• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Sawtooth-like oscillations and steady states caused by the m/n = 2/1 double tearing mode

    2022-04-15 05:13:24WeiZHANG張威ZhiweiMA馬志為HaoweiZHANG張豪偉andXinWANG王鑫
    Plasma Science and Technology 2022年3期
    關(guān)鍵詞:張威王鑫

    Wei ZHANG (張威), Zhiwei MA (馬志為), Haowei ZHANG (張豪偉)and Xin WANG (王鑫)

    Institute for Fusion Theory and Simulation, Department of Physics, Zhejiang University, Hangzhou 310027, People’s Republic of China

    Abstract The sawtooth-like oscillations resulting from the m /n =2 /1double tearing mode (DTM) are numerically investigated through the three-dimensional, toroidal, nonlinear resistive-MHD code(CLT).We find that the nonlinear evolution of the m /n =2 /1DTM can lead to sawtooth-like oscillations, which are similar to those driven by the kink mode.The perpendicular thermal conductivity and the external heating rate can significantly alter the behaviors of the DTM driven sawtooth-like oscillations.With a high perpendicular thermal conductivity, the system quickly evolves into a steady state with m /n =2 /1magnetic islands and helical folw.However,with a low perpendicular thermal conductivity, the system tends to exhibit sawtooth-like oscillations.With a suffciiently high or low heating rate, the system exhibits sawtooth-like oscillations, while with an intermediate heating rate, the system quickly evolves into a steady state.At the steady state, there exist the non-axisymmetric magnetic feild and strong radial folw, and both are with helicity of m /n =2 /1.Like the steady state with m /n =1 /1radial folw,which is beneficial for preventing the helium ash accumulation in the core,the steady state with m /n =2 /1radial folw might also be a good candidate for the advanced steady state operations in future fusion reactors.We also fnid that the behaviors of the sawtooth-like oscillations are almost independent of tokamak geometry,which implies that the steady state with saturated m /n =2 /1islands might exist in different tokamaks.

    Keywords: DTM, reversed magnetic shear, pressure crash, sawteeth, sawtooth, double tearing mode, steady state, advanced scenario

    1.Introduction

    Scenarios with internal transport barriers (ITBs) associated with reversed magnetic shear are designed as the advanced steady state operations in fusion reactors [1, 2].The reversed magnetic shear can suppress trapped electron modes [3] and ballooning modes and significantly improves energy confinement [3–6].However, severe magnetohydrodynamic (MHD)instabilities,often observed with the reversed magnetic shear in tokamaks, can significantly degrade the energy confinement.These MHD instabilities sometimes lead to periodical oscillations of the plasma pressure in the core region[7–11],which is similar to sawtooth oscillations(or sawteeth).Therefore,these periodic oscillations are named off-axis sawteeth and on-axis sawteeth [7], or continuous MHD activity [9].An off-axis sawtooth means that the pressure crash only takes place in the annular region, and the on-axis pressure keeps almost unchanged.While, during an on-axis sawtooth, the plasma pressure in the whole core region experiences fast and significant reduction.The mechanisms of the two kinds of pressure crashes are very similar, and both of them are related to the nonlinear evolution of them≥2 double tearing mode[12, 13].If the magnetic flux around the axis is not reconnected, it causes the off-axis sawtooth crash; and vice versa.

    In the present work, our studies focus on the on-axis sawteeth.To avoid confusion with the m/n = 1 kink-driven sawtooth[14–18],we name on-axis sawteeth as sawtooth-like behaviors or sawtooth-like oscillations in the present paper.Although the linear and nonlinear evolutions [19–26], the nonlinearly explosive growth of DTM [27–36], and DTM suppression [37–44] have been intensively investigated, the periodic oscillations associated with DTMs(i.e.sawtooth-like oscillations) are rarely numerically investigated.

    In the present work,we focus on the characteristics of the sawtooth-like oscillations, including the periods and the amplitudes of the oscillations, the typical pressure profiles,and flow patterns during the oscillations.We find that the behaviors of the sawtooth-like oscillations can be altered with different perpendicular thermal conductivities or heating rates.With a proper heating rate or high perpendicular thermal conductivity, the system quickly reaches a steady state with the non-axisymmetric magnetic field and strong radial flow, similar to the steady state driven by the kink instability[15].However, the dominant mode is DTM in the reversed magnetic shear configuration,while it is them/n=1 /1kink mode in a monotonous q configuration.The quasi-stationary state associated withm/n=2 /1DTM is also sawtooth-free and can avoid severe pressure crashes,which is similar to them/n=1 /1steady state.Meanwhile,the radial flow can help prevent helium ash accumulation in the core region and such a steady state might be necessary for advanced operations for future fusion reactors.

    2.Numerical model

    The resistive-MHD equations utilized in CLT [45, 46] are:

    whereρ,v, p,B,J andE are the plasma density, the fluid velocity, the plasma pressure, the magnetic field, the current density, and the electric feild, respectively.Γ =5 /3is the ratio of specifci heat.In CLT, we use the electric feild as an intermediate variable for the purpose of keeping?· B =0.The variables used in CLT are normalized as follows: x/a→x,t/tA→t,ρ/ρ00→ρ,p/(B020/μ0)→p,v/vA→v,J/(B00/μ0a)→J,B/B00→B,andE/(vAB00)→E,respectively.Whereais the minor radius,B00is the initial magnetic field at the magnetic axis,ρ00is the initial plasma density,is the Alfvén speed,andtA=a/vAis the Alfvén time.η,D,κ⊥,κ‖,H0anduare the resistivity,the diffusion coefficient, the perpendicular and parallel thermal conductivity, the heating rate, and the viscosity, respectively,which are normalized as follows:η/(μ0a2/tA)→η,D/ (a2/tA)→D,κ⊥/ (a2/tA)→κ⊥,κ∣∣/ (a2/tA)→κ∣∣,H0/ (a2/tA)→H0,andν/ (a2/tA)→ν.

