• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Searching for Best Network Topologies with Optimal Synchronizability: A Brief Review

    2022-04-15 04:19:52GuanrongChen
    IEEE/CAA Journal of Automatica Sinica 2022年4期

    Guanrong Chen,

    Abstract—The Laplacian eigenvalue spectrum of a complex network contains a great deal of information about the network topology and dynamics, particularly affecting the network synchronization process and performance. This article briefly reviews the recent progress in the studies of network synchronizability, regarding its spectral criteria and topological optimization, and explores the role of higher-order topologies in measuring the optimal synchronizability of large-scale complex networks.

    I. INTRODUCTI ON

    NETWORK science has grown to be a broad discipline after a continued and persistent research pursuit from various scientific and engineering communities, especially in multi-agent systems, data science, statistical physics, applied mathematics, structural biology and social studies [1]–[3]. In fact, this interdisciplinary field of network science has developed very rapidly in recent years. On the one hand,network science is a self-contained discipline overlapping the classical graph theory developed since the era of Euler in the 18th century [1]–[3], followed by the comprehensive Erd?s-Rényi random graph theory [4] and the recent developments of Watts-Strogatz small-world network model [5] and Price-Barabási-Albert scale-free network model [6], [7]. On the other hand, multi-agent systems theory has become indispensable in network science and engineering, offering new approaches to investigating many real-world applications of complex dynamical networks.

    Meanwhile, the studies of dynamical synchronization among networked multi-agent systems have developed swiftly with fruitful theoretical results and new findings, particularly from the scientific communities of network science and control systems. Actually, synchronization of coupled systems is one of the oldest scientific research topics, which can be traced back to as early as the Dutch scientist Christian Huygens who in 1665 discovered perfect synchrony of two pendulum clocks fastened to a beam [8]. Since then, the study of synchronization of networks among dynamical systems or oscillators has gone through a long way with many significant results and discoveries, and remains to be a very active research subject in science and engineering today.

    The concept of network synchronization may be roughly classified into state synchronization and phase synchronization, but only the former will be addressed by this article. It is well known that in most cases synchronization is a desirable behavior, e.g. coordination of multiple mobile agents, while in other cases it can be undesirable, e.g. data traffic congestions.One typical case in point where synchronization is preferable is its essence for the functioning of biological neuronal systems [9]: “Synchronous behavior of neural assemblies is a central topic in neuroscience. It is known to be correlated with cognitive activities [10] during the normal functioning of the brain, while abnormal synchronization is linked to important brain disorders, such as epilepsy, Parkinson’s disease,Alzheimer’s disease, schizophrenia and autism [11]. Hence the interest is in the topic of neural synchronization, which has been extensively explored theoretically [12].” When synchrony is beneficial, therefore, one would like to maximize it, motivating the current research on optimizing the synchronizability of complex networks. A survey of some earlier research works on various aspects of complex network synchronization is presented in [13].

    The currently fast-evolving research direction on network synchronization has created a corpus of exciting opportunities as well as great challenges to both network scientists and system engineers. A complex dynamical network has typically large numbers of nodes and edges, with higher-dimensional dynamical node-systems such as nonlinear oscillators, which are interconnected in some complicated topologies. It took quite a long time for researchers to understand the intrinsic relationship between topology and synchronizability of a general complex network, which turns out to be essential for many real-world applications.

    This article briefly reviews the studies of complex network synchronization in relation to the network topologies, focusing on the synchrnizability of general networks with typical topologies such as the aforementioned random-graph networks, small-world networks and scale-free networks, as well as totally homogeneous networks.

    Specifically, this article reviews the basic notion and research progress of network synchronization and synchronizability. Section II provides some preliminaries on the general network model and network synchronization formulation. Section III addresses the issue of network synchronizability and presents two criteria. Section IV describes the optimal network synchronizability based on homogeneous topologies. Section V discusses the recent progress in measuring optimal synchronizability using tools from higher-order network topologies. Finally, Section VI concludes the survey with a brief future research outlook.

    II. PRELIMINARIES

    This section introduces a general network model, which covers the aforementioned random-graph, small-world and scale-free networks, and then describes the general network synchronization problem.

