• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Searching for Best Network Topologies with Optimal Synchronizability: A Brief Review

    2022-04-15 04:19:52GuanrongChen
    IEEE/CAA Journal of Automatica Sinica 2022年4期

    Guanrong Chen,

    Abstract—The Laplacian eigenvalue spectrum of a complex network contains a great deal of information about the network topology and dynamics, particularly affecting the network synchronization process and performance. This article briefly reviews the recent progress in the studies of network synchronizability, regarding its spectral criteria and topological optimization, and explores the role of higher-order topologies in measuring the optimal synchronizability of large-scale complex networks.

    I. INTRODUCTI ON

    NETWORK science has grown to be a broad discipline after a continued and persistent research pursuit from various scientific and engineering communities, especially in multi-agent systems, data science, statistical physics, applied mathematics, structural biology and social studies [1]–[3]. In fact, this interdisciplinary field of network science has developed very rapidly in recent years. On the one hand,network science is a self-contained discipline overlapping the classical graph theory developed since the era of Euler in the 18th century [1]–[3], followed by the comprehensive Erd?s-Rényi random graph theory [4] and the recent developments of Watts-Strogatz small-world network model [5] and Price-Barabási-Albert scale-free network model [6], [7]. On the other hand, multi-agent systems theory has become indispensable in network science and engineering, offering new approaches to investigating many real-world applications of complex dynamical networks.

    Meanwhile, the studies of dynamical synchronization among networked multi-agent systems have developed swiftly with fruitful theoretical results and new findings, particularly from the scientific communities of network science and control systems. Actually, synchronization of coupled systems is one of the oldest scientific research topics, which can be traced back to as early as the Dutch scientist Christian Huygens who in 1665 discovered perfect synchrony of two pendulum clocks fastened to a beam [8]. Since then, the study of synchronization of networks among dynamical systems or oscillators has gone through a long way with many significant results and discoveries, and remains to be a very active research subject in science and engineering today.

    The concept of network synchronization may be roughly classified into state synchronization and phase synchronization, but only the former will be addressed by this article. It is well known that in most cases synchronization is a desirable behavior, e.g. coordination of multiple mobile agents, while in other cases it can be undesirable, e.g. data traffic congestions.One typical case in point where synchronization is preferable is its essence for the functioning of biological neuronal systems [9]: “Synchronous behavior of neural assemblies is a central topic in neuroscience. It is known to be correlated with cognitive activities [10] during the normal functioning of the brain, while abnormal synchronization is linked to important brain disorders, such as epilepsy, Parkinson’s disease,Alzheimer’s disease, schizophrenia and autism [11]. Hence the interest is in the topic of neural synchronization, which has been extensively explored theoretically [12].” When synchrony is beneficial, therefore, one would like to maximize it, motivating the current research on optimizing the synchronizability of complex networks. A survey of some earlier research works on various aspects of complex network synchronization is presented in [13].

    The currently fast-evolving research direction on network synchronization has created a corpus of exciting opportunities as well as great challenges to both network scientists and system engineers. A complex dynamical network has typically large numbers of nodes and edges, with higher-dimensional dynamical node-systems such as nonlinear oscillators, which are interconnected in some complicated topologies. It took quite a long time for researchers to understand the intrinsic relationship between topology and synchronizability of a general complex network, which turns out to be essential for many real-world applications.

    This article briefly reviews the studies of complex network synchronization in relation to the network topologies, focusing on the synchrnizability of general networks with typical topologies such as the aforementioned random-graph networks, small-world networks and scale-free networks, as well as totally homogeneous networks.

    Specifically, this article reviews the basic notion and research progress of network synchronization and synchronizability. Section II provides some preliminaries on the general network model and network synchronization formulation. Section III addresses the issue of network synchronizability and presents two criteria. Section IV describes the optimal network synchronizability based on homogeneous topologies. Section V discusses the recent progress in measuring optimal synchronizability using tools from higher-order network topologies. Finally, Section VI concludes the survey with a brief future research outlook.

