• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A Fusion Kalman Filter and UFIR Estimator Using the Influence Function Method

    2022-04-15 04:17:22WeiXueXiaoliLuanShunyiZhaoSeniorandFeiLiu
    IEEE/CAA Journal of Automatica Sinica 2022年4期

    Wei Xue,, Xiaoli Luan, Shunyi Zhao, Senior, and Fei Liu

    Abstract—In this paper, the Kalman filter (KF) and the unbiased finite impulse response (UFIR) filter are fused in the discrete-time state-space to improve robustness against uncertainties. To avoid the problem where fusion filters may give up some advantages of UFIR filters by fusing based on noise statistics, we attempt to find a way to fuse without using noise statistics. The fusion filtering algorithm is derived using the influence function that provides a quantified measure for disturbances on the resulting filtering outputs and is termed as an influence finite impulse response (IFIR) filter. The main advantage of the proposed method is that the noise statistics of process noise and measurement noise are no longer required in the fusion process, showing that a critical feature of the UFIR filter is inherited. One numerical example and a practice-oriented case are given to illustrate the effectiveness of the proposed method. It is shown that the IFIR filter has adaptive performance and can automatically switch from the Kalman estimate to the UFIR estimates according to operating conditions. Moreover, the proposed method can reduce the effects of optimal horizon length on the UFIR estimate and can give the state estimates of best accuracy among all the compared methods.

    I. INTRODUCTION

    TO estimate the states of industrial systems, including power electronic systems, large-scale systems, cyberphysical systems, static neural networks and motion control systems, state estimators are considered to be a fundamental tool [1]–[5]. Kalman and Bucy proposed the famous Kalman filter (KF) in the 1970s [6], which is a simple and globally optimal state estimator for linear Gaussian processes [7]. Up until now, it has been widely used in numerous areas with great success. Given an accurate linear model, the KF can theoretically reach optimal estimates [8]–[10], while its errors will rise dramatically once the underlying model is slightly mismatched or there is colored noise. Due to the complexity industrial processes, it is difficult and time-consuming to find an accurate filtering model, and more importantly, the random external interference barely obeys the Gaussian and white statistics. Therefore, many efforts have been made during the last two decades to improve KF performance under different environments [11]–[14].

    As a type of finite impulse response (FIR) filters, the unbiased finite impulse response (UFIR) filtering algorithm is constructed and analyzed in [15]. This algorithm ignores the statistical characteristics of noise sources and initial distribution and uses an optimal estimation interval to drive estimation accuracy to approach its optima in the minimum mean square error sense [15]–[17]. Unlike the KF, which recursively computes state estimates, the UFIR filter operates with a finite number of most recent data either in a batch form or in an iterative structure. Therefore, the UFIR filter accumulates estimation errors only within a limited horizon[18]–[21]. Under harsh industrial operating conditions, it is expected that the UFIR filter exhibits better robustness against uncertainties and will be insensitive to changes in the noisy environment. A detailed comparison of the UFIR filter and the KF is provided in [22], [23] with practical examples.

    As discussed, each filtering algorithm has its features.Specifically, the KF provides the best linear estimates (or almost the best) when the underlying linear model is accurate or nearly accurate, while the UFIR estimator shows impressive robustness against uncertainties. With the boom in the development of both filters comes a variety of fusion strategies. There are self-fusion strategies for the same filter to make better use of the characteristic of the filter [24], [25]. If one wishes to design a filter to achieve the optimality of the KF and the robustness of the UFIR filter simultaneously, a common practice is to find an appropriate strategy to fuse them. For example, an infinite impulse response (IIR)-type filter and an FIR-type filter are merged in [26] using the mixing probability calculated based on the residuals and their covariances. Later, in [27] the KF and UFIR filters are fused by assigning probabilistic weights to achieve smaller errors.With the same motivations, the weighted UFIR filter is derived using the Frobenius norm in [28], [29]. Reference [30]uses measurement differencing and by de-correlating noise vectors to fuse the two filters. A unified fusion framework employed in these approaches is demonstrated in Fig. 1,implying that the IIR and FIR filters give respective estimates,and a fusing procedure then achieves the overall output.

    Although this structure is clear and pellucid, fusing the UFIR estimate and the Kalman estimate mathematically may not be as intuitive as Fig. 1. The main difficulty is that the

    Fig. 1. A diagram of the state vector fusion framework for the IIR-type filter and the FIR-type filter.