    A. Network Model

    A diffusively connected, undirected and unweighted continuous-time network ofNidentical node-systems can be described by [14]

    B. Network Synchronization Problem

    Network (1) is said to achieve (complete state)synchronizationif, and only if,

    To derive criteria for achieving synchronization of network(1), spectral analysis based on the network Laplacian eigenvalues (6) is a powerful and effective tool to use, as can be seen above and further discussed below.

    In retrospect, the first synchronization criterion for network(1) was established in [16], [17], in terms of the smallest nonzero Laplacian eigenvalue λ2in (6), namely,

    III. NETWORK SYNCHRONIZABILITY AND CRITERIA

    Fig. 1. Network synchronization regions.

    These two criteria can be illustrated graphically by Fig. 1,where the curve in each figure is the conditional Lyapunov exponent (LE) of network (1), which can be roughly understood here as the boundary of the Laplacian eigenvalue set [18]. In figure (a), the curve is never negative (i.e., the synchronization region is empty), therefore the network will not be synchronizing. In figure (b), the curve is negative over an unbounded internal [α0,∞) on theα-axis (i.e., the synchronization regionSmaxis unbounded). In figure (c), the curve is negative over a bounded internal [α1,α2] on theαaxis (i.e., the synchronization regionSmaxis bounded).

    Later it was found, both numerically [19] and analytically[20], that the network synchronization regionSmaxcan be a union of several intervals, namely the curve in Fig. 1 (c) may bend down and then bend up again alternatively around theαaxis, where the number of bending times depends on the order of the characteristic polynomial of the network Laplacian matrix. In this case, however, it was observed that the eigenratio criterion (9) may not work properly [21] in the case where the synchronization region is a union of several intervals since the ratio might fall into somewhere between two such intervals.

    IV. NETWORK TOPOLOGIES WITH BEST SYNCHRONIZABILITY

    To compare the synchronization performances of two networks, the concept ofsynchronizabilityis introduced,which refers to the ability of self-synchronizing without external control input or structural perturbations. The interest here is to compare two networks to see which one has a“better” synchronizability in the sense that it is easier or faster synchronizing and/or has stronger robustness in resisting perturbations, so that the eigenvalue λ2or the eigenratio λ2/λNcan remain inside the corresponding synchronization region.

    It is easy to see that

    i)for criterion (8), the larger the λ2, the better the network synchronizability;

    ii)for criterion (9), the larger the ratio λ2/λN, namely the closer to 1, the better the network synchronizability.

    To this end, it is interesting to find what kinds of network topologies might have the best possible synchronizability. To search for optimal network topologies that may have the best synchronizability, it was found [22] that, in any group of networks with same number of nodes and same number of edges, the totally homogeneous networks are optimal, better than others in the same group of networks. A totally homogeneous network is characterized by the degrees, girths and pathsums of its nodes, defined respectively as follows [22]:

    i)Degree of a nodei, denoted byki, is the number of its adjacent edges.

    As small-sized examples of totally homogeneous networks,those shown in Fig. 2 are respectively optimal ones from their own groups of networks with same number of nodes and same number of edges, in the sense that comparing to the other networks in the same group they have the largest λ2and λ2/λN[22].

    It can be seen from Fig. 2 that all optimal totally homogeneous networks are homogeneously and symmetrically connected, with many cycles. Indeed, these are important features of optimal networks with best synchronizability observed from extensive simulations [22], [24], and verified by higher-order topologies as further discussed below.Nevertheless, this conjecture remains to be further proved mathematically.

    V. EXPLORING HIGHER-ORDER TOPOLOGIES

    As mentioned, cycles are important and indeed essential for having optimal network synchronizability, which are main subjects for study in algebraic topology [25]. In complex networks, their higher-order topologies involve many cycle motifs of different orders, such as cliques (fully-connected subgraphs) of different orders like triangles, tetrahedrons and so on, as well as cavities of different orders [23].

