• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Searching for Best Network Topologies with Optimal Synchronizability: A Brief Review

    2022-04-15 04:19:52GuanrongChen
    IEEE/CAA Journal of Automatica Sinica 2022年4期

    Guanrong Chen,

    Abstract—The Laplacian eigenvalue spectrum of a complex network contains a great deal of information about the network topology and dynamics, particularly affecting the network synchronization process and performance. This article briefly reviews the recent progress in the studies of network synchronizability, regarding its spectral criteria and topological optimization, and explores the role of higher-order topologies in measuring the optimal synchronizability of large-scale complex networks.

    I. INTRODUCTI ON

    NETWORK science has grown to be a broad discipline after a continued and persistent research pursuit from various scientific and engineering communities, especially in multi-agent systems, data science, statistical physics, applied mathematics, structural biology and social studies [1]–[3]. In fact, this interdisciplinary field of network science has developed very rapidly in recent years. On the one hand,network science is a self-contained discipline overlapping the classical graph theory developed since the era of Euler in the 18th century [1]–[3], followed by the comprehensive Erd?s-Rényi random graph theory [4] and the recent developments of Watts-Strogatz small-world network model [5] and Price-Barabási-Albert scale-free network model [6], [7]. On the other hand, multi-agent systems theory has become indispensable in network science and engineering, offering new approaches to investigating many real-world applications of complex dynamical networks.

    Meanwhile, the studies of dynamical synchronization among networked multi-agent systems have developed swiftly with fruitful theoretical results and new findings, particularly from the scientific communities of network science and control systems. Actually, synchronization of coupled systems is one of the oldest scientific research topics, which can be traced back to as early as the Dutch scientist Christian Huygens who in 1665 discovered perfect synchrony of two pendulum clocks fastened to a beam [8]. Since then, the study of synchronization of networks among dynamical systems or oscillators has gone through a long way with many significant results and discoveries, and remains to be a very active research subject in science and engineering today.

    The concept of network synchronization may be roughly classified into state synchronization and phase synchronization, but only the former will be addressed by this article. It is well known that in most cases synchronization is a desirable behavior, e.g. coordination of multiple mobile agents, while in other cases it can be undesirable, e.g. data traffic congestions.One typical case in point where synchronization is preferable is its essence for the functioning of biological neuronal systems [9]: “Synchronous behavior of neural assemblies is a central topic in neuroscience. It is known to be correlated with cognitive activities [10] during the normal functioning of the brain, while abnormal synchronization is linked to important brain disorders, such as epilepsy, Parkinson’s disease,Alzheimer’s disease, schizophrenia and autism [11]. Hence the interest is in the topic of neural synchronization, which has been extensively explored theoretically [12].” When synchrony is beneficial, therefore, one would like to maximize it, motivating the current research on optimizing the synchronizability of complex networks. A survey of some earlier research works on various aspects of complex network synchronization is presented in [13].

    The currently fast-evolving research direction on network synchronization has created a corpus of exciting opportunities as well as great challenges to both network scientists and system engineers. A complex dynamical network has typically large numbers of nodes and edges, with higher-dimensional dynamical node-systems such as nonlinear oscillators, which are interconnected in some complicated topologies. It took quite a long time for researchers to understand the intrinsic relationship between topology and synchronizability of a general complex network, which turns out to be essential for many real-world applications.

    This article briefly reviews the studies of complex network synchronization in relation to the network topologies, focusing on the synchrnizability of general networks with typical topologies such as the aforementioned random-graph networks, small-world networks and scale-free networks, as well as totally homogeneous networks.

    Specifically, this article reviews the basic notion and research progress of network synchronization and synchronizability. Section II provides some preliminaries on the general network model and network synchronization formulation. Section III addresses the issue of network synchronizability and presents two criteria. Section IV describes the optimal network synchronizability based on homogeneous topologies. Section V discusses the recent progress in measuring optimal synchronizability using tools from higher-order network topologies. Finally, Section VI concludes the survey with a brief future research outlook.