    II. PRELIMINARIES AND PROBLEM FORMULATION

    The state-space model provides us with a useful tool to describe an industrial process, where the internal state variables are the smallest possible subset of system variables that can represent the entire state of the system at any given time. Consider a linear discrete-time state-space model specified as error covariance of each filter and their cross-covariance matrix are necessary [26], [27] to conduct fusion, while these prerequisites will destroy the advantages brought by the UFIR filter. To be specific, noise statistics are unavoidable to get error covariances of the UFIR filter, which, on the contrary,ignores the noise statistic completely to get state estimates.Accordingly, one faces a dilemma that for robustness, we hope to avoid using noise statistics, which have to be introduced in the existing approaches [28] for fusion. Besides,it is well known that the KF is recursive while the UFIR filter operates either in batch or in an iterative form, causing further challenges to fuse them without error covariances.

    To solve these issues, in this paper we propose a novel fusion procedure, which is designed particularly for the KF and the UFIR filter. The resulting method is constructed based on a concept of an “artificial” filter gain for the UFIR filter as well as the influences function [31]. Compared to the existing fusion methods proposed, the most significant contribution of our paper is that it does not use the statistics of noise. It demonstrates that the critical feature of the UFIR filter is ultimately inherited. Other contributions of this paper are as follows. 1) The proposed algorithm serves as a new fusion approach to fuse the UFIR filter and the KF without calculating error covariances; 2) The proposed method inherits the advantages of the KF and UFIR filter, and can automatically prioritize its performance towards optimality or robustness to accommodate its operating environment; 3)Since noise statistics are no longer required in the fusion step,the proposed method is insensitive to the statistical error of noise and yields significant improvements over existing fusion methods in different scenarios.

    The remainders of this paper are organized as follows. In Section II, some preliminaries are given, where we also formulate the problem considered. In Sections III, we propose the fusion algorithm by introducing artificial gain for the UFIR filter and using the influences function approach.Section IV presents the simulation results for several examples, and conclusions are summarized in Section V.

    The following notations are used throughout the paper.RNdenotes theN-dimensional Euclidean space,E{·} denotes statistical averaging, diag(D1D2···Dn) represents a diagonal matrix with diagonal elements D1,D2,...,Dn, I is the identity matrix of proper dimensions, A⊙B denotes the Hadamard product of A and B, and A/B is the element-wise division.

    A. Kalman Filter and UFIR Filter

    B. Problem Formulation

    The problem considered in this paper can now be formulated as follows. Given the Kalman estimate and the UFIR estimate at each step, we would like to design a filter fusing them without involving the estimation error covariances. Besides, we would also like to test the effectiveness of the proposed method by different scenarios and show its trade-off between the existing fusion approaches through applications.

    III. FUSION KALMAN/UFIR FILTER

    In this section, we propose a novel algorithm to fuse the Kalman and UFIR estimates without using the process noise and measurement noise covariances. The key idea is to run the KF, and the UFIR filter in parallel to produce two different state estimates and then assign weights to these sub-estimates to get the overall outputs. Consequently, determining how to calculate the weights appropriately without noise statistics is essential, and the existing fusion approaches [27], [28]become invalid in this scenario.

    A. Artificial UFIR Gain

    B. Influence Matrix

    The function of the influence matrix is to quantify how much the filter is affected by disturbances at a given moment.The value of the matrix reflects the robustness of the filter.

    As discussed, the KF needs to know the exact noise statistics to get the state estimates, whereas the UFIR tracks the mean value of the state, implying that noise information is no longer needed. Because of these, we first measure the amount that the same disturbance will affect the estimated value in each filter using the influence matrix.

    Consider (8) and (10) that map the predicted state and measurement to the filtered state. A filter is, in a way, used to balance the observed and model-predicted values. For a given time, the filter can be seen as the system shown input-output as

    C. Cumulative Influence Matrices

    Using (23) and (24), we can get the influence value of disturbance in the UFIR estimates as

    D. Fusion Outputs

    Now, a rule of thumb for fusion is that the greater the influence is, the greater the degree of noise interference.Consequently, the output should be closed to the estimates with small influence value as much as possible, resulting in

    E. Discussions

    Algorithm 1 presents the pseudo-code of the proposed method to fit the corresponding block diagram shown in Fig. 2.Fig. 2 represents the structure of the influence finite impulse response (IFIR) algorithm. Firstly, KF and UFIR are run independently to obtain the estimates and gain, respectively.The influence function is then used to obtain the fusion weights. Finally, the two estimates are fused based on the fusion weights. The significant difference when compared to existing fusion algorithms is that the statistical parameters of noise are missing from the input to calculate the fusion weights.

    Algorithm 1 IFIR Estimation Algorithm Framework Input:An,Bn,Cn,,x1,y1:n,Qn,Rn,P0 Output:?xFn 1 Set Nopt 2 for do n=1,2,...,Nopt ?1 3 Run the KF to produce by (8)?xFn = ?xn 4 ?xn 5 end a,b,T′,Ξ(Nopt?1),6 Set 7 for do n=Nopt,Nopt+1,...,?xn ˉxn ?KnˉKn 8 Run the KF and UFIR to produce , , and computer by (8) and (12)n′=n,n?1,...,n?b 9 for doˉLn′?Ln′10 Compute and by (25)11 endˉLbn?Lbn 12 Compute and by (30)13 Computer by (33)Ξn=(1?a)Ξn?1+aΩn,Ωn 14 ?xFn = ?xn+Ξn(ˉxn ??xn),15 16 end

    Fig. 2. A block diagram of the proposed IFIR filtering framework.