    Since the present work investigates the sawtooth-like oscillations, external heating sources are needed for continuing oscillations.For simplicity, we assume that all external heating sources are included in the last term in equation(2).Such an external source always heats the plasma towards a peak distribution of the plasma,and the heating rate is proportional toH.0Meanwhile, in Ohm’s law(equation (5)), we add a source term (-ηJ0), which acts as a current driving source so that the magnetic flux surfaces and the current profile can restore after each crash.

    3.Simulation results

    3.1.The sawtooth-like oscillations

    In the present work,we utilize similar parameters from EAST,i.e.the minor radius0.45 m, the major radius 1.85 m, the elongation 1.9,the triangularity0.5,the toroidal field ~2.0 T,and the plasma current ~0.7 MA.Similar to that shown in[47],we choose a q profile with two q=2 resonant surfaces.The equilibrium pressure and safety factor profiles used in the present paper are shown in figure 1.The distance between the two q=2 resonant surfaces areΔr=0.35a.The equilibrium fields are derived from the NOVA code [48].The grids used in the simulations are256 ×32 ×256(R,φ,Z).The convergence studies have also been carried out with different time steps and spatial resolutions.

    Figure 1.Initial safety factor and pressure profiles used in the simulations.

    Figure 2.Evolution of the kinetic energy for different toroidal modes.It is evident that all modes experience periodic oscillations,and their periods are the same,T~4500t A.

    Figure 3.Evolution of the toroidal electric field Eφ mn.Since the modes with different mode numbers are located at different radii,we choose the maximum Eφ mnat each time step to indicate the amplitudes of the modes.The m /n =2 /1mode is the dominant one throughout the simulation.

    The normalized diffusion parameters used in this subsection are chosen to beη= 3 ×10-6,D= 1 ×10-4,κ⊥= 3 ×10-6,κ∣∣= 5 ×10-2,H0= 3 ×10-6,andν= 3 ×10-5.The typical plasma parameters in EAST reversed magnetic shear discharge (e.g.EAST #71326 [47])aren0= 3 ×1019m-3,B0=2.0 T,and the Alfvén time istA~ 2 ×10-7s.The diffusion parameters in MKS areη=1.9 ×10-5Ωm,D=500 m2s-1,κ⊥=15 m2s-1,H0=15 m2s-1,andν=150 m2s-1,which is about two orders of magnitude larger than the realistic parameters.Since real tokamak parameters far exceed the present capability of the CLT code, we choose much larger resistivity and diffusion parameters for reducing the period of the sawtooth-like oscillations.Therefore, we are able to numerically investigate such sawtooth-like behaviors with limited computer resources.

    Figure 4.Evolution of the on-axis plasma pressure.It is evident that the on-axis plasma pressure also experiences periodical oscillations with the period T~4500t A.

    The evolutions of the kinetic energy for different toroidal modes are shown in figure 2.It indicates that the kinetic energies for all toroidal modes experience periodic oscillations.The oscillation period of the kinetic energy is about 4500tA.We further decompose the n = 1 component with different poloidal mode numbers m.The evolution ofEφmnis shown in figure 3.The dominant mode is them/n=2 /1 mode, which confirms that them/n=2 /1mode drives the oscillations.Besides the kinetic energy, other characteristics such as the on-axis plasma pressure also exhibits periodical oscillations with the same periodT~4500tA,as shown in figure 4.The sawtooth period in the simulations is much shorter than that observed in the experiments(~100ms).The sawtooth period is mainly determined by the heating and the flux pump rates.However, such a long-time simulation far exceeds the capability of the CLT code.As a result, simulations are carried out with unrealistic parameters to partly explain experimental observations.As we can see, although the system has no q = 1 resonant surface, it still could experience periodical oscillations.The behavior is similar to sawteeth driven by them/n=1 /1resistive-kink mode, but the dominant mode is them/n=2 /1DTM.

    The Poincare plots of magnetic field lines during one sawtooth cycle are shown in fgiure 5, which confirms that them/n=2 /1DTM drives the sawtooth-like oscillations.Att=25054tA(fgiure 5(a)), largem/n=2 /1magnetic islands at the two q=2 resonant surfaces form,which is the precursor of the pressure crash.Note that the plasma in the inner islands is hot while it is cold in the outer islands.Just before the pressure crash (figures 5(b) and (c)), the inner islands are gradually expelled outward due to the inward expansion of the outer islands.Therefore, the hot plasma core finally squeezes out from the core region (figure 5(d)), which is one of the basic features of the on-axis pressure crash.After the severe pressure crashes, the external heating and magnetic pump in equations (2) and (5) become dominant, the system gradually recovers(figure 5(d)),and a new cycle begins(figures 5(e)and(f)).The flux surface cannot be wholly reconstructed to its equilibrium during the recovery phase, and nonnegligible 2/1 islands exist even at the beginning of one cycle.

