• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A Fusion Kalman Filter and UFIR Estimator Using the Influence Function Method

    2022-04-15 04:17:22WeiXueXiaoliLuanShunyiZhaoSeniorandFeiLiu
    IEEE/CAA Journal of Automatica Sinica 2022年4期

    Wei Xue,, Xiaoli Luan, Shunyi Zhao, Senior, and Fei Liu

    Abstract—In this paper, the Kalman filter (KF) and the unbiased finite impulse response (UFIR) filter are fused in the discrete-time state-space to improve robustness against uncertainties. To avoid the problem where fusion filters may give up some advantages of UFIR filters by fusing based on noise statistics, we attempt to find a way to fuse without using noise statistics. The fusion filtering algorithm is derived using the influence function that provides a quantified measure for disturbances on the resulting filtering outputs and is termed as an influence finite impulse response (IFIR) filter. The main advantage of the proposed method is that the noise statistics of process noise and measurement noise are no longer required in the fusion process, showing that a critical feature of the UFIR filter is inherited. One numerical example and a practice-oriented case are given to illustrate the effectiveness of the proposed method. It is shown that the IFIR filter has adaptive performance and can automatically switch from the Kalman estimate to the UFIR estimates according to operating conditions. Moreover, the proposed method can reduce the effects of optimal horizon length on the UFIR estimate and can give the state estimates of best accuracy among all the compared methods.

    I. INTRODUCTION

    TO estimate the states of industrial systems, including power electronic systems, large-scale systems, cyberphysical systems, static neural networks and motion control systems, state estimators are considered to be a fundamental tool [1]–[5]. Kalman and Bucy proposed the famous Kalman filter (KF) in the 1970s [6], which is a simple and globally optimal state estimator for linear Gaussian processes [7]. Up until now, it has been widely used in numerous areas with great success. Given an accurate linear model, the KF can theoretically reach optimal estimates [8]–[10], while its errors will rise dramatically once the underlying model is slightly mismatched or there is colored noise. Due to the complexity industrial processes, it is difficult and time-consuming to find an accurate filtering model, and more importantly, the random external interference barely obeys the Gaussian and white statistics. Therefore, many efforts have been made during the last two decades to improve KF performance under different environments [11]–[14].

    As a type of finite impulse response (FIR) filters, the unbiased finite impulse response (UFIR) filtering algorithm is constructed and analyzed in [15]. This algorithm ignores the statistical characteristics of noise sources and initial distribution and uses an optimal estimation interval to drive estimation accuracy to approach its optima in the minimum mean square error sense [15]–[17]. Unlike the KF, which recursively computes state estimates, the UFIR filter operates with a finite number of most recent data either in a batch form or in an iterative structure. Therefore, the UFIR filter accumulates estimation errors only within a limited horizon[18]–[21]. Under harsh industrial operating conditions, it is expected that the UFIR filter exhibits better robustness against uncertainties and will be insensitive to changes in the noisy environment. A detailed comparison of the UFIR filter and the KF is provided in [22], [23] with practical examples.

    As discussed, each filtering algorithm has its features.Specifically, the KF provides the best linear estimates (or almost the best) when the underlying linear model is accurate or nearly accurate, while the UFIR estimator shows impressive robustness against uncertainties. With the boom in the development of both filters comes a variety of fusion strategies. There are self-fusion strategies for the same filter to make better use of the characteristic of the filter [24], [25]. If one wishes to design a filter to achieve the optimality of the KF and the robustness of the UFIR filter simultaneously, a common practice is to find an appropriate strategy to fuse them. For example, an infinite impulse response (IIR)-type filter and an FIR-type filter are merged in [26] using the mixing probability calculated based on the residuals and their covariances. Later, in [27] the KF and UFIR filters are fused by assigning probabilistic weights to achieve smaller errors.With the same motivations, the weighted UFIR filter is derived using the Frobenius norm in [28], [29]. Reference [30]uses measurement differencing and by de-correlating noise vectors to fuse the two filters. A unified fusion framework employed in these approaches is demonstrated in Fig. 1,implying that the IIR and FIR filters give respective estimates,and a fusing procedure then achieves the overall output.

    Although this structure is clear and pellucid, fusing the UFIR estimate and the Kalman estimate mathematically may not be as intuitive as Fig. 1. The main difficulty is that the

    Fig. 1. A diagram of the state vector fusion framework for the IIR-type filter and the FIR-type filter.