    II. PRELIMINARIES

    This section introduces a general network model, which covers the aforementioned random-graph, small-world and scale-free networks, and then describes the general network synchronization problem.

    A. Network Model

    A diffusively connected, undirected and unweighted continuous-time network ofNidentical node-systems can be described by [14]

    B. Network Synchronization Problem

    Network (1) is said to achieve (complete state)synchronizationif, and only if,

    To derive criteria for achieving synchronization of network(1), spectral analysis based on the network Laplacian eigenvalues (6) is a powerful and effective tool to use, as can be seen above and further discussed below.

    In retrospect, the first synchronization criterion for network(1) was established in [16], [17], in terms of the smallest nonzero Laplacian eigenvalue λ2in (6), namely,

    III. NETWORK SYNCHRONIZABILITY AND CRITERIA

    Fig. 1. Network synchronization regions.

    These two criteria can be illustrated graphically by Fig. 1,where the curve in each figure is the conditional Lyapunov exponent (LE) of network (1), which can be roughly understood here as the boundary of the Laplacian eigenvalue set [18]. In figure (a), the curve is never negative (i.e., the synchronization region is empty), therefore the network will not be synchronizing. In figure (b), the curve is negative over an unbounded internal [α0,∞) on theα-axis (i.e., the synchronization regionSmaxis unbounded). In figure (c), the curve is negative over a bounded internal [α1,α2] on theαaxis (i.e., the synchronization regionSmaxis bounded).

    Later it was found, both numerically [19] and analytically[20], that the network synchronization regionSmaxcan be a union of several intervals, namely the curve in Fig. 1 (c) may bend down and then bend up again alternatively around theαaxis, where the number of bending times depends on the order of the characteristic polynomial of the network Laplacian matrix. In this case, however, it was observed that the eigenratio criterion (9) may not work properly [21] in the case where the synchronization region is a union of several intervals since the ratio might fall into somewhere between two such intervals.

    IV. NETWORK TOPOLOGIES WITH BEST SYNCHRONIZABILITY

    To compare the synchronization performances of two networks, the concept ofsynchronizabilityis introduced,which refers to the ability of self-synchronizing without external control input or structural perturbations. The interest here is to compare two networks to see which one has a“better” synchronizability in the sense that it is easier or faster synchronizing and/or has stronger robustness in resisting perturbations, so that the eigenvalue λ2or the eigenratio λ2/λNcan remain inside the corresponding synchronization region.

    It is easy to see that

    i)for criterion (8), the larger the λ2, the better the network synchronizability;

    ii)for criterion (9), the larger the ratio λ2/λN, namely the closer to 1, the better the network synchronizability.

    To this end, it is interesting to find what kinds of network topologies might have the best possible synchronizability. To search for optimal network topologies that may have the best synchronizability, it was found [22] that, in any group of networks with same number of nodes and same number of edges, the totally homogeneous networks are optimal, better than others in the same group of networks. A totally homogeneous network is characterized by the degrees, girths and pathsums of its nodes, defined respectively as follows [22]:

    i)Degree of a nodei, denoted byki, is the number of its adjacent edges.

    As small-sized examples of totally homogeneous networks,those shown in Fig. 2 are respectively optimal ones from their own groups of networks with same number of nodes and same number of edges, in the sense that comparing to the other networks in the same group they have the largest λ2and λ2/λN[22].

    It can be seen from Fig. 2 that all optimal totally homogeneous networks are homogeneously and symmetrically connected, with many cycles. Indeed, these are important features of optimal networks with best synchronizability observed from extensive simulations [22], [24], and verified by higher-order topologies as further discussed below.Nevertheless, this conjecture remains to be further proved mathematically.

    V. EXPLORING HIGHER-ORDER TOPOLOGIES

    As mentioned, cycles are important and indeed essential for having optimal network synchronizability, which are main subjects for study in algebraic topology [25]. In complex networks, their higher-order topologies involve many cycle motifs of different orders, such as cliques (fully-connected subgraphs) of different orders like triangles, tetrahedrons and so on, as well as cavities of different orders [23].