    II. PRELIMINARIES

    This section introduces a general network model, which covers the aforementioned random-graph, small-world and scale-free networks, and then describes the general network synchronization problem.

    A. Network Model

    A diffusively connected, undirected and unweighted continuous-time network ofNidentical node-systems can be described by [14]

    B. Network Synchronization Problem

    Network (1) is said to achieve (complete state)synchronizationif, and only if,

    To derive criteria for achieving synchronization of network(1), spectral analysis based on the network Laplacian eigenvalues (6) is a powerful and effective tool to use, as can be seen above and further discussed below.

    In retrospect, the first synchronization criterion for network(1) was established in [16], [17], in terms of the smallest nonzero Laplacian eigenvalue λ2in (6), namely,

    III. NETWORK SYNCHRONIZABILITY AND CRITERIA

    Fig. 1. Network synchronization regions.

    These two criteria can be illustrated graphically by Fig. 1,where the curve in each figure is the conditional Lyapunov exponent (LE) of network (1), which can be roughly understood here as the boundary of the Laplacian eigenvalue set [18]. In figure (a), the curve is never negative (i.e., the synchronization region is empty), therefore the network will not be synchronizing. In figure (b), the curve is negative over an unbounded internal [α0,∞) on theα-axis (i.e., the synchronization regionSmaxis unbounded). In figure (c), the curve is negative over a bounded internal [α1,α2] on theαaxis (i.e., the synchronization regionSmaxis bounded).

    Later it was found, both numerically [19] and analytically[20], that the network synchronization regionSmaxcan be a union of several intervals, namely the curve in Fig. 1 (c) may bend down and then bend up again alternatively around theαaxis, where the number of bending times depends on the order of the characteristic polynomial of the network Laplacian matrix. In this case, however, it was observed that the eigenratio criterion (9) may not work properly [21] in the case where the synchronization region is a union of several intervals since the ratio might fall into somewhere between two such intervals.

    IV. NETWORK TOPOLOGIES WITH BEST SYNCHRONIZABILITY

    To compare the synchronization performances of two networks, the concept ofsynchronizabilityis introduced,which refers to the ability of self-synchronizing without external control input or structural perturbations. The interest here is to compare two networks to see which one has a“better” synchronizability in the sense that it is easier or faster synchronizing and/or has stronger robustness in resisting perturbations, so that the eigenvalue λ2or the eigenratio λ2/λNcan remain inside the corresponding synchronization region.

    It is easy to see that

    i)for criterion (8), the larger the λ2, the better the network synchronizability;

    ii)for criterion (9), the larger the ratio λ2/λN, namely the closer to 1, the better the network synchronizability.

    To this end, it is interesting to find what kinds of network topologies might have the best possible synchronizability. To search for optimal network topologies that may have the best synchronizability, it was found [22] that, in any group of networks with same number of nodes and same number of edges, the totally homogeneous networks are optimal, better than others in the same group of networks. A totally homogeneous network is characterized by the degrees, girths and pathsums of its nodes, defined respectively as follows [22]:

    i)Degree of a nodei, denoted byki, is the number of its adjacent edges.

    As small-sized examples of totally homogeneous networks,those shown in Fig. 2 are respectively optimal ones from their own groups of networks with same number of nodes and same number of edges, in the sense that comparing to the other networks in the same group they have the largest λ2and λ2/λN[22].

    It can be seen from Fig. 2 that all optimal totally homogeneous networks are homogeneously and symmetrically connected, with many cycles. Indeed, these are important features of optimal networks with best synchronizability observed from extensive simulations [22], [24], and verified by higher-order topologies as further discussed below.Nevertheless, this conjecture remains to be further proved mathematically.

    V. EXPLORING HIGHER-ORDER TOPOLOGIES

    As mentioned, cycles are important and indeed essential for having optimal network synchronizability, which are main subjects for study in algebraic topology [25]. In complex networks, their higher-order topologies involve many cycle motifs of different orders, such as cliques (fully-connected subgraphs) of different orders like triangles, tetrahedrons and so on, as well as cavities of different orders [23].