    For a given network, define

    m0= number of nodes,

    m1= number of edges,

    m2= number of triangles,

    m3= number of tetrahedrons,

    and so on. Then, the Euler characteristic number is computed by

    χ=m0?m1+m2?m3+···

    Furthermore, define

    r0= 0 by convention,r1= rank of node-edge adjacency matrix (called incidence matrix in elementary graph theory),

    Fig. 2. Optimal totally homogeneous network examples [22].

    Fig. 3. Four types of networks. From left to right: regular network, small-world network, random-graph network, totally homogeneous network [23].

    r2= rank of edge-face adjacency matrix,

    r3= rank of face-polyhedron adjacency matrix,and so on. Then, the Betti numbers are computed by

    βk=mk?rk?rk+1,where

    β0= number of 0th-order cavities (connected subgraphs,called components in elementary graph theory),

    β1= number of 1st-order cavities,β2= number of 2nd-order cavities,

    and so on. To this end, the Euler-Poincaré formula is given by

    χ=m0?m1+m2?m3+···=β0?β1+β2?β3+···

    To show how these higher-order topological characteristics could be useful for studying the network synchronizability,consider four types of comparable typical networks as an example, each with 20 nodes and 40 edges: a regular network,a small-world network, a random-graph network and a totally homogeneous network, as shown in Fig. 3 [23].

    For these four types of networks, the simulation and calculation results are summarized in Table I.

    It can be observed from Table I that the synchronizability of the four types of networks follows the following ordering:totally homogeneous network > random-graph network >small-world network > regular network, where > means“better than”. This ordering of synchronizability is consistent with other reports in the literature and is clearly supported bythe criterion based on λ2, as well as the Betti numbers (the bigger, the better) and the Euler characteristic number (the smaller, the better, taking into account the negative sign).

    TABLE I NUMERICAL RESULTS OF FOUR TYPES OF NETWORKS [23]

    It can also be seen that the eigen-ratio criterion has a little inconsistency between regular network and small-world network in this example. This seems due to the multiple synchronization region problem mentioned above [21] and the imprecise definition of a small-world network, which actually is not much different from the regular network in this example.

    According to extensive simulations and observations, as those shown in Table I, the Euler characteristic number appears to be the best criterion to be used for determining the network synchronizability. Since the Euler characteristic numbers are integers, they clearly differ from each other by integers, while eigenvalues differ from each other only in decimals that could be difficult to distinguish in some cases.

    VI. CONCLUSIONS

    This article presents an overview on the state-of-the-art development in the studies of complex network synchronization, and discusses the progress in searching for best possible network topologies with optimal synchronizability. It reports the finding of the key roles of homogeneous structures and cycle components in enhancing the network synchronizability, especially the most recent recognition of Euler characteristic numbers or Betti numbers as a reliable measure for the optimal synchronizability, using which best network topologies can be clearly identified.

    Higher-order topologies, and generally algebraic topology theory [25], provide powerful and effective tools for in-depth investigation of complex network dynamics such as diffusion,synchronization, spreading and evolution [26], as also discussed recently in [27]–[34], which should be further explored. In particular, higher-order cycles are important to study for their key roles in supporting the optimal network synchronizability [35], [36].