    We have plotted the contour plots of the plasma pressure with the flow pattern at the same moments in figure 5.During the DTM precursor (figure 6(a)), the plasma pressure profile becomes flattened inside the islands, and the plasma flows generated by the reconnection process are weak.Just before the pressure crash (figures 6(b) and (c)), an elongated hot plasma region forms due to the inward expansion of the outer islands, as shown in figures 5(b) and (c).Meanwhile, strong radial flow is generated along this hot plasma region.The radial flow quickly transfers the hot plasma from the core to the outer region,leading to the on-axis pressure crash.Due to external heating, the plasma pressure at the axis starts to recover after the radial flow dissipates.

    Figure 5.Poincaré plots of the magnetic field lines during one sawtooth cycle.

    3.2.The sawtooth-like oscillations and the steady state

    As shown in our previous studies, the plasma parameters(such as the viscosity) can significantly influence the kinkdriven sawtooth’s behaviors [15].The system can even achieve a steady state with a saturated m /n =1 /1magnetic island with a low viscosity.At a steady state, the sawtoothfree system can avoid severe pressure crashes.As a result, it might be necessary for tokamak operations [49].Although a steady state with a m /n =1 /1magnetic island has been widely investigated, the steady state driven by the DTM has rarely been discussed in the literature.

    In this subsection, we keep the heating rate the same as the perpendicular diffusion rate(i.e.κ⊥=H0),and scan from κ⊥=H0= 1 ×10-6toκ⊥=H0= 3 ×10-5.As shown in figure 7, the behaviors of the sawtooth-like oscillations are significantly different—the amplitude of the pressure crash increases with increasingκ⊥=H0.Forκ⊥=H0= 1 ×10-6,the amplitude of the pressure crash is only about3%, while forκ⊥=H0=3×10-5,it is more than 20%.With alow heating rate, the system is weakly heated before the next crash.As a result,the amplitude of the pressure crash is small.

    Interestingly, the on-axis pressure quickly reaches a steady state withκ⊥=H0= 3 ×10-5as shown in figure 7,which can also be seen from the evolution of kinetic energy(figure 8).The system quickly reaches a steady state after several cycles, and all the modes have kept unchanged since then.As one can see,these behaviors are similar to the steady state with the m /n =1 /1magnetic island.However, as shown in figures 9 and 10, the system at the steady state has saturated m /n =2 /1magnetic islands and plasma flow,which is different from the steady state with the m /n =1 /1 magnetic island.

    Figure 6.Contour plots of the plasma pressure with the flow patterns at the same moments in figure 5.The vector length in each figure has been normalized by the maximum value in figure 6(c).

    Figure 7.Evolutions of the on-axis plasma pressure with differentκ⊥ =H0 .

    As discussed by many previous studies [50], the sawtooth-free steady state can avoid the pressure crash and prevent impurity accumulations in the core region since the radial flow carries both plasma and impurity from the core to the outer region.It implies that the steady state with the m /n =2 /1DTM might also be a proper candidate for the high confinement operation.

    Figure 8.Kinetic energy evolution of the different toroidal mode numbers with== 3 ×The system reaches a steady state aftert~

    3.3.The influence of the perpendicular thermal conductivity and the heating rate on the sawtooth-like oscillations

    As shown in section 3.2, the behaviors of the sawtooth-like oscillations are sensitive to the perpendicular thermal conductivity and the heating rate.However, it is still unclear which parameter is the dominant one because we assumeκ⊥=H0for simplification.In this subsection, we will investigate the influence of the two parameters separately.

    Figure 9.Poincaré plots of magnetic field lines at the steady state atφ =0 o,φ =90 o,andφ =180oin the EAST geometry.

    Figure 10.Flow patterns and pressure profiles at the steady state atφ =0 o,φ =90 o,andφ =180oin the EAST geometry.

    To study the influence of the perpendicular thermal conductivity,wescanfromκ⊥= 1 ×10-6toκ⊥= 3 ×10-5,and keepH0= 3 ×10-6.As shown in figure 11, the perpendicular thermal conductivity could largely alter the behaviors of the sawtooth-like oscillations.For example, the total kinetic energy quickly saturates, and the system reaches a steady state withκ⊥= 3 ×10-5,while,withκ⊥= 1 ×10-6,the system exhibits good periodicity.The evolutions of the on-axis plasma pressurefor the fixed heating rate (H0= 3 ×10-6) with different perpendicular thermal conductivities are shown in figure 12, clearly indicating that the system is more easily evolving into the steady state with a high perpendicular thermal conductivity.

    Figure11.Evolutions of the total kinetic energyfor the fixed heating rate (=3 ×) with different perpendicular thermal conductivities.

    Figure 12.Evolutions of the on-axis plasma pressure for the fixed heating rate with different perpendicular thermal conductivities.

    Figure 13.Evolutions of the total kinetic energy for the fixedperpendicular thermal conductivity with different heating rates.

    Similarly,to investigate the influence of the heating rate,we scan fromH0= 1 ×10-6toH0= 2 ×10-5with the fixed conductivityκ⊥= 3 ×10-6.The evolutions of the total kinetic energy for the fixed perpendicular thermal conductivitywith different heating rates are shown in figure 13.We find that the system can evolve to a steady state with a moderate heating rate.However, the system exhibits a sawtooth-like oscillation with a relatively high or low heating rate.Such tendency can also be seen from the evolutions of the on-axis plasma pressure, as shown in figure 14.