    As can be seen, we only consider the diagonal elements in(33). The reason is that the proposed structure is designed for each state, and the influence between state components cannot be calculated. Specifically, the method determines the fusion relationship between the prior state estimate and the residual,and it is not suitable to use this residual to correct between states.

    IV. APPLICATIONS

    In this section, we demonstrate the effectiveness of the proposed approach (Algorithm 1, denoted as IFIR) by comparing it with the UFIR filter [15], the KF, and the fusion method (fusion FIR filter, denoted as fusion filter (FF) in this section) proposed in [27]. The root mean square errors(RMSEs) and the cumulative error of different algorithms are used as the main performance indicators. The main purpose is to provide users with a clear picture of the proposed algorithm.

    A. Two-State Polynomial Model

    Fig. 3. Cumulative errors of different algorithms for the two-state polynomial model: (a) the first state and (b) the second state.

    Fig. 4. RMSEs provided by different algorithms for the two-state polynomial model: (a) the first state and (b) the second state.

    In this section, we apply different filtering algorithms to the two-state polynomial model (1) and (2), specified with Bn=I,Dn=I, Cn=[1,0], and algorithms, resulting in an estimation accuracy close to the KF. When modeling errors become large whenn>300, the IFIR successfully transfers its outputs to the UFIR estimates,independent of the noise covariances, while the FF method fails.

    To give a clearer picture about the fusion process in the IFIR method, in Fig. 5 we show the influence values of each sub-filter in comparison with the weights of the UFIR estimates used for outputs, where the bars represent the influence values and the solid grey line represents the weights.As shown, the weight of the UFIR estimates increases along with the influence value, which can be considered a measure to quantify the effects of uncertainties on a specific filter. The filter with a significant influence values indicates that this filter is sensitive to noisy measurements and hardly matches observations.

    Fig. 5. In the second state, the relationship between the influence value and the weights used during filtering in the proposed algorithm.

    In additions, the fusion process also illustrates another advantage of the proposed method. It is known that improvement can be achieved if we can get the error covariance at a particular moment. Using the influence function method, we can get an alternative measure of estimation covariance even if the corresponding noise statistics are unavailable.

    To increase persuasiveness, we used the Monte Carlo method in the conditions of Experiment 1 to obtain Fig. 6,where the variables are random noise. As shown in Fig. 6, our proposed method has the slightest cumulative error and the best filtering effect in most cases in this experiment. Even with small probabilities, the performance of our proposed method is not the worst.

    To be more illustrative, we varied only the number of experiments under the experimental conditions in Fig. 6 to obtain Table I. It can be seen that our proposed IFIR is valid under these experimental conditions.

    Fig. 7 and Fig. 8 show how the values ofaandbaffect the results. As seen from the graphs, whena=0, the filter weights are constant at the initial value. There is a significant increase ata=0 in the graph, indicating that our algorithm is effective and has a much smaller RMSE than when no fusion strategy (a=0) is adopted. Fora, it can be seen that the influence values are sensitive to random disturbances, andthe same regularity exists between historical and current information. Values ofbabove a certain range will not impact the effectiveness of the filter. However, when the noise covariance is time-varying, andbexceeds a certain value and then increases, it makes the IFIR filter significantly less effective. This demonstrates that we have selected too much historical information in the event of a change in the environment, making the influence values less sensitive to the current environment.

    TABLE I n TRIALS IFIR WITH MINIMUM PROBABILITY OF CUMULATIVE ERRORS

    Fig. 6. Cumulative error of multiple simulations (Section IV-A): (a) Side view; (b) Front view; (c) Bottom view; and (d) Top view.

    B. Quadruple Water Tank System

    In this section, we verify the observations using a quadruple water tank system [37]. As can be seen from Fig. 9, two pumps feed water into different tanks using two split flows,and Tank 3 and Tank 4 also feed water into Tank 1 and Tank 2,respectively. The water in the upper tank can only be discharged into the tank below it, and the water discharged from the bottom of the tank flows directly into the large reservoir. By using the voltages applied to the two pumps as inputs and defining the system state vector as those small uncertainties in the system have a large response in the influence values. Therefore a small value ofais appropriate. A too-large value ofawould cause the IFIR weights to jump back and forth between 0 and 1, causing the random nature of the noise to mask its regular component. Forb, it shows that when the noise covariance is time-invariant,

    Fig. 7. RMSEs computed as functions of a and b in the presence of timevariant process noise covariances: (a) the first state, and (b) the second state.

