• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Searching for Best Network Topologies with Optimal Synchronizability: A Brief Review

    2022-04-15 04:19:52GuanrongChen
    IEEE/CAA Journal of Automatica Sinica 2022年4期

    Guanrong Chen,

    Abstract—The Laplacian eigenvalue spectrum of a complex network contains a great deal of information about the network topology and dynamics, particularly affecting the network synchronization process and performance. This article briefly reviews the recent progress in the studies of network synchronizability, regarding its spectral criteria and topological optimization, and explores the role of higher-order topologies in measuring the optimal synchronizability of large-scale complex networks.

    I. INTRODUCTI ON

    NETWORK science has grown to be a broad discipline after a continued and persistent research pursuit from various scientific and engineering communities, especially in multi-agent systems, data science, statistical physics, applied mathematics, structural biology and social studies [1]–[3]. In fact, this interdisciplinary field of network science has developed very rapidly in recent years. On the one hand,network science is a self-contained discipline overlapping the classical graph theory developed since the era of Euler in the 18th century [1]–[3], followed by the comprehensive Erd?s-Rényi random graph theory [4] and the recent developments of Watts-Strogatz small-world network model [5] and Price-Barabási-Albert scale-free network model [6], [7]. On the other hand, multi-agent systems theory has become indispensable in network science and engineering, offering new approaches to investigating many real-world applications of complex dynamical networks.

    Meanwhile, the studies of dynamical synchronization among networked multi-agent systems have developed swiftly with fruitful theoretical results and new findings, particularly from the scientific communities of network science and control systems. Actually, synchronization of coupled systems is one of the oldest scientific research topics, which can be traced back to as early as the Dutch scientist Christian Huygens who in 1665 discovered perfect synchrony of two pendulum clocks fastened to a beam [8]. Since then, the study of synchronization of networks among dynamical systems or oscillators has gone through a long way with many significant results and discoveries, and remains to be a very active research subject in science and engineering today.

    The concept of network synchronization may be roughly classified into state synchronization and phase synchronization, but only the former will be addressed by this article. It is well known that in most cases synchronization is a desirable behavior, e.g. coordination of multiple mobile agents, while in other cases it can be undesirable, e.g. data traffic congestions.One typical case in point where synchronization is preferable is its essence for the functioning of biological neuronal systems [9]: “Synchronous behavior of neural assemblies is a central topic in neuroscience. It is known to be correlated with cognitive activities [10] during the normal functioning of the brain, while abnormal synchronization is linked to important brain disorders, such as epilepsy, Parkinson’s disease,Alzheimer’s disease, schizophrenia and autism [11]. Hence the interest is in the topic of neural synchronization, which has been extensively explored theoretically [12].” When synchrony is beneficial, therefore, one would like to maximize it, motivating the current research on optimizing the synchronizability of complex networks. A survey of some earlier research works on various aspects of complex network synchronization is presented in [13].

    The currently fast-evolving research direction on network synchronization has created a corpus of exciting opportunities as well as great challenges to both network scientists and system engineers. A complex dynamical network has typically large numbers of nodes and edges, with higher-dimensional dynamical node-systems such as nonlinear oscillators, which are interconnected in some complicated topologies. It took quite a long time for researchers to understand the intrinsic relationship between topology and synchronizability of a general complex network, which turns out to be essential for many real-world applications.

    This article briefly reviews the studies of complex network synchronization in relation to the network topologies, focusing on the synchrnizability of general networks with typical topologies such as the aforementioned random-graph networks, small-world networks and scale-free networks, as well as totally homogeneous networks.

    Specifically, this article reviews the basic notion and research progress of network synchronization and synchronizability. Section II provides some preliminaries on the general network model and network synchronization formulation. Section III addresses the issue of network synchronizability and presents two criteria. Section IV describes the optimal network synchronizability based on homogeneous topologies. Section V discusses the recent progress in measuring optimal synchronizability using tools from higher-order network topologies. Finally, Section VI concludes the survey with a brief future research outlook.