    3.4.The sawtooth-like oscillations in the ITER geometry

    In this subsection,we utilize similar parameters from ITER to investigate the sawtooth-like behaviors in ITER.The major radius R0=6.20 m,the minor radiusa =2.0 m,the elongation E=1.7, the triangularityσ =0.3.Since we only focus on the internal instabilities, the simulation boundary is chosen to be the last closed surface in the present work.The initial q and pressure profiles versus the minor radius are the same with figure 1, and other normalized parameters are also kept the same as in section 3.2.With the ITER geometry,the on-axis plasma pressure evolutions with differentκ⊥=H0are qualitatively the same as section 3.1.As shown in figure 15,the system exhibits sawtooth-like oscillations with κ⊥=H0= 3 ×10-6,while,it quickly reaches a steady state withκ⊥=H0= 3 ×10-5.Similarly, strong radial flow and large m /n =2 /1magnetic islands exist at the steady state(figures 16 and 17).

    Figure 14.Evolutions of the on-axis plasma pressure for the fixed perpendicular thermal conductivity with different heating rates.

    Figure 15.Evolutions of the on-axis plasma pressure with the differentin ITER geometry simulations.

    Figure 16.Poincaré plots of magnetic field lines at the steady state atφ =0 o,φ =90 o,andφ =180oin ITER geometry.

    Figure 17.Flow patterns and pressure profiles at the steady state atφ =0 o,φ =90 o,andφ =180oin ITER geometry.

    We have also carried out simulations to investigate the sawtooth-like oscillations with different tokamak geometries(the ASDEX-U and TFTR).Since the results are qualitatively the same,we do not present these similar results in the present work.These studies indicate that different tokamak geometries only weakly affect the behaviors of the sawtooth-like oscillations.

    4.Discussions and conclusions

    The sawtooth-like oscillations driven by the m /n =2 /1 DTM are numerically investigated through the three-dimensional,toroidal,nonlinear resistive-MHD code(CLT).Similar to the kink-driven sawtooth oscillations, both the kinetic energy and the plasma pressure oscillate with the same period.Them/n=2 /1DTM is dominant throughout the oscillation periods.

    We have systematically investigated the influence of the heating rateH0and the perpendicular thermal conductivity on the behaviors of the sawtooth-like oscillations.We find that,with a higher perpendicular thermal conductivity, the system is more easily evolved into a steady state; however, with a low perpendicular thermal conductivity, the system tends to exhibit sawtooth-like oscillations.We also find that the behaviors of the sawtooth-like oscillations can be altered by imposing different heating rates.With a relatively high or low heating rate, the system exhibits sawtooth-like oscillations,and the system quickly evolves into a steady state with an intermediate heating rate.

    The system has a non-axisymmetric magnetic field and a strong radial flow at the steady state, which is similar to the steady state observed in the kink-driven sawtooth oscillations[15].The helicity of the saturated magnetic islands and the plasma flow ism/n=2 /1for the DTM dominant steady state, while it ism/n=1 /1for the resistive kink driving steady state.As we know,the radial flow can help to expel the helium ash and thus prevent helium ash from accumulating in the hot core.Even more, there is no severe pressure crashes naturally for the sawtooth-free steady state.Similar to the steady state with them/n=1 /1magnetic island, the steady state with DTM is also beneficial to preventing helium ash accumulation in the core and avoiding severe crashes.It implies that such a scenario might be a good candidate for future fusion reactors.We have also carried out systematical simulations to investigate the sawtooth-like oscillations with different tokamak geometries.We find that the behaviors of the sawtooth-like oscillations and the steady state are qualitatively the same in different tokamak geometries.Therefore,we believe that the steady state with DTM might widely exist in present tokamaks.

    The diffusion parameters and heating sources used in the present work are not real tokamak parameters.Using real tokamak parameters far exceeds the capability of the CLT code.With much larger resistivity and diffusion parameters,we can shorten the periods of the sawtooth-like oscillations so that we can numerically investigate such sawtooth-like behaviors.Although such studies leave some uncertainty,they still can give insight into the mechanism for the sawtooth-like oscillations.We are now working with the EAST team to validate our simulation results presented in this paper.Detailed comparisons and discussions with EAST’s data will be presented in the near future.

    Acknowledgments

    This work is supported by National MCF Energy R&D Program of China (Nos.2019YFE03090500 and 2019YFE03030004),National Natural Science Foundation of China(Nos.12005185,11775188 and 11835010), Fundamental Research Fund for Chinese Central Universities(No.2021FZZX003-03-02).