    Fig. 8. RMSEs computed as functions of a and b in the presence of timeinvariant process noise covariances: (a) the first state, and (b) the second state.

    Fig. 9. The quadruple water tank system.

    In this scenario, we generate the process at 1000 points starting with x0=[0 0 0 0]T. For the UFIR filter, the optimal estimation horizon [37] is found to beNopt=29. To introduce temporary uncertainties, we artificially set Qn=10?2I and Rn=[6 1;1 10]to all the algorithms whenn≤500, and Qn=Iand Rn=[6 1;1 10] when 500

    Fig. 10 sketches a typical case of the cumulative errors of different filtering algorithms. Here, the cumulative errorCEnis the same as defined in A. Together with the RMSEs depicted in Fig. 11, we can see that the proposed IFIR filter shows the best overall estimation performance among all the methods. Specifically, when model uncertainty introduced by inaccurate noise statistics is relatively small, Kalman estimation dominates both the FF and IFIR algorithms,leading to estimation accuracy close to the KF. When model errors become large, IFIR successfully shifts its output to UFIR estimates independent of the noise covariance, while the FF approach fails. In summary, IFIR filters can determine the effectiveness of the KF and UFIR filters and fuse them based on this and synchronously follow the more effective filter as its time changes.

    Fig. 10. Cumulative error provided by different algorithms for the quadruple water tank system: (a) the first state, (b) the second state, (c) the third state, and (d) the fourth state.

    To give a clearer picture of the fusion process in the IFIR method, in Fig. 12 we show the influence values of each subfilter in comparison with the weights of the UFIR estimates used for outputs, where the bars represent the influence values and the solid grey line represents the weights. It is worth noting that this graph is only the change in IFIR weights for state 4. The IFIR weights for each state are not the same at the same moment. This means that the IFIR filter is fused for each state, and each state does not face the same situation.

    Fig. 11. RMSEs provided by different algorithms for the quadruple water tank system: (a) the first state, (b) the second state, (c) the third state, and (d)the fourth state.

    Fig. 12. In the fourth state, the relationship between the influence value and the weights used during filtering in the proposed algorithm.

    V. CONCLUSIONS

    A new fusion filter that uses the KF and the UFIR filter as sub-filters is proposed for the discrete-time state-space model in this paper. The IFIR inherits the advantages of the KF and the UFIR filter and can vary from the Kalman estimate to the UFIR estimate. The main advantage of the proposed method is that the error covariance matrix is not required during the fusing process. The performance of the IFIR filter is demonstrated by a two-state polynomial system and a quadruple water tank system. We have seen the great potential of influence functions and believe that they contribute to the study of online evaluation filters.

