• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Design and preliminary test of a 105/140 GHz dual-frequency MW-level gyrotron

    2022-04-15 05:13:50LinlinHU胡林林DiminSUN孫迪敏QiliHUANG黃麒力TingtingZHUO卓婷婷GuowuMA馬國武YiJIANG蔣藝ShenggangGONG龔勝剛ZaojinZENG曾造金ZixingGUO郭子星ChaohaiDU杜朝海FanhongLI李繁宏HongbinCHEN陳洪斌FanbaoMENG孟凡寶andHonggeMA馬弘舸
    Plasma Science and Technology 2022年3期

    Linlin HU (胡林林) , Dimin SUN (孫迪敏), Qili HUANG (黃麒力),Tingting ZHUO (卓婷婷), Guowu MA (馬國武), Yi JIANG (蔣藝),Shenggang GONG (龔勝剛), Zaojin ZENG (曾造金), Zixing GUO (郭子星),Chaohai DU (杜朝海), Fanhong LI (李繁宏), Hongbin CHEN (陳洪斌),Fanbao MENG (孟凡寶) and Hongge MA (馬弘舸)

    1 Institute of Applied Electronics,Academy of Engineering Physics,Mianyang 621900,People’s Republic of China

    2 Peking University, Beijing 100871, People’s Republic of China

    Abstract A dual-frequency(105/140 GHz)MW-level continuous-wave gyrotron was developed for fusion application at Institute of Applied Electronics,China Academy of Engineering Physics.This gyrotron employs a cylindrical cavity working in the TE18,7 mode at 105 GHz and the TE24,9 mode at 140 GHz.A triode magnetron injection gun and a built-in quasi-optical mode converter were designed to operate at these two frequencies.For the proof-test phase,the gyrotron was equipped with a single-disk boron nitride window to achieve radio frequency output with a power of~500 kW for a short-pulse duration.In the preliminary short-pulse proof-test in the first quarter of 2021,the dual-frequency gyrotron achieved output powers of 300 kW at 105 GHz and 540 kW at 140 GHz,respectively,under 5 Hz 1 ms continuous pulse-burst operations.Power upgrade and pulse-width extension were hampered by the limitation of the high-voltage power supply and output window.This gyrotron design was preliminarily validated.

    Keywords: gyrotron, megawatt, plasma heating, fusion application, dual-frequency

    1.Introduction

    Gyrotrons with MW-level power are indispensable sources for electron cyclotron heating and current drive (ECH&CD) in fusion devices (e.g.ITER, EAST, JT-60SA, DIII-D, W7-X,LHD and ASDEX-U) [1–3].Dual/multi-frequency or stepwise-frequency MW gyrotrons can enhance flexibility and performance for ECH&CD systems by providing a larger accessible radial range, a possible replacement of steerable antennas, and higher CD efficiency for stabilization of neoclassical tearing modes [2,4].Several MW-level gyrotrons of this type have been applied in fusion devices for two decades[5–8], e.g.the 105/140 GHz dual-frequency gyrotron of GYCOM,the 104/137/170/203 GHz four-frequency gyrotron of QST, and the stepwise-frequency (111.6–165.7 GHz)gyrotron of KIT.Institute of Applied Electronics, China Academy of Engineering Physics (IAE, CAEP) has recently developed some gyrotrons for fusion devices including a 28 GHz/50 kW/30 s gyrotron and a 28 GHz/400 kW/5 s gyrotron [9, 10].A 105/140 GHz dual-frequency MW-level continuous-wave(CW)gyrotron is being developed to meet the demand for domestic fusion devices for 105 or 140 GHz gyrotrons.At the end of 2020, a prototype gyrotron was fabricated.In the first quarter of 2021,a preliminary proof-test was conducted under short-pulse conditions.Gaussian beams with powers of 300 kW at 105 GHz and 540 kW at 140 GHz were achieved.

    In this paper, the design of the main components of the gyrotron is introduced in section 2.Test results are presented in section 3, and conclusions are provided in section 4.

    2.Design of the 105/140 GHz gyrotron

    The main design parameters of the 105/140 GHz MW gyrotron are listed in table 1 and its diagram is shown in figure 1.The design goal for the tube is to produce an output power of 1 MW CW at two frequencies of 105 and 140 GHz.Thus,the key elements, i.e.resonant cavity, magnetron injection gun(MIG), quasi-optical (QO) mode converter and output window, must be able to work at both frequency points.Their design details are described below.

    Table 1.Design parameters of the 105/140 GHz MW gyrotron.

    Table 2.Design parameters of the cavity.