    久久久久久久久久黄片| 国产欧美日韩精品一区二区| 好男人视频免费观看在线| 亚洲国产欧美人成| 亚洲欧美成人综合另类久久久 | 国产伦理片在线播放av一区 | 黄色一级大片看看| 联通29元200g的流量卡| 国产精品麻豆人妻色哟哟久久 | 国产免费一级a男人的天堂| 免费av不卡在线播放| 国产精品一区二区三区四区免费观看| 国产成人精品一,二区 | 免费看a级黄色片| 免费观看在线日韩| 女同久久另类99精品国产91| 亚洲成av人片在线播放无| 特大巨黑吊av在线直播| 我要搜黄色片| 免费av毛片视频| 国产国拍精品亚洲av在线观看| 菩萨蛮人人尽说江南好唐韦庄 | 美女被艹到高潮喷水动态| 亚洲国产精品久久男人天堂| 一本精品99久久精品77| 如何舔出高潮| 1024手机看黄色片| 中国美女看黄片| 最近中文字幕高清免费大全6| 亚洲最大成人av| 综合色av麻豆| 亚洲av一区综合| av视频在线观看入口| 免费看美女性在线毛片视频| 黄色视频,在线免费观看| 99热只有精品国产| 久久久久久久久大av| 国产精品人妻久久久影院| 长腿黑丝高跟| 精品久久久久久久久av| 国产精品一区二区三区四区久久| 午夜福利在线观看免费完整高清在 | 亚洲四区av| 亚洲欧美日韩高清专用| 51国产日韩欧美| 秋霞在线观看毛片| 久久精品国产99精品国产亚洲性色| 免费看日本二区| 性欧美人与动物交配| 日本撒尿小便嘘嘘汇集6| 在现免费观看毛片| 高清毛片免费观看视频网站| 乱人视频在线观看| 一级二级三级毛片免费看| 超碰av人人做人人爽久久| 亚洲av一区综合| 国产高清有码在线观看视频| av在线播放精品| 一区二区三区四区激情视频 | 精品少妇黑人巨大在线播放 | 国产精品不卡视频一区二区| 成人高潮视频无遮挡免费网站| 国内精品一区二区在线观看| 久久久久久久亚洲中文字幕| 晚上一个人看的免费电影| 午夜福利成人在线免费观看| 欧洲精品卡2卡3卡4卡5卡区| 欧美高清性xxxxhd video| 成年av动漫网址| 亚洲人成网站高清观看| 国产亚洲精品av在线| 国产伦在线观看视频一区| 色5月婷婷丁香| 国产成人freesex在线| 天天一区二区日本电影三级| 美女脱内裤让男人舔精品视频 | 国产一区二区激情短视频| 久久精品综合一区二区三区| 成人特级av手机在线观看| 99九九线精品视频在线观看视频| 一个人免费在线观看电影| 日本免费a在线| 国产高清有码在线观看视频| 欧美xxxx黑人xx丫x性爽| 一本一本综合久久| 国产中年淑女户外野战色| 欧美3d第一页| 成人二区视频| 成人鲁丝片一二三区免费| 美女高潮的动态| 日本在线视频免费播放| 久久久a久久爽久久v久久| 中文在线观看免费www的网站| 国产高清三级在线| 男女那种视频在线观看| 国产高清三级在线| 国产伦精品一区二区三区四那| 免费观看精品视频网站| 免费观看精品视频网站| 成人综合一区亚洲| 欧美最黄视频在线播放免费| 99精品在免费线老司机午夜| 99精品在免费线老司机午夜| 成人鲁丝片一二三区免费| 国产成人aa在线观看| 三级毛片av免费| 99热全是精品| 成人性生交大片免费视频hd| 久久午夜亚洲精品久久| 国产片特级美女逼逼视频| 久久九九热精品免费| 一区二区三区免费毛片| a级毛片免费高清观看在线播放| 免费看美女性在线毛片视频| 乱人视频在线观看| 国产一区二区三区在线臀色熟女| 亚洲最大成人av| 卡戴珊不雅视频在线播放| 亚洲七黄色美女视频| 舔av片在线| 国产精品女同一区二区软件| 欧美日韩乱码在线| 