线网址| 亚洲av成人精品一区久久| 欧美av亚洲av综合av国产av| 狂野欧美白嫩少妇大欣赏| 亚洲色图av天堂| 变态另类丝袜制服| 99热这里只有精品一区 | av国产免费在线观看| 久9热在线精品视频| 757午夜福利合集在线观看| 哪里可以看免费的av片| 成人18禁高潮啪啪吃奶动态图| 亚洲真实伦在线观看| a在线观看视频网站| 久久精品国产综合久久久| 18禁国产床啪视频网站| 亚洲国产中文字幕在线视频| 亚洲国产精品sss在线观看| 成年人黄色毛片网站| 搞女人的毛片| 一个人免费在线观看的高清视频| 国产99久久九九免费精品| 97人妻精品一区二区三区麻豆| 两性夫妻黄色片| 国产精品乱码一区二三区的特点| 亚洲无线在线观看| 夜夜躁狠狠躁天天躁| 97人妻精品一区二区三区麻豆| 麻豆成人午夜福利视频| 亚洲 欧美 日韩 在线 免费| 亚洲黑人精品在线| 老司机深夜福利视频在线观看| 长腿黑丝高跟| 日本三级黄在线观看| 免费看a级黄色片| 香蕉国产在线看| 天天一区二区日本电影三级| 99国产综合亚洲精品| 成人18禁高潮啪啪吃奶动态图| 少妇人妻一区二区三区视频| 日本撒尿小便嘘嘘汇集6| 久久久久久免费高清国产稀缺| 91av网站免费观看| 黑人操中国人逼视频| 男女床上黄色一级片免费看| 正在播放国产对白刺激| 亚洲成人精品中文字幕电影| 成年人黄色毛片网站| 亚洲午夜精品一区,二区,三区| 亚洲中文av在线| 一本精品99久久精品77| 亚洲美女视频黄频| 国产区一区二久久| 好男人电影高清在线观看| 日韩大码丰满熟妇| 又黄又爽又免费观看的视频| 丝袜美腿诱惑在线| 国产av麻豆久久久久久久| 久久天堂一区二区三区四区| 久久伊人香网站| 2021天堂中文幕一二区在线观| 欧美人与性动交α欧美精品济南到| 成人国产综合亚洲| 日本免费a在线| 看片在线看免费视频| 国产一区在线观看成人免费| 久9热在线精品视频| 三级男女做爰猛烈吃奶摸视频| 99国产综合亚洲精品| 国产99久久九九免费精品| 他把我摸到了高潮在线观看| 亚洲国产精品久久男人天堂| 男女下面进入的视频免费午夜| 国产视频内射| 嫩草影视91久久| 禁无遮挡网站| 在线观看免费视频日本深夜| 午夜福利在线观看吧| 久久精品亚洲精品国产色婷小说| 天天添夜夜摸| 欧美日本视频| 九九热线精品视视频播放| 黑人欧美特级aaaaaa片| 国产欧美日韩一区二区三| 国产单亲对白刺激| 少妇人妻一区二区三区视频| 久久久国产成人精品二区| 国产三级中文精品| 美女 人体艺术 gogo| 亚洲欧美精品综合一区二区三区| 人成视频在线观看免费观看| 国内精品一区二区在线观看| 两个人视频免费观看高清| 在线观看舔阴道视频| 国产欧美日韩精品亚洲av| 高清在线国产一区| 他把我摸到了高潮在线观看| 色尼玛亚洲综合影院| 国产一区在线观看成人免费| 特大巨黑吊av在线直播| 美女午夜性视频免费| 最新在线观看一区二区三区| 亚洲成人精品中文字幕电影| 欧美中文日本在线观看视频| 久久人人精品亚洲av| 午夜老司机福利片| 成人国产一区最新在线观看| 免费在线观看黄色视频的| 国产一区二区三区视频了| 国产成人影院久久av| 女人爽到高潮嗷嗷叫在线视频| 男人舔女人下体高潮全视频| a在线观看视频网站| 国产探花在线观看一区二区| www.自偷自拍.com| 国产精品一及| 欧美成人性av电影在线观看| 欧美3d第一页| 高潮久久久久久久久久久不卡| 午夜视频精品福利| 午夜亚洲福利在线播放| 蜜桃久久精品国产亚洲av| 欧美三级亚洲精品| 国产一区二区三区在线臀色熟女| 老司机午夜福利在线观看视频| 在线观看免费视频日本深夜| 国产一区二区激情短视频| 国产精品亚洲av一区麻豆| 老司机在亚洲福利影院| 国产av不卡久久| 狂野欧美激情性xxxx| 午夜两性在线视频| 成人手机av| 全区人妻精品视频| 香蕉国产在线看| 亚洲电影在线观看av| 俺也久久电影网| 黄色成人免费大全| 