• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Acoustic radiation force on a rigid cylinder near rigid corner boundaries exerted by a Gaussian beam field

    2022-04-12 03:46:24QinChang常欽YuchenZang臧雨宸WeijunLin林偉軍ChangSu蘇暢andPengfeiWu吳鵬飛
    Chinese Physics B 2022年4期
    關(guān)鍵詞:鵬飛

    Qin Chang(常欽) Yuchen Zang(臧雨宸) Weijun Lin(林偉軍)Chang Su(蘇暢) and Pengfei Wu(吳鵬飛)

    1Institute of Acoustics,Chinese Academy of Sciences,Beijing 100190,China

    2University of Chinese Academy of Sciences,Beijing 100049,China

    3Beijing Deep Sea Drilling Measurement Engineering Technology Research Center,Beijing 100190,China

    Keywords: acoustic radiation force,finite element method,Gaussian beam field,acoustic manipulation

    1. Introduction

    As the fundamentals in biomedical ultrasound, material science and other fields, acoustic radiation force has become hotspots in acoustic tweezers,[1,2]and acoustic levitation,[3]etc. Since King[4]first proposed the concept of acoustic radiation force for particles and figured out an analytical expression for the acoustic radiation force of a rigid sphere in the ideal fluid in 1934, scholars have developed many models to describe the acoustic radiation force of the particles in various acoustic fields.[5-21]In earlier researches, particles were usually defined as ideal geometries(cylinders or spheres)with simple solid mechanical properties(rigid or elastic)and these particles were commonly supposed to be suspended in a free acoustic field. However, in many practical applications, the walls of the container are more diverse and ignoring the influence will cause errors. For example, a round-bottomed flask can be regarded as a combination of two:a sphere and a cylinder, and the connection between two parts can be treated as a transition from a cylinder to a sphere. If researchers intend to solve the acoustic radiation force on a particle moved from the bottom of the flask to the top,the calculation will be difficult but critical when the particle goes through the connection.Therefore,researchers tried to study effects of the boundaries on the acoustic radiation force.

    In 1994, Guanauard[22]calculated the acoustic scattering of a sphere near a plane boundary firstly. Later, Huang and Guanauard[23]computed the scattering of a plane acoustic wave by a spherical elastic shell near a free surface.On the basis of Guanauard’s research,Miriet al.[24]analyzed the effect of a porous wall on the acoustic radiation force for contrast agent shells in detail. Wanget al.[25]theoretically and numerically studied the acoustic radiation force exerted by a standing wave on a rigid cylinder near a flat wall. Qiaoet al.[26-30]systematically studied the acoustic radiation force on cylindrical particles near an impedance boundary for both plane waves and Gaussian beam fields. More recently, our group extended Qiao’s results to the case for a 3D spherical shell near the interface.[31]

    In fact,for the limitation of calculation method,it is hard to process transmission and reflection between particles and complex boundaries manually. However, benefiting from the development of analysis software, utilizing the computer to compute the acoustic radiation force via simulating the scattering sound field seems to be an effective method. In this investigation,a 2-D acoustic model is built by a finite element method(FEM)software and most of the calculations are performed by computer. In this model, there is a rigid corner boundary and a rigid cylindrical particle near the boundary in a Gaussian beam field. The spatial positions of geometries are adjustable,such as the angle between two rigid boundaries and the distances between particle and boundaries. In addition, particular emphases are paid to the beam frequency, the incidence angle,and the beam waist radius. It is convenient to study the effects of boundaries on the acoustic radiation force by changing the parameters. On the basis of studies on the rigid corner case, a demonstration of calculating the acoustic radiation force exerting on a rigid cylindrical particle immersed in fluid near a rigid circular corner is briefly introduced to verify the universality of the FEM model.

    2. Method

    2.1. Theoretical analyses

    As shown in Fig.1,a corner is full of fluid with two rigid boundaries forming an angleα. A rigid cylindrical particle immersed in the fluid is perpendicular to theX-O-Yplane near by the corner,d1andd2represent the distance from the central of particle to boundary 1 and boundary 2,respectively.A weakly focused Gaussian beam field is incident upon the particle,whereφrepresents the angle between the beam axis and theX-direction.

    Fig. 1. The 2D acoustic model used to calculate the acoustic radiation force on a rigid cylindrical particle near a rigid corner immersed in water.