    2.1.High-frequency resonant cavity

    The following descriptions are major considerations for the candidate modes of MW-level gyrotrons [11]: (1) maximum wall loss power density below 2.0 kW cm-2;(2)quality factor Q of the cavity at ~1100;(3)for the dual-frequency gyrotron,the two working modes should have similarity in caustic radius and beam-wave coupling radius.

    After comprehensive comparison,the matched mode pair TE18,7 and TE24,9 was selected to work at 105 and 140 GHz, respectively.The calculated parameters of the cavity are listed in table 2.The cavity consists of three classical sections, namely, a cut-off taper, a straight interaction midsection(interaction cavity),and an output taper.Structural optimization and beam-wave interaction analysis were iteratively performed using an in-house calculation code based on the nonlinear method[12].Figure 2 shows the dependences of the starting currents of the neighboring modes on the magnetic field for the two working modes under beam voltage,beam radius,and velocity ratio of-75 kV,8.678 mm and 1.2,respectively.Dense modes with similar starting current and magnetic field B were found near the working modes and classified as potential competition.

    Figure 1.Design diagram of the gyrotron and superconducting magnet.

    Figure 2.Calculated starting currents of TE18,7 mode TE24,9 and their neighboring modes.

    Figure 3.Evolution of the produced power of the working mode and its competing modes calculated by the multi-mode time-domain method.

    The most possible competitions for the working modes are those with similar eigenvalues and coupling factors.On the basis of starting current analysis, these modes were selected to evaluate their influence on the working mode by using multi-mode time-domain calculation [12].Figure 3 illustrates the simulated evolutions of radio frequency (RF)power and beam voltage over time under the magnetic field of B=4.14 T and B=5.46 T as follows.(1) At the initial rising of the beam voltage,several competing modes are excited,and the powers of these modes alternately fluctuate due to inherent mode competition.At this moment,the power of the working mode is growing slowly.(2)When the beam voltage continues to increase and reaches a stable condition(-75 kV), the power of the working mode increases rapidly,eventually becomes dominant, and reaches a steady output.The competing modes are suppressed, and their powers drop rapidly and eventually can be ignored.Hereto, the working mode wins the mode competition.

    2.2.Magnetron injection gun

    For successful application at the two frequencies, the MIG was designed to be a triode-type MIG consisting of a cathode,a modulation anode, and an anode.The modulation anode was employed to adjust a matched electrode voltages difference to keep the velocity ratio within 1.1–1.3 and velocity spread below 5%.Owing to the interaction cavity calculation,the design parameters of triode MIG were set as ~40 A emission current, ~-75 kV beam voltage, and 8.687 mm beam radius.The electrode structure, beam trajectory and magnetic field profile were iteratively optimized via PIC simulation code.Finally, the central radius and width of the emitter ring were set as 47.7 mm and 6 mm,respectively.The emission current was 42.4 A,which corresponded to a current density of 2.36 A cm-2.Owing to the voltage depression of 7.3 kV, the total beam voltage was -81 kV, and the kinetic energy of the beam at the cavity inlet was 73.7 keV.

    Figure 4 shows the MIG structure and beam trajectories,and figure 5 displays the changes in the velocity ratio and axial velocity spread of the cyclotron beam as a function of the potential difference of the cathode and modulation anode(Vck).For the low working frequency of 105 GHz(B=4.1 T)or high working frequency of 140 GHz (B=5.5 T), an optimal range of Vckwas obtained to satisfy velocity ratio~1.2 and axial velocity spread ~3%.

    Figure 4.Triode MIG structure and beam trajectory.

    Figure 5.Calculated dependence of velocity ratio and axial velocity spread on the potential difference between the cathode and modulated anode.

    Figure 6.Structure of the quasi-optical converter.

    Figure 7.Calculated contour of the relative electric field (dB) at the cross-section of the quasi-optical converter.

    Figure 8.Calculated contour of the electric field distribution at the window surface.

    Figure 9.Calculated reflection and transmission factors of the window versus frequency.

    Figure 10.Photo of the 105/140 GHz MW prototype gyrotron.

    Figure 11.Test scene of the dual-frequency MW gyrotron.

    Figure 12.Thermal patterns of RF beams at the window aperture at 105 GHz (left) and at 140 GHz (right) obtained by 30 ms short pulses.

    Figure 13.Oscillograph traces of the electrode voltages,microwave signals or beam current derived from(a)a single pulse operation and(b)a continuous 1 ms 5 Hz pulse burst operation.

    Figure 14.Transient power versus time obtained by the water load.

    2.3.QO mode converter

    A built-in QO mode converter was used to separate the spent electron beam from the RF beam and achieve the horizontal output of the latter.This mode converter was designed to operate at the two frequencies by ensuring similar parameters including helical cut length, Brillouin length, Brillouin width and Brillouin angle of the two modes (table 3).The waist radius of the Gaussian beam was 25 mm.