    II. PRELIMINARIES

    This section introduces a general network model, which covers the aforementioned random-graph, small-world and scale-free networks, and then describes the general network synchronization problem.

    A. Network Model

    A diffusively connected, undirected and unweighted continuous-time network ofNidentical node-systems can be described by [14]

    B. Network Synchronization Problem

    Network (1) is said to achieve (complete state)synchronizationif, and only if,

    To derive criteria for achieving synchronization of network(1), spectral analysis based on the network Laplacian eigenvalues (6) is a powerful and effective tool to use, as can be seen above and further discussed below.

    In retrospect, the first synchronization criterion for network(1) was established in [16], [17], in terms of the smallest nonzero Laplacian eigenvalue λ2in (6), namely,

    III. NETWORK SYNCHRONIZABILITY AND CRITERIA

    Fig. 1. Network synchronization regions.

    These two criteria can be illustrated graphically by Fig. 1,where the curve in each figure is the conditional Lyapunov exponent (LE) of network (1), which can be roughly understood here as the boundary of the Laplacian eigenvalue set [18]. In figure (a), the curve is never negative (i.e., the synchronization region is empty), therefore the network will not be synchronizing. In figure (b), the curve is negative over an unbounded internal [α0,∞) on theα-axis (i.e., the synchronization regionSmaxis unbounded). In figure (c), the curve is negative over a bounded internal [α1,α2] on theαaxis (i.e., the synchronization regionSmaxis bounded).

    Later it was found, both numerically [19] and analytically[20], that the network synchronization regionSmaxcan be a union of several intervals, namely the curve in Fig. 1 (c) may bend down and then bend up again alternatively around theαaxis, where the number of bending times depends on the order of the characteristic polynomial of the network Laplacian matrix. In this case, however, it was observed that the eigenratio criterion (9) may not work properly [21] in the case where the synchronization region is a union of several intervals since the ratio might fall into somewhere between two such intervals.

    IV. NETWORK TOPOLOGIES WITH BEST SYNCHRONIZABILITY

    To compare the synchronization performances of two networks, the concept ofsynchronizabilityis introduced,which refers to the ability of self-synchronizing without external control input or structural perturbations. The interest here is to compare two networks to see which one has a“better” synchronizability in the sense that it is easier or faster synchronizing and/or has stronger robustness in resisting perturbations, so that the eigenvalue λ2or the eigenratio λ2/λNcan remain inside the corresponding synchronization region.

    It is easy to see that

    i)for criterion (8), the larger the λ2, the better the network synchronizability;

    ii)for criterion (9), the larger the ratio λ2/λN, namely the closer to 1, the better the network synchronizability.

    To this end, it is interesting to find what kinds of network topologies might have the best possible synchronizability. To search for optimal network topologies that may have the best synchronizability, it was found [22] that, in any group of networks with same number of nodes and same number of edges, the totally homogeneous networks are optimal, better than others in the same group of networks. A totally homogeneous network is characterized by the degrees, girths and pathsums of its nodes, defined respectively as follows [22]:

    i)Degree of a nodei, denoted byki, is the number of its adjacent edges.

    As small-sized examples of totally homogeneous networks,those shown in Fig. 2 are respectively optimal ones from their own groups of networks with same number of nodes and same number of edges, in the sense that comparing to the other networks in the same group they have the largest λ2and λ2/λN[22].

    It can be seen from Fig. 2 that all optimal totally homogeneous networks are homogeneously and symmetrically connected, with many cycles. Indeed, these are important features of optimal networks with best synchronizability observed from extensive simulations [22], [24], and verified by higher-order topologies as further discussed below.Nevertheless, this conjecture remains to be further proved mathematically.

    V. EXPLORING HIGHER-ORDER TOPOLOGIES

    As mentioned, cycles are important and indeed essential for having optimal network synchronizability, which are main subjects for study in algebraic topology [25]. In complex networks, their higher-order topologies involve many cycle motifs of different orders, such as cliques (fully-connected subgraphs) of different orders like triangles, tetrahedrons and so on, as well as cavities of different orders [23].