    2.2. Theoretical analyses in the case of right angle

    Partial wave series expansion method(PWSEM)is a classical method to analyze the acoustic radiation force. When the two flat boundaries form a right corner,it is convenient to deal with the problem analytically based on the image method.Three image cylinders are placed at the symmetrical positions to equate the effects of boundaries. The incident wave in thejth coordinate system is expressed in the coordinate system of thepth cylinder as

    An object will experience a mean force,known as acoustic radiation force, when subjected to a harmonic-continuous sound field.Considering that the surrounding fluid is ideal and cannot absorb any momentum from the sound wave,the acoustic radiation force can be computed by integrating the radiation stress tensor over a circular cylindrical surfaceS0enclosing the cylinder.It has been proved to be advantageous to evaluate the radiation force using the far-field scattering,which can be expressed as[32]

    where dS= dSerwith dS=Lrdθbeing the scalar differential element of a cylindrical surfaceSin lengthLtaken at a large radiusrenclosing the cylinder, the outward unit vector iser=cosθex+sinθey, withexandeybeing the unit vectors in the coordinate systemxOy,Re denotes the real part of a complex function,the superscript?denotes the complex conjugate of a complex function, and the symbol〈〉represents time averaging.

    Projecting Eq. (7) into thexandyaxes, we can obtain the expression of the two component radiation forces,respectively,as

    2.3. Numerical model

    Based on the simplification from the tensor integral approach,YxandYyare defined as

    The values ofYxandYycan be calculated by Eq.(14)and(15),if the parameters of medium and the scattering sound field are known.

    In this study, the acoustic pressure and particle velocity distributions in the fluid medium are calculated by COMSOL Multiphysics (version 5.6, COMSOL AB, Stockholm, Sweden). COMSOL is one of the most commonly used FEM software in acoustics,optics,electromagnetics,mechanics and other relevant fields.In the acoustics module(Pressure Acoustics,Frequency Domain)of COMSOL,the total acoustic pressure fieldPtis caused by the superposition of background pressure fieldPband scattered acoustic pressure fieldPs, and the total velocity is described by its root-mean-square valuevrms.The acoustic radiation force is considered to be induced by acoustic scattering, which is due to the momentum transfer between the acoustic wave and the particle.Psandvrmsare calculated by computer.Pbis the external incident Gaussian beam field.

    As shown in Fig. 2, the calculated domain is comprised of a fluid domain and a perfectly matched layer (PML) domain. The PML domain is used to absorb the acoustic waves at the edge of the fluid domain. The corresponding parameters are clearly listed in Table 1. Especially,the radius of scatterer particleais a constant in this research.

    Fig. 2. The FEM model used to calculate the acoustic radiation force on a rigid cylindrical particle near a rigid corner immersed in water.

    Table 1. Parameters used for the simulation.

    After executing the Mesh module,the geometry is divided into plenty of area elements and then computer will process the model on the basis of meshes by execute the Study module.Figures 3 and 4 show the meshes and the total acoustic pressure field of a sample generated by COMSOL.In this sample,f=1.2 MHz,w=3,α=120°,φ=60°,andd1=d2=6.

    Fig.3. The meshes for the sample divided by COMSOL.

    Fig. 4. The total acoustic pressure field Pt for the sample calculate by COMSOL.

    3. Numerical calculations and analyses

    The axial acoustic radiation force function componentYpon a rigid cylinder in free space exerted by a plane wave is one of the most classical model and the results have been verified by many researchers. A comparison between the theoretical results of PWSEM and the numerical results of FEM to figure out the accuracy of the numerical model is shown in Fig. 5.The maximum absolute error is 0.0229 and the correlation coefficient between PWSEM and FEM is 0.9994,which can verify the reliability of the FEM model.

    Fig. 5. The axial acoustic radiation force function component Yp on a rigid cylinder in free space exerted by a plane wave.

    In theoretical researches, the 2D Gaussian beam field is defined as

    It is worth noting that a weakly focused Gaussian beam field emitted from a transducer cannot be described by Eq.(16)because the phase variety is ignored. In this case, the weakly focused Gaussian beam field only remains a half as shown in Fig.6.

    Fig.6. A phase-ignored weakly focused Gaussian beam field simulated by COMSOL.

    In this investigation, the weakly focused Gaussian beam field is considered to be back to the original 2D Gaussian beam in optics:

    whereW(x)is the Rayleigh radius in optics that is often substituted by the radius of beam waistW0in acoustics,xRis the Rayleigh range,andR(x)is curvature radius. The relationship of these parameters is shown in the Fig. 7. Equation (17) is confirmed to be more realistic than Eq.(16)because the Gaussian beam field defined by Eq.(17)can describe the complete Gaussian beam field correctly. The correct Gaussian beam field is shown in Fig.8.