    The QO mode converter consisted of a launcher and three reflection mirrors, as shown in figure 6.The launcher was connected to the end of the output taper of the cavity with an identical radius.The taper between cavity and launcher was a nonlinear taper.The first mirror was a quasi-parabolic reflector, and the second and third reflectors were used for phase correction.The launcher adopted the pre-bunching launcher scheme to improve the conversion efficiency of the RF beam[13].The surface irregular perturbation structure on the launcher wall was calculated and optimized by solving the scalar diffraction integral equation combined with the Katsenelenbaum–Semenov iterative optimization algorithm[14, 15].The complete mode converter was modeled and simulated by CST microwave studio.The electric field contours at the cross-section of the QO converter at 105/140 GHz are shown in figure 7.The calculated overall conversion efficiency and the scalar Gaussian mode content were 97.3% and 98% at 105 GHz, respectively, and 99.1% and 99.7% at 140 GHz, respectively.The distributions of the power density on the window surface are shown in figure 8.

    Table 3.Transmission parameters of the QO converter transmission.

    2.4.Window

    For long-pulse/CW MW-level gyrotrons, the window must adopt CVD-diamond material[11,16].However,at the initial proof-test phase, a single-disk boron nitride (BN) window was planned and designed for 500 kW short-pulse operations.Compared with other materials except for CVD diamond,hexagonal pyrolytic BN material presents the advantages of higher thermal conductivity, lower thermal expansion coefficient, excellent high-temperature stability, good thermal shock resistance and good flexural strength [17].Tests of MW-level gyrotrons with BN windows revealed that singledisk BN windows can withstand a power capability of 930 kW for 2 s at 110 GHz and 960 kW for 1.2 s at 140 GHz under the quasi-uniform distribution of RF power [18].During the test of the 110 GHz BN-window gyrotron for DIII-D tokamak, the temperature increase of the BN disk was up to 930°C as observed by the infrared monitoring at the end of an 800 kW/2 s operation [19].

    The parameters of the BN window were 90 mm diameter and 1.93 mm thickness.The thickness of the BN disk was just three half-wavelengths at 105 GHz and four half-wavelengths at 140 GHz to ensure that the window can work at the two frequencies.The calculated reflection coefficient and transmission coefficient as a function of frequency are shown in figure 9.The curves were derived using the dependence of loss tangent on frequency in[17],where tanδ=78×10-5at 105 GHz and tanδ=105×10-5at 140 GHz.For an output RF power of 500 kW, the predicted absorbed power of the window disk was 4.88 kW at 105 GHz and 8.7 kW at 140 GHz.The output RF beam was designed to be a fundamental Gaussian beam with a waist radius of 25 mm.Under the assumption that the thermal breakdown temperature of BN is 1000 °C from previous rest results [18], the thermomechanical analysis code Workbench predicted that the BNwindow gyrotron can operate for up to ~1.3 s at 105 GHz and~0.7 s at 140 GHz.

    For the next phase,the BN window will be substituted by a CVD-diamond window for 1 MW, long-pulse or CW operation.

    2.5.Other components

    The beam tunnel of the gyrotron has an arbitrary non-axisymmetric conical metallic structure to suppress the parasitic oscillations[2].A single-stage depressed collector(SDC)was employed to improve the total efficiency.A longitudinal-field sweeping coil was installed outside of the collector jacket.A programmable current supply was planned to provide a periodic programmable current to the coil to ensure the timeaveraged heat dissipation from the spent electron beam at the collector below 0.5 kW cm-2[11].A cryogen-free superconducting magnet (SCM) with a 7.0 T magnetic field and a 220 mm diameter room temperature bore hole was accordingly developed The ceramic insulator was placed above the SCM.

    3.Test results

    The prototype gyrotron of the first version (figure 10) was fabricated at the end of 2020.The length and weight of the tube were 2.53 m and 300 kg, respectively.Proof-test was performed in the first quarter of 2021, and the test stand is shown in figure 11.The power supply system included a negative high voltage supply for the cathode, a positive supply for the anode and a filament supply.Owing to the lack of an extra source applied for the modulation anode, the modulation anode was grounded when conditioning at 105 GHz and was applied with voltage through a resistor divider connected with the anode supply when conditioning at 140 GHz.

    Operating points at the two frequencies were first determined through single short-pulse conditioning.Images of the outgoing RF beam at the window aperture at 105 and 140 GHz were obtained on thermal paper during a 20 ms pulse-length operation.The thermal patterns in figure 12 qualitatively illustrate the Gaussian-like distribution, thus confirming the oscillations of the designed working mode at the two frequencies.The oscillation frequencies tested by the mixer method were 105.06 and 139.36 GHz.A typical oscilloscope trace of the electrode voltages and microwave signals of 1 ms single pulse operation is shown in figure 13(a).