    ORCID iDs

    猜你喜歡
    張威王鑫
    Molecular dynamics simulation of interaction between nanorod and phospholipid molecules bilayer
    Non-universal Fermi polaron in quasi two-dimensional quantum gases
    質(zhì)量守恒定律的應用
    Free-boundary plasma equilibria with toroidal plasma flows
    引力作用下兩質(zhì)點相遇時間問題的解法探討
    Mode structure symmetry breaking of reversed shear Alfvén eigenmodes and its impact on the generation of parallel velocity asymmetries in energetic particle distribution
    Fulde–Ferrell–Larkin–Ovchinnikov states in equally populated Fermi gases in a two-dimensional moving optical lattice?
    求解SEVM模型的人工蜂群算法
    當國歌響起
    北方音樂(2019年19期)2019-11-29 07:19:36
    搖到鬼
    91精品国产九色| 日韩中字成人| 精品一区二区三区视频在线| 色综合亚洲欧美另类图片| 看片在线看免费视频| 美女cb高潮喷水在线观看| 国产成人免费观看mmmm| 国产av码专区亚洲av| 99久久成人亚洲精品观看| 亚洲aⅴ乱码一区二区在线播放| 少妇丰满av| 免费无遮挡裸体视频| 国产精品久久电影中文字幕| 久久精品久久精品一区二区三区| 亚洲成人中文字幕在线播放| 国产精品国产高清国产av| 亚洲不卡免费看| 国产亚洲av嫩草精品影院| 久久精品影院6| 少妇人妻一区二区三区视频| 男女啪啪激烈高潮av片| 日本免费在线观看一区| a级一级毛片免费在线观看| 在线免费十八禁| 精品久久国产蜜桃| 国产精品无大码| 小说图片视频综合网站| 夜夜爽夜夜爽视频| 国产一级毛片在线| 国产亚洲av嫩草精品影院| 嫩草影院精品99| 亚洲国产欧美人成| 五月玫瑰六月丁香| 久久精品夜夜夜夜夜久久蜜豆| 亚洲第一区二区三区不卡| 亚洲,欧美,日韩| 午夜视频国产福利| 直男gayav资源| 国产91av在线免费观看| 国产一区二区在线av高清观看| 亚洲美女视频黄频| 97人妻精品一区二区三区麻豆| 免费看a级黄色片| 日韩一区二区视频免费看| 可以在线观看毛片的网站| 国产乱来视频区| 淫秽高清视频在线观看| av免费观看日本| 国产不卡一卡二| 中文欧美无线码| 纵有疾风起免费观看全集完整版 | 青春草亚洲视频在线观看| 久久人人爽人人爽人人片va| 国产一区二区亚洲精品在线观看| 97人妻精品一区二区三区麻豆| 高清午夜精品一区二区三区| 99热这里只有是精品50| 午夜激情欧美在线| 91久久精品国产一区二区成人| 久久久久久久久久黄片| 日韩一本色道免费dvd| 人妻制服诱惑在线中文字幕| 亚洲人成网站高清观看| 一卡2卡三卡四卡精品乱码亚洲| 99热这里只有是精品在线观看| 亚洲成人久久爱视频| 亚洲一区高清亚洲精品| 内地一区二区视频在线| 日韩亚洲欧美综合| 成人特级av手机在线观看| 3wmmmm亚洲av在线观看| 日本黄色视频三级网站网址| 亚洲精华国产精华液的使用体验| 国产久久久一区二区三区| 国产精品久久久久久精品电影小说 | 免费黄色在线免费观看| 毛片一级片免费看久久久久| 国产男人的电影天堂91| 村上凉子中文字幕在线| 三级男女做爰猛烈吃奶摸视频| 小蜜桃在线观看免费完整版高清| 男女那种视频在线观看| 亚洲精品一区蜜桃| 午夜久久久久精精品| 中文字幕免费在线视频6| 老司机影院成人| 毛片女人毛片| 日韩 亚洲 欧美在线| 午夜福利在线观看吧| 麻豆国产97在线/欧美| 久久精品久久久久久噜噜老黄 | 中国国产av一级| 亚洲av男天堂| 欧美日本亚洲视频在线播放| 久久久久久九九精品二区国产| 伦理电影大哥的女人| 国产精品国产高清国产av| 免费无遮挡裸体视频| 国产毛片a区久久久久| 国产免费男女视频| 免费黄网站久久成人精品| 非洲黑人性xxxx精品又粗又长| 99久久人妻综合| 亚洲丝袜综合中文字幕| 一卡2卡三卡四卡精品乱码亚洲| 亚洲精品国产av成人精品| av国产免费在线观看| 亚洲人成网站在线观看播放| 免费看av在线观看网站| 99在线人妻在线中文字幕| 国产乱人视频| 