    For a given network, define

    m0= number of nodes,

    m1= number of edges,

    m2= number of triangles,

    m3= number of tetrahedrons,

    and so on. Then, the Euler characteristic number is computed by

    χ=m0?m1+m2?m3+···

    Furthermore, define

    r0= 0 by convention,r1= rank of node-edge adjacency matrix (called incidence matrix in elementary graph theory),

    Fig. 2. Optimal totally homogeneous network examples [22].

    Fig. 3. Four types of networks. From left to right: regular network, small-world network, random-graph network, totally homogeneous network [23].

    r2= rank of edge-face adjacency matrix,

    r3= rank of face-polyhedron adjacency matrix,and so on. Then, the Betti numbers are computed by

    βk=mk?rk?rk+1,where

    β0= number of 0th-order cavities (connected subgraphs,called components in elementary graph theory),

    β1= number of 1st-order cavities,β2= number of 2nd-order cavities,

    and so on. To this end, the Euler-Poincaré formula is given by

    χ=m0?m1+m2?m3+···=β0?β1+β2?β3+···

    To show how these higher-order topological characteristics could be useful for studying the network synchronizability,consider four types of comparable typical networks as an example, each with 20 nodes and 40 edges: a regular network,a small-world network, a random-graph network and a totally homogeneous network, as shown in Fig. 3 [23].

    For these four types of networks, the simulation and calculation results are summarized in Table I.

    It can be observed from Table I that the synchronizability of the four types of networks follows the following ordering:totally homogeneous network > random-graph network >small-world network > regular network, where > means“better than”. This ordering of synchronizability is consistent with other reports in the literature and is clearly supported bythe criterion based on λ2, as well as the Betti numbers (the bigger, the better) and the Euler characteristic number (the smaller, the better, taking into account the negative sign).

    TABLE I NUMERICAL RESULTS OF FOUR TYPES OF NETWORKS [23]

    It can also be seen that the eigen-ratio criterion has a little inconsistency between regular network and small-world network in this example. This seems due to the multiple synchronization region problem mentioned above [21] and the imprecise definition of a small-world network, which actually is not much different from the regular network in this example.

    According to extensive simulations and observations, as those shown in Table I, the Euler characteristic number appears to be the best criterion to be used for determining the network synchronizability. Since the Euler characteristic numbers are integers, they clearly differ from each other by integers, while eigenvalues differ from each other only in decimals that could be difficult to distinguish in some cases.

    VI. CONCLUSIONS

    This article presents an overview on the state-of-the-art development in the studies of complex network synchronization, and discusses the progress in searching for best possible network topologies with optimal synchronizability. It reports the finding of the key roles of homogeneous structures and cycle components in enhancing the network synchronizability, especially the most recent recognition of Euler characteristic numbers or Betti numbers as a reliable measure for the optimal synchronizability, using which best network topologies can be clearly identified.

    Higher-order topologies, and generally algebraic topology theory [25], provide powerful and effective tools for in-depth investigation of complex network dynamics such as diffusion,synchronization, spreading and evolution [26], as also discussed recently in [27]–[34], which should be further explored. In particular, higher-order cycles are important to study for their key roles in supporting the optimal network synchronizability [35], [36].