    For a given network, define

    m0= number of nodes,

    m1= number of edges,

    m2= number of triangles,

    m3= number of tetrahedrons,

    and so on. Then, the Euler characteristic number is computed by

    χ=m0?m1+m2?m3+···

    Furthermore, define

    r0= 0 by convention,r1= rank of node-edge adjacency matrix (called incidence matrix in elementary graph theory),

    Fig. 2. Optimal totally homogeneous network examples [22].

    Fig. 3. Four types of networks. From left to right: regular network, small-world network, random-graph network, totally homogeneous network [23].

    r2= rank of edge-face adjacency matrix,

    r3= rank of face-polyhedron adjacency matrix,and so on. Then, the Betti numbers are computed by

    βk=mk?rk?rk+1,where

    β0= number of 0th-order cavities (connected subgraphs,called components in elementary graph theory),

    β1= number of 1st-order cavities,β2= number of 2nd-order cavities,

    and so on. To this end, the Euler-Poincaré formula is given by

    χ=m0?m1+m2?m3+···=β0?β1+β2?β3+···

    To show how these higher-order topological characteristics could be useful for studying the network synchronizability,consider four types of comparable typical networks as an example, each with 20 nodes and 40 edges: a regular network,a small-world network, a random-graph network and a totally homogeneous network, as shown in Fig. 3 [23].

    For these four types of networks, the simulation and calculation results are summarized in Table I.

    It can be observed from Table I that the synchronizability of the four types of networks follows the following ordering:totally homogeneous network > random-graph network >small-world network > regular network, where > means“better than”. This ordering of synchronizability is consistent with other reports in the literature and is clearly supported bythe criterion based on λ2, as well as the Betti numbers (the bigger, the better) and the Euler characteristic number (the smaller, the better, taking into account the negative sign).

    TABLE I NUMERICAL RESULTS OF FOUR TYPES OF NETWORKS [23]

    It can also be seen that the eigen-ratio criterion has a little inconsistency between regular network and small-world network in this example. This seems due to the multiple synchronization region problem mentioned above [21] and the imprecise definition of a small-world network, which actually is not much different from the regular network in this example.

    According to extensive simulations and observations, as those shown in Table I, the Euler characteristic number appears to be the best criterion to be used for determining the network synchronizability. Since the Euler characteristic numbers are integers, they clearly differ from each other by integers, while eigenvalues differ from each other only in decimals that could be difficult to distinguish in some cases.

    VI. CONCLUSIONS

    This article presents an overview on the state-of-the-art development in the studies of complex network synchronization, and discusses the progress in searching for best possible network topologies with optimal synchronizability. It reports the finding of the key roles of homogeneous structures and cycle components in enhancing the network synchronizability, especially the most recent recognition of Euler characteristic numbers or Betti numbers as a reliable measure for the optimal synchronizability, using which best network topologies can be clearly identified.

    Higher-order topologies, and generally algebraic topology theory [25], provide powerful and effective tools for in-depth investigation of complex network dynamics such as diffusion,synchronization, spreading and evolution [26], as also discussed recently in [27]–[34], which should be further explored. In particular, higher-order cycles are important to study for their key roles in supporting the optimal network synchronizability [35], [36].