    Fig.7. An optical Gaussian beam.

    Fig.8. An optical Gaussian beam.

    Because of the different expressions of Gaussian beam field,it is necessary to check the applicability of Eq.(17). The result of the axial acoustic radiation force function componentYpon a rigid cylinder in free space exerted by an optical Gaussian beam is shown in Fig.9. Whenkaincreases,Ypdecrease asaincreases. However,according to the results of PWSEM studied by many researchers,if thekais defined,there will be no direct relation betweenYpanda. This phenomenon suggests that Eqs. (16) and (17) are approximate only in a certain range (a=2-3 mm). In this research,ais finally set as 2.00 mm for the comparison with the theoretical results from other studies.

    Fig.9. The axial acoustic radiation force function component Yp versus a and ka for a rigid cylindrical in free space exerted by an optical Gaussian beam field. (a) The 2D plots of Yp. (b) The 3D plots of Yp, with ka=10.

    Varying the values ofwandka, the simulated results of the axial acoustic radiation force functionsYxandYyare shown in Fig. 10. It is shown thatYxandYyare both constant whenkais lower than 6. However, ifkais larger than 6,YxandYydecrease with increasingw. The results suggest that the axial acoustic radiation force is affected by the ratio ofatoλ. Only when the radius of particle is large enough (the ratio is large enough),YxandYyare sensitive to the variation ofw.

    It is particular to note that all of the color bars in these figures are set symmetric about zero to make the positive values red and the negative values blue,which makes it easier for readers to distinguish the positive and negative values.

    Fig. 10. The 2D plots of the acoustic radiation force function components versus ka and w for a rigid cylindrical particle near a rigid corner placed in a Gaussian beam field. The angle α between two rigid boundaries is set as 120°,the incident angle φ is set as 0° and the normalized distance d1 =d2 =2. (a) The acoustic radiation force component in the X direction. (b) The acoustic radiation force component in the Y direction.

    Figure 11 plots the axial radiation force functionsYxandYyversus the normalized distancesd1andd2. It is found thatYxandYyvaries periodically along with the change ofd2at a certaind1value. However, the amplitudes of theYxandYypeaks decrease with the increase ofd1when the value ofd1is around from 2 to 5; whend1is more than 5, the amplitudes ofYxandYyare stable. Switchingd1andd2will lead to the analogous results.

    The regular patterns verify thatYxandYyare influenced by the standing wave existing between rigid boundaries and the surface of particle. As the distancesd1andd2change,YxandYywill be enhanced or weaken frequently when they meet the conditions of the standing wave. In addition,it shows that the positions of the maximal values are identical whereas the values are opposite.This phenomenon is due to the fact thatYxandYyare two components of the acoustic radiation force. If each one becomes the maximum,the other must be minimal.

    It is noteworthy that there exists the negative acoustic radiation force at selectedd1andd2values,where the backscattering of the sphere is suppressed.

    All the parameters are kept the same as those in Figs. 11(a) and 11(b) exceptka(ka=1) and the results are shown in Figs.11(c)-11(f). Since the value ofkais smaller in this case,the details of transformation tendency of the acoustic radiation force function in large wavelength are clearer. Considering thatd2ranges from 2 to 7,YxandYyare more sensitive to the variation ofd1and it can be observed that the transformation frequency of acoustic radiation force tends to be higher asd2becomes smaller. Ifkais smaller (ka=0.5), the phenomenon is more obvious as shown in Figs. 11(e) and 11(f).Combined with the conclusionska=3,the increase ofd2does not influence the transformation frequency whend2increases so as to generate the third peak. In addition,negative acoustic radiation force is also found, in that case the backscattering acoustic scattering is suppressed.

    Fig.11. The 2D plots of the acoustic radiation force function components versus d1 and d2 for a rigid cylindrical particle near a rigid corner placed in a Gaussian beam field. The angle α between two rigid boundaries is set as 120°,the incident angle φ is set as 0° and the beam waist w is set as 3. [(a),(c),(d)]The acoustic radiation force component in the X direction. [(b),(d),(f)]The acoustic radiation force component in the Y direction. In(a),(b),(c),(d),(e)and(f),the ka is set as 3,3,1,1,0.5 and 0.5,respectively.