    With aging, the tube can steadily work at pulse-burst mode with a low duty cycle.The RF power of the gyrotron was measured by a dummy water-load under a continuous pulse burst operation mode.After the operation at 5 Hz repetitive rate, 1 ms pulse-width, and 2000 pulse number(i.e.duty cycle of 5%, 400 s), the power of the RF beam was 300 kW at 105 GHz and 540 kW at 140 GHz.The corresponding operation parameters are listed in table 4.The repetitive-rate traces of the electrode voltages and beam current are shown in figure 13(b).The transient power curves measured by the water load are displayed in figure 14.

    Given the limitation of the cathode high-voltage power supply,the cathode voltage could not be increased further,the beam current could not be above 30 A, and pulse extension could cause instability.Thus, RF power upgrade and pulsewidth extension were hampered, and the preliminary prooftest of the gyrotron was ended.The instability was mainly manifested by the current surge at the modulation anode when the pulse width was extended.One probable cause is the plasma discharging due to the poor vacuum level at the MIG region.

    Analysis of test results provides the following summary.(1) Owing to the limitation of high-voltage supply,the operating point was not optimized compared with the design parameters.Hence, the output RF power has not reached 1 MW full power.(2) The total efficiency was low, especially at 105 GHz because the status of the cyclotron beam was greatly affected due to the non-optimal operating point.(3) The design of the gyrotron was basically validated through check-calculation with the present test results.

    Table 4.Experimental result of the preliminary pulse test.

    4.Conclusions

    A 105/140 GHz MW-level gyrotron was designed,successfully fabricated and proof-tested in IAE, CAEP.At the preliminary pulse test,the gyrotron generated an output power of 300 kW at 105.06 GHz and 540 kW at 139.36 GHz during the 1 ms 5 Hz continuous pulse burst operation.Power upgrade and pulse length extension were hampered by the limitation of the high-voltage power supply and the output window.Given the non-optimal operating point, the current output power has not yet achieved 1 MW full power, and the efficiency is low.The proposed gyrotron design was basically validated.The work has laid a good foundation for power upgrade to MW-level and pulse-width extension to second-level at the next phase.

    Acknowledgments

    This work is supported in part by NSAF(No.U1830201),in part by the State Administration of Science,Technology and Industry for Nation Defense of China, Technology Foundation Project(No.JSJL2019212B006), in part by the Academy Innovation Funder(No.CX2020038),and in part by the National Defense Basic Scientific Research Program(No.2018212C015).