    For a given network, define

    m0= number of nodes,

    m1= number of edges,

    m2= number of triangles,

    m3= number of tetrahedrons,

    and so on. Then, the Euler characteristic number is computed by

    χ=m0?m1+m2?m3+···

    Furthermore, define

    r0= 0 by convention,r1= rank of node-edge adjacency matrix (called incidence matrix in elementary graph theory),

    Fig. 2. Optimal totally homogeneous network examples [22].

    Fig. 3. Four types of networks. From left to right: regular network, small-world network, random-graph network, totally homogeneous network [23].

    r2= rank of edge-face adjacency matrix,

    r3= rank of face-polyhedron adjacency matrix,and so on. Then, the Betti numbers are computed by

    βk=mk?rk?rk+1,where

    β0= number of 0th-order cavities (connected subgraphs,called components in elementary graph theory),

    β1= number of 1st-order cavities,β2= number of 2nd-order cavities,

    and so on. To this end, the Euler-Poincaré formula is given by

    χ=m0?m1+m2?m3+···=β0?β1+β2?β3+···

    To show how these higher-order topological characteristics could be useful for studying the network synchronizability,consider four types of comparable typical networks as an example, each with 20 nodes and 40 edges: a regular network,a small-world network, a random-graph network and a totally homogeneous network, as shown in Fig. 3 [23].

    For these four types of networks, the simulation and calculation results are summarized in Table I.

    It can be observed from Table I that the synchronizability of the four types of networks follows the following ordering:totally homogeneous network > random-graph network >small-world network > regular network, where > means“better than”. This ordering of synchronizability is consistent with other reports in the literature and is clearly supported bythe criterion based on λ2, as well as the Betti numbers (the bigger, the better) and the Euler characteristic number (the smaller, the better, taking into account the negative sign).

    TABLE I NUMERICAL RESULTS OF FOUR TYPES OF NETWORKS [23]

    It can also be seen that the eigen-ratio criterion has a little inconsistency between regular network and small-world network in this example. This seems due to the multiple synchronization region problem mentioned above [21] and the imprecise definition of a small-world network, which actually is not much different from the regular network in this example.

    According to extensive simulations and observations, as those shown in Table I, the Euler characteristic number appears to be the best criterion to be used for determining the network synchronizability. Since the Euler characteristic numbers are integers, they clearly differ from each other by integers, while eigenvalues differ from each other only in decimals that could be difficult to distinguish in some cases.

    VI. CONCLUSIONS

    This article presents an overview on the state-of-the-art development in the studies of complex network synchronization, and discusses the progress in searching for best possible network topologies with optimal synchronizability. It reports the finding of the key roles of homogeneous structures and cycle components in enhancing the network synchronizability, especially the most recent recognition of Euler characteristic numbers or Betti numbers as a reliable measure for the optimal synchronizability, using which best network topologies can be clearly identified.

    Higher-order topologies, and generally algebraic topology theory [25], provide powerful and effective tools for in-depth investigation of complex network dynamics such as diffusion,synchronization, spreading and evolution [26], as also discussed recently in [27]–[34], which should be further explored. In particular, higher-order cycles are important to study for their key roles in supporting the optimal network synchronizability [35], [36].

