• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Searching for Best Network Topologies with Optimal Synchronizability: A Brief Review

    2022-04-15 04:19:52GuanrongChen
    IEEE/CAA Journal of Automatica Sinica 2022年4期

    Guanrong Chen,

    Abstract—The Laplacian eigenvalue spectrum of a complex network contains a great deal of information about the network topology and dynamics, particularly affecting the network synchronization process and performance. This article briefly reviews the recent progress in the studies of network synchronizability, regarding its spectral criteria and topological optimization, and explores the role of higher-order topologies in measuring the optimal synchronizability of large-scale complex networks.

    I. INTRODUCTI ON

    NETWORK science has grown to be a broad discipline after a continued and persistent research pursuit from various scientific and engineering communities, especially in multi-agent systems, data science, statistical physics, applied mathematics, structural biology and social studies [1]–[3]. In fact, this interdisciplinary field of network science has developed very rapidly in recent years. On the one hand,network science is a self-contained discipline overlapping the classical graph theory developed since the era of Euler in the 18th century [1]–[3], followed by the comprehensive Erd?s-Rényi random graph theory [4] and the recent developments of Watts-Strogatz small-world network model [5] and Price-Barabási-Albert scale-free network model [6], [7]. On the other hand, multi-agent systems theory has become indispensable in network science and engineering, offering new approaches to investigating many real-world applications of complex dynamical networks.

    Meanwhile, the studies of dynamical synchronization among networked multi-agent systems have developed swiftly with fruitful theoretical results and new findings, particularly from the scientific communities of network science and control systems. Actually, synchronization of coupled systems is one of the oldest scientific research topics, which can be traced back to as early as the Dutch scientist Christian Huygens who in 1665 discovered perfect synchrony of two pendulum clocks fastened to a beam [8]. Since then, the study of synchronization of networks among dynamical systems or oscillators has gone through a long way with many significant results and discoveries, and remains to be a very active research subject in science and engineering today.

    The concept of network synchronization may be roughly classified into state synchronization and phase synchronization, but only the former will be addressed by this article. It is well known that in most cases synchronization is a desirable behavior, e.g. coordination of multiple mobile agents, while in other cases it can be undesirable, e.g. data traffic congestions.One typical case in point where synchronization is preferable is its essence for the functioning of biological neuronal systems [9]: “Synchronous behavior of neural assemblies is a central topic in neuroscience. It is known to be correlated with cognitive activities [10] during the normal functioning of the brain, while abnormal synchronization is linked to important brain disorders, such as epilepsy, Parkinson’s disease,Alzheimer’s disease, schizophrenia and autism [11]. Hence the interest is in the topic of neural synchronization, which has been extensively explored theoretically [12].” When synchrony is beneficial, therefore, one would like to maximize it, motivating the current research on optimizing the synchronizability of complex networks. A survey of some earlier research works on various aspects of complex network synchronization is presented in [13].

    The currently fast-evolving research direction on network synchronization has created a corpus of exciting opportunities as well as great challenges to both network scientists and system engineers. A complex dynamical network has typically large numbers of nodes and edges, with higher-dimensional dynamical node-systems such as nonlinear oscillators, which are interconnected in some complicated topologies. It took quite a long time for researchers to understand the intrinsic relationship between topology and synchronizability of a general complex network, which turns out to be essential for many real-world applications.

    This article briefly reviews the studies of complex network synchronization in relation to the network topologies, focusing on the synchrnizability of general networks with typical topologies such as the aforementioned random-graph networks, small-world networks and scale-free networks, as well as totally homogeneous networks.

    Specifically, this article reviews the basic notion and research progress of network synchronization and synchronizability. Section II provides some preliminaries on the general network model and network synchronization formulation. Section III addresses the issue of network synchronizability and presents two criteria. Section IV describes the optimal network synchronizability based on homogeneous topologies. Section V discusses the recent progress in measuring optimal synchronizability using tools from higher-order network topologies. Finally, Section VI concludes the survey with a brief future research outlook.

    II. PRELIMINARIES

    This section introduces a general network model, which covers the aforementioned random-graph, small-world and scale-free networks, and then describes the general network synchronization problem.