欧美性感艳星| 夜夜爽天天搞| 男女视频在线观看网站免费| 欧美激情在线99| 两个人视频免费观看高清| 国内揄拍国产精品人妻在线| 色综合亚洲欧美另类图片| 久久99热这里只有精品18| 久久精品国产亚洲av香蕉五月| 亚洲国产精品sss在线观看| 一区福利在线观看| 国产蜜桃级精品一区二区三区| 我的女老师完整版在线观看| 亚洲av成人av| 淫秽高清视频在线观看| 岛国在线免费视频观看| 国产激情偷乱视频一区二区| 精品无人区乱码1区二区| 亚洲av不卡在线观看| 亚洲第一电影网av| 午夜视频国产福利| 网址你懂的国产日韩在线| 一进一出抽搐gif免费好疼| 精品人妻视频免费看| 亚洲精品色激情综合| 国产视频首页在线观看| 少妇猛男粗大的猛烈进出视频 | 特级一级黄色大片| 国产亚洲精品久久久久久毛片| 日韩精品青青久久久久久| 久久精品国产亚洲av香蕉五月| 亚洲欧洲日产国产| 丝袜美腿在线中文| 最近2019中文字幕mv第一页| 欧美另类亚洲清纯唯美| 18禁裸乳无遮挡免费网站照片| 成人性生交大片免费视频hd| 亚洲久久久久久中文字幕| 日韩一区二区视频免费看| 亚洲最大成人中文| 看十八女毛片水多多多| 三级国产精品欧美在线观看| 国产不卡一卡二| or卡值多少钱| 18禁裸乳无遮挡免费网站照片| 麻豆乱淫一区二区| 亚洲第一电影网av| 熟妇人妻久久中文字幕3abv| 国产午夜福利久久久久久| 美女大奶头视频| 国产精品人妻久久久影院| 免费人成视频x8x8入口观看| 日本欧美国产在线视频| 亚洲国产精品久久男人天堂| 国产在线男女| 你懂的网址亚洲精品在线观看 | 18禁黄网站禁片免费观看直播| 一边亲一边摸免费视频| 色播亚洲综合网| 亚洲成a人片在线一区二区| 精品久久久久久久久久免费视频| 亚洲在久久综合| 边亲边吃奶的免费视频| 亚洲精品日韩av片在线观看| 国产精品一及| 成人午夜高清在线视频| 少妇人妻精品综合一区二区 | 国产精品久久久久久久电影| 亚洲国产精品sss在线观看| 波多野结衣高清作品| 中文字幕熟女人妻在线| 春色校园在线视频观看| 日本黄色片子视频| 国产精品电影一区二区三区| 欧美激情国产日韩精品一区| 国产精品一区二区性色av| 91麻豆精品激情在线观看国产| 深爱激情五月婷婷| 国产真实乱freesex| 老女人水多毛片| 一个人看的www免费观看视频| 2021天堂中文幕一二区在线观| 亚洲熟妇中文字幕五十中出| 亚洲国产精品成人综合色| 成人性生交大片免费视频hd| av黄色大香蕉| 国产黄片美女视频| av在线观看视频网站免费| 亚洲熟妇中文字幕五十中出| 久久午夜福利片| 亚洲一区高清亚洲精品| 午夜免费男女啪啪视频观看| 亚洲人成网站在线播放欧美日韩| 26uuu在线亚洲综合色| 免费大片18禁| 国产麻豆成人av免费视频| 亚洲av成人精品一区久久| 在线观看66精品国产| 在线观看一区二区三区| 国产一区二区三区在线臀色熟女| 国产黄色视频一区二区在线观看 | av在线老鸭窝| 婷婷精品国产亚洲av| 精品久久久久久久久亚洲| 亚洲最大成人av| 精品人妻熟女av久视频| 国内精品久久久久精免费| 免费观看在线日韩| 丰满的人妻完整版| 亚洲av第一区精品v没综合| 少妇人妻精品综合一区二区 | 熟女电影av网| 国产精品免费一区二区三区在线| 性插视频无遮挡在线免费观看| 国产视频内射| 人人妻人人看人人澡| 在线观看av片永久免费下载| 国产国拍精品亚洲av在线观看| 成人无遮挡网站| 老司机福利观看| 国产精品人妻久久久久久| 免费观看在线日韩| 