    亚洲丝袜综合中文字幕| 波野结衣二区三区在线| 男人舔奶头视频| 在线观看免费高清a一片| av专区在线播放| 观看av在线不卡| 国产亚洲精品久久久com| 午夜免费观看性视频| 免费人妻精品一区二区三区视频| 深夜a级毛片| 91久久精品国产一区二区成人| 中文字幕久久专区| 交换朋友夫妻互换小说| 在线观看美女被高潮喷水网站| 自线自在国产av| 国产av码专区亚洲av| 五月玫瑰六月丁香| 国产精品伦人一区二区| 亚洲欧美日韩东京热| 久久精品国产自在天天线| 在线观看免费高清a一片| 免费少妇av软件| 亚洲美女黄色视频免费看| 最后的刺客免费高清国语| 久久毛片免费看一区二区三区| 日韩伦理黄色片| 狂野欧美激情性bbbbbb| www.av在线官网国产| 日韩制服骚丝袜av| a 毛片基地| 人人妻人人澡人人爽人人夜夜| 97在线视频观看| 国产极品天堂在线| 你懂的网址亚洲精品在线观看| 国产欧美亚洲国产| 18禁动态无遮挡网站| 在线观看免费高清a一片| 少妇被粗大猛烈的视频| 中文天堂在线官网| av国产精品久久久久影院| 亚洲精品一区蜜桃| 一区在线观看完整版| 一级黄片播放器| 三级国产精品欧美在线观看| 亚洲高清免费不卡视频| av视频免费观看在线观看| 日韩中文字幕视频在线看片| 久久久久久人妻| 亚洲精品中文字幕在线视频 | 成人18禁高潮啪啪吃奶动态图 | 三级经典国产精品| 三级经典国产精品| 国产高清不卡午夜福利| 成人亚洲欧美一区二区av| 在线精品无人区一区二区三| 99国产精品免费福利视频| 欧美人与善性xxx| 日本黄色日本黄色录像| 大香蕉久久网| 91久久精品电影网| 性高湖久久久久久久久免费观看| 国产高清三级在线| 久久精品国产亚洲av天美| 国产亚洲av片在线观看秒播厂| 美女福利国产在线| 卡戴珊不雅视频在线播放| 99九九线精品视频在线观看视频| av免费在线看不卡| 啦啦啦在线观看免费高清www| 有码 亚洲区| 国产精品国产三级专区第一集| 一级黄片播放器| 少妇 在线观看| 日韩亚洲欧美综合| 成年人午夜在线观看视频| 曰老女人黄片| 国内精品宾馆在线| 欧美 亚洲 国产 日韩一| 一区二区三区四区激情视频| 美女福利国产在线| 国产精品久久久久久av不卡| 春色校园在线视频观看| videossex国产| 欧美日韩av久久| 人妻系列 视频| 国产精品一二三区在线看| 在线免费观看不下载黄p国产| 免费人妻精品一区二区三区视频| 国产成人精品无人区| 久久人妻熟女aⅴ| 我的老师免费观看完整版| 亚洲av不卡在线观看| 高清毛片免费看| 亚洲精品国产av蜜桃| 嫩草影院新地址| 26uuu在线亚洲综合色| 亚洲性久久影院| 丰满饥渴人妻一区二区三| 内地一区二区视频在线| 中文字幕人妻熟人妻熟丝袜美| 精品一品国产午夜福利视频| 人妻 亚洲 视频| 免费看不卡的av| 一级毛片aaaaaa免费看小| 欧美97在线视频| 久久久精品免费免费高清| 人人妻人人爽人人添夜夜欢视频 | 国产中年淑女户外野战色| 国产老妇伦熟女老妇高清| 亚洲高清免费不卡视频| 亚洲婷婷狠狠爱综合网| 最近手机中文字幕大全| 黄色怎么调成土黄色| 欧美性感艳星| 精品一区在线观看国产| 久久久久久久久大av| 亚洲一级一片aⅴ在线观看| 亚洲精品日韩av片在线观看| 亚洲自偷自拍三级| 国产欧美另类精品又又久久亚洲欧美| 免费不卡的大黄色大毛片视频在线观看| 少妇丰满av| 日本av免费视频播放| 永久网站在线| 交换朋友夫妻互换小说| 国产白丝娇喘喷水9色精品| 日韩一区二区视频免费看| 蜜桃在线观看..