    A. Network Model

    A diffusively connected, undirected and unweighted continuous-time network ofNidentical node-systems can be described by [14]

    B. Network Synchronization Problem

    Network (1) is said to achieve (complete state)synchronizationif, and only if,

    To derive criteria for achieving synchronization of network(1), spectral analysis based on the network Laplacian eigenvalues (6) is a powerful and effective tool to use, as can be seen above and further discussed below.

    In retrospect, the first synchronization criterion for network(1) was established in [16], [17], in terms of the smallest nonzero Laplacian eigenvalue λ2in (6), namely,

    III. NETWORK SYNCHRONIZABILITY AND CRITERIA

    Fig. 1. Network synchronization regions.

    These two criteria can be illustrated graphically by Fig. 1,where the curve in each figure is the conditional Lyapunov exponent (LE) of network (1), which can be roughly understood here as the boundary of the Laplacian eigenvalue set [18]. In figure (a), the curve is never negative (i.e., the synchronization region is empty), therefore the network will not be synchronizing. In figure (b), the curve is negative over an unbounded internal [α0,∞) on theα-axis (i.e., the synchronization regionSmaxis unbounded). In figure (c), the curve is negative over a bounded internal [α1,α2] on theαaxis (i.e., the synchronization regionSmaxis bounded).

    Later it was found, both numerically [19] and analytically[20], that the network synchronization regionSmaxcan be a union of several intervals, namely the curve in Fig. 1 (c) may bend down and then bend up again alternatively around theαaxis, where the number of bending times depends on the order of the characteristic polynomial of the network Laplacian matrix. In this case, however, it was observed that the eigenratio criterion (9) may not work properly [21] in the case where the synchronization region is a union of several intervals since the ratio might fall into somewhere between two such intervals.

    IV. NETWORK TOPOLOGIES WITH BEST SYNCHRONIZABILITY

    To compare the synchronization performances of two networks, the concept ofsynchronizabilityis introduced,which refers to the ability of self-synchronizing without external control input or structural perturbations. The interest here is to compare two networks to see which one has a“better” synchronizability in the sense that it is easier or faster synchronizing and/or has stronger robustness in resisting perturbations, so that the eigenvalue λ2or the eigenratio λ2/λNcan remain inside the corresponding synchronization region.

    It is easy to see that

    i)for criterion (8), the larger the λ2, the better the network synchronizability;

    ii)for criterion (9), the larger the ratio λ2/λN, namely the closer to 1, the better the network synchronizability.

    To this end, it is interesting to find what kinds of network topologies might have the best possible synchronizability. To search for optimal network topologies that may have the best synchronizability, it was found [22] that, in any group of networks with same number of nodes and same number of edges, the totally homogeneous networks are optimal, better than others in the same group of networks. A totally homogeneous network is characterized by the degrees, girths and pathsums of its nodes, defined respectively as follows [22]:

    i)Degree of a nodei, denoted byki, is the number of its adjacent edges.

    As small-sized examples of totally homogeneous networks,those shown in Fig. 2 are respectively optimal ones from their own groups of networks with same number of nodes and same number of edges, in the sense that comparing to the other networks in the same group they have the largest λ2and λ2/λN[22].

    It can be seen from Fig. 2 that all optimal totally homogeneous networks are homogeneously and symmetrically connected, with many cycles. Indeed, these are important features of optimal networks with best synchronizability observed from extensive simulations [22], [24], and verified by higher-order topologies as further discussed below.Nevertheless, this conjecture remains to be further proved mathematically.

    V. EXPLORING HIGHER-ORDER TOPOLOGIES

    As mentioned, cycles are important and indeed essential for having optimal network synchronizability, which are main subjects for study in algebraic topology [25]. In complex networks, their higher-order topologies involve many cycle motifs of different orders, such as cliques (fully-connected subgraphs) of different orders like triangles, tetrahedrons and so on, as well as cavities of different orders [23].