久久中文看片网| 国产亚洲欧美98| 尤物成人国产欧美一区二区三区| 特级一级黄色大片| 2021天堂中文幕一二区在线观| 一级毛片电影观看 | 亚洲国产欧洲综合997久久,| 18禁裸乳无遮挡免费网站照片| 在线播放国产精品三级| 国产黄片美女视频| 最新中文字幕久久久久| 青青草视频在线视频观看| 免费在线观看成人毛片| 精品久久久久久久人妻蜜臀av| av福利片在线观看| 日本与韩国留学比较| 亚洲精品粉嫩美女一区| 久久九九热精品免费| 在线播放国产精品三级| 国产高清不卡午夜福利| 国产精品av视频在线免费观看| 午夜福利在线观看吧| 一本精品99久久精品77| 欧美日韩一区二区视频在线观看视频在线 | 亚洲成a人片在线一区二区| 免费人成在线观看视频色| 身体一侧抽搐| 国产亚洲91精品色在线| 日本欧美国产在线视频| 午夜久久久久精精品| 女同久久另类99精品国产91| 国产精品日韩av在线免费观看| 三级毛片av免费| 在线国产一区二区在线| 最好的美女福利视频网| 欧美性猛交╳xxx乱大交人| 欧美成人免费av一区二区三区| 人妻制服诱惑在线中文字幕| 日韩中字成人| 一个人免费在线观看电影| 嘟嘟电影网在线观看| 精品不卡国产一区二区三区| 免费电影在线观看免费观看| 亚洲四区av| 一级毛片aaaaaa免费看小| 99国产极品粉嫩在线观看| 中国国产av一级| 蜜桃久久精品国产亚洲av| 夫妻性生交免费视频一级片| 国产成年人精品一区二区| 少妇熟女欧美另类| 国产探花极品一区二区| 成人国产麻豆网| 久久国内精品自在自线图片| 日韩一区二区视频免费看| 欧美精品一区二区大全| 中文字幕熟女人妻在线| 成人二区视频| 日本成人三级电影网站| 日韩欧美三级三区| 国产精品美女特级片免费视频播放器| 在线播放无遮挡| www日本黄色视频网| 久久午夜福利片| 午夜精品一区二区三区免费看| 九九在线视频观看精品| 久久久成人免费电影| 久久国内精品自在自线图片| 亚洲欧美日韩高清在线视频| 亚洲精品亚洲一区二区| 一级毛片久久久久久久久女| 久久精品国产亚洲网站| 国产午夜精品论理片| 日韩中字成人| 一本久久中文字幕| 欧美一级a爱片免费观看看| 欧美一区二区精品小视频在线| a级毛片a级免费在线| 男人狂女人下面高潮的视频| 三级经典国产精品| 国产私拍福利视频在线观看| 国内精品宾馆在线| 99热精品在线国产| 又粗又爽又猛毛片免费看| 精品免费久久久久久久清纯| 国产又黄又爽又无遮挡在线| 国产精品一区二区性色av| 欧美性猛交黑人性爽| 嘟嘟电影网在线观看| 黄色日韩在线| 日韩欧美三级三区| 成年免费大片在线观看| 国产黄片美女视频| 九色成人免费人妻av| 嘟嘟电影网在线观看| 在线天堂最新版资源| 我要看日韩黄色一级片| 在线免费观看不下载黄p国产| 亚洲在久久综合| 国产精品,欧美在线| 麻豆乱淫一区二区| 成年版毛片免费区| 精品久久久久久久久av| 日韩一区二区三区影片| 国产白丝娇喘喷水9色精品| 有码 亚洲区| 色尼玛亚洲综合影院| 麻豆久久精品国产亚洲av| 少妇裸体淫交视频免费看高清| 亚洲av电影不卡..