    II. PRELIMINARIES AND PROBLEM FORMULATION

    The state-space model provides us with a useful tool to describe an industrial process, where the internal state variables are the smallest possible subset of system variables that can represent the entire state of the system at any given time. Consider a linear discrete-time state-space model specified as error covariance of each filter and their cross-covariance matrix are necessary [26], [27] to conduct fusion, while these prerequisites will destroy the advantages brought by the UFIR filter. To be specific, noise statistics are unavoidable to get error covariances of the UFIR filter, which, on the contrary,ignores the noise statistic completely to get state estimates.Accordingly, one faces a dilemma that for robustness, we hope to avoid using noise statistics, which have to be introduced in the existing approaches [28] for fusion. Besides,it is well known that the KF is recursive while the UFIR filter operates either in batch or in an iterative form, causing further challenges to fuse them without error covariances.

    To solve these issues, in this paper we propose a novel fusion procedure, which is designed particularly for the KF and the UFIR filter. The resulting method is constructed based on a concept of an “artificial” filter gain for the UFIR filter as well as the influences function [31]. Compared to the existing fusion methods proposed, the most significant contribution of our paper is that it does not use the statistics of noise. It demonstrates that the critical feature of the UFIR filter is ultimately inherited. Other contributions of this paper are as follows. 1) The proposed algorithm serves as a new fusion approach to fuse the UFIR filter and the KF without calculating error covariances; 2) The proposed method inherits the advantages of the KF and UFIR filter, and can automatically prioritize its performance towards optimality or robustness to accommodate its operating environment; 3)Since noise statistics are no longer required in the fusion step,the proposed method is insensitive to the statistical error of noise and yields significant improvements over existing fusion methods in different scenarios.

    The remainders of this paper are organized as follows. In Section II, some preliminaries are given, where we also formulate the problem considered. In Sections III, we propose the fusion algorithm by introducing artificial gain for the UFIR filter and using the influences function approach.Section IV presents the simulation results for several examples, and conclusions are summarized in Section V.

    The following notations are used throughout the paper.RNdenotes theN-dimensional Euclidean space,E{·} denotes statistical averaging, diag(D1D2···Dn) represents a diagonal matrix with diagonal elements D1,D2,...,Dn, I is the identity matrix of proper dimensions, A⊙B denotes the Hadamard product of A and B, and A/B is the element-wise division.

    A. Kalman Filter and UFIR Filter

    B. Problem Formulation

    The problem considered in this paper can now be formulated as follows. Given the Kalman estimate and the UFIR estimate at each step, we would like to design a filter fusing them without involving the estimation error covariances. Besides, we would also like to test the effectiveness of the proposed method by different scenarios and show its trade-off between the existing fusion approaches through applications.

    III. FUSION KALMAN/UFIR FILTER

    In this section, we propose a novel algorithm to fuse the Kalman and UFIR estimates without using the process noise and measurement noise covariances. The key idea is to run the KF, and the UFIR filter in parallel to produce two different state estimates and then assign weights to these sub-estimates to get the overall outputs. Consequently, determining how to calculate the weights appropriately without noise statistics is essential, and the existing fusion approaches [27], [28]become invalid in this scenario.

    A. Artificial UFIR Gain

    B. Influence Matrix

    The function of the influence matrix is to quantify how much the filter is affected by disturbances at a given moment.The value of the matrix reflects the robustness of the filter.

    As discussed, the KF needs to know the exact noise statistics to get the state estimates, whereas the UFIR tracks the mean value of the state, implying that noise information is no longer needed. Because of these, we first measure the amount that the same disturbance will affect the estimated value in each filter using the influence matrix.

    Consider (8) and (10) that map the predicted state and measurement to the filtered state. A filter is, in a way, used to balance the observed and model-predicted values. For a given time, the filter can be seen as the system shown input-output as

    C. Cumulative Influence Matrices

    Using (23) and (24), we can get the influence value of disturbance in the UFIR estimates as

    D. Fusion Outputs

    Now, a rule of thumb for fusion is that the greater the influence is, the greater the degree of noise interference.Consequently, the output should be closed to the estimates with small influence value as much as possible, resulting in

    E. Discussions

    Algorithm 1 presents the pseudo-code of the proposed method to fit the corresponding block diagram shown in Fig. 2.Fig. 2 represents the structure of the influence finite impulse response (IFIR) algorithm. Firstly, KF and UFIR are run independently to obtain the estimates and gain, respectively.The influence function is then used to obtain the fusion weights. Finally, the two estimates are fused based on the fusion weights. The significant difference when compared to existing fusion algorithms is that the statistical parameters of noise are missing from the input to calculate the fusion weights.

    Algorithm 1 IFIR Estimation Algorithm Framework Input:An,Bn,Cn,,x1,y1:n,Qn,Rn,P0 Output:?xFn 1 Set Nopt 2 for do n=1,2,...,Nopt ?1 3 Run the KF to produce by (8)?xFn = ?xn 4 ?xn 5 end a,b,T′,Ξ(Nopt?1),6 Set 7 for do n=Nopt,Nopt+1,...,?xn ˉxn ?KnˉKn 8 Run the KF and UFIR to produce , , and computer by (8) and (12)n′=n,n?1,...,n?b 9 for doˉLn′?Ln′10 Compute and by (25)11 endˉLbn?Lbn 12 Compute and by (30)13 Computer by (33)Ξn=(1?a)Ξn?1+aΩn,Ωn 14 ?xFn = ?xn+Ξn(ˉxn ??xn),15 16 end

    Fig. 2. A block diagram of the proposed IFIR filtering framework.