    欧美日韩中文字幕国产精品一区二区三区| 老女人水多毛片| 国产精品人妻久久久影院| 久久欧美精品欧美久久欧美| 欧美最新免费一区二区三区| 老熟妇乱子伦视频在线观看| 日韩欧美精品免费久久| 五月伊人婷婷丁香| 免费无遮挡裸体视频| 午夜免费男女啪啪视频观看 | 亚洲熟妇熟女久久| 色综合亚洲欧美另类图片| 亚洲精品日韩av片在线观看| 婷婷精品国产亚洲av在线| 免费在线观看影片大全网站| 国产爱豆传媒在线观看| 免费看a级黄色片| 91av网一区二区| 丰满的人妻完整版| 搡老岳熟女国产| 国产不卡一卡二| 欧美日本亚洲视频在线播放| 久久欧美精品欧美久久欧美| 欧美bdsm另类| 男女做爰动态图高潮gif福利片| 自拍偷自拍亚洲精品老妇| 身体一侧抽搐| 欧美+亚洲+日韩+国产| 日日啪夜夜撸| 嫩草影视91久久| 亚洲成人精品中文字幕电影| 91av网一区二区| 黄片wwwwww| 精品一区二区免费观看| 黄片wwwwww| 久久精品久久久久久噜噜老黄 | 男女做爰动态图高潮gif福利片| 一进一出好大好爽视频| 色吧在线观看| 亚洲无线在线观看| 成人特级av手机在线观看| 亚洲国产欧美人成| 亚洲无线在线观看| 最近视频中文字幕2019在线8| 亚洲av美国av| 成年女人永久免费观看视频| 国产一区二区三区在线臀色熟女| 综合色av麻豆| 亚洲狠狠婷婷综合久久图片| 久久久久久大精品| 听说在线观看完整版免费高清| 国内毛片毛片毛片毛片毛片| 亚洲欧美日韩卡通动漫| 亚洲四区av| 热99re8久久精品国产| 久久99热6这里只有精品| 亚洲av成人精品一区久久| 波多野结衣巨乳人妻| 熟妇人妻久久中文字幕3abv| 在线观看免费视频日本深夜| av.在线天堂| 成人国产一区最新在线观看| 亚洲成人中文字幕在线播放| 在线免费观看的www视频| 精品乱码久久久久久99久播| 亚洲av日韩精品久久久久久密| 日韩av在线大香蕉| 亚洲最大成人手机在线| 午夜福利视频1000在线观看| 国产日本99.免费观看| 一级av片app| 欧美日韩亚洲国产一区二区在线观看| 99久久成人亚洲精品观看| 淫妇啪啪啪对白视频| 人人妻人人看人人澡| 内射极品少妇av片p| 欧美精品啪啪一区二区三区| 在线观看66精品国产| 91久久精品电影网| 国产三级中文精品| 日本色播在线视频| 我的女老师完整版在线观看| 麻豆国产97在线/欧美| 免费看美女性在线毛片视频| 精品免费久久久久久久清纯| 天天躁日日操中文字幕| 春色校园在线视频观看| 亚洲人成伊人成综合网2020| 亚洲美女搞黄在线观看 | 最近最新中文字幕大全电影3| 色av中文字幕| 国产在线精品亚洲第一网站| 尾随美女入室| 国产乱人伦免费视频| 国产精品综合久久久久久久免费| 人人妻人人澡欧美一区二区| 美女大奶头视频| 亚洲国产欧洲综合997久久,| 久久久精品欧美日韩精品| 欧美成人a在线观看| 久久午夜亚洲精品久久| 日本黄色片子视频| 老女人水多毛片| 亚洲国产日韩欧美精品在线观看| 国产老妇女一区| 国产爱豆传媒在线观看| 好男人在线观看高清免费视频| 国产69精品久久久久777片| 亚洲av电影不卡..