    久久久精品欧美日韩精品| www.色视频.com| 国产不卡一卡二| 最新中文字幕久久久久| 久久国产乱子免费精品| 中文欧美无线码| av免费观看日本| 日韩中字成人| 亚洲国产精品sss在线观看| 日韩伦理黄色片| 日韩大片免费观看网站| 国产成人91sexporn| 亚洲国产精品专区欧美| av一本久久久久| 丝袜美腿在线中文| 午夜爱爱视频在线播放| 精品99又大又爽又粗少妇毛片| 亚洲三级黄色毛片| 欧美+日韩+精品| 国产精品1区2区在线观看.| 国产永久视频网站| 日本wwww免费看| 97在线视频观看| 亚洲婷婷狠狠爱综合网| 国模一区二区三区四区视频| 亚洲综合精品二区| 亚洲国产最新在线播放| 亚洲四区av| 国产老妇伦熟女老妇高清| 国产人妻一区二区三区在| 国产精品国产三级国产专区5o| 美女高潮的动态| 18禁动态无遮挡网站| 亚洲国产成人一精品久久久| 日日啪夜夜爽| av专区在线播放| 男女视频在线观看网站免费| 亚洲成人久久爱视频| 中文在线观看免费www的网站| 波野结衣二区三区在线| 国产成人免费观看mmmm| 国产精品熟女久久久久浪| 亚洲天堂国产精品一区在线| 一级毛片黄色毛片免费观看视频| 亚洲av成人av| 精品欧美国产一区二区三| 国产成人a区在线观看| 美女脱内裤让男人舔精品视频| 久久久久精品久久久久真实原创| 精品久久久久久久末码| 十八禁国产超污无遮挡网站| 久久久久久九九精品二区国产| 亚洲av免费在线观看| 一区二区三区乱码不卡18| 麻豆精品久久久久久蜜桃| 国产黄色视频一区二区在线观看| 亚洲欧美日韩无卡精品| 免费看a级黄色片| 亚洲乱码一区二区免费版| 国产 一区精品| 中文欧美无线码| 亚洲美女视频黄频| 在线免费观看的www视频| 久久综合国产亚洲精品| av女优亚洲男人天堂| 简卡轻食公司| 国产成人91sexporn| 免费电影在线观看免费观看| 国产精品一及| 少妇丰满av| 色综合亚洲欧美另类图片| 亚洲综合色惰| 免费av毛片视频| 精品久久久久久久久av| 欧美性感艳星| 卡戴珊不雅视频在线播放| 国产在视频线精品| 在线免费十八禁| 欧美3d第一页| videos熟女内射| 啦啦啦韩国在线观看视频| 久久亚洲国产成人精品v| 亚洲成人av在线免费| 边亲边吃奶的免费视频| 亚洲欧洲国产日韩| 爱豆传媒免费全集在线观看| 亚洲精品日本国产第一区| 亚洲三级黄色毛片| 亚洲av中文av极速乱| 激情 狠狠 欧美| 麻豆av噜噜一区二区三区| 高清视频免费观看一区二区 | 欧美xxxx黑人xx丫x性爽| 国产乱人偷精品视频| 肉色欧美久久久久久久蜜桃 | 能在线免费看毛片的网站| 极品少妇高潮喷水抽搐| 久久久久久九九精品二区国产| 91久久精品国产一区二区三区| 国产亚洲一区二区精品| 波野结衣二区三区在线| 国产精品一区二区三区四区久久| 国产乱来视频区| 精品少妇黑人巨大在线播放| 婷婷六月久久综合丁香| 国产在视频线精品| 日韩成人伦理影院| 菩萨蛮人人尽说江南好唐韦庄| 嫩草影院入口| 精品久久久噜噜| 国产精品综合久久久久久久免费| 午夜亚洲福利在线播放| 久久久久久久国产电影| 亚洲电影在线观看av| 亚洲精品乱久久久久久| 久久精品国产亚洲网站| 免费大片黄手机在线观看| 国产亚洲5aaaaa淫片| 国产一区二区在线观看日韩| 免费无遮挡裸体视频| 久久久久久九九精品二区国产| 一个人看的www免费观看视频| 国产精品一区二区在线观看99 | av在线老鸭窝| 