| 赤兔流量卡办理| 久久久久久久久久久丰满| 午夜精品国产一区二区电影| 最近的中文字幕免费完整| 亚洲精品国产av成人精品| 亚洲av电影在线观看一区二区三区| 激情五月婷婷亚洲| 中国国产av一级| 国产成人免费无遮挡视频| 久久99热这里只频精品6学生| 91精品伊人久久大香线蕉| 男男h啪啪无遮挡| 大片免费播放器 马上看| 精品久久久精品久久久| 亚洲精品日本国产第一区| 欧美丝袜亚洲另类| 99热这里只有精品一区| 日韩精品免费视频一区二区三区 | 一级爰片在线观看| 老女人水多毛片| a级一级毛片免费在线观看| 国产毛片在线视频| 岛国毛片在线播放| 伦理电影大哥的女人| 亚洲成人av在线免费| 亚洲av日韩在线播放| av网站免费在线观看视频| 午夜日本视频在线| 观看av在线不卡| 亚洲av.av天堂| 午夜久久久在线观看| 激情五月婷婷亚洲| 午夜久久久在线观看| 成人特级av手机在线观看| 啦啦啦中文免费视频观看日本| 在线 av 中文字幕| 亚洲av成人精品一区久久| 欧美日韩一区二区视频在线观看视频在线| 中文字幕免费在线视频6| 亚洲精品一二三| 亚洲电影在线观看av| 日韩精品有码人妻一区| 精品少妇内射三级| 欧美精品高潮呻吟av久久| 午夜福利在线观看免费完整高清在| 国产午夜精品久久久久久一区二区三区| 国产亚洲91精品色在线| 免费黄色在线免费观看| 国产在线视频一区二区| 国产一区二区在线观看日韩| 男男h啪啪无遮挡| 51国产日韩欧美| 久久久久久久国产电影| 午夜精品国产一区二区电影| 在线亚洲精品国产二区图片欧美 | 亚洲高清免费不卡视频| 下体分泌物呈黄色| 天堂俺去俺来也www色官网| 久久久久久久久久久丰满| 尾随美女入室| 在线天堂最新版资源| 黄色配什么色好看| 亚洲精品aⅴ在线观看| 少妇人妻一区二区三区视频| 一级毛片 在线播放| 午夜久久久在线观看| 国产精品久久久久久av不卡| 简卡轻食公司| 亚洲欧美一区二区三区国产| 韩国高清视频一区二区三区| 亚洲国产成人一精品久久久| 97在线人人人人妻| 久久久久久久亚洲中文字幕| 国产欧美亚洲国产| .国产精品久久| 久久久精品免费免费高清| 国产精品.久久久| 久久热精品热| 99热国产这里只有精品6| 日韩av免费高清视频| 久久97久久精品| 久久午夜福利片| 在线免费观看不下载黄p国产| av在线老鸭窝| 久久鲁丝午夜福利片| 国产一区二区三区av在线| 啦啦啦视频在线资源免费观看| 91精品国产九色| 黄色配什么色好看| 亚洲怡红院男人天堂| 久久午夜福利片| 国产精品麻豆人妻色哟哟久久| 夜夜看夜夜爽夜夜摸| 成人漫画全彩无遮挡| 麻豆乱淫一区二区| 欧美日韩一区二区视频在线观看视频在线| 国国产精品蜜臀av免费| 晚上一个人看的免费电影| 日本免费在线观看一区| a级毛片免费高清观看在线播放| 国产精品一区www在线观看| 另类亚洲欧美激情| 色婷婷av一区二区三区视频| 久久人人爽av亚洲精品天堂| 乱系列少妇在线播放| 秋霞伦理黄片| 五月伊人婷婷丁香| 一级毛片久久久久久久久女| 热99国产精品久久久久久7| 欧美精品高潮呻吟av久久| 亚洲,欧美,日韩| 日本色播在线视频| 热re99久久国产66热| 亚洲精品乱码久久久v下载方式| 99精国产麻豆久久婷婷| 七月丁香在线播放| 