    ORCID iDs

    黄色配什么色好看| 日韩制服骚丝袜av| 亚洲av一区综合| 国产中年淑女户外野战色| 高清在线视频一区二区三区| 黄色一级大片看看| 亚洲成人精品中文字幕电影| 亚洲av电影在线观看一区二区三区 | 男人狂女人下面高潮的视频| 欧美+日韩+精品| 午夜福利网站1000一区二区三区| www.色视频.com| 99九九线精品视频在线观看视频| 久久99热6这里只有精品| 可以在线观看毛片的网站| 欧美三级亚洲精品| 亚洲av男天堂| 亚洲va在线va天堂va国产| 欧美高清性xxxxhd video| 国产毛片在线视频| 婷婷色麻豆天堂久久| 精品一区二区免费观看| 97热精品久久久久久| 免费黄网站久久成人精品| 久久精品国产亚洲av涩爱| 91午夜精品亚洲一区二区三区| 国产精品久久久久久久电影| 色吧在线观看| 狂野欧美激情性xxxx在线观看| 一区二区三区乱码不卡18| 国产精品伦人一区二区| 人妻一区二区av| 自拍偷自拍亚洲精品老妇| 国产高清国产精品国产三级 | 人妻 亚洲 视频| 国内精品美女久久久久久| 日韩大片免费观看网站| 男人和女人高潮做爰伦理| 亚洲天堂国产精品一区在线| 免费观看在线日韩| 777米奇影视久久| 日本欧美国产在线视频| 精品视频人人做人人爽| 久久久亚洲精品成人影院| 精品久久国产蜜桃| 麻豆精品久久久久久蜜桃| 久久久欧美国产精品| 男女啪啪激烈高潮av片| 我要看日韩黄色一级片| 婷婷色av中文字幕| 伦理电影大哥的女人| 看非洲黑人一级黄片| 亚洲欧美日韩卡通动漫| 99热这里只有精品一区| 最近中文字幕2019免费版| 99热网站在线观看| 麻豆成人午夜福利视频| 午夜免费男女啪啪视频观看| 日韩欧美精品v在线| 在线观看美女被高潮喷水网站| 国产视频内射| 久久久久国产网址| 国产精品久久久久久精品电影| 欧美成人a在线观看| 狠狠精品人妻久久久久久综合| 日韩,欧美,国产一区二区三区| 亚洲天堂av无毛| 亚洲,一卡二卡三卡| 中文字幕亚洲精品专区| 国产老妇女一区| 亚洲av.av天堂| 日本一二三区视频观看| 久久精品熟女亚洲av麻豆精品| 亚洲熟女精品中文字幕| 国精品久久久久久国模美| 午夜精品国产一区二区电影 | 中国国产av一级| 亚洲精品第二区| 亚洲精华国产精华液的使用体验| 中文欧美无线码| 国产精品一区二区在线观看99| 久久亚洲国产成人精品v| 人人妻人人澡人人爽人人夜夜| 欧美三级亚洲精品| 亚洲成人精品中文字幕电影| 99久久中文字幕三级久久日本| 搡老乐熟女国产| 亚洲综合精品二区| 久久精品久久久久久久性| 一级爰片在线观看| 久久久久久久久久久免费av| 自拍偷自拍亚洲精品老妇| 亚洲国产精品专区欧美| 一本一本综合久久| 国产又色又爽无遮挡免| eeuss影院久久| 嫩草影院入口| 日本一本二区三区精品| 国产乱人视频| 亚洲,一卡二卡三卡| 亚洲国产精品国产精品| 国产午夜福利久久久久久| 一级片'在线观看视频| 熟女人妻精品中文字幕| 18+在线观看网站| 中文欧美无线码| 91久久精品国产一区二区成人| 高清毛片免费看| 国产有黄有色有爽视频| 有码 亚洲区| 麻豆精品久久久久久蜜桃| 伊人久久精品亚洲午夜| 国产精品国产三级国产av玫瑰| 五月天丁香电影| 人人妻人人看人人澡| 日日啪夜夜撸| 在线观看免费高清a一片| av在线app专区| 国产免费福利视频在线观看| 99九九线精品视频在线观看视频| 免费黄网站久久成人精品| 国产熟女欧美一区二区| 丰满乱子伦码专区| 国产爽快片一区二区三区| 99视频精品全部免费 在线| 大码成人一级视频| 国产精品国产三级国产专区5o| 天天一区二区日本电影三级| 亚洲综合色惰| 韩国av在线不卡| 亚洲国产日韩一区二区| 丰满人妻一区二区三区视频av| 亚洲国产精品成人久久小说| 九色成人免费人妻av| 亚洲精品第二区| 久久久久国产网址| 各种免费的搞黄视频| 简卡轻食公司| 少妇高潮的动态图| 少妇的逼好多水| 国产精品国产三级国产专区5o| 国产探花极品一区二区| 丰满人妻一区二区三区视频av| 亚洲成人久久爱视频| 国产伦理片在线播放av一区| 亚洲国产精品专区欧美| 韩国av在线不卡| 人妻一区二区av| 国产伦精品一区二区三区视频9| 春色校园在线视频观看| 日日摸夜夜添夜夜添av毛片| 免费av毛片视频| 在线免费十八禁| 国产精品国产av在线观看| 亚洲精品日韩av片在线观看| 