    For a given network, define

    m0= number of nodes,

    m1= number of edges,

    m2= number of triangles,

    m3= number of tetrahedrons,

    and so on. Then, the Euler characteristic number is computed by

    χ=m0?m1+m2?m3+···

    Furthermore, define

    r0= 0 by convention,r1= rank of node-edge adjacency matrix (called incidence matrix in elementary graph theory),

    Fig. 2. Optimal totally homogeneous network examples [22].

    Fig. 3. Four types of networks. From left to right: regular network, small-world network, random-graph network, totally homogeneous network [23].

    r2= rank of edge-face adjacency matrix,

    r3= rank of face-polyhedron adjacency matrix,and so on. Then, the Betti numbers are computed by

    βk=mk?rk?rk+1,where

    β0= number of 0th-order cavities (connected subgraphs,called components in elementary graph theory),

    β1= number of 1st-order cavities,β2= number of 2nd-order cavities,

    and so on. To this end, the Euler-Poincaré formula is given by

    χ=m0?m1+m2?m3+···=β0?β1+β2?β3+···

    To show how these higher-order topological characteristics could be useful for studying the network synchronizability,consider four types of comparable typical networks as an example, each with 20 nodes and 40 edges: a regular network,a small-world network, a random-graph network and a totally homogeneous network, as shown in Fig. 3 [23].

    For these four types of networks, the simulation and calculation results are summarized in Table I.

    It can be observed from Table I that the synchronizability of the four types of networks follows the following ordering:totally homogeneous network > random-graph network >small-world network > regular network, where > means“better than”. This ordering of synchronizability is consistent with other reports in the literature and is clearly supported bythe criterion based on λ2, as well as the Betti numbers (the bigger, the better) and the Euler characteristic number (the smaller, the better, taking into account the negative sign).

    TABLE I NUMERICAL RESULTS OF FOUR TYPES OF NETWORKS [23]

    It can also be seen that the eigen-ratio criterion has a little inconsistency between regular network and small-world network in this example. This seems due to the multiple synchronization region problem mentioned above [21] and the imprecise definition of a small-world network, which actually is not much different from the regular network in this example.

    According to extensive simulations and observations, as those shown in Table I, the Euler characteristic number appears to be the best criterion to be used for determining the network synchronizability. Since the Euler characteristic numbers are integers, they clearly differ from each other by integers, while eigenvalues differ from each other only in decimals that could be difficult to distinguish in some cases.

    VI. CONCLUSIONS

    This article presents an overview on the state-of-the-art development in the studies of complex network synchronization, and discusses the progress in searching for best possible network topologies with optimal synchronizability. It reports the finding of the key roles of homogeneous structures and cycle components in enhancing the network synchronizability, especially the most recent recognition of Euler characteristic numbers or Betti numbers as a reliable measure for the optimal synchronizability, using which best network topologies can be clearly identified.

    Higher-order topologies, and generally algebraic topology theory [25], provide powerful and effective tools for in-depth investigation of complex network dynamics such as diffusion,synchronization, spreading and evolution [26], as also discussed recently in [27]–[34], which should be further explored. In particular, higher-order cycles are important to study for their key roles in supporting the optimal network synchronizability [35], [36].