少妇熟女欧美另类| 国产在线视频一区二区| 搡老乐熟女国产| 亚洲不卡免费看| 国产男女超爽视频在线观看| 日韩中文字幕视频在线看片| 中文字幕免费在线视频6| 熟女电影av网| 有码 亚洲区| a级毛色黄片| 国产伦精品一区二区三区四那| 亚洲精品乱码久久久久久按摩| 一级二级三级毛片免费看| 男人狂女人下面高潮的视频| 天天操日日干夜夜撸| 国产亚洲最大av| 久久久久国产精品人妻一区二区| 欧美人与善性xxx| av福利片在线| 日本黄色片子视频| 久久av网站| 亚洲怡红院男人天堂| 春色校园在线视频观看| 麻豆成人av视频| 草草在线视频免费看| 中文字幕精品免费在线观看视频 | 最近中文字幕高清免费大全6| 亚洲av在线观看美女高潮| 人妻夜夜爽99麻豆av| 我要看日韩黄色一级片| 国产精品久久久久久久久免| 欧美最新免费一区二区三区| 在线观看三级黄色| 九九爱精品视频在线观看| 男女免费视频国产| 国产高清有码在线观看视频| av专区在线播放| 久久99蜜桃精品久久| 在线观看免费高清a一片| 亚洲av成人精品一区久久| 日本午夜av视频| 丰满少妇做爰视频| 美女中出高潮动态图| 国产精品偷伦视频观看了| av卡一久久| 中文在线观看免费www的网站| 久久免费观看电影| 91精品伊人久久大香线蕉| 欧美老熟妇乱子伦牲交| 国产成人a∨麻豆精品| 人妻 亚洲 视频| 我的女老师完整版在线观看| 麻豆乱淫一区二区| 九九在线视频观看精品| 噜噜噜噜噜久久久久久91| 国产爽快片一区二区三区| 国产精品久久久久久久电影| 丰满迷人的少妇在线观看| 91成人精品电影| 这个男人来自地球电影免费观看 | 人妻夜夜爽99麻豆av| 亚洲精品国产成人久久av| 99热这里只有是精品在线观看| 在线看a的网站| 一级二级三级毛片免费看| 亚洲美女搞黄在线观看| 日日啪夜夜撸| 免费观看无遮挡的男女| 一级av片app| 黄色配什么色好看| 午夜激情久久久久久久| 丝袜喷水一区| 午夜av观看不卡| 国产亚洲最大av| 九九爱精品视频在线观看| 最近中文字幕2019免费版| 国产一区亚洲一区在线观看| 久久精品国产亚洲网站| 久久久久久久久久久免费av| 日韩强制内射视频| 午夜精品国产一区二区电影| 日韩av不卡免费在线播放| 中国国产av一级| h视频一区二区三区| 久久国产乱子免费精品| 五月天丁香电影| 九草在线视频观看| 国产亚洲最大av| 国产精品国产三级国产专区5o| 我的老师免费观看完整版| 久久综合国产亚洲精品| 午夜免费男女啪啪视频观看| 少妇人妻久久综合中文| 男人狂女人下面高潮的视频| 永久免费av网站大全| 午夜老司机福利剧场| 国产精品人妻久久久久久| 精品国产一区二区久久| 狂野欧美激情性bbbbbb| 99精国产麻豆久久婷婷| 久久人人爽av亚洲精品天堂| 国产日韩欧美在线精品| 国产极品粉嫩免费观看在线 | 日本免费在线观看一区| 嫩草影院入口| 国产毛片在线视频| 久久综合国产亚洲精品| 内射极品少妇av片p| 搡老乐熟女国产| 国产深夜福利视频在线观看| 99久久精品热视频| 国产精品国产三级国产专区5o| 日韩成人伦理影院| 欧美精品人与动牲交sv欧美| 免费观看的影片在线观看| 女性生殖器流出的白浆| 免费大片18禁| 不卡视频在线观看欧美| 18禁在线播放成人免费| 日韩电影二区| 高清av免费在线| 如何舔出高潮| 欧美日韩视频精品一区| 日韩 亚洲 欧美在线| 亚洲,欧美,日韩| 