日韩在线高清观看一区二区三区| 免费av不卡在线播放| 久久久久久九九精品二区国产| 国产一区二区在线观看日韩| 日韩强制内射视频| 精品久久久精品久久久| 午夜爱爱视频在线播放| 99久久人妻综合| 91狼人影院| 欧美日韩综合久久久久久| 免费看a级黄色片| 亚洲av成人av| 禁无遮挡网站| 久久草成人影院| 少妇高潮的动态图| 床上黄色一级片| 国产中年淑女户外野战色| 伦精品一区二区三区| 草草在线视频免费看| 婷婷色综合www| 国产在线男女| 五月伊人婷婷丁香| 国产美女午夜福利| 亚洲成色77777| 一级片'在线观看视频| 国产中年淑女户外野战色| 久久久久国产网址| 丰满乱子伦码专区| 久久精品国产亚洲av天美| 肉色欧美久久久久久久蜜桃 | 亚洲精品成人av观看孕妇| 亚洲av成人av| 国产淫片久久久久久久久| 成人午夜精彩视频在线观看| 在线观看一区二区三区| 最近2019中文字幕mv第一页| 不卡视频在线观看欧美| 久久99热这里只有精品18| 99久国产av精品国产电影| 亚洲av中文字字幕乱码综合| 日韩精品有码人妻一区| 最近的中文字幕免费完整| 日韩国内少妇激情av| 亚洲国产精品专区欧美| 三级国产精品片| 大香蕉久久网| 一边亲一边摸免费视频| 精品久久久久久成人av| 午夜福利在线在线| 久久午夜福利片| 免费观看精品视频网站| 少妇被粗大猛烈的视频| 少妇人妻精品综合一区二区| .国产精品久久| 亚洲av成人av| 晚上一个人看的免费电影| 亚洲第一区二区三区不卡| a级毛片免费高清观看在线播放| 少妇人妻精品综合一区二区| 高清在线视频一区二区三区| 水蜜桃什么品种好| 婷婷色av中文字幕| 久久久久久久国产电影| 国产在线男女| 大话2 男鬼变身卡| 亚洲乱码一区二区免费版| 97在线视频观看| 精品欧美国产一区二区三| 丝瓜视频免费看黄片| 天天一区二区日本电影三级| 日韩av不卡免费在线播放| av又黄又爽大尺度在线免费看| 色播亚洲综合网| 蜜桃亚洲精品一区二区三区| 国产精品人妻久久久久久| 全区人妻精品视频| 97人妻精品一区二区三区麻豆| 99九九线精品视频在线观看视频| 99热这里只有是精品50| 少妇被粗大猛烈的视频| 少妇人妻精品综合一区二区| 免费av不卡在线播放| 丰满乱子伦码专区| 精品久久久噜噜| 97人妻精品一区二区三区麻豆| 亚洲精品日本国产第一区| 日本熟妇午夜| 中文精品一卡2卡3卡4更新| 久久精品久久久久久久性| 最近中文字幕2019免费版| a级毛片免费高清观看在线播放| 国产久久久一区二区三区| 91久久精品电影网| 97热精品久久久久久| 人人妻人人看人人澡| 日本wwww免费看| 99热全是精品| 国产一级毛片七仙女欲春2| a级毛片免费高清观看在线播放| 成人国产麻豆网| 可以在线观看毛片的网站| 国内精品美女久久久久久| 亚洲自拍偷在线| 中文资源天堂在线| 在线天堂最新版资源| 搡女人真爽免费视频火全软件| 狂野欧美激情性xxxx在线观看| 国产精品一二三区在线看| 色综合色国产| 亚洲怡红院男人天堂| 69人妻影院| 精品人妻一区二区三区麻豆| 精品国产一区二区三区久久久樱花 | 国内精品美女久久久久久| 国产午夜精品久久久久久一区二区三区| 午夜亚洲福利在线播放| 日韩欧美国产在线观看| 永久免费av网站大全| 精品午夜福利在线看| 人妻少妇偷人精品九色| 欧美日本视频| 国产av在哪里看| 听说在线观看完整版免费高清| 99热这里只有精品一区| 国产午夜福利久久久久久| 久久久精品欧美日韩精品| 精品亚洲乱码少妇综合久久| 亚洲经典国产精华液单| www.