    国产中年淑女户外野战色| 日韩国内少妇激情av| 成人鲁丝片一二三区免费| 69人妻影院| 亚洲精品色激情综合| 国产精品国产高清国产av| 黄色一级大片看看| 欧美日韩瑟瑟在线播放| 日韩,欧美,国产一区二区三区 | 亚洲欧美精品综合久久99| 麻豆成人午夜福利视频| 女人十人毛片免费观看3o分钟| 美女免费视频网站| 一区二区三区激情视频| 中国美白少妇内射xxxbb| 天堂影院成人在线观看| 久久精品国产亚洲网站| av视频在线观看入口| 最新中文字幕久久久久| 国产三级中文精品| 亚洲av二区三区四区| 成人综合一区亚洲| 成人特级av手机在线观看| 丰满人妻一区二区三区视频av| 麻豆国产97在线/欧美| 极品教师在线免费播放| 国产精品女同一区二区软件 | 91狼人影院| 老熟妇乱子伦视频在线观看| 欧美三级亚洲精品| 一进一出抽搐gif免费好疼| 神马国产精品三级电影在线观看| 成年女人看的毛片在线观看| 日本成人三级电影网站| 久久香蕉精品热| 成年女人看的毛片在线观看| 国产探花极品一区二区| 精品一区二区三区视频在线观看免费| 91久久精品电影网| 丰满人妻一区二区三区视频av| 一区二区三区免费毛片| 久久久久精品国产欧美久久久| 黄色配什么色好看| 久久精品夜夜夜夜夜久久蜜豆| 狂野欧美激情性xxxx在线观看| 在现免费观看毛片| 赤兔流量卡办理| 色哟哟哟哟哟哟| 美女高潮喷水抽搐中文字幕| 1024手机看黄色片| 久久久久久久亚洲中文字幕| 麻豆久久精品国产亚洲av| 婷婷六月久久综合丁香| 亚洲七黄色美女视频| 亚洲一区高清亚洲精品| 欧美绝顶高潮抽搐喷水| 日韩中字成人| 欧美成人a在线观看| 免费黄网站久久成人精品| 亚洲性久久影院| 2021天堂中文幕一二区在线观| 亚洲精品粉嫩美女一区| 非洲黑人性xxxx精品又粗又长| 成人精品一区二区免费| 午夜福利在线在线| 亚洲av成人av| 69av精品久久久久久| 亚洲成人久久爱视频| 久久久久久久亚洲中文字幕| 国产高清视频在线播放一区| 亚洲18禁久久av| 禁无遮挡网站| 国产探花在线观看一区二区| 日本免费一区二区三区高清不卡| a级毛片a级免费在线| 熟女人妻精品中文字幕| 国产伦精品一区二区三区四那| 成人av一区二区三区在线看| 国产亚洲91精品色在线| 久久久久性生活片| 少妇高潮的动态图| 欧美bdsm另类| 午夜免费激情av| 亚洲图色成人| 三级国产精品欧美在线观看| 亚洲熟妇熟女久久| 一边摸一边抽搐一进一小说| 啦啦啦观看免费观看视频高清| 国内精品美女久久久久久| 日韩欧美一区二区三区在线观看| 亚洲va在线va天堂va国产| 成熟少妇高潮喷水视频| 三级男女做爰猛烈吃奶摸视频| www.色视频.com| 久久久久九九精品影院| 欧美最黄视频在线播放免费| 波多野结衣高清无吗| 国产一区二区亚洲精品在线观看| 啦啦啦啦在线视频资源| av福利片在线观看| 99在线人妻在线中文字幕| 在线免费十八禁| 久久国产精品人妻蜜桃| 成人毛片a级毛片在线播放| 国产国拍精品亚洲av在线观看| 亚洲欧美日韩高清专用| av在线亚洲专区| 日韩欧美精品v在线| 日韩欧美免费精品| 亚洲图色成人| 22中文网久久字幕| 欧美成人性av电影在线观看| 国产在线精品亚洲第一网站| av在线蜜桃| 深夜精品福利| 国产淫片久久久久久久久| 日韩大尺度精品在线看网址| 国产三级在线视频| 亚洲av熟女| 成熟少妇高潮喷水视频| 三级国产精品欧美在线观看| 久久久久久久午夜电影| 国产单亲对白刺激| 又黄又爽又免费观看的视频| 