    我要看黄色一级片免费的| 黄色毛片三级朝国网站| 国产亚洲一区二区精品| 在线观看免费视频网站a站| 国产精品一区二区在线观看99| 国产精品成人在线| 久久午夜综合久久蜜桃| 丝袜脚勾引网站| 女的被弄到高潮叫床怎么办| 久久久欧美国产精品| av.在线天堂| 亚洲av男天堂| 一本大道久久a久久精品| 美女视频免费永久观看网站| 人人妻人人爽人人添夜夜欢视频| 大话2 男鬼变身卡| 最近最新中文字幕免费大全7| 卡戴珊不雅视频在线播放| 妹子高潮喷水视频| 亚洲精华国产精华液的使用体验| av在线观看视频网站免费| √禁漫天堂资源中文www| 婷婷色综合www| 久久精品国产a三级三级三级| 亚洲国产日韩一区二区| 欧美日韩视频精品一区| 亚洲国产精品一区三区| 丝袜脚勾引网站| 999久久久国产精品视频| 深夜精品福利| 18在线观看网站| 中文精品一卡2卡3卡4更新| 天天躁日日躁夜夜躁夜夜| 免费黄网站久久成人精品| 日韩,欧美,国产一区二区三区| 伊人亚洲综合成人网| 国产亚洲欧美精品永久| 丰满饥渴人妻一区二区三| 午夜福利影视在线免费观看| 精品少妇内射三级| 国产精品久久久久久av不卡| 老司机亚洲免费影院| 亚洲三区欧美一区| 韩国精品一区二区三区| 秋霞伦理黄片| 黄色配什么色好看| 日本免费在线观看一区| 男女啪啪激烈高潮av片| 国产国语露脸激情在线看| 欧美精品国产亚洲| 亚洲 欧美一区二区三区| 欧美人与性动交α欧美软件| 午夜激情av网站| 久热久热在线精品观看| 精品一区二区免费观看| 午夜av观看不卡| 欧美亚洲 丝袜 人妻 在线| 日韩制服骚丝袜av| www.熟女人妻精品国产| 国产精品久久久久久av不卡| 国产黄色视频一区二区在线观看| 欧美日韩亚洲高清精品| 久久狼人影院| 成人免费观看视频高清| 人成视频在线观看免费观看| 五月伊人婷婷丁香| 国产精品人妻久久久影院| 成人影院久久| 美女视频免费永久观看网站| 黄色一级大片看看| 久久久精品国产亚洲av高清涩受| 黄片播放在线免费| 欧美国产精品va在线观看不卡| 国产深夜福利视频在线观看| 熟女电影av网| 自拍欧美九色日韩亚洲蝌蚪91| 99久国产av精品国产电影| 国产日韩欧美在线精品| 亚洲第一区二区三区不卡| 爱豆传媒免费全集在线观看| 九色亚洲精品在线播放| 国产在线视频一区二区| 中国三级夫妇交换| 亚洲精品日本国产第一区| 午夜福利乱码中文字幕| 中文欧美无线码| 天堂8中文在线网| 国产一级毛片在线| 欧美日韩综合久久久久久| 亚洲av.av天堂| 99久久精品国产国产毛片| 国产日韩欧美在线精品| 欧美精品一区二区免费开放| 咕卡用的链子| 午夜免费观看性视频| 国产精品 国内视频| 精品一区在线观看国产| 热re99久久精品国产66热6| 高清视频免费观看一区二区| 日本午夜av视频| 国产成人a∨麻豆精品| 日日啪夜夜爽| 免费观看av网站的网址| 久久99蜜桃精品久久| 亚洲国产欧美在线一区| 国产精品久久久久久精品电影小说| 日韩一区二区视频免费看| 日韩av在线免费看完整版不卡| 久久久久人妻精品一区果冻| 国产欧美日韩一区二区三区在线| 国产免费福利视频在线观看| 人人澡人人妻人| 欧美 日韩 精品 国产| 国产探花极品一区二区| 欧美人与性动交α欧美软件| 久久免费观看电影| 国产麻豆69| 久久久久久久久免费视频了| 777久久人妻少妇嫩草av网站| 日韩 亚洲 欧美在线| 麻豆乱淫一区二区| 欧美精品高潮呻吟av久久| 岛国毛片在线播放| 国产精品 国内视频| 大片电影免费在线观看免费| 在现免费观看毛片| 男女无遮挡免费网站观看| 国产精品av久久久久免费| 国产成人91sexporn| 亚洲国产欧美网| 日日啪夜夜爽| 香蕉丝袜av| 免费在线观看黄色视频的| 国产1区2区3区精品| 久久久久久久大尺度免费视频| 国产精品香港三级国产av潘金莲 | 看非洲黑人一级黄片| 国产免费视频播放在线视频| 男女无遮挡免费网站观看| 人成视频在线观看免费观看| 亚洲欧美成人综合另类久久久| 欧美少妇被猛烈插入视频| 在线 av 中文字幕| 女的被弄到高潮叫床怎么办| 男女无遮挡免费网站观看| 午夜福利在线免费观看网站| 七月丁香在线播放| 91在线精品国自产拍蜜月| 麻豆精品久久久久久蜜桃| 熟女av电影| 亚洲国产精品一区二区三区在线| 亚洲欧洲精品一区二区精品久久久 | 亚洲综合色网址| 