亚洲精华国产精华液的使用体验| 人妻系列 视频| 日本猛色少妇xxxxx猛交久久| 亚洲成人av在线免费| 99久久人妻综合| 少妇猛男粗大的猛烈进出视频 | 国产午夜精品论理片| 国产在视频线在精品| 精品人妻一区二区三区麻豆| 级片在线观看| 可以在线观看毛片的网站| 亚洲av成人精品一区久久| 蜜桃久久精品国产亚洲av| 成年免费大片在线观看| 国产精品久久久久久精品电影小说 | 岛国毛片在线播放| 国产亚洲精品av在线| 精品国内亚洲2022精品成人| 亚洲美女搞黄在线观看| 国产69精品久久久久777片| 亚洲国产精品成人久久小说| 一区二区三区乱码不卡18| 最近手机中文字幕大全| 岛国在线免费视频观看| 综合色丁香网| 精品久久久久久久久av| av在线天堂中文字幕| 国产精品久久视频播放| 久久久久久大精品| 一级二级三级毛片免费看| 亚洲最大成人av| 久久精品久久精品一区二区三区| 日韩强制内射视频| 国产精品一区二区三区四区久久| 九九久久精品国产亚洲av麻豆| 深夜a级毛片| 国产精品国产三级专区第一集| 日本免费在线观看一区| .国产精品久久| 亚洲欧美日韩东京热| 麻豆成人av视频| 亚洲欧美成人精品一区二区| 99热这里只有是精品50| 精品久久久久久久久久久久久| 亚洲av电影不卡..在线观看| 干丝袜人妻中文字幕| 少妇熟女欧美另类| 麻豆乱淫一区二区| 久久精品夜色国产| 日韩 亚洲 欧美在线| 熟女人妻精品中文字幕| 日韩大片免费观看网站 | 最近视频中文字幕2019在线8| 亚洲综合色惰| 久久久久精品久久久久真实原创| 成人三级黄色视频| 五月伊人婷婷丁香| 成人三级黄色视频| 3wmmmm亚洲av在线观看| 久久亚洲精品不卡| 99热网站在线观看| 长腿黑丝高跟| 深爱激情五月婷婷| 最后的刺客免费高清国语| 狂野欧美白嫩少妇大欣赏| 欧美高清性xxxxhd video| 亚洲人与动物交配视频| 人妻系列 视频| av在线老鸭窝| 国产探花在线观看一区二区| 久久久欧美国产精品| 免费无遮挡裸体视频| 亚洲精品aⅴ在线观看| av免费观看日本| 爱豆传媒免费全集在线观看| 免费不卡的大黄色大毛片视频在线观看 | 99热这里只有是精品在线观看| 日韩一区二区三区影片| 三级毛片av免费| 最近的中文字幕免费完整| 热99re8久久精品国产| 国产麻豆成人av免费视频| 国产乱来视频区| 亚洲国产精品久久男人天堂| 欧美潮喷喷水| 99久久成人亚洲精品观看| 午夜激情福利司机影院| 日韩,欧美,国产一区二区三区 | 色网站视频免费| 蜜臀久久99精品久久宅男| 热99在线观看视频| 国产一区亚洲一区在线观看| 91久久精品国产一区二区三区| 国语对白做爰xxxⅹ性视频网站| 午夜福利视频1000在线观看| 国产美女午夜福利| 久久久久久久久久久丰满| 国产成人a区在线观看| 免费观看精品视频网站| 中文资源天堂在线| 九九在线视频观看精品| 日韩欧美精品v在线| 我的女老师完整版在线观看| 久久久久久久久大av| 亚洲av.av天堂| 国产亚洲91精品色在线| 色综合站精品国产| 精品午夜福利在线看| 少妇的逼好多水| 激情 狠狠 欧美| 一级毛片久久久久久久久女| 亚洲四区av| 啦啦啦啦在线视频资源| 91精品国产九色| 国产欧美日韩精品一区二区| 黄色配什么色好看| 国产极品精品免费视频能看的| 美女大奶头视频| 2021天堂中文幕一二区在线观| 国产成人91sexporn| av在线天堂中文字幕| 欧美色视频一区免费| 欧美成人一区二区免费高清观看| 欧美xxxx黑人xx丫x性爽| 国产精品熟女久久久久浪| 51国产日韩欧美| 久久久国产成人精品二区| 亚洲图色成人| 级片在线观看| 国产欧美日韩精品一区二区| 国产午夜精品论理片| 三级经典国产精品| 天堂中文最新版在线下载 | 91av网一区二区| 亚洲欧美成人综合另类久久久 | 成人亚洲精品av一区二区| 亚洲人成网站高清观看| 丝袜美腿在线中文| 日本欧美国产在线视频| 日韩一区二区三区影片| 免费黄网站久久成人精品| 国产免费又黄又爽又色| 欧美日本视频| 看十八女毛片水多多多| 天天躁夜夜躁狠狠久久av| 天堂中文最新版在线下载 | 久久人人爽人人爽人人片va| 国产黄色小视频在线观看| 午夜老司机福利剧场| 国产老妇伦熟女老妇高清| 日本黄色片子视频| 国产在线一区二区三区精 | 人人妻人人澡人人爽人人夜夜 | 久久久精品大字幕| 欧美人与善性xxx| 国产精品久久久久久久电影| 亚洲乱码一区二区免费版| 国产精品久久久久久精品电影| 校园人妻丝袜中文字幕| 国产黄色视频一区二区在线观看 | 深夜a级毛片| 亚洲精品色激情综合| 综合色丁香网| 欧美xxxx性猛交bbbb| 天堂影院成人在线观看| 国产激情偷乱视频一区二区| 人人妻人人澡人人爽人人夜夜 | 三级毛片av免费| 亚洲天堂国产精品一区在线| 三级经典国产精品| av播播在线观看一区| www.