婷婷六月久久综合丁香| 国产人妻一区二区三区在| 国产在线男女| 国产三级在线视频| 97热精品久久久久久| 精品午夜福利视频在线观看一区| 看十八女毛片水多多多| 国产91精品成人一区二区三区| 久久6这里有精品| 欧美另类亚洲清纯唯美| 黄色一级大片看看| 他把我摸到了高潮在线观看| 国内毛片毛片毛片毛片毛片| 午夜激情欧美在线| 亚洲天堂国产精品一区在线| 亚洲av二区三区四区| 男女啪啪激烈高潮av片| 国产精品av视频在线免费观看| 欧美黑人欧美精品刺激| 亚洲五月天丁香| 久99久视频精品免费| 国内久久婷婷六月综合欲色啪| 中文字幕av在线有码专区| 成年版毛片免费区| 最新中文字幕久久久久| 国产一区二区三区在线臀色熟女| 亚洲最大成人手机在线| 免费人成在线观看视频色| 日韩欧美国产一区二区入口| 一边摸一边抽搐一进一小说| 18+在线观看网站| 久久欧美精品欧美久久欧美| 国模一区二区三区四区视频| 小蜜桃在线观看免费完整版高清| 亚洲自拍偷在线| 两个人视频免费观看高清| 精品久久久久久久久久久久久| 成人毛片a级毛片在线播放| 在线观看美女被高潮喷水网站| 校园春色视频在线观看| 欧美+亚洲+日韩+国产| 天美传媒精品一区二区| 免费人成在线观看视频色| 亚洲成人精品中文字幕电影| 毛片女人毛片| 亚洲午夜理论影院| 久久久成人免费电影| 精品欧美国产一区二区三| 真人做人爱边吃奶动态| 久久这里只有精品中国| 麻豆国产av国片精品| 亚洲成av人片在线播放无| 搡老岳熟女国产| 免费观看的影片在线观看| 99久久精品一区二区三区| 成人三级黄色视频| 亚洲av免费高清在线观看| 看黄色毛片网站| 成人国产麻豆网| 久9热在线精品视频| 欧美绝顶高潮抽搐喷水| 亚洲av美国av| 夜夜夜夜夜久久久久| 黄色配什么色好看| 露出奶头的视频| 干丝袜人妻中文字幕| 午夜免费男女啪啪视频观看 | 亚州av有码| 精品无人区乱码1区二区| 色综合色国产| 九九热线精品视视频播放| 蜜桃亚洲精品一区二区三区| 国产一区二区三区视频了| 国产精品女同一区二区软件 | 91久久精品国产一区二区三区| 欧美日韩亚洲国产一区二区在线观看| 此物有八面人人有两片| 久久久久九九精品影院| 国产精品国产高清国产av| 久久精品影院6| 国产亚洲欧美98| 成年版毛片免费区| 一级毛片久久久久久久久女| 尤物成人国产欧美一区二区三区| 久久久午夜欧美精品| 精品久久久久久久末码| 国产精品人妻久久久久久| 国产免费av片在线观看野外av| 嫁个100分男人电影在线观看| 午夜视频国产福利| 色综合亚洲欧美另类图片| 人妻少妇偷人精品九色| 国产熟女欧美一区二区| av在线天堂中文字幕| 别揉我奶头 嗯啊视频| 大型黄色视频在线免费观看| 久久久久国内视频| 老司机深夜福利视频在线观看| 一进一出好大好爽视频| 中出人妻视频一区二区| av天堂在线播放| 夜夜爽天天搞| 色5月婷婷丁香| 国产91精品成人一区二区三区| 99热这里只有是精品在线观看| 一级黄色大片毛片| 麻豆国产97在线/欧美| 欧洲精品卡2卡3卡4卡5卡区| 国产精品久久久久久亚洲av鲁大| 久久国内精品自在自线图片| 中文字幕高清在线视频| 长腿黑丝高跟| 亚洲国产精品久久男人天堂| 日本与韩国留学比较| 日本一二三区视频观看| 成人高潮视频无遮挡免费网站| 日韩欧美三级三区| 久久精品国产鲁丝片午夜精品 | 校园春色视频在线观看| av在线观看视频网站免费| 毛片女人毛片| 在线观看免费视频日本深夜| 极品教师在线免费播放| 麻豆一二三区av精品| 久久精品国产亚洲av香蕉五月| 国产日本99.