少妇 在线观看| 不卡视频在线观看欧美| av网站在线播放免费| 啦啦啦啦在线视频资源| 丝袜美腿诱惑在线| 两个人看的免费小视频| 国产精品久久久av美女十八| 香蕉国产在线看| 午夜91福利影院| 久久狼人影院| 丝袜人妻中文字幕| 街头女战士在线观看网站| 久久热在线av| 性少妇av在线| 午夜久久久在线观看| 99久久综合免费| 亚洲精品第二区| 多毛熟女@视频| 免费女性裸体啪啪无遮挡网站| 少妇被粗大的猛进出69影院| 看十八女毛片水多多多| 最新中文字幕久久久久| 欧美日韩视频高清一区二区三区二| 咕卡用的链子| 亚洲国产毛片av蜜桃av| 少妇被粗大猛烈的视频| 欧美精品亚洲一区二区| 大陆偷拍与自拍| 免费久久久久久久精品成人欧美视频| 国产精品免费视频内射| 最近中文字幕2019免费版| 一级毛片电影观看| 91成人精品电影| 久久99一区二区三区| 国产成人精品婷婷| 啦啦啦啦在线视频资源| 寂寞人妻少妇视频99o| 精品一区在线观看国产| 少妇精品久久久久久久| 日韩精品有码人妻一区| 丝袜脚勾引网站| 伦精品一区二区三区| 少妇被粗大猛烈的视频| 青春草国产在线视频| 亚洲av电影在线进入| 亚洲av福利一区| 我要看黄色一级片免费的| 成年动漫av网址| 少妇人妻 视频| 18禁裸乳无遮挡动漫免费视频| 我的亚洲天堂| 亚洲精品在线美女| 巨乳人妻的诱惑在线观看| 久久久欧美国产精品| 亚洲av日韩在线播放| 2022亚洲国产成人精品| 99久久精品国产国产毛片| 国产成人一区二区在线| 日本猛色少妇xxxxx猛交久久| 欧美亚洲日本最大视频资源| a级毛片在线看网站| av卡一久久| 日韩欧美一区视频在线观看| 免费在线观看黄色视频的| 欧美日韩av久久| 久久久国产精品麻豆| 久久久精品94久久精品| 女人高潮潮喷娇喘18禁视频| 美女主播在线视频| 在线免费观看不下载黄p国产| 国产白丝娇喘喷水9色精品| 一级毛片电影观看| 欧美在线黄色| 少妇人妻久久综合中文| 亚洲国产欧美日韩在线播放| 日韩av在线免费看完整版不卡| 精品卡一卡二卡四卡免费| 亚洲精品一二三| 欧美日韩一级在线毛片| 丰满少妇做爰视频| 亚洲视频免费观看视频| 日韩av免费高清视频| 午夜精品国产一区二区电影| 91国产中文字幕| 国产精品熟女久久久久浪| 在线天堂中文资源库| 国产亚洲欧美精品永久| 男女午夜视频在线观看| 午夜福利网站1000一区二区三区| 色婷婷av一区二区三区视频| √禁漫天堂资源中文www| 国产日韩欧美视频二区| 亚洲,欧美精品.| 两性夫妻黄色片| 97在线视频观看| a级毛片黄视频| 日韩在线高清观看一区二区三区| 黄片无遮挡物在线观看| √禁漫天堂资源中文www| 韩国av在线不卡| 日韩,欧美,国产一区二区三区| 超色免费av| 丰满乱子伦码专区| 少妇人妻精品综合一区二区| 日韩欧美一区视频在线观看| 超色免费av| 嫩草影院入口| 久久久a久久爽久久v久久| 国产熟女午夜一区二区三区| 久久人人爽人人片av| 欧美日韩一区二区视频在线观看视频在线| 大码成人一级视频| 国产乱来视频区| 免费女性裸体啪啪无遮挡网站| 精品少妇久久久久久888优播| 精品视频人人做人人爽| 日韩大片免费观看网站| 国产乱人偷精品视频| 国产精品无大码| 曰老女人黄片| 亚洲一码二码三码区别大吗| 亚洲综合精品二区| 久久鲁丝午夜福利片| 伦理电影免费视频| 午夜福利乱码中文字幕| 大片电影免费在线观看免费| 亚洲第一av免费看| 一区二区av电影网| 纯流量卡能插随身wifi吗| 国产精品国产三级专区第一集| 国产精品久久久久成人av| 在线天堂中文资源库| 久久久久人妻精品一区果冻| 国产午夜精品一二区理论片| 多毛熟女@视频| 久久久a久久爽久久v久久| 国产精品成人在线| 欧美变态另类bdsm刘玥| 亚洲人成电影观看| 亚洲精品av麻豆狂野| 国产亚洲av片在线观看秒播厂| 大陆偷拍与自拍| 免费久久久久久久精品成人欧美视频| 黄网站色视频无遮挡免费观看| av有码第一页| 少妇人妻久久综合中文| 下体分泌物呈黄色| 亚洲视频免费观看视频| 欧美人与性动交α欧美精品济南到 | 亚洲天堂av无毛| av国产精品久久久久影院| 看非洲黑人一级黄片| 大片免费播放器 马上看| 久久狼人影院| 国产黄色免费在线视频| 最近中文字幕高清免费大全6| 久久人人97超碰香蕉20202| 