一级二级三级毛片免费看| 赤兔流量卡办理| 日本wwww免费看| 欧美丝袜亚洲另类| av网站免费在线观看视频| 六月丁香七月| 久久国产精品大桥未久av | 久久狼人影院| 欧美日韩综合久久久久久| 亚洲欧美日韩卡通动漫| 91精品一卡2卡3卡4卡| 男女边吃奶边做爰视频| 亚洲精品国产av蜜桃| av天堂中文字幕网| 99九九线精品视频在线观看视频| 精品视频人人做人人爽| 一级毛片 在线播放| 在线免费观看不下载黄p国产| 18+在线观看网站| 看免费成人av毛片| 欧美激情极品国产一区二区三区 | 国产免费福利视频在线观看| 亚洲av.av天堂| 我要看黄色一级片免费的| 夜夜爽夜夜爽视频| 国产黄色免费在线视频| 国产综合精华液| 丝瓜视频免费看黄片| 国产成人精品久久久久久| 中文精品一卡2卡3卡4更新| 国产成人aa在线观看| 成人午夜精彩视频在线观看| 亚洲国产av新网站| 免费黄色在线免费观看| 久久久久久久久久人人人人人人| 在线观看国产h片| 亚洲精品一区蜜桃| 欧美精品一区二区免费开放| 热99国产精品久久久久久7| 岛国毛片在线播放| 青春草亚洲视频在线观看| 在线观看人妻少妇| 少妇被粗大猛烈的视频| 在线 av 中文字幕| 国产黄片美女视频| 国产精品一区二区在线不卡| 欧美人与善性xxx| 午夜免费鲁丝| 久久女婷五月综合色啪小说| 美女内射精品一级片tv| 日本-黄色视频高清免费观看| 亚洲精品国产av成人精品| 国产免费福利视频在线观看| 国产美女午夜福利| 只有这里有精品99| 在线亚洲精品国产二区图片欧美 | 视频中文字幕在线观看| 国产探花极品一区二区| 热re99久久国产66热| 久久久久久久久久人人人人人人| 久久6这里有精品| 99re6热这里在线精品视频| 桃花免费在线播放| 在线观看www视频免费| 婷婷色麻豆天堂久久| 久久精品久久久久久久性| 日韩av在线免费看完整版不卡| 日韩免费高清中文字幕av| 欧美xxⅹ黑人| av不卡在线播放| 亚洲国产精品一区二区三区在线| 一本大道久久a久久精品| av福利片在线观看| av不卡在线播放| 2021少妇久久久久久久久久久| 国产黄片美女视频| 嫩草影院入口| 国产精品.久久久| 插阴视频在线观看视频| 美女脱内裤让男人舔精品视频| 在现免费观看毛片| 在线看a的网站| 最近的中文字幕免费完整| 久久热精品热| 男人爽女人下面视频在线观看| 一个人看视频在线观看www免费| 我要看日韩黄色一级片| 国产一区二区三区综合在线观看 | 你懂的网址亚洲精品在线观看| 91精品伊人久久大香线蕉| 精品人妻熟女毛片av久久网站| 亚洲av电影在线观看一区二区三区| 国产在线男女| 大码成人一级视频| 欧美变态另类bdsm刘玥| 精品一区在线观看国产| 少妇的逼水好多| 美女主播在线视频| 高清毛片免费看| 日韩精品有码人妻一区| 精品国产一区二区三区久久久樱花| 69精品国产乱码久久久| 国产视频内射| 国产精品无大码| 免费黄网站久久成人精品| 26uuu在线亚洲综合色| 少妇熟女欧美另类| 日韩中字成人| 特大巨黑吊av在线直播| a级毛片在线看网站| 国产精品伦人一区二区| 69精品国产乱码久久久| 国产69精品久久久久777片| 欧美bdsm另类| 亚洲美女搞黄在线观看| 精华霜和精华液先用哪个| 国产深夜福利视频在线观看| 又粗又硬又长又爽又黄的视频| 亚洲精华国产精华液的使用体验| 黄色毛片三级朝国网站 | 