免费观看| 亚洲人成网站在线播放欧美日韩| 岛国在线免费视频观看| 日韩欧美在线乱码| 少妇的逼好多水| 别揉我奶头 嗯啊视频| 亚洲精品一区av在线观看| www.www免费av| 成人永久免费在线观看视频| 琪琪午夜伦伦电影理论片6080| 日韩欧美国产在线观看| 男人舔女人下体高潮全视频| 精品无人区乱码1区二区| 免费观看在线日韩| 18禁裸乳无遮挡免费网站照片| 一个人看视频在线观看www免费| 变态另类丝袜制服| 最近最新中文字幕大全电影3| 日本色播在线视频| 免费在线观看成人毛片| 一进一出抽搐gif免费好疼| 97热精品久久久久久| 日韩国内少妇激情av| 久久久久久久午夜电影| 成人一区二区视频在线观看| 亚洲国产欧洲综合997久久,| 尤物成人国产欧美一区二区三区| 热99在线观看视频| 免费看日本二区| 亚洲精品亚洲一区二区| 99riav亚洲国产免费| 免费看光身美女| 国产一区二区在线av高清观看| 别揉我奶头 嗯啊视频| 无遮挡黄片免费观看| av女优亚洲男人天堂| 欧美最新免费一区二区三区| av视频在线观看入口| 日韩在线高清观看一区二区三区 | 国内久久婷婷六月综合欲色啪| 精品久久久久久,| 天美传媒精品一区二区| 淫妇啪啪啪对白视频| 亚洲精品日韩av片在线观看| 99国产精品一区二区蜜桃av| 啦啦啦韩国在线观看视频| 日韩欧美一区二区三区在线观看| 日本三级黄在线观看| 日本五十路高清| 好男人在线观看高清免费视频| 一个人看的www免费观看视频| 听说在线观看完整版免费高清| 99精品在免费线老司机午夜| 国产国拍精品亚洲av在线观看| 一本精品99久久精品77| 久久婷婷人人爽人人干人人爱| 国产精品伦人一区二区| 欧美日本亚洲视频在线播放| 99热这里只有是精品在线观看| 91久久精品电影网| 国产精品一区二区性色av| 久久午夜福利片| 亚洲,欧美,日韩| 国产一区二区在线av高清观看| 又黄又爽又刺激的免费视频.| 色噜噜av男人的天堂激情| 成年免费大片在线观看| 99国产极品粉嫩在线观看| 国产人妻一区二区三区在| 欧美三级亚洲精品| 给我免费播放毛片高清在线观看| 国产熟女欧美一区二区| 桃红色精品国产亚洲av| 99视频精品全部免费 在线| 女人十人毛片免费观看3o分钟| 国产精品亚洲美女久久久| 狂野欧美激情性xxxx在线观看| 美女被艹到高潮喷水动态| 五月玫瑰六月丁香| 99热这里只有是精品50| 亚洲综合色惰| 久久久久久久久久久丰满 | 桃色一区二区三区在线观看| 成人国产一区最新在线观看| 亚洲成人久久爱视频| 悠悠久久av| 日本欧美国产在线视频| 国产极品精品免费视频能看的| 国模一区二区三区四区视频| 亚洲人成网站在线播放欧美日韩| 桃红色精品国产亚洲av| 成年女人看的毛片在线观看| 国产精品嫩草影院av在线观看 | 免费搜索国产男女视频| 成人国产综合亚洲| 国产高清有码在线观看视频| 亚洲最大成人中文| 最近中文字幕高清免费大全6 | 国产精品日韩av在线免费观看| 大又大粗又爽又黄少妇毛片口| 99热只有精品国产| 淫妇啪啪啪对白视频| 久久久久久久久久黄片| 中文字幕久久专区| 国产一区二区在线av高清观看| 日韩大尺度精品在线看网址| 色哟哟·www| 国内精品久久久久精免费| 久久中文看片网| 一本精品99久久精品77| 亚洲自偷自拍三级| 久久久精品大字幕| 日韩欧美三级三区| 亚洲三级黄色毛片| 男女边吃奶边做爰视频| 成人精品一区二区免费| 美女xxoo啪啪120秒动态图| 色综合婷婷激情| 