亚洲国产精品一区二区三区在线| 人人澡人人妻人| av视频免费观看在线观看| 国产极品天堂在线| 国产精品欧美亚洲77777| 国产精品99久久99久久久不卡 | 国产日韩一区二区三区精品不卡| 久久97久久精品| 另类精品久久| 深夜精品福利| av免费观看日本| 热99国产精品久久久久久7| 欧美激情 高清一区二区三区| 一级毛片 在线播放| 亚洲五月色婷婷综合| 国产一区二区三区综合在线观看| 视频区图区小说| 女性被躁到高潮视频| 亚洲,欧美,日韩| 国产97色在线日韩免费| 亚洲欧美精品综合一区二区三区 | 久久99一区二区三区| 日韩成人av中文字幕在线观看| 亚洲三级黄色毛片| 免费高清在线观看视频在线观看| 超碰成人久久| 制服丝袜香蕉在线| 一区二区三区四区激情视频| 黄片小视频在线播放| 黑人猛操日本美女一级片| 午夜福利视频在线观看免费| 香蕉国产在线看| a 毛片基地| 99精国产麻豆久久婷婷| 亚洲情色 制服丝袜| 日韩一区二区视频免费看| 久久这里只有精品19| 建设人人有责人人尽责人人享有的| 大陆偷拍与自拍| 国产av国产精品国产| 欧美日本中文国产一区发布| 成人18禁高潮啪啪吃奶动态图| 亚洲三级黄色毛片| 精品一区二区三区四区五区乱码 | 黄色怎么调成土黄色| 蜜桃在线观看..| 男女边吃奶边做爰视频| 女人高潮潮喷娇喘18禁视频| 电影成人av| 黄色毛片三级朝国网站| 国产精品香港三级国产av潘金莲 | 久久久欧美国产精品| 一本色道久久久久久精品综合| 久久久久久免费高清国产稀缺| 交换朋友夫妻互换小说| 亚洲内射少妇av| 自线自在国产av| 五月伊人婷婷丁香| 自线自在国产av| 人人妻人人澡人人看| 女的被弄到高潮叫床怎么办| 日韩不卡一区二区三区视频在线| 性色av一级| 中文欧美无线码| 婷婷色av中文字幕| 又大又黄又爽视频免费| 伊人久久国产一区二区| 亚洲精品乱久久久久久| 一区福利在线观看| 黑人猛操日本美女一级片| 精品一区二区三卡| 亚洲精品国产一区二区精华液| 日韩电影二区| 国产高清国产精品国产三级| 深夜精品福利| 久久国产亚洲av麻豆专区| 精品少妇黑人巨大在线播放| 亚洲精品国产色婷婷电影| 日本91视频免费播放| 少妇人妻久久综合中文| 午夜影院在线不卡| 免费av中文字幕在线| 两个人免费观看高清视频| 激情五月婷婷亚洲| 国产毛片在线视频| 中文字幕av电影在线播放| 人人妻人人澡人人爽人人夜夜| 欧美日韩国产mv在线观看视频| 久久久久久久久久人人人人人人| 热99国产精品久久久久久7| 永久免费av网站大全| 欧美日韩av久久| 午夜日本视频在线| 国产成人欧美| 精品国产一区二区久久| 国产亚洲av片在线观看秒播厂| 中文字幕色久视频| 日韩欧美一区视频在线观看| 午夜久久久在线观看| 国产日韩欧美在线精品| 各种免费的搞黄视频| 日韩视频在线欧美| 精品一区在线观看国产| 久久久久精品人妻al黑| 王馨瑶露胸无遮挡在线观看| 天堂中文最新版在线下载| 9热在线视频观看99| 最近最新中文字幕大全免费视频 | 青春草亚洲视频在线观看| 免费在线观看完整版高清| 免费观看性生交大片5| 人人妻人人澡人人爽人人夜夜| 国产在视频线精品| 日韩av不卡免费在线播放| 夜夜骑夜夜射夜夜干| 国产高清不卡午夜福利| 亚洲av免费高清在线观看| 中文天堂在线官网| 黄网站色视频无遮挡免费观看| 哪个播放器可以免费观看大片| 免费看av在线观看网站| 在线观看免费日韩欧美大片| 韩国av在线不卡| 男人操女人黄网站| 国产在线一区二区三区精| 十分钟在线观看高清视频www| 国产又爽黄色视频| 亚洲欧洲精品一区二区精品久久久 | 涩涩av久久男人的天堂| 午夜久久久在线观看| 亚洲,欧美精品.| 一区二区三区四区激情视频| 中文字幕另类日韩欧美亚洲嫩草| 最近的中文字幕免费完整| 国产精品无大码| 黑人巨大精品欧美一区二区蜜桃| 可以免费在线观看a视频的电影网站 | 国产毛片在线视频| 嫩草影院入口| 欧美精品一区二区大全| 亚洲精品中文字幕在线视频| 亚洲伊人久久精品综合| 男人添女人高潮全过程视频| 黑人欧美特级aaaaaa片| 夫妻性生交免费视频一级片| 亚洲一区中文字幕在线| 日产精品乱码卡一卡2卡三| 一级a爱视频在线免费观看| 亚洲国产精品一区二区三区在线| 日韩免费高清中文字幕av| av视频免费观看在线观看| 中国三级夫妇交换| 乱人伦中国视频| 