99久国产av精品国产电影| 成人欧美大片| 搡女人真爽免费视频火全软件| 大香蕉97超碰在线| 国产探花极品一区二区| 自拍欧美九色日韩亚洲蝌蚪91 | 亚洲综合精品二区| 伦精品一区二区三区| 久久99热这里只有精品18| 五月天丁香电影| av在线亚洲专区| 菩萨蛮人人尽说江南好唐韦庄| 国产精品熟女久久久久浪| 在线播放无遮挡| 亚洲欧洲国产日韩| 在线免费观看不下载黄p国产| 伊人久久精品亚洲午夜| 国产国拍精品亚洲av在线观看| 成人鲁丝片一二三区免费| 国产男女超爽视频在线观看| 我要看日韩黄色一级片| 久久久a久久爽久久v久久| 亚洲精品日韩在线中文字幕| 97热精品久久久久久| 80岁老熟妇乱子伦牲交| 又大又黄又爽视频免费| 国产黄色视频一区二区在线观看| 国产白丝娇喘喷水9色精品| 中文精品一卡2卡3卡4更新| 青春草国产在线视频| 国产男女超爽视频在线观看| 综合色av麻豆| 新久久久久国产一级毛片| 亚洲精品乱码久久久久久按摩| 91在线精品国自产拍蜜月| 丝袜喷水一区| 亚洲精品成人久久久久久| 国产亚洲av嫩草精品影院| 国产精品不卡视频一区二区| 国产精品人妻久久久影院| 99热这里只有是精品在线观看| 国产精品一区二区在线观看99| 欧美另类一区| 国产 一区 欧美 日韩| 午夜日本视频在线| 亚洲四区av| 人人妻人人爽人人添夜夜欢视频 | 欧美日韩一区二区视频在线观看视频在线 | 五月天丁香电影| 免费看光身美女| 五月玫瑰六月丁香| 九九爱精品视频在线观看| 天天躁夜夜躁狠狠久久av| av卡一久久| 日韩一区二区视频免费看| 日韩伦理黄色片| 国产老妇伦熟女老妇高清| 免费看光身美女| 一级片'在线观看视频| 成人亚洲精品av一区二区| 国产高潮美女av| 啦啦啦中文免费视频观看日本| 亚洲人成网站高清观看| 日本午夜av视频| 色婷婷久久久亚洲欧美| h日本视频在线播放| 七月丁香在线播放| 久久午夜福利片| 特大巨黑吊av在线直播| 精品少妇黑人巨大在线播放| 欧美亚洲 丝袜 人妻 在线| 有码 亚洲区| 欧美xxxx性猛交bbbb| 另类亚洲欧美激情| 午夜福利高清视频| 亚洲内射少妇av| 人妻少妇偷人精品九色| 日韩电影二区| 久久精品人妻少妇| 丰满乱子伦码专区| 久久久久性生活片| 亚洲精品一二三| 一区二区三区精品91| 亚洲精品影视一区二区三区av| kizo精华| 少妇的逼好多水| 久久精品国产a三级三级三级| 日产精品乱码卡一卡2卡三| 春色校园在线视频观看| 波野结衣二区三区在线| av国产精品久久久久影院| 人妻 亚洲 视频| 我的女老师完整版在线观看| 女人被狂操c到高潮| 国内精品美女久久久久久| 69av精品久久久久久| 成人午夜精彩视频在线观看| 国产精品人妻久久久影院| 中文字幕免费在线视频6| 日韩人妻高清精品专区| 色婷婷久久久亚洲欧美| 夜夜看夜夜爽夜夜摸| 国产高清有码在线观看视频| 久久这里有精品视频免费| 少妇人妻久久综合中文| 在线亚洲精品国产二区图片欧美 | 亚洲不卡免费看| 久久99精品国语久久久| 久久久久国产精品人妻一区二区| 在线天堂最新版资源| 亚洲精品久久午夜乱码| 国产久久久一区二区三区| 国产成人精品久久久久久| 舔av片在线| 国产91av在线免费观看| 美女脱内裤让男人舔精品视频| 精品久久久久久电影网| 日本一二三区视频观看| 美女被艹到高潮喷水动态| 国产精品偷伦视频观看了| 啦啦啦中文免费视频观看日本| 亚洲图色成人| 天堂中文最新版在线下载 | 国产亚洲一区二区精品| 亚洲国产日韩一区二区| 九九久久精品国产亚洲av麻豆| 身体一侧抽搐| 我要看日韩黄色一级片| 国产精品国产三级国产专区5o| 亚洲成人一二三区av| 国产精品久久久久久精品古装| 日韩国内少妇激情av| 国产真实伦视频高清在线观看| 欧美zozozo另类| 最近最新中文字幕大全电影3| 中文天堂在线官网| 偷拍熟女少妇极品色| 18禁动态无遮挡网站| 色网站视频免费| 男女边吃奶边做爰视频| 免费看av在线观看网站| 亚洲成色77777| 国产男人的电影天堂91| 韩国av在线不卡| 女人久久www免费人成看片| 国产成年人精品一区二区| 亚洲欧美日韩另类电影网站 | 成人美女网站在线观看视频| 亚洲av.av天堂| 99热这里只有精品一区| 免费播放大片免费观看视频在线观看| 亚洲精品国产av蜜桃| 国产精品国产三级专区第一集| 亚洲国产精品成人久久小说| 欧美精品一区二区大全| 国产片特级美女逼逼视频| 