色视频.com| 国产精品日韩av在线免费观看| 欧美zozozo另类| 精品人妻熟女av久视频| 久久久久久久国产电影| 亚洲av成人精品一区久久| 高清视频免费观看一区二区 | 国产伦精品一区二区三区四那| 精品国产一区二区三区久久久樱花 | 亚洲伊人久久精品综合 | 国产色婷婷99| 成人综合一区亚洲| 真实男女啪啪啪动态图| 国产成人一区二区在线| 人妻制服诱惑在线中文字幕| 欧美激情国产日韩精品一区| 伊人久久精品亚洲午夜| 色综合色国产| 91aial.com中文字幕在线观看| 色综合亚洲欧美另类图片| 99国产精品一区二区蜜桃av| 色视频www国产| 一级毛片aaaaaa免费看小| 国产精品久久久久久久电影| 1000部很黄的大片| www.色视频.com| 欧美xxxx黑人xx丫x性爽| 亚洲欧美精品综合久久99| 啦啦啦观看免费观看视频高清| 国产高清不卡午夜福利| 少妇丰满av| a级毛片免费高清观看在线播放| 美女内射精品一级片tv| 亚洲欧美精品综合久久99| 亚洲欧美成人综合另类久久久 | 国产人妻一区二区三区在| 国产精品久久电影中文字幕| 欧美变态另类bdsm刘玥| 插逼视频在线观看| av播播在线观看一区| 亚洲av成人av| 女人十人毛片免费观看3o分钟| 狂野欧美白嫩少妇大欣赏| 国产大屁股一区二区在线视频| 日韩国内少妇激情av| 欧美精品一区二区大全| 精品久久久久久电影网 | 啦啦啦观看免费观看视频高清| 伦理电影大哥的女人| 午夜福利在线在线| av又黄又爽大尺度在线免费看 | 亚洲人与动物交配视频| 老女人水多毛片| 伦精品一区二区三区| 亚洲成人精品中文字幕电影| 淫秽高清视频在线观看| 亚洲va在线va天堂va国产| 成年av动漫网址| 啦啦啦观看免费观看视频高清| 国产成人精品久久久久久| 欧美精品国产亚洲| 成人av在线播放网站| 中文字幕免费在线视频6| 伦精品一区二区三区| 国产精品国产三级专区第一集| 国产精品爽爽va在线观看网站| 国产精品熟女久久久久浪| 国产单亲对白刺激| 中文字幕av在线有码专区| 国产免费福利视频在线观看| 免费播放大片免费观看视频在线观看 | 日韩欧美 国产精品| 日本wwww免费看| av在线播放精品| 建设人人有责人人尽责人人享有的 | 国产极品精品免费视频能看的| 精品久久久久久久久亚洲| 国产视频首页在线观看| 好男人在线观看高清免费视频| 99热这里只有精品一区| 色5月婷婷丁香| 日日啪夜夜撸| 变态另类丝袜制服| 国产亚洲av嫩草精品影院| 欧美成人午夜免费资源| 免费看光身美女| 91aial.com中文字幕在线观看| 狂野欧美激情性xxxx在线观看| 欧美色视频一区免费| 久久久a久久爽久久v久久| 老司机影院毛片| 99久久精品热视频| 美女内射精品一级片tv| 亚洲在线观看片| 午夜福利网站1000一区二区三区| 成人漫画全彩无遮挡| 性色avwww在线观看| 国产乱来视频区| 成人亚洲精品av一区二区| 啦啦啦观看免费观看视频高清| 色5月婷婷丁香| 国产极品精品免费视频能看的| 蜜臀久久99精品久久宅男| 中文欧美无线码| 午夜a级毛片| 亚洲一级一片aⅴ在线观看| 久久久久久久午夜电影| 日韩成人av中文字幕在线观看| 性插视频无遮挡在线免费观看| 午夜精品在线福利| 国产乱来视频区| 色尼玛亚洲综合影院| 夜夜爽夜夜爽视频| 18+在线观看网站| 人人妻人人澡人人爽人人夜夜 | 国产乱人视频| 国产精品国产三级专区第一集| 嫩草影院精品99| 免费看日本二区| 高清午夜精品一区二区三区| 久久精品综合一区二区三区| 免费黄网站久久成人精品| 精品人妻偷拍中文字幕| 美女内射精品一级片tv| 免费av不卡在线播放| videossex国产| 色网站视频免费| 好男人视频免费观看在线| 国产高清不卡午夜福利| 午夜精品在线福利| 两个人的视频大全免费| 久久人人爽人人片av| 国产三级在线视频| 亚洲av电影不卡..在线观看| 亚洲综合色惰| 青春草视频在线免费观看| 国产成人精品婷婷| 波多野结衣巨乳人妻| 我要看日韩黄色一级片| 国内精品一区二区在线观看| 一边摸一边抽搐一进一小说| 我的老师免费观看完整版| 水蜜桃什么品种好| av播播在线观看一区| 国产v大片淫在线免费观看| 少妇丰满av| 色尼玛亚洲综合影院| 国产精品,欧美在线| 久久久精品大字幕| 欧美性猛交黑人性爽| 尾随美女入室| 欧美zozozo另类| 国产高清不卡午夜福利| 欧美色视频一区免费| 国产乱人视频| 一级av片app| 国产不卡一卡二| 国产乱人偷精品视频| 国产欧美另类精品又又久久亚洲欧美| 免费一级毛片在线播放高清视频| 久久综合国产亚洲精品| 久久久久久久久久久免费av| 大香蕉97超碰在线| 久久精品人妻少妇| 成人二区视频| 美女国产视频在线观看| 国产淫语在线视频| 深爱激情五月婷婷| 一个人看的www免费观看视频| 日韩一本色道免费dvd| 最近2019中文字幕mv第一页| 深夜a级毛片| 内地一区二区视频在线| 国产高清视频在线观看网站| 免费av观看视频| 日本爱情动作片www.