    As can be seen, we only consider the diagonal elements in(33). The reason is that the proposed structure is designed for each state, and the influence between state components cannot be calculated. Specifically, the method determines the fusion relationship between the prior state estimate and the residual,and it is not suitable to use this residual to correct between states.

    IV. APPLICATIONS

    In this section, we demonstrate the effectiveness of the proposed approach (Algorithm 1, denoted as IFIR) by comparing it with the UFIR filter [15], the KF, and the fusion method (fusion FIR filter, denoted as fusion filter (FF) in this section) proposed in [27]. The root mean square errors(RMSEs) and the cumulative error of different algorithms are used as the main performance indicators. The main purpose is to provide users with a clear picture of the proposed algorithm.

    A. Two-State Polynomial Model

    Fig. 3. Cumulative errors of different algorithms for the two-state polynomial model: (a) the first state and (b) the second state.

    Fig. 4. RMSEs provided by different algorithms for the two-state polynomial model: (a) the first state and (b) the second state.

    In this section, we apply different filtering algorithms to the two-state polynomial model (1) and (2), specified with Bn=I,Dn=I, Cn=[1,0], and algorithms, resulting in an estimation accuracy close to the KF. When modeling errors become large whenn>300, the IFIR successfully transfers its outputs to the UFIR estimates,independent of the noise covariances, while the FF method fails.

    To give a clearer picture about the fusion process in the IFIR method, in Fig. 5 we show the influence values of each sub-filter in comparison with the weights of the UFIR estimates used for outputs, where the bars represent the influence values and the solid grey line represents the weights.As shown, the weight of the UFIR estimates increases along with the influence value, which can be considered a measure to quantify the effects of uncertainties on a specific filter. The filter with a significant influence values indicates that this filter is sensitive to noisy measurements and hardly matches observations.

    Fig. 5. In the second state, the relationship between the influence value and the weights used during filtering in the proposed algorithm.

    In additions, the fusion process also illustrates another advantage of the proposed method. It is known that improvement can be achieved if we can get the error covariance at a particular moment. Using the influence function method, we can get an alternative measure of estimation covariance even if the corresponding noise statistics are unavailable.

    To increase persuasiveness, we used the Monte Carlo method in the conditions of Experiment 1 to obtain Fig. 6,where the variables are random noise. As shown in Fig. 6, our proposed method has the slightest cumulative error and the best filtering effect in most cases in this experiment. Even with small probabilities, the performance of our proposed method is not the worst.

    To be more illustrative, we varied only the number of experiments under the experimental conditions in Fig. 6 to obtain Table I. It can be seen that our proposed IFIR is valid under these experimental conditions.

    Fig. 7 and Fig. 8 show how the values ofaandbaffect the results. As seen from the graphs, whena=0, the filter weights are constant at the initial value. There is a significant increase ata=0 in the graph, indicating that our algorithm is effective and has a much smaller RMSE than when no fusion strategy (a=0) is adopted. Fora, it can be seen that the influence values are sensitive to random disturbances, andthe same regularity exists between historical and current information. Values ofbabove a certain range will not impact the effectiveness of the filter. However, when the noise covariance is time-varying, andbexceeds a certain value and then increases, it makes the IFIR filter significantly less effective. This demonstrates that we have selected too much historical information in the event of a change in the environment, making the influence values less sensitive to the current environment.

    TABLE I n TRIALS IFIR WITH MINIMUM PROBABILITY OF CUMULATIVE ERRORS

    Fig. 6. Cumulative error of multiple simulations (Section IV-A): (a) Side view; (b) Front view; (c) Bottom view; and (d) Top view.

    B. Quadruple Water Tank System

    In this section, we verify the observations using a quadruple water tank system [37]. As can be seen from Fig. 9, two pumps feed water into different tanks using two split flows,and Tank 3 and Tank 4 also feed water into Tank 1 and Tank 2,respectively. The water in the upper tank can only be discharged into the tank below it, and the water discharged from the bottom of the tank flows directly into the large reservoir. By using the voltages applied to the two pumps as inputs and defining the system state vector as those small uncertainties in the system have a large response in the influence values. Therefore a small value ofais appropriate. A too-large value ofawould cause the IFIR weights to jump back and forth between 0 and 1, causing the random nature of the noise to mask its regular component. Forb, it shows that when the noise covariance is time-invariant,

    Fig. 7. RMSEs computed as functions of a and b in the presence of timevariant process noise covariances: (a) the first state, and (b) the second state.