色视频.com| 一本一本综合久久| 国产色爽女视频免费观看| 全区人妻精品视频| 亚洲精品乱久久久久久| videossex国产| 别揉我奶头 嗯啊视频| 三级男女做爰猛烈吃奶摸视频| 国产精品国产三级国产av玫瑰| 久久久久精品性色| 波野结衣二区三区在线| 免费看美女性在线毛片视频| 80岁老熟妇乱子伦牲交| 九色成人免费人妻av| 伊人久久国产一区二区| 日本午夜av视频| 成年人午夜在线观看视频 | 高清av免费在线| 亚洲精品乱码久久久v下载方式| 亚洲精品视频女| 国产在视频线精品| 亚洲成人av在线免费| 午夜亚洲福利在线播放| 国产成人一区二区在线| 麻豆国产97在线/欧美| 久久精品国产鲁丝片午夜精品| 国产一区二区三区av在线| 国产麻豆成人av免费视频| 免费观看在线日韩| 精品久久久精品久久久| 久久久久久久久久人人人人人人| 免费看美女性在线毛片视频| 国产精品不卡视频一区二区| 成人特级av手机在线观看| 国产成人精品一,二区| 在线观看一区二区三区| 亚洲国产成人一精品久久久| av在线观看视频网站免费| 久久久色成人| 久久久久久久久久人人人人人人| 六月丁香七月| 精品酒店卫生间| 青青草视频在线视频观看| 国产淫语在线视频| 少妇的逼好多水| 在线观看人妻少妇| www.色视频.com| 久久久久久久大尺度免费视频| 日产精品乱码卡一卡2卡三| 亚洲欧美中文字幕日韩二区| 亚洲av日韩在线播放| 性插视频无遮挡在线免费观看| 精品少妇黑人巨大在线播放| 一个人免费在线观看电影| 看黄色毛片网站| 国产av不卡久久| 精品久久久久久久久久久久久| 亚洲欧美日韩无卡精品| 男人狂女人下面高潮的视频| 少妇人妻一区二区三区视频| 成人二区视频| 国产午夜精品久久久久久一区二区三区| 最近2019中文字幕mv第一页| 久久精品人妻少妇| 少妇人妻精品综合一区二区| 久久精品人妻少妇| 少妇人妻精品综合一区二区| 亚洲av中文av极速乱| 成人av在线播放网站| 国产午夜福利久久久久久| 丰满少妇做爰视频| 在线天堂最新版资源| 亚洲婷婷狠狠爱综合网| 国产老妇女一区| 亚洲欧美日韩卡通动漫| 天天一区二区日本电影三级| 啦啦啦中文免费视频观看日本| 尾随美女入室| 舔av片在线| 久久这里有精品视频免费| 国产成年人精品一区二区| 天堂影院成人在线观看| 美女国产视频在线观看| 精品久久久久久久久久久久久| 免费播放大片免费观看视频在线观看| 亚洲美女搞黄在线观看| 久久久久精品久久久久真实原创| 高清毛片免费看| 亚洲成人中文字幕在线播放| 一级av片app| 亚洲乱码一区二区免费版| 99热全是精品| 亚洲真实伦在线观看| 国产精品一区www在线观看| 永久网站在线| 五月天丁香电影| 国产成人精品久久久久久| 97热精品久久久久久| av福利片在线观看| videossex国产| 亚洲av二区三区四区| 卡戴珊不雅视频在线播放| 国产成人精品福利久久| 国产av国产精品国产| 日韩,欧美,国产一区二区三区| 亚洲av一区综合| 在线播放无遮挡| 欧美另类一区| 欧美变态另类bdsm刘玥| 亚洲av电影在线观看一区二区三区 | 国产精品不卡视频一区二区| 18禁在线播放成人免费| 日本熟妇午夜| 少妇猛男粗大的猛烈进出视频 | 久久99热这里只有精品18| 国产久久久一区二区三区| 搡女人真爽免费视频火全软件| 免费黄网站久久成人精品| 