在线观看| av在线蜜桃| 毛片一级片免费看久久久久| 麻豆一二三区av精品| 亚洲一级一片aⅴ在线观看| 麻豆精品久久久久久蜜桃| 特级一级黄色大片| 国产精品麻豆人妻色哟哟久久 | 日韩成人av中文字幕在线观看| 日韩精品有码人妻一区| 国产片特级美女逼逼视频| 伦精品一区二区三区| 亚洲国产欧美人成| 观看免费一级毛片| av免费观看日本| 国产精品久久久久久精品电影小说 | 简卡轻食公司| 国语自产精品视频在线第100页| 国产一区二区亚洲精品在线观看| 国产在视频线在精品| 2022亚洲国产成人精品| 久久久色成人| 黄色一级大片看看| 久久精品夜色国产| 人妻制服诱惑在线中文字幕| 久久久久久久午夜电影| 老女人水多毛片| 午夜a级毛片| 成人二区视频| 免费看av在线观看网站| 午夜福利在线观看免费完整高清在 | 偷拍熟女少妇极品色| 亚洲国产欧美在线一区| 午夜爱爱视频在线播放| 国产探花极品一区二区| 97超视频在线观看视频| 免费看日本二区| 国产免费男女视频| 免费电影在线观看免费观看| 久99久视频精品免费| 婷婷精品国产亚洲av| 国产精品爽爽va在线观看网站| 国产在线精品亚洲第一网站| 亚洲乱码一区二区免费版| 亚洲婷婷狠狠爱综合网| 日韩在线高清观看一区二区三区| 久久99热这里只有精品18| 麻豆精品久久久久久蜜桃| 熟女电影av网| 校园人妻丝袜中文字幕| 青春草视频在线免费观看| 欧美bdsm另类| 久久国内精品自在自线图片| 欧美+日韩+精品| 亚洲精品粉嫩美女一区| 午夜精品国产一区二区电影 | 亚洲在久久综合| 波多野结衣高清作品| 成人亚洲精品av一区二区| 久久热精品热| 亚洲国产精品成人综合色| 欧美变态另类bdsm刘玥| av又黄又爽大尺度在线免费看 | 亚洲欧美日韩高清专用| 国产精品.久久久| 深爱激情五月婷婷| 大又大粗又爽又黄少妇毛片口| 午夜a级毛片| 99热全是精品| 国产精品一区二区性色av| 搡老妇女老女人老熟妇| 看黄色毛片网站| 少妇被粗大猛烈的视频| 亚洲精品456在线播放app| 久久久精品大字幕| 村上凉子中文字幕在线| 国产精品久久久久久av不卡| 黄色欧美视频在线观看| 国产精品一及| 蜜桃久久精品国产亚洲av| 2022亚洲国产成人精品| 99在线视频只有这里精品首页| 色综合色国产| 国产精品精品国产色婷婷| 欧美潮喷喷水| 国产成年人精品一区二区| 久久精品国产鲁丝片午夜精品| 亚洲真实伦在线观看| 能在线免费观看的黄片| 人妻制服诱惑在线中文字幕| 国产一区二区在线av高清观看| 色尼玛亚洲综合影院| av国产免费在线观看| 国产成人aa在线观看| 夜夜看夜夜爽夜夜摸| 少妇猛男粗大的猛烈进出视频 | 国产伦一二天堂av在线观看| 国产极品精品免费视频能看的| 国产黄片视频在线免费观看| 精品国内亚洲2022精品成人| 亚洲综合色惰| 国产单亲对白刺激| 在线观看av片永久免费下载| 国产成人影院久久av| 白带黄色成豆腐渣| 搡老妇女老女人老熟妇| 国产精品人妻久久久久久| 99久久中文字幕三级久久日本| 中出人妻视频一区二区| 成年女人看的毛片在线观看| 亚洲aⅴ乱码一区二区在线播放| 午夜免费男女啪啪视频观看| 波多野结衣高清作品| 高清在线视频一区二区三区 | 小说图片视频综合网站| 岛国在线免费视频观看| 亚洲欧美成人精品一区二区| 国产黄a三级三级三级人| 天堂网av新在线| 亚洲av.av天堂| 国产精品永久免费网站| 国产午夜精品久久久久久一区二区三区| 男人的好看免费观看在线视频| 国产精品野战在线观看| 亚洲自拍偷在线| 精品一区二区三区视频在线| 日韩成人伦理影院| 亚州av有码| 一本精品99久久精品77| 男女做爰动态图高潮gif福利片| 成人亚洲精品av一区二区| 国产 一区精品| 久久精品国产亚洲网站| 在线观看av片永久免费下载| 能在线免费观看的黄片| 国内少妇人妻偷人精品xxx网站| 亚洲四区av| 欧美日韩综合久久久久久| 嫩草影院入口| 欧美最新免费一区二区三区| 