    Fig. 8. RMSEs computed as functions of a and b in the presence of timeinvariant process noise covariances: (a) the first state, and (b) the second state.

    Fig. 9. The quadruple water tank system.

    In this scenario, we generate the process at 1000 points starting with x0=[0 0 0 0]T. For the UFIR filter, the optimal estimation horizon [37] is found to beNopt=29. To introduce temporary uncertainties, we artificially set Qn=10?2I and Rn=[6 1;1 10]to all the algorithms whenn≤500, and Qn=Iand Rn=[6 1;1 10] when 500

    Fig. 10 sketches a typical case of the cumulative errors of different filtering algorithms. Here, the cumulative errorCEnis the same as defined in A. Together with the RMSEs depicted in Fig. 11, we can see that the proposed IFIR filter shows the best overall estimation performance among all the methods. Specifically, when model uncertainty introduced by inaccurate noise statistics is relatively small, Kalman estimation dominates both the FF and IFIR algorithms,leading to estimation accuracy close to the KF. When model errors become large, IFIR successfully shifts its output to UFIR estimates independent of the noise covariance, while the FF approach fails. In summary, IFIR filters can determine the effectiveness of the KF and UFIR filters and fuse them based on this and synchronously follow the more effective filter as its time changes.

    Fig. 10. Cumulative error provided by different algorithms for the quadruple water tank system: (a) the first state, (b) the second state, (c) the third state, and (d) the fourth state.

    To give a clearer picture of the fusion process in the IFIR method, in Fig. 12 we show the influence values of each subfilter in comparison with the weights of the UFIR estimates used for outputs, where the bars represent the influence values and the solid grey line represents the weights. It is worth noting that this graph is only the change in IFIR weights for state 4. The IFIR weights for each state are not the same at the same moment. This means that the IFIR filter is fused for each state, and each state does not face the same situation.

    Fig. 11. RMSEs provided by different algorithms for the quadruple water tank system: (a) the first state, (b) the second state, (c) the third state, and (d)the fourth state.

    Fig. 12. In the fourth state, the relationship between the influence value and the weights used during filtering in the proposed algorithm.

    V. CONCLUSIONS

    A new fusion filter that uses the KF and the UFIR filter as sub-filters is proposed for the discrete-time state-space model in this paper. The IFIR inherits the advantages of the KF and the UFIR filter and can vary from the Kalman estimate to the UFIR estimate. The main advantage of the proposed method is that the error covariance matrix is not required during the fusing process. The performance of the IFIR filter is demonstrated by a two-state polynomial system and a quadruple water tank system. We have seen the great potential of influence functions and believe that they contribute to the study of online evaluation filters.