大片电影免费在线观看免费| a级片在线免费高清观看视频| 伦理电影免费视频| 日韩一区二区视频免费看| 一级毛片久久久久久久久女| 亚洲在久久综合| 18禁在线播放成人免费| 欧美最新免费一区二区三区| 精品国产国语对白av| 人妻夜夜爽99麻豆av| 国产淫片久久久久久久久| 国产成人精品无人区| 性色av一级| 国产 一区精品| 在线免费观看不下载黄p国产| 美女主播在线视频| 亚洲精品乱码久久久v下载方式| 在线观看三级黄色| 少妇精品久久久久久久| 国产亚洲最大av| 18+在线观看网站| 日日摸夜夜添夜夜爱| 看十八女毛片水多多多| 亚洲国产精品成人久久小说| 免费观看在线日韩| 韩国av在线不卡| 黄片无遮挡物在线观看| 日日啪夜夜爽| 一本色道久久久久久精品综合| 老女人水多毛片| 我要看日韩黄色一级片| 亚洲在久久综合| 嫩草影院新地址| 少妇高潮的动态图| 好男人视频免费观看在线| 91久久精品电影网| 麻豆乱淫一区二区| 成人黄色视频免费在线看| 伊人久久国产一区二区| 日韩大片免费观看网站| 成人综合一区亚洲| 大片电影免费在线观看免费| 另类亚洲欧美激情| 一级片'在线观看视频| av线在线观看网站| 69精品国产乱码久久久| 国产中年淑女户外野战色| 插逼视频在线观看| 亚洲精品国产av成人精品| 久久人妻熟女aⅴ| 另类精品久久| 久久精品久久久久久噜噜老黄| 中文字幕久久专区| 91久久精品国产一区二区三区| 国产在线免费精品| 能在线免费看毛片的网站| 国产一区二区三区综合在线观看 | 亚洲精品亚洲一区二区| 欧美成人午夜免费资源| 亚洲一级一片aⅴ在线观看| 人妻一区二区av| 在线观看美女被高潮喷水网站| 免费观看在线日韩| 熟女人妻精品中文字幕| 天天操日日干夜夜撸| 中文字幕制服av| 国产成人免费观看mmmm| 久久久国产欧美日韩av| 大码成人一级视频| 国产伦精品一区二区三区四那| 在线观看国产h片| 成年人免费黄色播放视频 | 一级黄片播放器| 日本av免费视频播放| 久久久久久人妻| 色婷婷av一区二区三区视频| av在线app专区| 国产精品女同一区二区软件| 成人免费观看视频高清| 王馨瑶露胸无遮挡在线观看| 国产成人精品无人区| 国产精品久久久久成人av| 永久免费av网站大全| 男人和女人高潮做爰伦理| 全区人妻精品视频| 久久精品夜色国产| 亚洲真实伦在线观看| 嘟嘟电影网在线观看| 十分钟在线观看高清视频www | 亚洲av日韩在线播放| 人妻少妇偷人精品九色| 国产精品秋霞免费鲁丝片| 日本欧美视频一区| 亚洲欧洲日产国产| 看十八女毛片水多多多| 日韩免费高清中文字幕av| 少妇高潮的动态图| 少妇 在线观看| 欧美bdsm另类| av在线老鸭窝| 一级毛片久久久久久久久女| 欧美激情国产日韩精品一区| 国产老妇伦熟女老妇高清| 亚洲真实伦在线观看| 18禁动态无遮挡网站| 激情五月婷婷亚洲| 人妻制服诱惑在线中文字幕| 国产成人aa在线观看| 69精品国产乱码久久久| 免费黄频网站在线观看国产| 日本爱情动作片www.在线观看| 国产av精品麻豆| 女性被躁到高潮视频| 国产精品福利在线免费观看| 久久精品国产a三级三级三级| 青春草亚洲视频在线观看| 久久久久久久久久久免费av| 午夜福利视频精品| 国产黄频视频在线观看| 久久精品国产亚洲av天美| 日韩三级伦理在线观看| 欧美老熟妇乱子伦牲交| 六月丁香七月| 深夜a级毛片| 免费黄频网站在线观看国产| 久久99热这里只频精品6学生|