精华霜和精华液先用哪个| 极品教师在线视频| 国产不卡一卡二| 久久久久久久国产电影| 亚洲国产精品专区欧美| 99热这里只有是精品50| 国产成人福利小说| 日韩在线高清观看一区二区三区| 日本免费a在线| 日韩国内少妇激情av| 啦啦啦中文免费视频观看日本| 日韩,欧美,国产一区二区三区| 一区二区三区四区激情视频| 免费av不卡在线播放| 国模一区二区三区四区视频| 成年女人看的毛片在线观看| 成人av在线播放网站| 天天躁夜夜躁狠狠久久av| 最近的中文字幕免费完整| freevideosex欧美| 亚洲一区高清亚洲精品| 在线观看一区二区三区| 中文在线观看免费www的网站| 亚洲三级黄色毛片| 夫妻午夜视频| 国产午夜精品论理片| 日本av手机在线免费观看| 熟妇人妻久久中文字幕3abv| 国精品久久久久久国模美| 国产精品.久久久| 好男人视频免费观看在线| .国产精品久久| 一本久久精品| 国产免费福利视频在线观看| 51国产日韩欧美| 蜜臀久久99精品久久宅男| 美女高潮的动态| 精华霜和精华液先用哪个| 中文字幕免费在线视频6| 菩萨蛮人人尽说江南好唐韦庄| 中文字幕人妻熟人妻熟丝袜美| 亚洲av男天堂| 天堂网av新在线| 夫妻午夜视频| 人妻一区二区av| 一区二区三区四区激情视频| 美女脱内裤让男人舔精品视频| 国产亚洲精品久久久com| 国产成人精品久久久久久| 精品人妻熟女av久视频| 国产亚洲5aaaaa淫片| 嘟嘟电影网在线观看| 精品国产三级普通话版| 天堂影院成人在线观看| 精品久久久久久久久av| 伦精品一区二区三区| 亚洲aⅴ乱码一区二区在线播放| 国产男女超爽视频在线观看| 久久久久网色| 2022亚洲国产成人精品| 亚洲精品国产av蜜桃| 亚洲国产精品专区欧美| 联通29元200g的流量卡| 欧美性感艳星| 欧美激情国产日韩精品一区| 好男人视频免费观看在线| 欧美三级亚洲精品| 国产中年淑女户外野战色| 精品人妻视频免费看| 亚洲不卡免费看| av免费在线看不卡| 国产欧美日韩精品一区二区| 观看美女的网站| 国产毛片a区久久久久| 好男人视频免费观看在线| 国产一级毛片七仙女欲春2| 亚洲人与动物交配视频| 亚洲精品成人久久久久久| 日日啪夜夜爽| 国产一区二区亚洲精品在线观看| 久久久久久久久久成人| 日韩欧美精品免费久久| 一区二区三区高清视频在线| a级毛色黄片| 最新中文字幕久久久久| 夜夜爽夜夜爽视频| 久久久精品欧美日韩精品| 九草在线视频观看| 亚洲四区av| 神马国产精品三级电影在线观看| 精品99又大又爽又粗少妇毛片| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 免费看不卡的av| 综合色丁香网| 免费av不卡在线播放| 好男人在线观看高清免费视频| 丝袜喷水一区| 久久久国产一区二区| 日韩成人伦理影院| 久久午夜福利片| 边亲边吃奶的免费视频| 国产一级毛片在线| 亚洲av男天堂| 久久久欧美国产精品| 欧美zozozo另类| 插逼视频在线观看| 国产精品美女特级片免费视频播放器| av国产免费在线观看| 亚洲国产精品国产精品| 国产成人福利小说| 少妇熟女aⅴ在线视频| 久久久久九九精品影院| 日韩av不卡免费在线播放| 晚上一个人看的免费电影| 美女黄网站色视频| 91精品一卡2卡3卡4卡| 男女视频在线观看网站免费| 边亲边吃奶的免费视频| 晚上一个人看的免费电影| 97超视频在线观看视频| 亚洲无线观看免费| 