    插阴视频在线观看视频| 久久精品国产亚洲av涩爱 | 啦啦啦观看免费观看视频高清| 国产精品美女特级片免费视频播放器| 性插视频无遮挡在线免费观看| 国产精品人妻久久久影院| 悠悠久久av| 精品熟女少妇av免费看| 看免费成人av毛片| 久久亚洲国产成人精品v| a级一级毛片免费在线观看| 国产又黄又爽又无遮挡在线| 91精品国产九色| 午夜激情欧美在线| 久久久色成人| 男插女下体视频免费在线播放| 校园人妻丝袜中文字幕| 少妇的逼好多水| 亚洲av.av天堂| 久久精品久久久久久噜噜老黄 | 亚洲在线观看片| 欧美高清性xxxxhd video| 国产精品蜜桃在线观看 | 女人被狂操c到高潮| 好男人在线观看高清免费视频| 91久久精品国产一区二区成人| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 欧美高清性xxxxhd video| 国产单亲对白刺激| 99热6这里只有精品| 午夜激情福利司机影院| 亚洲av免费高清在线观看| 国产成人a∨麻豆精品| 亚洲av一区综合| 99在线人妻在线中文字幕| 久久精品国产自在天天线| 亚洲成人精品中文字幕电影| 夜夜看夜夜爽夜夜摸| 欧美激情久久久久久爽电影| 免费看光身美女| 国产探花极品一区二区| 欧美激情国产日韩精品一区| 国产亚洲精品av在线| 国产色婷婷99| 成人一区二区视频在线观看| 啦啦啦韩国在线观看视频| 亚洲图色成人| 日本三级黄在线观看| a级毛色黄片| 干丝袜人妻中文字幕| 99久国产av精品| 午夜福利成人在线免费观看| 简卡轻食公司| 狂野欧美白嫩少妇大欣赏| 国产麻豆成人av免费视频| 午夜老司机福利剧场| 国产一区二区三区在线臀色熟女| 自拍偷自拍亚洲精品老妇| 久久99精品国语久久久| 自拍偷自拍亚洲精品老妇| 男人舔奶头视频| 精品人妻偷拍中文字幕| 三级国产精品欧美在线观看| 高清午夜精品一区二区三区 | 男人舔女人下体高潮全视频| av.在线天堂| 人妻夜夜爽99麻豆av| 国产女主播在线喷水免费视频网站 | 不卡一级毛片| 亚洲人成网站在线播放欧美日韩| 天堂av国产一区二区熟女人妻| 晚上一个人看的免费电影| 国产亚洲欧美98| 狠狠狠狠99中文字幕| av在线播放精品| 色播亚洲综合网| 一级二级三级毛片免费看| 免费大片18禁| 国产黄色小视频在线观看| 欧美zozozo另类| 天美传媒精品一区二区| 91在线精品国自产拍蜜月| 两个人视频免费观看高清| 搡女人真爽免费视频火全软件| 91av网一区二区| 我的老师免费观看完整版| 亚洲激情五月婷婷啪啪| 男人舔奶头视频| 国产 一区精品| 午夜a级毛片| 国产av在哪里看| 日产精品乱码卡一卡2卡三| 日韩欧美精品v在线| 看非洲黑人一级黄片| 久久99热这里只有精品18| 亚洲四区av| 最近的中文字幕免费完整| 免费看日本二区| 免费黄网站久久成人精品| 直男gayav资源| 久久久a久久爽久久v久久| 亚洲天堂国产精品一区在线| 精品人妻熟女av久视频| 欧美色欧美亚洲另类二区| 又爽又黄无遮挡网站| 亚洲av电影不卡..在线观看| 少妇人妻精品综合一区二区 | 蜜桃久久精品国产亚洲av| 别揉我奶头 嗯啊视频| 久久99热这里只有精品18| 久久这里只有精品中国| 久久午夜亚洲精品久久| 午夜免费激情av| 丝袜美腿在线中文| 青春草亚洲视频在线观看| 在线观看美女被高潮喷水网站| 日韩成人av中文字幕在线观看| 99九九线精品视频在线观看视频| 日本av手机在线免费观看| 精品久久久久久久末码| 午夜免费激情av| 精品一区二区三区视频在线| 日韩一区二区三区影片| 中出人妻视频一区二区| 校园春色视频在线观看| 欧美极品一区二区三区四区| 久久久久久久久久久丰满| 99热这里只有是精品50| 赤兔流量卡办理| 搞女人的毛片| 大香蕉久久网| av.