    Fig. 12. The 2D plots of the acoustic radiation force function components versus ka and each normalized distances for a rigid cylindrical particle near a rigid corner placed in a Gaussian beam field. The angle α between two rigid boundaries is set as 120°, the incident angle φ is set as 0°and the normalized radius of beam waist w is set as 3. [(a),(c)]The acoustic radiation force component in the X direction. [(b), (d)]The acoustic radiation force component in the Y direction. [(a), (b)]The d2 is set as 2. [(c),(d)]The d1 is set as 2.

    According to the results in Fig.12,the values ofd1andd2are varied independently to figure out the relationship between the normalized distance andka. It is similar to Fig.10,when the normalized wavelength is larger than particle radius(kais small enough),YxandYyare insensitive tod1ord2. However,askaincreases,YxandYyexhibit periodical variations along withd1ord2and there is a positive correlation between the beam frequency andka. All of the above phenomena are also caused by the standing wave. Whenkais fixed, the quantity of peaks will increase with the increase ofd1ord2, and vice versa.

    In real applications, the angle between two boundaries and the incident angle are often varied to meet different demands. Figure 13 predicts the 2D plots of the acoustic radiation force function components versuskaandαfor a rigid cylindrical particle near a rigid corner placed in a Gaussian beam field. The incident wave is set to be in parallel to theXaxis, and the normalized radius of beam waistwis set as 3. Figure 14 shows the corresponding plots for the radiation force functions versuskaandφatα=120°andw=3. The maximal and minimal values of the acoustic radiation force function can be easily observed in the simulated plots.

    Fig. 13. The 2D plots of the acoustic radiation force function components versus ka and α for a rigid cylindrical particle near a rigid corner placed in a Gaussian beam field. The incident angle φ is set as 0°,and the normalized radius of beam waist w is set as 3. [(a),(c)]The acoustic radiation force component in the X direction. [(b), (d)] The acoustic radiation force component in the Y direction. In (a) and (b), the color bar is original. In(c)and(d),the color bar is shrunk to one tenth of the original.

    Fig. 14. The 2D plots of the acoustic radiation force function components versus ka and φ for a rigid cylindrical particle near a rigid corner placed in a Gaussian beam field. The angle α between two rigid boundaries is set as 120°, and the normalized distance d1 =d2 =2. (a) The acoustic radiation force component in the X direction. (b)The acoustic radiation force component in the Y direction.

    On the basis of the results of the rigid corner case, it is convenient to calculate the acoustic radiation force function on a particle nearby arbitrary boundaries.An example is given here to demonstrate the calculation of the acoustic radiation force function on a rigid cylindrical particle nearby a circular rigid corner,in which the curvature radius of circular corner is set as 2a. The comparison between the numerical models for a right angle rigid corner and a circular rigid corner is shown in Fig.15.

    Fig. 15. The numerical models of two types of rigid corners. The angle α between two rigid boundaries is set as 90°, the incident angle φ is set as 0° and the normalized distance d1 =d2 =2. (a)The meshes for the right angle rigid corner model. (b)The meshes for the circular rigid corner model. (c)The total acoustic pressure field Pt for the right angle rigid corner model. (d)The total acoustic pressure field Pt for the circular rigid corner model.

    Figure 16 exhibits the 2D plots of the acoustic radiation force function components versuskaandwfor a rigid cylindrical particle near two types of corners placed in a Gaussian beam field. The color bars of Figs. 16(c) and 16(d) are, respectively,adjusted to the same as in Figs. 16(a) and 16(b) to contrast clearly with other figures. The transformation tendencies of the acoustic radiation force function of two types boundaries are basically the same, butYxis weakened andYxis enhanced in the circular rigid corner case due to the reflection of the circular boundary. It is feasible to analyze more complex boundaries by changing the parameters of model.

    Fig. 16. The 2D plots of the acoustic radiation force function components versus ka and w for a rigid cylindrical particle near two types of rigid corners placed in a Gaussian beam field. The angle α between two rigid boundaries is set as 90°,the incident angle φ is set as 0° and the normalized distance d1=d2=2. (a)The acoustic radiation force component in the Y direction of the right angle rigid corner. (b)The acoustic radiation force component in the Y direction of the right angle rigid corner. [(c),(e)]The acoustic radiation force component in the X direction of the circular rigid corner. [(d),(f)]The acoustic radiation force component in the Y direction of the circular rigid corner.