99香蕉大伊视频| 国产日韩欧美视频二区| 黄色一级大片看看| 制服人妻中文乱码| 精品视频人人做人人爽| 国产欧美日韩综合在线一区二区| 国产精品久久久久久精品古装| 2022亚洲国产成人精品| 久久久久网色| 久久人妻熟女aⅴ| 性色avwww在线观看| 国产精品av久久久久免费| 9热在线视频观看99| 如日韩欧美国产精品一区二区三区| av线在线观看网站| 国产精品免费大片| 亚洲成av片中文字幕在线观看 | 亚洲视频免费观看视频| 精品少妇内射三级| 精品人妻偷拍中文字幕| 三上悠亚av全集在线观看| 日韩中文字幕视频在线看片| 成年女人在线观看亚洲视频| 免费观看性生交大片5| 一级毛片黄色毛片免费观看视频| 一二三四在线观看免费中文在| 欧美人与性动交α欧美精品济南到 | 久久国产精品大桥未久av| 亚洲欧美中文字幕日韩二区| 国产精品一国产av| av在线老鸭窝| 国产一区二区 视频在线| 久久国产精品大桥未久av| 国产 精品1| 亚洲精品久久久久久婷婷小说| 一级黄片播放器| 成人手机av| 中文字幕亚洲精品专区| 自拍欧美九色日韩亚洲蝌蚪91| 国产成人一区二区在线| 日韩免费高清中文字幕av| freevideosex欧美| 亚洲精品一区蜜桃| 伦理电影免费视频| 老司机影院毛片| 老司机亚洲免费影院| 亚洲精品,欧美精品| 十八禁高潮呻吟视频| 丰满乱子伦码专区| 国产精品一区二区在线观看99| 黄色视频在线播放观看不卡| 久久精品久久久久久噜噜老黄| 男女无遮挡免费网站观看| 看免费av毛片| 永久网站在线| 黄色 视频免费看| 亚洲一级一片aⅴ在线观看| 熟女av电影| 天天躁日日躁夜夜躁夜夜| 男女边摸边吃奶| www.自偷自拍.com| 国产精品三级大全| 伦理电影大哥的女人| 亚洲欧美清纯卡通| 天天操日日干夜夜撸| 老司机亚洲免费影院| 永久网站在线| 97人妻天天添夜夜摸| 一区二区三区精品91| 国产爽快片一区二区三区| 国产成人精品婷婷| 日韩,欧美,国产一区二区三区| www日本在线高清视频| 日韩av不卡免费在线播放| 久久人人97超碰香蕉20202| 免费久久久久久久精品成人欧美视频| av有码第一页| 又黄又粗又硬又大视频| 国产黄频视频在线观看| 老女人水多毛片| 精品第一国产精品| 性高湖久久久久久久久免费观看| 夜夜骑夜夜射夜夜干| 亚洲激情五月婷婷啪啪| 中文字幕亚洲精品专区| 夫妻午夜视频| 不卡视频在线观看欧美| 高清不卡的av网站| 丝袜美腿诱惑在线| 水蜜桃什么品种好| 国产精品无大码| 亚洲伊人色综图| 夫妻午夜视频| 成人亚洲欧美一区二区av| 建设人人有责人人尽责人人享有的| 中国三级夫妇交换| 老汉色av国产亚洲站长工具| 亚洲欧美中文字幕日韩二区| 久久这里只有精品19| 欧美老熟妇乱子伦牲交| 久久国内精品自在自线图片| 91aial.com中文字幕在线观看| 国产又爽黄色视频| 国产免费视频播放在线视频| 亚洲av国产av综合av卡| 蜜桃国产av成人99| 国产成人免费观看mmmm| 国产精品香港三级国产av潘金莲 | 免费在线观看黄色视频的| 精品人妻在线不人妻| 亚洲欧美一区二区三区久久| 免费高清在线观看视频在线观看| 久久久久久久亚洲中文字幕| 亚洲,一卡二卡三卡| 美女大奶头黄色视频| 国产乱人偷精品视频| 久久人人爽av亚洲精品天堂| 天堂中文最新版在线下载| 国产欧美日韩一区二区三区在线| 激情五月婷婷亚洲| 狠狠婷婷综合久久久久久88av| 国产无遮挡羞羞视频在线观看| 自拍欧美九色日韩亚洲蝌蚪91| 在线精品无人区一区二区三| 老司机亚洲免费影院| 99热国产这里只有精品6| 18+在线观看网站| av卡一久久| 这个男人来自地球电影免费观看 | 91精品三级在线观看| 黄色视频在线播放观看不卡| 亚洲av.av天堂| 亚洲精品美女久久av网站| 最近的中文字幕免费完整| 亚洲一级一片aⅴ在线观看| 国产欧美亚洲国产| 一边摸一边做爽爽视频免费| 在线观看三级黄色| 亚洲第一青青草原| 亚洲国产最新在线播放| 天堂中文最新版在线下载| 天堂俺去俺来也www色官网| 日日撸夜夜添| 亚洲国产日韩一区二区| 精品少妇一区二区三区视频日本电影 | 国产精品成人在线| 国产精品香港三级国产av潘金莲 | 一二三四中文在线观看免费高清| 汤姆久久久久久久影院中文字幕| 少妇精品久久久久久久| 美女福利国产在线| 两性夫妻黄色片|