日韩强制内射视频| 亚洲国产日韩欧美精品在线观看| 国产伦人伦偷精品视频| 老熟妇乱子伦视频在线观看| 国模一区二区三区四区视频| 国产熟女欧美一区二区| 国产欧美日韩一区二区精品| 亚洲专区中文字幕在线| 美女 人体艺术 gogo| 日韩精品青青久久久久久| 一进一出抽搐动态| 日日啪夜夜撸| 中出人妻视频一区二区| 草草在线视频免费看| 亚洲久久久久久中文字幕| 色噜噜av男人的天堂激情| 亚洲久久久久久中文字幕| 国产精品av视频在线免费观看| 国产久久久一区二区三区| 国产精品av视频在线免费观看| 国内久久婷婷六月综合欲色啪| 香蕉av资源在线| 久久国产精品人妻蜜桃| 少妇的逼好多水| 国产伦精品一区二区三区四那| 国国产精品蜜臀av免费| 精品久久久久久久人妻蜜臀av| 91久久精品国产一区二区三区| 亚洲精华国产精华液的使用体验 | 有码 亚洲区| 国产激情偷乱视频一区二区| 色哟哟·www| 久久久久久久久中文| a级毛片免费高清观看在线播放| 色综合婷婷激情| 99九九线精品视频在线观看视频| 日韩欧美在线乱码| 美女xxoo啪啪120秒动态图| 搞女人的毛片| 欧美激情在线99| 黄色配什么色好看| 亚洲精品影视一区二区三区av| 在线观看免费视频日本深夜| 美女cb高潮喷水在线观看| 亚洲第一区二区三区不卡| 91久久精品国产一区二区三区| 亚洲无线观看免费| 一夜夜www| 成年版毛片免费区| 午夜老司机福利剧场| 成年女人看的毛片在线观看| 在线免费十八禁| 国产三级中文精品| 麻豆成人午夜福利视频| 悠悠久久av| 热99re8久久精品国产| 欧美色视频一区免费| 日韩大尺度精品在线看网址| or卡值多少钱| 日韩精品中文字幕看吧| 高清毛片免费观看视频网站| 午夜福利高清视频| 男人狂女人下面高潮的视频| 久久久成人免费电影| 国产精品一区二区免费欧美| 欧美性猛交黑人性爽| 伦精品一区二区三区| 亚洲aⅴ乱码一区二区在线播放| 国产白丝娇喘喷水9色精品| 最后的刺客免费高清国语| 我的老师免费观看完整版| 午夜精品久久久久久毛片777| 国产精品久久久久久亚洲av鲁大| 99久国产av精品| 成人国产麻豆网| 亚洲不卡免费看| 婷婷精品国产亚洲av在线| 三级毛片av免费| 精品一区二区三区人妻视频| 在线看三级毛片| 精品久久久久久久久亚洲 | 少妇的逼好多水| 免费av观看视频| 免费大片18禁| 一个人看的www免费观看视频| 日本一二三区视频观看| 男人舔奶头视频| 极品教师在线视频| 国产精品久久久久久精品电影| 精品久久久噜噜| 国产精品日韩av在线免费观看| 伦精品一区二区三区| 欧美黑人巨大hd| 欧美日韩黄片免| 韩国av在线不卡| 色噜噜av男人的天堂激情| 国产 一区 欧美 日韩| 国产一区二区激情短视频| 国产亚洲精品综合一区在线观看| 免费人成视频x8x8入口观看| 全区人妻精品视频| 午夜精品久久久久久毛片777| 欧美日本亚洲视频在线播放| 久久精品国产鲁丝片午夜精品 | 日本熟妇午夜| 最后的刺客免费高清国语| 久久久久久九九精品二区国产| 97超级碰碰碰精品色视频在线观看| 少妇丰满av| 亚洲在线自拍视频| 久久久精品欧美日韩精品| 欧美+日韩+精品| 天天躁日日操中文字幕| 国产精品综合久久久久久久免费| 狂野欧美白嫩少妇大欣赏| 午夜福利18| 精品久久久久久成人av| 哪里可以看免费的av片| 亚洲无线观看免费| www.www免费av| 嫩草影视91久久| 亚洲av电影不卡..