男女视频在线观看网站免费| 国产精品一区二区三区四区免费观看| 偷拍熟女少妇极品色| 熟妇人妻久久中文字幕3abv| 欧美一区二区亚洲| 国产日韩欧美在线精品| 黑人高潮一二区| av在线老鸭窝| 亚洲一区高清亚洲精品| 美女脱内裤让男人舔精品视频 | 亚洲欧美日韩高清专用| av专区在线播放| 国产精品综合久久久久久久免费| 亚洲欧洲国产日韩| av在线播放精品| 校园春色视频在线观看| 日韩在线高清观看一区二区三区| 亚洲电影在线观看av| 日韩欧美一区二区三区在线观看| 最近手机中文字幕大全| 少妇熟女aⅴ在线视频| a级毛片免费高清观看在线播放| 别揉我奶头 嗯啊视频| 看非洲黑人一级黄片| 99久国产av精品| 免费观看a级毛片全部| 女人被狂操c到高潮| 国产午夜精品久久久久久一区二区三区| 干丝袜人妻中文字幕| 国产精品久久久久久亚洲av鲁大| 人妻系列 视频| 只有这里有精品99| 久久精品久久久久久久性| av天堂在线播放| 一级黄片播放器| 国产av在哪里看| 麻豆av噜噜一区二区三区| 中文欧美无线码| 极品教师在线视频| 久久精品久久久久久噜噜老黄 | 国产乱人偷精品视频| www.色视频.com| 日本在线视频免费播放| 我的女老师完整版在线观看| av在线老鸭窝| 五月玫瑰六月丁香| 99热精品在线国产| 欧美性猛交黑人性爽| 欧美变态另类bdsm刘玥| 日韩强制内射视频| 91精品一卡2卡3卡4卡| 免费看美女性在线毛片视频| 精品少妇黑人巨大在线播放 | 最近手机中文字幕大全| 天堂中文最新版在线下载 | 亚洲国产色片| 日韩av不卡免费在线播放| 一进一出抽搐动态| 久久欧美精品欧美久久欧美| 日本撒尿小便嘘嘘汇集6| 久久国产乱子免费精品| 成人亚洲精品av一区二区| 久久久久久伊人网av| 天堂网av新在线| 亚洲内射少妇av| 97超碰精品成人国产| 日韩成人av中文字幕在线观看| 欧美不卡视频在线免费观看| 一边摸一边抽搐一进一小说| 亚洲中文字幕日韩| 国产真实乱freesex| 此物有八面人人有两片| 欧美3d第一页| 色噜噜av男人的天堂激情| 一卡2卡三卡四卡精品乱码亚洲| 久久99热这里只有精品18| 国产大屁股一区二区在线视频| 精品午夜福利在线看| 欧美变态另类bdsm刘玥| 综合色av麻豆| 欧美日韩国产亚洲二区| 99久久无色码亚洲精品果冻| 国产熟女欧美一区二区| 日本一二三区视频观看| 欧美一区二区精品小视频在线| 免费在线观看成人毛片| 亚洲自拍偷在线| 亚洲人成网站在线播| 免费电影在线观看免费观看| 欧美最黄视频在线播放免费| 欧美性猛交╳xxx乱大交人| 日韩,欧美,国产一区二区三区 | 99国产精品一区二区蜜桃av| 国产毛片a区久久久久| 日韩欧美精品免费久久| 国产免费一级a男人的天堂| 三级毛片av免费| 少妇被粗大猛烈的视频| 国产综合懂色| 97在线视频观看| 国产精品99久久久久久久久| 毛片一级片免费看久久久久| 亚洲经典国产精华液单| 久久久色成人| 天天躁夜夜躁狠狠久久av| 干丝袜人妻中文字幕| 日韩精品有码人妻一区| 精品久久久久久久久久免费视频| 久久久久久大精品| 欧美激情久久久久久爽电影| 18禁裸乳无遮挡免费网站照片| 12—13女人毛片做爰片一| 色视频www国产| 国产精品av视频在线免费观看| 精品久久久久久久久久免费视频| 丰满乱子伦码专区| 国产精品99久久久久久久久| 欧美成人一区二区免费高清观看| 边亲边吃奶的免费视频| 日本撒尿小便嘘嘘汇集6| 久久精品久久久久久噜噜老黄 | 国产精品野战在线观看|