这个男人来自地球电影免费观看| 亚洲成人免费电影在线观看| 久久午夜亚洲精品久久| 一进一出抽搐gif免费好疼| 后天国语完整版免费观看| 日韩中文字幕欧美一区二区| tocl精华| 日本免费一区二区三区高清不卡| 午夜激情福利司机影院| 免费看a级黄色片| 97超级碰碰碰精品色视频在线观看| 此物有八面人人有两片| 国产区一区二久久| 精华霜和精华液先用哪个| 老司机午夜福利在线观看视频| 日韩欧美精品v在线| 三级毛片av免费| 亚洲 国产 在线| 99久久国产精品久久久| av中文乱码字幕在线| av片东京热男人的天堂| 亚洲欧美日韩无卡精品| 一卡2卡三卡四卡精品乱码亚洲| 中文字幕人成人乱码亚洲影| 精品久久久久久成人av| 久久精品国产清高在天天线| 夜夜躁狠狠躁天天躁| 免费高清视频大片| 一级毛片精品| 久久久精品欧美日韩精品| 欧美高清成人免费视频www| 久久久国产精品麻豆| 日韩欧美在线乱码| 99国产综合亚洲精品| 国产成+人综合+亚洲专区| 在线观看美女被高潮喷水网站 | 国产精品九九99| 国产激情欧美一区二区| 露出奶头的视频| 亚洲av片天天在线观看| 男女之事视频高清在线观看| 国产精品一区二区精品视频观看| 日韩大码丰满熟妇| 黄色 视频免费看| 在线观看日韩欧美| 日韩欧美国产一区二区入口| 久久精品国产99精品国产亚洲性色| 久久久国产欧美日韩av| 欧美日韩亚洲国产一区二区在线观看| 欧美午夜高清在线| 久久久久久久久免费视频了| 国产av不卡久久| 天堂av国产一区二区熟女人妻 | 精品国产乱子伦一区二区三区| 国产高清视频在线观看网站| 久久 成人 亚洲| 中文字幕熟女人妻在线| 不卡av一区二区三区| 日本a在线网址| 亚洲色图av天堂| 亚洲精品久久国产高清桃花| 999久久久精品免费观看国产| 国产av又大| 亚洲专区中文字幕在线| 免费在线观看成人毛片| 一级a爱片免费观看的视频| 成人三级做爰电影| 香蕉av资源在线| 最近最新中文字幕大全电影3| 亚洲18禁久久av| 国产激情欧美一区二区| 精品国产乱码久久久久久男人| 欧美精品啪啪一区二区三区| 日韩大码丰满熟妇| ponron亚洲| 午夜激情福利司机影院| 巨乳人妻的诱惑在线观看| 欧美极品一区二区三区四区| 国产91精品成人一区二区三区| 两个人看的免费小视频| 亚洲精品国产精品久久久不卡| 亚洲av成人一区二区三| 亚洲精品中文字幕一二三四区| 国产精品一区二区三区四区免费观看 | 亚洲精品在线观看二区| 特大巨黑吊av在线直播| 国产精品,欧美在线| 99精品在免费线老司机午夜| 国内毛片毛片毛片毛片毛片| av免费在线观看网站| 这个男人来自地球电影免费观看| 久久久久久人人人人人| 女人被狂操c到高潮| 久久亚洲精品不卡| 久久久精品大字幕| 极品教师在线免费播放| 国产精品99久久99久久久不卡| 久久久久国内视频| 12—13女人毛片做爰片一| 久久久久性生活片| 国产精品av视频在线免费观看| 精品乱码久久久久久99久播| 久久久精品国产亚洲av高清涩受| 97人妻精品一区二区三区麻豆| svipshipincom国产片| 久久婷婷人人爽人人干人人爱| 国产精品 欧美亚洲| 亚洲精品色激情综合| 两个人视频免费观看高清| 成人国产综合亚洲| 香蕉国产在线看| 此物有八面人人有两片| 欧美另类亚洲清纯唯美| 国产精品一区二区三区四区久久| 中文字幕高清在线视频| cao死你这个sao货| 身体一侧抽搐| 首页视频小说图片口味搜索| 香蕉av资源在线| 免费观看精品视频网站| 日韩三级视频一区二区三区| 又黄又粗又硬又大视频| 这个男人来自地球电影免费观看| 大型黄色视频在线免费观看| 精品久久蜜臀av无| 1024香蕉在线观看| 国产成人精品久久二区二区免费| 日韩av在线大香蕉| 免费在线观看影片大全网站| 首页视频小说图片口味搜索| 18禁国产床啪视频网站| 日韩欧美在线乱码| a级毛片在线看网站| 两个人的视频大全免费| 女警被强在线播放| 一进一出抽搐gif免费好疼| 久久香蕉激情| 午夜视频精品福利| 亚洲欧美日韩高清专用| 色哟哟哟哟哟哟| 99riav亚洲国产免费| 欧美日韩精品网址| 亚洲欧美一区二区三区黑人| 黑人巨大精品欧美一区二区mp4| 真人一进一出gif抽搐免费| 午夜影院日韩av| www.