在线天堂| 午夜福利在线在线| 国产高清激情床上av| 亚洲精品色激情综合| 成人漫画全彩无遮挡| 亚洲国产精品成人综合色| 18禁在线无遮挡免费观看视频| 最近手机中文字幕大全| 成人性生交大片免费视频hd| 99热这里只有是精品在线观看| 国产视频内射| 国内久久婷婷六月综合欲色啪| 久久精品国产鲁丝片午夜精品| 国产综合懂色| 国产激情偷乱视频一区二区| 国产伦在线观看视频一区| 国产白丝娇喘喷水9色精品| 九九在线视频观看精品| 天天躁夜夜躁狠狠久久av| 婷婷色综合大香蕉| 国产精品国产三级国产av玫瑰| 亚洲av男天堂| 免费观看人在逋| 午夜老司机福利剧场| 91在线精品国自产拍蜜月| 亚洲va在线va天堂va国产| 亚洲欧美日韩高清专用| 最近的中文字幕免费完整| 99热这里只有精品一区| 国产色婷婷99| 欧美激情久久久久久爽电影| 欧美日韩一区二区视频在线观看视频在线 | 黄片wwwwww| 国产一区亚洲一区在线观看| 在线观看美女被高潮喷水网站| 亚洲av一区综合| 午夜免费激情av| 亚洲欧美日韩高清专用| 99久国产av精品| 中文字幕久久专区| 国产成人午夜福利电影在线观看| 欧美激情国产日韩精品一区| 日本成人三级电影网站| 欧美又色又爽又黄视频| 久久99热这里只有精品18| 亚洲精品粉嫩美女一区| 岛国在线免费视频观看| 在线免费十八禁| 久久草成人影院| 国产91av在线免费观看| 人人妻人人看人人澡| 三级经典国产精品| 在线观看av片永久免费下载| 男女下面进入的视频免费午夜| 国产一区二区在线av高清观看| 成人漫画全彩无遮挡| 春色校园在线视频观看| 午夜激情福利司机影院| 又黄又爽又刺激的免费视频.| 国产精品电影一区二区三区| kizo精华| 永久网站在线| 亚洲美女视频黄频| 91久久精品国产一区二区三区| 国产黄色小视频在线观看| 精品欧美国产一区二区三| 中文字幕免费在线视频6| 免费人成在线观看视频色| 三级经典国产精品| 亚洲真实伦在线观看| 国产成年人精品一区二区| 成年女人永久免费观看视频| 卡戴珊不雅视频在线播放| 一级黄片播放器| 国产在线精品亚洲第一网站| 成人午夜精彩视频在线观看| 黄色日韩在线| 自拍偷自拍亚洲精品老妇| 亚洲av成人av| 久久久精品欧美日韩精品| av视频在线观看入口| 午夜老司机福利剧场| 一级av片app| 人人妻人人看人人澡| 少妇熟女aⅴ在线视频| 高清午夜精品一区二区三区 | 美女内射精品一级片tv| 麻豆av噜噜一区二区三区| 国内精品久久久久精免费| 中文资源天堂在线| 精品熟女少妇av免费看| 日韩欧美一区二区三区在线观看| 国产成人精品婷婷| 夜夜爽天天搞| 国产人妻一区二区三区在| 别揉我奶头 嗯啊视频| 麻豆成人av视频| 日韩人妻高清精品专区| 国产成年人精品一区二区| 在线观看美女被高潮喷水网站| 两个人视频免费观看高清| 美女内射精品一级片tv| a级毛色黄片| 精品久久久久久久久久免费视频| 国产欧美日韩精品一区二区| 久久久久久久久久久免费av| 久久99蜜桃精品久久| 99在线人妻在线中文字幕| 一级毛片久久久久久久久女| 亚洲国产精品成人久久小说 | 亚洲国产高清在线一区二区三| 在线天堂最新版资源| 国产一区二区三区av在线 | 嫩草影院精品99| 久久久久久久午夜电影| 国产精品日韩av在线免费观看| 欧美一区二区亚洲| 亚洲精品国产av成人精品| 极品教师在线视频| 国产色婷婷99| 免费看光身美女| 精品人妻偷拍中文字幕| 九九久久精品国产亚洲av麻豆| 亚洲一级一片aⅴ在线观看| 99九九线精品视频在线观看视频| 成人午夜高清在线视频| 成人av在线播放网站| 亚洲美女搞黄在线观看| 赤兔流量卡办理| 久久精品91蜜桃| 深夜a级毛片| 亚洲国产欧洲综合997久久,| 免费搜索国产男女视频| 国产精品一区www在线观看| 亚洲国产精品国产精品| 国产精品人妻久久久久久| 永久网站在线| eeuss影院久久| АⅤ资源中文在线天堂| 丝袜美腿在线中文| 欧美色欧美亚洲另类二区| 99热精品在线国产| 黄色一级大片看看| 村上凉子中文字幕在线| 亚洲自偷自拍三级| 毛片一级片免费看久久久久| 国产中年淑女户外野战色| 午夜久久久久精精品| 国产精品乱码一区二三区的特点| 亚洲激情五月婷婷啪啪| 色综合站精品国产| 国产亚洲av嫩草精品影院| 九九爱精品视频在线观看| 九草在线视频观看| 国产真实伦视频高清在线观看| a级毛片免费高清观看在线播放| 久久久久九九精品影院| 国产久久久一区二区三区| 岛国毛片在线播放| 91av网一区二区| 观看美女的网站| 色视频www国产| 中文资源天堂在线| 久久人人精品亚洲av| 亚洲国产欧美在线一区| 99riav亚洲国产免费| 亚洲图色成人| 一级黄色大片毛片| 国产精品,欧美在线| 免费人成视频x8x8入口观看| 啦啦啦啦在线视频资源| 91精品一卡2卡3卡4卡| 国产亚洲5aaaaa淫片| 乱人视频在线观看| 久久久久性生活片| 午夜视频国产福利| 欧美又色又爽又黄视频| 亚洲最大成人av| 国产亚洲欧美98| 看黄色毛片网站| 国产精品综合久久久久久久免费| 精品午夜福利在线看| 又粗又硬又长又爽又黄的视频 | 一级黄片播放器| 国产精品人妻久久久久久| 2022亚洲国产成人精品| 成人漫画全彩无遮挡| 成人鲁丝片一二三区免费| 免费av观看视频| 2021天堂中文幕一二区在线观| 两性午夜刺激爽爽歪歪视频在线观看| 国产成人精品久久久久久| 又粗又硬又长又爽又黄的视频 | 亚洲av电影不卡..