在线观看| 大香蕉久久网| 日本一二三区视频观看| 男女啪啪激烈高潮av片| 国产一级毛片在线| 高清日韩中文字幕在线| 一级毛片aaaaaa免费看小| 听说在线观看完整版免费高清| 久久精品国产亚洲av涩爱| 亚洲国产精品成人综合色| 欧美区成人在线视频| 麻豆成人午夜福利视频| 国产午夜精品久久久久久一区二区三区| 99久国产av精品| 美女国产视频在线观看| 国产激情偷乱视频一区二区| 久久精品久久精品一区二区三区| 在线天堂最新版资源| 简卡轻食公司| 亚洲成人精品中文字幕电影| 99久久成人亚洲精品观看| 国产亚洲91精品色在线| 亚洲性久久影院| 天天躁日日操中文字幕| 永久免费av网站大全| 韩国高清视频一区二区三区| 久久久成人免费电影| 天堂网av新在线| 中国国产av一级| 岛国毛片在线播放| 国产精品熟女久久久久浪| 亚洲精品久久久久久婷婷小说 | 欧美一区二区精品小视频在线| 久久99热6这里只有精品| 成人国产麻豆网| 亚洲在线观看片| 我要看日韩黄色一级片| 国产精品1区2区在线观看.| 1024手机看黄色片| 亚洲乱码一区二区免费版| 国产精品永久免费网站| 国产一区二区亚洲精品在线观看| 亚洲最大成人中文| 亚洲四区av| 2022亚洲国产成人精品| 日本三级黄在线观看| 国产国拍精品亚洲av在线观看| 中文资源天堂在线| videossex国产| 22中文网久久字幕| 欧美成人免费av一区二区三区| 久久久久久久久久黄片| av在线亚洲专区| 国模一区二区三区四区视频| 日韩一本色道免费dvd| 欧美成人免费av一区二区三区| 亚洲精品乱久久久久久| 亚洲无线观看免费| 最后的刺客免费高清国语| 亚洲精品乱码久久久久久按摩| 欧美极品一区二区三区四区| 国产男人的电影天堂91| 不卡视频在线观看欧美| 国产亚洲av嫩草精品影院| 国产亚洲5aaaaa淫片| 国产精品永久免费网站| 男女国产视频网站| h日本视频在线播放| 国产淫片久久久久久久久| 日本色播在线视频| 国产成人a区在线观看| 深爱激情五月婷婷| 全区人妻精品视频| 美女高潮的动态| 国产成人免费观看mmmm| 日韩成人伦理影院| 插阴视频在线观看视频| 久久99精品国语久久久| 亚洲国产欧美在线一区| 伦精品一区二区三区| 男插女下体视频免费在线播放| 亚洲真实伦在线观看| 国产久久久一区二区三区| 99热网站在线观看| 一级爰片在线观看| 色哟哟·www| 日韩欧美在线乱码| 日本免费a在线| 人妻制服诱惑在线中文字幕| 毛片一级片免费看久久久久| 国产高清不卡午夜福利| 亚洲最大成人手机在线| 日本免费一区二区三区高清不卡| 久久人人爽人人片av| 黄片无遮挡物在线观看| 国产v大片淫在线免费观看| 免费播放大片免费观看视频在线观看 | 桃色一区二区三区在线观看| 日本色播在线视频| 久久精品国产亚洲av天美| 色吧在线观看| 大又大粗又爽又黄少妇毛片口| 国产精品三级大全| 色5月婷婷丁香| 久久6这里有精品| 国产高清不卡午夜福利| 在现免费观看毛片| 日韩精品青青久久久久久| 欧美3d第一页| 国内揄拍国产精品人妻在线| 丝袜喷水一区| 国产一区二区亚洲精品在线观看| 亚洲无线观看免费| 一个人观看的视频www高清免费观看| 精品国产一区二区三区久久久樱花 | 久久鲁丝午夜福利片| 久久国内精品自在自线图片| 亚洲成人中文字幕在线播放| 国产欧美日韩精品一区二区| 好男人视频免费观看在线| 国产亚洲5aaaaa淫片| 亚洲人成网站高清观看| 岛国在线免费视频观看| 久久精品人妻少妇| 中文在线观看免费www的网站| 免费观看人在逋| 国产女主播在线喷水免费视频网站 | 精品人妻一区二区三区麻豆| 偷拍熟女少妇极品色| 国产精品一区二区性色av| 99热这里只有精品一区| 国产高清国产精品国产三级 | 久久精品国产亚洲网站| 高清日韩中文字幕在线| 日韩国内少妇激情av| 精品人妻熟女av久视频| 美女国产视频在线观看| 内射极品少妇av片p| 国产真实乱freesex| 哪个播放器可以免费观看大片| 国产精品野战在线观看| 一个人观看的视频www高清免费观看| 神马国产精品三级电影在线观看| 又黄又爽又刺激的免费视频.| 嫩草影院新地址| 久久精品人妻少妇| 久久人妻av系列| 欧美激情在线99| 亚洲精品久久久久久婷婷小说 | 日本wwww免费看| 国产成人一区二区在线| 成人av在线播放网站| 亚洲综合色惰| 亚洲最大成人中文| 一级黄片播放器| 中文精品一卡2卡3卡4更新| 国产精品1区2区在线观看.| 干丝袜人妻中文字幕|