在线观看| 亚州av有码| 91在线观看av| 国产精品久久久久久av不卡| ponron亚洲| 成人鲁丝片一二三区免费| 亚洲av.av天堂| 中文字幕高清在线视频| 欧美zozozo另类| 久久香蕉精品热| 非洲黑人性xxxx精品又粗又长| 色噜噜av男人的天堂激情| 欧美一级a爱片免费观看看| 中文字幕熟女人妻在线| 国产黄片美女视频| 久99久视频精品免费| 亚洲自拍偷在线| 国产综合懂色| 日韩强制内射视频| 一级黄色大片毛片| 国内精品久久久久久久电影| 久久亚洲精品不卡| 窝窝影院91人妻| 超碰av人人做人人爽久久| 亚洲人成网站在线播放欧美日韩| 乱系列少妇在线播放| 精华霜和精华液先用哪个| 最近最新中文字幕大全电影3| 中文字幕熟女人妻在线| 女同久久另类99精品国产91| 久久久久性生活片| 91麻豆精品激情在线观看国产| 在线国产一区二区在线| 成人无遮挡网站| 精品人妻偷拍中文字幕| 日韩欧美在线二视频| 女生性感内裤真人,穿戴方法视频| 欧美日韩瑟瑟在线播放| 成人性生交大片免费视频hd| 精品久久久久久久久亚洲 | 国产伦人伦偷精品视频| 永久网站在线| 精品午夜福利视频在线观看一区| 久久精品影院6| 国内精品一区二区在线观看| 精品欧美国产一区二区三| 91av网一区二区| 国产色婷婷99| 一夜夜www| 人妻夜夜爽99麻豆av| 婷婷丁香在线五月| 麻豆国产97在线/欧美| 老熟妇乱子伦视频在线观看| 无人区码免费观看不卡| 亚洲综合色惰| 色5月婷婷丁香| 99久久精品国产国产毛片| 午夜福利在线在线| 久久国产精品人妻蜜桃| 国产伦人伦偷精品视频| 悠悠久久av| 国产精品久久电影中文字幕| 国产一区二区激情短视频| 亚洲av二区三区四区| 精品无人区乱码1区二区| 香蕉av资源在线| 国产伦在线观看视频一区| 国内精品宾馆在线| 3wmmmm亚洲av在线观看| 国产伦精品一区二区三区四那| 欧美黑人巨大hd| 国产精品久久久久久亚洲av鲁大| 老师上课跳d突然被开到最大视频| a级毛片a级免费在线| 99视频精品全部免费 在线| 欧美丝袜亚洲另类 | 国产激情偷乱视频一区二区| 中亚洲国语对白在线视频| av在线观看视频网站免费| 国产在线精品亚洲第一网站| 一区二区三区四区激情视频 | 国产精品亚洲一级av第二区| 狂野欧美白嫩少妇大欣赏| 免费av毛片视频| 欧美高清成人免费视频www| 欧美成人一区二区免费高清观看| 日本与韩国留学比较| 成人美女网站在线观看视频| 99国产精品一区二区蜜桃av| 欧美+亚洲+日韩+国产| 欧美极品一区二区三区四区| 色哟哟·www| 小说图片视频综合网站| 久久精品国产99精品国产亚洲性色| 久久人人爽人人爽人人片va| 成人高潮视频无遮挡免费网站| 熟女人妻精品中文字幕| 日日撸夜夜添| 免费看光身美女| 国产精品美女特级片免费视频播放器| eeuss影院久久| 中文字幕高清在线视频| 国产精华一区二区三区| 亚洲成人中文字幕在线播放| 啦啦啦观看免费观看视频高清| 夜夜爽天天搞| 国产三级在线视频| 啦啦啦韩国在线观看视频| 中国美女看黄片| 日本与韩国留学比较| 精品国内亚洲2022精品成人| 亚洲精品影视一区二区三区av| 日本与韩国留学比较| 免费人成在线观看视频色| 欧美xxxx黑人xx丫x性爽| 少妇人妻一区二区三区视频| 99热精品在线国产| 一边摸一边抽搐一进一小说| 97人妻精品一区二区三区麻豆| 欧美潮喷喷水| 国产精品久久视频播放| 久久国产乱子免费精品| 波多野结衣巨乳人妻| 亚洲va在线va天堂va国产| 国产一区二区在线观看日韩| 国产精品人妻久久久久久| 精品欧美国产一区二区三|