在线观看| 免费看光身美女| 久久精品久久久久久噜噜老黄 | 国产黄a三级三级三级人| 毛片女人毛片| 国产伦精品一区二区三区四那| 99久久久亚洲精品蜜臀av| 免费不卡的大黄色大毛片视频在线观看 | 日韩成人av中文字幕在线观看| 少妇熟女欧美另类| 久久亚洲国产成人精品v| 黄片无遮挡物在线观看| 一个人免费在线观看电影| 人妻久久中文字幕网| 国产高清不卡午夜福利| 色综合亚洲欧美另类图片| 97热精品久久久久久| 久久久久久久亚洲中文字幕| 一进一出抽搐gif免费好疼| 色综合站精品国产| 精品无人区乱码1区二区| 成人午夜精彩视频在线观看| 欧美日本亚洲视频在线播放| 青春草亚洲视频在线观看| 啦啦啦啦在线视频资源| 国产精品一区二区三区四区免费观看| 国产真实伦视频高清在线观看| 嫩草影院精品99| 国产日本99.免费观看| 久久久久久久久久成人| 久久精品国产自在天天线| 好男人视频免费观看在线| 久久久a久久爽久久v久久| 大型黄色视频在线免费观看| 男女边吃奶边做爰视频| 日本黄色片子视频| www.av在线官网国产| 热99在线观看视频| 午夜免费激情av| 天堂av国产一区二区熟女人妻| 中文字幕av成人在线电影| 欧美日韩乱码在线| 亚洲欧美精品综合久久99| 老熟妇乱子伦视频在线观看| 精品国产三级普通话版| 一本久久中文字幕| 亚洲在线自拍视频| 国产精品一区二区性色av| 久久久久久大精品| 青春草国产在线视频 | 成年版毛片免费区| 国产私拍福利视频在线观看| 毛片女人毛片| 人人妻人人看人人澡| 黄片wwwwww| 18禁裸乳无遮挡免费网站照片| 老师上课跳d突然被开到最大视频| 日本黄色视频三级网站网址| 国产男人的电影天堂91| 秋霞在线观看毛片| 亚洲国产精品合色在线| 日韩中字成人| 亚洲欧美清纯卡通| 天堂av国产一区二区熟女人妻| 天天躁夜夜躁狠狠久久av| 一级毛片久久久久久久久女| 色尼玛亚洲综合影院| 国产老妇女一区| 色综合站精品国产| 亚洲成a人片在线一区二区| 日韩国内少妇激情av| 午夜a级毛片| 日韩欧美精品免费久久| 国产精品野战在线观看| av在线观看视频网站免费| 免费人成视频x8x8入口观看| 欧洲精品卡2卡3卡4卡5卡区| 亚洲国产高清在线一区二区三| 国产精品三级大全| 一级av片app| 高清午夜精品一区二区三区 | 中文字幕人妻熟人妻熟丝袜美| 精品一区二区三区人妻视频| 听说在线观看完整版免费高清| 久久久国产成人精品二区| 少妇高潮的动态图| 久久精品影院6| 麻豆乱淫一区二区| 一个人看的www免费观看视频| 久久久久久伊人网av| 国产美女午夜福利| 一个人看的www免费观看视频| 97超视频在线观看视频| 99热6这里只有精品| 久久久久久久久久久免费av| 国产国拍精品亚洲av在线观看| 国产精品一区www在线观看| 色5月婷婷丁香| 国产精品一及| 久久草成人影院| 欧美激情久久久久久爽电影| 国产av不卡久久| 99热这里只有精品一区| av在线蜜桃| 女人十人毛片免费观看3o分钟| 亚洲第一电影网av| 欧美一区二区精品小视频在线| 日韩强制内射视频| 在线播放国产精品三级| 精品不卡国产一区二区三区| 国产国拍精品亚洲av在线观看| 日本黄色片子视频| 亚洲国产精品合色在线| 日本免费一区二区三区高清不卡| 日韩av在线大香蕉| 老女人水多毛片| 在线播放国产精品三级| 国产极品精品免费视频能看的| 久久久精品欧美日韩精品| 精品一区二区三区人妻视频| 一级毛片电影观看 | 国产一区二区三区在线臀色熟女| 中文字幕免费在线视频6| 精品人妻偷拍中文字幕| 国模一区二区三区四区视频| 国产伦在线观看视频一区| 国产成人精品婷婷| 久久精品国产鲁丝片午夜精品| 国产爱豆传媒在线观看| 日韩av在线大香蕉| 免费人成在线观看视频色| 色噜噜av男人的天堂激情| 