在线观看| 久久国产精品人妻蜜桃| 日韩在线高清观看一区二区三区 | 深夜a级毛片| 搡老岳熟女国产| 亚洲精品粉嫩美女一区| 久久久久久久精品吃奶| 亚洲欧美日韩高清专用| 国产69精品久久久久777片| 亚洲天堂国产精品一区在线| 欧美日韩国产亚洲二区| 色哟哟哟哟哟哟| 少妇人妻一区二区三区视频| 午夜a级毛片| 久久中文看片网| 听说在线观看完整版免费高清| 欧美成人一区二区免费高清观看| 99热6这里只有精品| 欧洲精品卡2卡3卡4卡5卡区| 别揉我奶头 嗯啊视频| 看片在线看免费视频| 午夜日韩欧美国产| 色5月婷婷丁香| 999久久久精品免费观看国产| 精华霜和精华液先用哪个| 国产黄a三级三级三级人| 久久天躁狠狠躁夜夜2o2o| 精品无人区乱码1区二区| 亚洲人成网站在线播| 亚洲欧美日韩高清在线视频| 少妇高潮的动态图| 久久精品人妻少妇| 91麻豆精品激情在线观看国产| 欧美性感艳星| 99riav亚洲国产免费| 国产日本99.免费观看| 精品久久久噜噜| 欧美激情久久久久久爽电影| 亚洲专区中文字幕在线| 日日撸夜夜添| 搡老妇女老女人老熟妇| 性色avwww在线观看| 国产精品久久久久久久久免| av专区在线播放| 一个人看的www免费观看视频| 一进一出抽搐gif免费好疼| 搡女人真爽免费视频火全软件 | 日韩欧美 国产精品| www.色视频.com| 99久久无色码亚洲精品果冻| 久久久久性生活片| 亚洲美女搞黄在线观看 | 搡老熟女国产l中国老女人| 我的老师免费观看完整版| 日韩欧美一区二区三区在线观看| 亚洲av一区综合| 狂野欧美白嫩少妇大欣赏| 亚洲三级黄色毛片| 又黄又爽又免费观看的视频| 日本与韩国留学比较| 国产精品爽爽va在线观看网站| 国产欧美日韩一区二区精品| 男女那种视频在线观看| 黄色配什么色好看| 国产 一区精品| 久久久久久久午夜电影| 午夜老司机福利剧场| 美女高潮的动态| 午夜久久久久精精品| 网址你懂的国产日韩在线| 91av网一区二区| 丰满乱子伦码专区| 午夜免费激情av| 午夜福利成人在线免费观看| 亚洲天堂国产精品一区在线| 黄色一级大片看看| 18禁黄网站禁片免费观看直播| 亚洲av第一区精品v没综合| 麻豆av噜噜一区二区三区| 亚洲性久久影院| 老熟妇仑乱视频hdxx| 亚洲精品色激情综合| 亚洲aⅴ乱码一区二区在线播放| 97超级碰碰碰精品色视频在线观看| 人妻丰满熟妇av一区二区三区| 在线a可以看的网站| 最新中文字幕久久久久| 香蕉av资源在线| 我要搜黄色片| 免费在线观看成人毛片| 欧美另类亚洲清纯唯美| 欧美日韩瑟瑟在线播放| 成人国产一区最新在线观看| 国产一区二区在线av高清观看| 99在线视频只有这里精品首页| 99久久精品一区二区三区| 亚洲国产高清在线一区二区三| 搡女人真爽免费视频火全软件 | 少妇人妻一区二区三区视频| 久久久久久大精品| 成人性生交大片免费视频hd| 老女人水多毛片| 国语自产精品视频在线第100页| 亚洲精品一区av在线观看| 变态另类丝袜制服| 成年人黄色毛片网站| 久久精品国产亚洲av涩爱 | 日韩精品青青久久久久久| 亚州av有码| 免费观看的影片在线观看| 别揉我奶头 嗯啊视频| 伊人久久精品亚洲午夜| 欧美又色又爽又黄视频| www.色视频.com| 欧美黑人巨大hd| 亚洲av电影不卡..在线观看| 日韩精品中文字幕看吧| 午夜福利欧美成人| 深爱激情五月婷婷| 人妻少妇偷人精品九色| 淫妇啪啪啪对白视频| 亚洲电影在线观看av| 久久久久久久久大av| 色精品久久人妻99蜜桃| 蜜桃久久精品国产亚洲av| 变态另类成人亚洲欧美熟女| 亚洲成人久久性| 国产欧美日韩精品亚洲av| 69av精品久久久久久| 三级毛片av免费| 成人一区二区视频在线观看| 亚洲中文字幕一区二区三区有码在线看| avwww免费| 97热精品久久久久久| 久久精品国产鲁丝片午夜精品 | 日本 欧美在线| 直男gayav资源| 黄色日韩在线| 黄色女人牲交| 中国美女看黄片| 午夜久久久久精精品| 国产免费男女视频| 国产午夜精品久久久久久一区二区三区 | avwww免费| 一级毛片久久久久久久久女| 国产中年淑女户外野战色| 精品国内亚洲2022精品成人| 欧美三级亚洲精品| 少妇的逼好多水| 国内精品久久久久久久电影| 日韩在线高清观看一区二区三区 | a级毛片a级免费在线| 久久99热6这里只有精品| 国产午夜精品论理片| 3wmmmm亚洲av在线观看| 中亚洲国语对白在线视频| 直男gayav资源| 在线天堂最新版资源| 久久中文看片网| 亚洲欧美清纯卡通| 亚洲av成人精品一区久久| 日本免费一区二区三区高清不卡| 综合色av麻豆| 美女高潮的动态| 少妇熟女aⅴ在线视频| 国产蜜桃级精品一区二区三区| 日韩欧美精品免费久久| 国产成人a区在线观看| 老熟妇仑乱视频hdxx| 最近视频中文字幕2019在线8| 久久精品国产亚洲网站| 国产伦在线观看视频一区| 婷婷六月久久综合丁香| 在线观看午夜福利视频| 淫妇啪啪啪对白视频| 免费看a级黄色片| 一区二区三区免费毛片| 久久人妻av系列| 日韩欧美 国产精品| 免费大片18禁| 欧美国产日韩亚洲一区| 熟女电影av网| 久久久久久久久大av| 中文字幕精品亚洲无线码一区| 国产伦精品一区二区三区四那| 婷婷精品国产亚洲av在线| 91在线精品国自产拍蜜月| 日本一本二区三区精品| 亚洲 国产 在线| 狠狠狠狠99中文字幕| 观看免费一级毛片| 日本免费一区二区三区高清不卡| 91在线精品国自产拍蜜月| 久久国产精品人妻蜜桃| 在线观看av片永久免费下载| 欧美日韩中文字幕国产精品一区二区三区| 成人二区视频| 亚洲色图av天堂| 国产高清视频在线播放一区| 亚洲内射少妇av| 国产69精品久久久久777片| av天堂中文字幕网| 国产精品国产三级国产av玫瑰| 久久精品国产亚洲网站| 国产成人一区二区在线| 国产男靠女视频免费网站| 少妇裸体淫交视频免费看高清| 国内久久婷婷六月综合欲色啪| 日本黄色视频三级网站网址| 亚洲狠狠婷婷综合久久图片| 精品午夜福利视频在线观看一区| 国内精品一区二区在线观看| 我的女老师完整版在线观看| 国产成人av教育| 欧美精品啪啪一区二区三区| 久久久久久久久大av| 欧美激情在线99| 男女那种视频在线观看| 波多野结衣高清无吗| 欧美zozozo另类| 中文在线观看免费www的网站| 22中文网久久字幕| 一区二区三区四区激情视频 | 亚洲av.av天堂| 简卡轻食公司| 欧美激情国产日韩精品一区| 精品一区二区免费观看| 18禁黄网站禁片午夜丰满| 亚洲国产精品合色在线| 色综合亚洲欧美另类图片| 国产精品嫩草影院av在线观看 | 日本色播在线视频| 午夜精品在线福利| 天堂av国产一区二区熟女人妻| 久久热精品热| 久久久久久久久久黄片| 少妇人妻精品综合一区二区 | 男人舔奶头视频| 午夜亚洲福利在线播放| 精品人妻熟女av久视频| 亚洲三级黄色毛片| 少妇人妻一区二区三区视频| 国内精品宾馆在线| 韩国av一区二区三区四区| 久久99热这里只有精品18| 国产大屁股一区二区在线视频| 中出人妻视频一区二区| 欧美日韩综合久久久久久 | 久久精品国产亚洲av香蕉五月| 18禁黄网站禁片午夜丰满| 看十八女毛片水多多多| 少妇的逼好多水| 亚洲精品乱码久久久v下载方式| 此物有八面人人有两片| 日本 欧美在线| 亚洲中文日韩欧美视频| 久久久成人免费电影| 