精华液| 变态另类丝袜制服| 757午夜福利合集在线观看| 男人的好看免费观看在线视频 | 国产97色在线日韩免费| 国产91精品成人一区二区三区| 一区二区三区国产精品乱码| 一个人观看的视频www高清免费观看 | 一本综合久久免费| 欧美成人一区二区免费高清观看 | 久久久久久久午夜电影| 亚洲欧美日韩东京热| 毛片女人毛片| www.自偷自拍.com| 国产久久久一区二区三区| 国产午夜精品久久久久久| 在线十欧美十亚洲十日本专区| 国产精华一区二区三区| 欧美日本亚洲视频在线播放| 成人18禁高潮啪啪吃奶动态图| 国产精品爽爽va在线观看网站| 色老头精品视频在线观看| 91国产中文字幕| 亚洲 国产 在线| 国产精品久久电影中文字幕| 国产一区二区激情短视频| 亚洲一区中文字幕在线| 好男人在线观看高清免费视频| 在线视频色国产色| 午夜精品一区二区三区免费看| 91av网站免费观看| 国产99白浆流出| 午夜激情福利司机影院| 草草在线视频免费看| 丁香六月欧美| 国产精品 国内视频| 在线观看免费视频日本深夜| 亚洲欧美日韩高清专用| 亚洲 国产 在线| 亚洲免费av在线视频| 精品久久久久久久久久久久久| 国产男靠女视频免费网站| 99热6这里只有精品| 国产精品久久久久久亚洲av鲁大| 亚洲人成电影免费在线| 老汉色∧v一级毛片| 欧美人与性动交α欧美精品济南到| 99久久久亚洲精品蜜臀av| 国产成人aa在线观看| www.自偷自拍.com| 国产亚洲欧美98| 中文字幕人成人乱码亚洲影| 午夜成年电影在线免费观看| 99久久精品热视频| 亚洲天堂国产精品一区在线| 天堂动漫精品| 中文字幕高清在线视频| 欧美性猛交╳xxx乱大交人| 国产亚洲精品一区二区www| 岛国在线免费视频观看| 777久久人妻少妇嫩草av网站| 高清毛片免费观看视频网站| 黄色 视频免费看| 久久这里只有精品19| 亚洲成人精品中文字幕电影| 精品日产1卡2卡| 国产三级黄色录像| 在线a可以看的网站| 桃色一区二区三区在线观看| 男女床上黄色一级片免费看| 又黄又爽又免费观看的视频| 黄色片一级片一级黄色片| 免费av毛片视频| 国产亚洲精品综合一区在线观看 | 岛国在线观看网站| 一级作爱视频免费观看| 男女下面进入的视频免费午夜| 男男h啪啪无遮挡| 精品久久久久久久末码| 亚洲精品在线观看二区| 亚洲av成人精品一区久久| 亚洲av熟女| 好男人电影高清在线观看| 天堂影院成人在线观看| 国产黄色小视频在线观看| 久久久久久人人人人人| 国产片内射在线| 听说在线观看完整版免费高清| 国产99白浆流出| 亚洲精品国产一区二区精华液| 淫秽高清视频在线观看| 亚洲国产高清在线一区二区三| 亚洲欧美精品综合久久99| 久久精品综合一区二区三区| 变态另类成人亚洲欧美熟女| 夜夜夜夜夜久久久久| 老汉色av国产亚洲站长工具| 欧美精品亚洲一区二区| 久久久久久亚洲精品国产蜜桃av| 久久精品影院6| 亚洲专区国产一区二区| 又爽又黄无遮挡网站| АⅤ资源中文在线天堂| 变态另类成人亚洲欧美熟女| 欧美中文日本在线观看视频| 亚洲精品国产精品久久久不卡| 日本成人三级电影网站| 久久久久国产一级毛片高清牌| 女生性感内裤真人,穿戴方法视频| 精品不卡国产一区二区三区| 久久久久久亚洲精品国产蜜桃av| 长腿黑丝高跟| 麻豆成人av在线观看| 久久精品国产99精品国产亚洲性色| 国产一区二区激情短视频| 熟女电影av网| 欧美成人免费av一区二区三区| 九九热线精品视视频播放| 久久久久久免费高清国产稀缺| 欧美中文综合在线视频| 久久人妻福利社区极品人妻图片| 999精品在线视频| 在线播放国产精品三级| 51午夜福利影视在线观看|