99热全是精品| 全区人妻精品视频| 午夜亚洲福利在线播放| 日韩欧美国产在线观看| 人妻制服诱惑在线中文字幕| 亚州av有码| 如何舔出高潮| 天天躁夜夜躁狠狠久久av| videossex国产| 日韩在线高清观看一区二区三区| 亚洲精品日韩av片在线观看| 99在线视频只有这里精品首页| 日韩国内少妇激情av| 亚洲欧洲国产日韩| 久久99热6这里只有精品| 欧美三级亚洲精品| 一个人观看的视频www高清免费观看| 十八禁国产超污无遮挡网站| 国产成人精品久久久久久| 一级毛片久久久久久久久女| 日本在线视频免费播放| 成年女人看的毛片在线观看| 69av精品久久久久久| 亚洲人成网站高清观看| 久久精品久久久久久噜噜老黄 | 亚洲无线在线观看| 亚洲美女搞黄在线观看| 中文欧美无线码| 麻豆成人午夜福利视频| 波野结衣二区三区在线| 成人漫画全彩无遮挡| 青春草视频在线免费观看| 男女做爰动态图高潮gif福利片| 国产人妻一区二区三区在| 小说图片视频综合网站| 日本免费a在线| 午夜精品一区二区三区免费看| 久久国产乱子免费精品| 51国产日韩欧美| 久久精品91蜜桃| 91在线精品国自产拍蜜月| 国产在线男女| 亚洲自偷自拍三级| 高清在线视频一区二区三区 | 黄色欧美视频在线观看| 热99在线观看视频| 男人狂女人下面高潮的视频| 久久热精品热| 一本一本综合久久| 黄色日韩在线| 丝袜美腿在线中文| 国产伦理片在线播放av一区 | 99久久无色码亚洲精品果冻| 内射极品少妇av片p| 欧美一区二区国产精品久久精品| 亚洲美女搞黄在线观看| 美女大奶头视频| 久久久国产成人免费| 永久网站在线| 在线观看午夜福利视频| 国产探花极品一区二区| 美女黄网站色视频| 在线播放国产精品三级| ponron亚洲| 欧美成人一区二区免费高清观看| 国产亚洲精品av在线| 日日撸夜夜添| 国产精品久久电影中文字幕| 国产爱豆传媒在线观看| 99久国产av精品国产电影| 亚洲经典国产精华液单| 69人妻影院| 亚洲成av人片在线播放无| 99在线人妻在线中文字幕| 啦啦啦啦在线视频资源| 久久精品人妻少妇| 欧美色视频一区免费| 国产精品野战在线观看| 黑人高潮一二区| 老女人水多毛片| 国产精品久久久久久精品电影| 性欧美人与动物交配| 日韩欧美 国产精品| 免费观看的影片在线观看| 国产白丝娇喘喷水9色精品| 亚洲欧美日韩卡通动漫| 欧美人与善性xxx| 我要搜黄色片| 国产在线男女| 天堂√8在线中文| 蜜桃亚洲精品一区二区三区| 中文欧美无线码| 麻豆乱淫一区二区| 又粗又爽又猛毛片免费看| 国产黄色视频一区二区在线观看 | 在线a可以看的网站| 日日摸夜夜添夜夜爱| 久久久久久久久久成人| 亚洲七黄色美女视频| 日日摸夜夜添夜夜添av毛片| 成人特级av手机在线观看| 小蜜桃在线观看免费完整版高清| 少妇丰满av| 亚洲精品456在线播放app| 亚洲自拍偷在线| 国产美女午夜福利| 国产乱人视频| 久99久视频精品免费| 夫妻性生交免费视频一级片| 欧美激情在线99| 99久久九九国产精品国产免费| 偷拍熟女少妇极品色| 中文资源天堂在线| 九九热线精品视视频播放| 日韩欧美在线乱码| 激情 狠狠 欧美| 国产午夜精品一二区理论片| 中文字幕熟女人妻在线| 国产成人一区二区在线| 最近中文字幕高清免费大全6| 国产亚洲精品av在线| 国产视频首页在线观看| 欧美变态另类bdsm刘玥| 国产一区二区三区在线臀色熟女| 成人午夜精彩视频在线观看| 国产精品日韩av在线免费观看| 大又大粗又爽又黄少妇毛片口| 久久久久久久久久黄片| 欧美一级a爱片免费观看看| 国产成人精品婷婷| 免费人成在线观看视频色| 国产精品三级大全| 午夜免费男女啪啪视频观看| 有码 亚洲区| 免费一级毛片在线播放高清视频| 又粗又爽又猛毛片免费看| 夜夜夜夜夜久久久久| 91av网一区二区| 高清毛片免费看| 日日撸夜夜添| 免费黄网站久久成人精品| 日日撸夜夜添| 成人美女网站在线观看视频| 亚洲国产欧美在线一区| 国产精品电影一区二区三区| 国产精品,欧美在线| 亚洲图色成人| 日韩欧美三级三区| 亚洲av成人精品一区久久| 亚洲精品粉嫩美女一区| 在线国产一区二区在线| 又粗又硬又长又爽又黄的视频 | 亚洲第一电影网av| 午夜a级毛片| 男人狂女人下面高潮的视频| 国产不卡一卡二| 国产69精品久久久久777片| 国产三级中文精品| 人妻系列 视频|