久久久国产成人免费| 欧美不卡视频在线免费观看| 亚洲av成人av| 色av中文字幕| 国产三级中文精品| 美女cb高潮喷水在线观看| 不卡视频在线观看欧美| 久久人人爽人人爽人人片va| 久久久久性生活片| 欧美三级亚洲精品| 高清日韩中文字幕在线| 亚洲成a人片在线一区二区| 国产精品98久久久久久宅男小说| 亚洲av日韩精品久久久久久密| 一本精品99久久精品77| 精品人妻1区二区| 日本欧美国产在线视频| 欧美日韩国产亚洲二区| 亚洲精品色激情综合| 成年女人毛片免费观看观看9| 国产午夜福利久久久久久| 国产黄色小视频在线观看| 成人综合一区亚洲| 日本色播在线视频| 国产欧美日韩一区二区精品| 欧美人与善性xxx| 黄色女人牲交| 在线免费观看不下载黄p国产 | 91在线精品国自产拍蜜月| 联通29元200g的流量卡| 亚洲美女视频黄频| 成年免费大片在线观看| 国产极品精品免费视频能看的| 国产精品精品国产色婷婷| 可以在线观看毛片的网站| 国产精品人妻久久久久久| 亚洲18禁久久av| 久久草成人影院| 永久网站在线| 99九九线精品视频在线观看视频| 国产 一区 欧美 日韩| 亚洲美女黄片视频| 99久久精品国产国产毛片| 成人高潮视频无遮挡免费网站| 琪琪午夜伦伦电影理论片6080| 免费看av在线观看网站| 亚洲成人久久性| 精品久久久久久久末码| 中文字幕高清在线视频| 欧美bdsm另类| 精品无人区乱码1区二区| 999久久久精品免费观看国产| 欧美zozozo另类| 波多野结衣巨乳人妻| 他把我摸到了高潮在线观看| 国产视频内射| 一进一出抽搐gif免费好疼| 天天躁日日操中文字幕| 中文资源天堂在线| 他把我摸到了高潮在线观看| 又爽又黄无遮挡网站| 国产极品精品免费视频能看的| 色播亚洲综合网| 欧美+日韩+精品| 亚洲综合色惰| 桃色一区二区三区在线观看| 三级国产精品欧美在线观看| 天天躁日日操中文字幕| 国产午夜精品论理片| 床上黄色一级片| 亚洲第一电影网av| 少妇人妻一区二区三区视频| 亚洲四区av| 国产白丝娇喘喷水9色精品| 琪琪午夜伦伦电影理论片6080| 欧美国产日韩亚洲一区| av天堂在线播放| 99在线视频只有这里精品首页| 欧美激情久久久久久爽电影| 丰满人妻一区二区三区视频av| 亚洲avbb在线观看| 久久人人精品亚洲av| 国产美女午夜福利| 欧美日韩综合久久久久久 | 国产亚洲欧美98| 亚洲专区中文字幕在线| 欧美成人一区二区免费高清观看| 亚洲性久久影院| 国产一区二区在线av高清观看| 免费黄网站久久成人精品| av中文乱码字幕在线| 久久久国产成人免费| 变态另类成人亚洲欧美熟女| 黄色视频,在线免费观看| 12—13女人毛片做爰片一| 亚洲av二区三区四区| 九九热线精品视视频播放| 成人美女网站在线观看视频| 亚洲综合色惰| 特大巨黑吊av在线直播| 国产av在哪里看| 99精品久久久久人妻精品| 免费av不卡在线播放| 欧美性猛交╳xxx乱大交人| 国产激情偷乱视频一区二区| 色综合亚洲欧美另类图片| 一卡2卡三卡四卡精品乱码亚洲| 欧美+亚洲+日韩+国产| 久9热在线精品视频| 成人特级黄色片久久久久久久| 99久久无色码亚洲精品果冻| 熟妇人妻久久中文字幕3abv| 琪琪午夜伦伦电影理论片6080| 级片在线观看| 亚洲综合色惰| 一卡2卡三卡四卡精品乱码亚洲| 精品人妻1区二区| 成人av在线播放网站| 一区二区三区激情视频| 亚洲aⅴ乱码一区二区在线播放| 日韩在线高清观看一区二区三区 | 熟女人妻精品中文字幕| 