精品国产露脸久久av麻豆| 国精品久久久久久国模美| 高清视频免费观看一区二区| 超碰av人人做人人爽久久| 小蜜桃在线观看免费完整版高清| 大片电影免费在线观看免费| 老师上课跳d突然被开到最大视频| 99热国产这里只有精品6| 久久99热6这里只有精品| 亚洲精品乱码久久久久久按摩| 精品一区二区三区视频在线| 国产成人精品久久久久久| 国语对白做爰xxxⅹ性视频网站| 国产白丝娇喘喷水9色精品| 亚洲第一区二区三区不卡| 午夜福利视频精品| h日本视频在线播放| 亚洲,一卡二卡三卡| 内射极品少妇av片p| 听说在线观看完整版免费高清| 小蜜桃在线观看免费完整版高清| 久久ye,这里只有精品| 99久久精品一区二区三区| 777米奇影视久久| 国产精品麻豆人妻色哟哟久久| 亚洲怡红院男人天堂| 免费黄网站久久成人精品| 婷婷色综合大香蕉| 99热这里只有精品一区| 99热国产这里只有精品6| 欧美日韩亚洲高清精品| 亚洲欧洲国产日韩| av在线app专区| 99久久精品热视频| 日日啪夜夜爽| 高清日韩中文字幕在线| 99热这里只有是精品50| 一级片'在线观看视频| 天堂网av新在线| 丰满人妻一区二区三区视频av| av黄色大香蕉| 国产成年人精品一区二区| 男女那种视频在线观看| 777米奇影视久久| 精品久久久噜噜| 亚州av有码| 99热这里只有是精品50| 亚洲内射少妇av| 免费人成在线观看视频色| 五月玫瑰六月丁香| 男人添女人高潮全过程视频| 国国产精品蜜臀av免费| 国产精品人妻久久久久久| 亚洲精品国产色婷婷电影| 久久久欧美国产精品| 噜噜噜噜噜久久久久久91| 另类亚洲欧美激情| 国产精品女同一区二区软件| 内射极品少妇av片p| 日本爱情动作片www.在线观看| 国产探花极品一区二区| 毛片一级片免费看久久久久| 国产熟女欧美一区二区| 精品一区二区三区视频在线| 亚洲精品乱码久久久久久按摩| 亚洲欧美日韩另类电影网站 | 少妇人妻久久综合中文| 99热这里只有是精品50| 精品久久久久久久久av| 成人欧美大片| 国产黄a三级三级三级人| 亚洲不卡免费看| 看十八女毛片水多多多| 99re6热这里在线精品视频| 亚洲美女视频黄频| 99热这里只有精品一区| 在线观看av片永久免费下载| 国精品久久久久久国模美| 亚洲三级黄色毛片| 精品国产三级普通话版| 亚洲精品第二区| 免费观看在线日韩| 最近中文字幕高清免费大全6| 中文字幕久久专区| 视频区图区小说| a级毛色黄片| 国产精品一区二区性色av| 一区二区三区四区激情视频| 久久这里有精品视频免费| 亚洲综合色惰| 蜜桃亚洲精品一区二区三区| 欧美精品人与动牲交sv欧美| 国产精品一区二区性色av| 亚洲精品日本国产第一区| 国内少妇人妻偷人精品xxx网站| 黄色视频在线播放观看不卡| 国产亚洲5aaaaa淫片| 成年免费大片在线观看| 婷婷色综合大香蕉| av在线app专区| 精品午夜福利在线看| 亚洲三级黄色毛片| 亚洲av电影在线观看一区二区三区 | 国产亚洲5aaaaa淫片| 亚洲精品中文字幕在线视频 | av天堂中文字幕网| 热99国产精品久久久久久7| 亚洲av欧美aⅴ国产| 久久精品国产亚洲网站| 日韩伦理黄色片| 尤物成人国产欧美一区二区三区| 国产成人精品婷婷| 尾随美女入室| 欧美成人a在线观看| 日本免费在线观看一区| 下体分泌物呈黄色| 日本与韩国留学比较| 欧美 日韩 精品 国产| 一区二区av电影网| 国产一区有黄有色的免费视频| 中文精品一卡2卡3卡4更新| 赤兔流量卡办理| 综合色丁香网| 亚洲成色77777| 国产亚洲精品久久久com| 国内少妇人妻偷人精品xxx网站| 国产乱来视频区| 欧美bdsm另类| 国产 一区 欧美 日韩| 精品久久久久久久久av| 亚洲,欧美,日韩| av卡一久久| 国产成人精品久久久久久| 亚洲人与动物交配视频| 五月伊人婷婷丁香| 老女人水多毛片| 亚洲国产欧美人成| 免费看光身美女| videossex国产| 亚洲av日韩在线播放| 国产精品99久久99久久久不卡 | 黄色日韩在线| 国产精品嫩草影院av在线观看| 国产永久视频网站| 国产精品一二三区在线看| 亚洲精品成人久久久久久| 97在线人人人人妻| 欧美国产精品一级二级三级 | 日韩在线高清观看一区二区三区| 亚洲色图综合在线观看| 国产有黄有色有爽视频| 在线免费观看不下载黄p国产| 成人亚洲精品一区在线观看 | 欧美xxxx性猛交bbbb| 亚洲熟女精品中文字幕| 