一区二区三区乱码不卡18| 久久精品人妻少妇| 欧美高清性xxxxhd video| 亚洲精品色激情综合| 午夜免费男女啪啪视频观看| 嫩草影院入口| 国产乱人视频| 午夜精品国产一区二区电影 | 超碰av人人做人人爽久久| 亚洲经典国产精华液单| 国产美女午夜福利| 热99在线观看视频| 成年女人在线观看亚洲视频 | 99热这里只有精品一区| 少妇的逼好多水| 国产成人freesex在线| 一级毛片我不卡| 久久精品人妻少妇| 亚洲美女搞黄在线观看| 欧美另类一区| 黄色日韩在线| 99久久精品国产国产毛片| 国产黄频视频在线观看| 丝袜喷水一区| 欧美日韩视频高清一区二区三区二| 九九在线视频观看精品| 人妻系列 视频| 久久久久久久久大av| 亚洲av中文字字幕乱码综合| 午夜福利视频精品| 日韩av不卡免费在线播放| 亚洲久久久久久中文字幕| 精品久久久久久久久av| 白带黄色成豆腐渣| 水蜜桃什么品种好| 久久这里只有精品中国| 免费人成在线观看视频色| 日日干狠狠操夜夜爽| 麻豆久久精品国产亚洲av| 干丝袜人妻中文字幕| 亚州av有码| 99re6热这里在线精品视频| 亚洲四区av| 久久国产乱子免费精品| 免费观看精品视频网站| 91久久精品国产一区二区成人| 亚洲av日韩在线播放| 欧美 日韩 精品 国产| 国产精品人妻久久久影院| 人妻一区二区av| 久久国内精品自在自线图片| 久久国产乱子免费精品| 国产探花在线观看一区二区| 日韩av在线大香蕉| 91久久精品电影网| 亚洲精品乱码久久久v下载方式| 亚洲综合色惰| 大又大粗又爽又黄少妇毛片口| 国产精品爽爽va在线观看网站| 国产高清不卡午夜福利| 51国产日韩欧美| 中文欧美无线码| 成年av动漫网址| 中文精品一卡2卡3卡4更新| 看免费成人av毛片| 国产精品久久久久久精品电影小说 | 内射极品少妇av片p| 在线 av 中文字幕| 日韩精品有码人妻一区| 国产成人午夜福利电影在线观看| 欧美xxxx黑人xx丫x性爽| 只有这里有精品99| 国产亚洲av片在线观看秒播厂 | 秋霞伦理黄片| 久久午夜福利片| 国产三级在线视频| 夜夜爽夜夜爽视频| 卡戴珊不雅视频在线播放| 亚洲精品自拍成人| 国产亚洲av片在线观看秒播厂 | 亚洲人成网站在线观看播放| 性插视频无遮挡在线免费观看| 午夜福利在线在线| 久久久久久久亚洲中文字幕| 日本爱情动作片www.在线观看| 中文天堂在线官网| 精品亚洲乱码少妇综合久久| 超碰av人人做人人爽久久| 人妻夜夜爽99麻豆av| 亚洲美女搞黄在线观看| 亚洲av电影在线观看一区二区三区 | 亚洲精品视频女| 观看免费一级毛片| 国产高清有码在线观看视频| 久久精品人妻少妇| 丝袜喷水一区| 成人午夜高清在线视频| 久久久久久九九精品二区国产| 精品亚洲乱码少妇综合久久| 综合色丁香网| 午夜福利高清视频| 乱码一卡2卡4卡精品| 视频中文字幕在线观看| 国内少妇人妻偷人精品xxx网站| 日日啪夜夜爽| 日本av手机在线免费观看| 在线观看av片永久免费下载| 乱码一卡2卡4卡精品| 久久97久久精品| 国产乱人视频| 国产色爽女视频免费观看| 免费观看无遮挡的男女| 亚洲精品乱码久久久久久按摩| av在线老鸭窝| 在线观看免费高清a一片| 亚洲av中文av极速乱| 国产成人精品一,二区| 国产成人a∨麻豆精品| 街头女战士在线观看网站| 一级爰片在线观看| 性插视频无遮挡在线免费观看| 街头女战士在线观看网站| av专区在线播放| 午夜福利视频1000在线观看|