人妻夜夜爽99麻豆av| 午夜老司机福利剧场| 国产精品国产高清国产av| 男女之事视频高清在线观看| 中文字幕高清在线视频| 国产成人福利小说| 国产色婷婷99| 免费av毛片视频| 色尼玛亚洲综合影院| 国产精品精品国产色婷婷| 久9热在线精品视频| 久久香蕉精品热| 亚洲精华国产精华精| 变态另类成人亚洲欧美熟女| а√天堂www在线а√下载| 国产亚洲精品av在线| 久久久久久久午夜电影| 99精品在免费线老司机午夜| 十八禁网站免费在线| 黄色丝袜av网址大全| 日日撸夜夜添| 直男gayav资源| 午夜福利欧美成人| 老司机福利观看| 精品人妻视频免费看| 桃色一区二区三区在线观看| 97碰自拍视频| 简卡轻食公司| 久久久久久九九精品二区国产| 好男人在线观看高清免费视频| 国产老妇女一区| 久久久久国内视频| 小说图片视频综合网站| 亚洲五月天丁香| 一个人看的www免费观看视频| 毛片一级片免费看久久久久 | 国产 一区精品| 欧美中文日本在线观看视频| 午夜影院日韩av| 国产亚洲欧美98| 色在线成人网| 99久国产av精品| 一级a爱片免费观看的视频| 两人在一起打扑克的视频| av.在线天堂| 少妇猛男粗大的猛烈进出视频 | 热99在线观看视频| 男女之事视频高清在线观看| 最新在线观看一区二区三区| 亚洲无线观看免费| 色综合亚洲欧美另类图片| 国产久久久一区二区三区| 亚洲乱码一区二区免费版| 夜夜夜夜夜久久久久| 午夜福利18| 亚洲人成网站在线播| 国产高清激情床上av| 黄色丝袜av网址大全| 久久久久久伊人网av| 99热这里只有是精品50| 哪里可以看免费的av片| 国产av麻豆久久久久久久| 狂野欧美激情性xxxx在线观看| 尾随美女入室| 欧美激情在线99| 欧美最新免费一区二区三区| 最近最新免费中文字幕在线| 亚洲人成网站在线播放欧美日韩| 亚洲欧美清纯卡通| 国产女主播在线喷水免费视频网站 | 中文字幕人妻熟人妻熟丝袜美| 免费av毛片视频| 啦啦啦观看免费观看视频高清| 露出奶头的视频| 久久久久免费精品人妻一区二区| 欧美日韩乱码在线| 不卡视频在线观看欧美| 中亚洲国语对白在线视频| 欧美三级亚洲精品| 午夜精品久久久久久毛片777| 免费看a级黄色片| 亚洲人成网站在线播| 亚洲av美国av| 日日夜夜操网爽| 舔av片在线| 成人国产综合亚洲| 免费观看的影片在线观看| 久久精品人妻少妇| 又爽又黄无遮挡网站| 亚洲综合色惰| 可以在线观看毛片的网站| 免费观看人在逋| 国产黄片美女视频| 国产亚洲精品久久久com| 国产高潮美女av| 成年免费大片在线观看| 热99在线观看视频| 欧美一级a爱片免费观看看| 久久久久久大精品| 日本熟妇午夜| videossex国产| 国产一区二区三区视频了| 午夜激情福利司机影院| 免费看a级黄色片| 欧美另类亚洲清纯唯美| 丰满人妻一区二区三区视频av| 日日夜夜操网爽| 日韩欧美免费精品| 伦理电影大哥的女人| videossex国产| 精品一区二区三区人妻视频| bbb黄色大片| 亚洲自拍偷在线| 亚洲久久久久久中文字幕| 男女做爰动态图高潮gif福利片| 日韩欧美国产在线观看| 国产精品三级大全| 亚洲性久久影院| 亚洲精品影视一区二区三区av| 乱人视频在线观看| 欧美高清成人免费视频www| 女人十人毛片免费观看3o分钟| 欧美区成人在线视频| 国产人妻一区二区三区在| 神马国产精品三级电影在线观看| 成人二区视频| 91麻豆精品激情在线观看国产| 久久久久久久久中文|