国产亚洲av片在线观看秒播厂| 色哟哟·www| 内射极品少妇av片p| 97热精品久久久久久| 男的添女的下面高潮视频| 婷婷色av中文字幕| 免费电影在线观看免费观看| 国产又色又爽无遮挡免| 男男h啪啪无遮挡| 1000部很黄的大片| 美女视频免费永久观看网站| 免费不卡的大黄色大毛片视频在线观看| 波多野结衣巨乳人妻| 久久97久久精品| 熟女电影av网| 日韩一区二区三区影片| 国产精品久久久久久精品电影| 成人欧美大片| 欧美激情在线99| 天堂中文最新版在线下载 | 国产高潮美女av| 天堂俺去俺来也www色官网| 最新中文字幕久久久久| 黄色欧美视频在线观看| 黄色怎么调成土黄色| 国产老妇女一区| 51国产日韩欧美| 久久久久精品久久久久真实原创| 男女无遮挡免费网站观看| 久久综合国产亚洲精品| 全区人妻精品视频| 日本黄色片子视频| 中国三级夫妇交换| 色5月婷婷丁香| 精品久久久精品久久久| 亚洲av中文av极速乱| 婷婷色av中文字幕| 国产成年人精品一区二区| 日日摸夜夜添夜夜添av毛片| 能在线免费看毛片的网站| 亚洲精品亚洲一区二区| 蜜桃久久精品国产亚洲av| 日本猛色少妇xxxxx猛交久久| 十八禁网站网址无遮挡 | 天天躁日日操中文字幕| 久久久亚洲精品成人影院| 亚洲人成网站在线播| 日韩av免费高清视频| 亚洲最大成人中文| 久久久久网色| 少妇被粗大猛烈的视频| 美女被艹到高潮喷水动态| 国产av国产精品国产| 身体一侧抽搐| 国产精品蜜桃在线观看| 九色成人免费人妻av| 欧美激情久久久久久爽电影| 国产精品嫩草影院av在线观看| 少妇人妻一区二区三区视频| 午夜精品一区二区三区免费看| 天美传媒精品一区二区| 人妻夜夜爽99麻豆av| 香蕉精品网在线| 又粗又硬又长又爽又黄的视频| 国产成人freesex在线| 国产精品熟女久久久久浪| 成人黄色视频免费在线看| 午夜精品一区二区三区免费看| 亚洲精品久久午夜乱码| 纵有疾风起免费观看全集完整版| 女的被弄到高潮叫床怎么办| 欧美精品国产亚洲| 日韩,欧美,国产一区二区三区| 中文乱码字字幕精品一区二区三区| av国产免费在线观看| 男女无遮挡免费网站观看| 日日摸夜夜添夜夜爱| 久久热精品热| 国产乱人偷精品视频| 青春草亚洲视频在线观看| 你懂的网址亚洲精品在线观看| 国产69精品久久久久777片| 亚洲av免费在线观看| 麻豆成人av视频| 毛片女人毛片| 亚洲天堂av无毛| 一级毛片aaaaaa免费看小| av卡一久久| 汤姆久久久久久久影院中文字幕| 老女人水多毛片| 校园人妻丝袜中文字幕| 中文天堂在线官网| 国产在线一区二区三区精| 我要看日韩黄色一级片| 日本-黄色视频高清免费观看| 国产v大片淫在线免费观看| 国产成人福利小说| .国产精品久久| 天堂俺去俺来也www色官网| 亚洲精品色激情综合| 国产成人freesex在线| 国产精品一区www在线观看| 九九久久精品国产亚洲av麻豆| 熟女av电影| 久久国内精品自在自线图片| 久久国产乱子免费精品| 美女被艹到高潮喷水动态| 国产免费一区二区三区四区乱码| 2022亚洲国产成人精品| 大码成人一级视频| 亚洲欧美成人精品一区二区| 久久精品综合一区二区三区| 国产成人午夜福利电影在线观看| 视频中文字幕在线观看| 人妻制服诱惑在线中文字幕| 精品久久久精品久久久| 国产乱人视频| 特大巨黑吊av在线直播| 成人国产av品久久久| 精品国产乱码久久久久久小说| 久久精品国产亚洲av天美| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 精品亚洲乱码少妇综合久久| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 老女人水多毛片| 夫妻午夜视频| 内射极品少妇av片p| 六月丁香七月| 成人毛片60女人毛片免费| 秋霞在线观看毛片| 五月伊人婷婷丁香| 国产综合懂色| 精品久久国产蜜桃| 国产精品99久久久久久久久| av国产久精品久网站免费入址| 日本-黄色视频高清免费观看| 欧美极品一区二区三区四区| 亚洲最大成人av| 国产免费福利视频在线观看| 亚洲精品乱码久久久v下载方式| 久久人人爽av亚洲精品天堂 | 久久ye,这里只有精品| 日本黄大片高清| 久久精品国产鲁丝片午夜精品| 国产综合精华液| 亚洲,一卡二卡三卡| h日本视频在线播放| 免费看av在线观看网站| 精品久久国产蜜桃|