    4. Conclusions

    In summary, an FEM numerical model is presented for the acoustic radiation force exerting on a rigid cylindrical particle immersed in fluid near a rigid corner,which is so difficult to figure out by PWSEM because of the complex reflection from boundaries. Compared with PESEM,FEM is more suitable to calculate the acoustic radiation force existed in intricate geometries.

    Numerical simulation shows that the amplitude of the acoustic radiation force function has visible changes at smallkadue to ratio ofatoλ. The transformation of the acoustic radiation force depends on the generation of standing wave that the tendency is significantly affected bykaand the distance from the center of cylinder to each boundary. Whenkadecreases, the variation frequency of acoustic radiation force function appears obvious oscillations along with the distance.The positions of the acoustic radiation force function peaks change withka. This study provides a numerical method to calculate the acoustic radiation force on a particle nearby multiple boundaries and is expected to improve and develop the acoustic particle manipulation in practical applications.

    Acknowledgements

    This work was supported by the National Natural Science Foundation of China (Grant Nos. 11604361 and 11904384), the National Key R&D Program of China (Grant No.2018YFC0114900),and Youth Innovation Promotion Association,Chinese Academy of Sciences(Grant No.2019024).

    猜你喜歡
    鵬飛
    樊應(yīng)舉
    書香兩岸(2020年3期)2020-06-29 12:33:45
    漫畫
    Quality Control for Traditional Medicines - Chinese Crude Drugs
    為了避嫌
    雜文月刊(2019年18期)2019-12-04 08:30:40
    懲“前”毖“后”
    21世紀(jì)(2019年10期)2019-11-02 03:17:02
    執(zhí)“迷”不悟
    21世紀(jì)(2019年10期)2019-11-02 03:17:02
    舉賢
    21世紀(jì)(2019年9期)2019-10-12 06:33:44
    漫畫
    粗看“段”,細(xì)看“端”
    漫畫
    青草久久国产| 夜夜爽天天搞| 成人国产综合亚洲| 国产麻豆成人av免费视频| 他把我摸到了高潮在线观看| 丝袜美足系列| 亚洲色图 男人天堂 中文字幕| 久久人人精品亚洲av| 国内毛片毛片毛片毛片毛片| 亚洲成人久久性| 在线播放国产精品三级| 大陆偷拍与自拍| ponron亚洲| 夜夜躁狠狠躁天天躁| 99国产精品一区二区蜜桃av| 91字幕亚洲| 午夜免费鲁丝| 国产成人影院久久av| 天天躁狠狠躁夜夜躁狠狠躁| 亚洲免费av在线视频| 国产一区二区激情短视频| 日本黄色视频三级网站网址| svipshipincom国产片| 国产成人精品在线电影| 亚洲全国av大片| 久久影院123| 一个人观看的视频www高清免费观看 | 亚洲精品久久国产高清桃花| 国产成人系列免费观看| 男男h啪啪无遮挡| 午夜精品在线福利| 午夜免费观看网址| 成年版毛片免费区| 亚洲成a人片在线一区二区| 久久久久久久午夜电影| 亚洲精品国产区一区二| 级片在线观看| 亚洲精华国产精华精| 久久精品aⅴ一区二区三区四区| 中文字幕高清在线视频| 欧美日韩乱码在线| 无遮挡黄片免费观看| 国产亚洲精品综合一区在线观看 | 高清毛片免费观看视频网站| 亚洲精品久久成人aⅴ小说| 又黄又粗又硬又大视频| 啪啪无遮挡十八禁网站| 亚洲国产精品sss在线观看| 在线观看舔阴道视频| 制服诱惑二区| 国产一卡二卡三卡精品| 黄色成人免费大全| 国产亚洲欧美精品永久| 久久人妻福利社区极品人妻图片| 男人舔女人的私密视频| 精品国内亚洲2022精品成人| 欧美成人一区二区免费高清观看 | 成年女人毛片免费观看观看9| 日本vs欧美在线观看视频| 亚洲一码二码三码区别大吗| 亚洲精品在线美女| 中文字幕高清在线视频| 久久久精品国产亚洲av高清涩受| 波多野结衣巨乳人妻| 亚洲人成伊人成综合网2020| 午夜福利免费观看在线| 999久久久国产精品视频| 国产97色在线日韩免费| 在线天堂中文资源库| 色哟哟哟哟哟哟| 久久影院123| 亚洲人成电影观看| 日本精品一区二区三区蜜桃| 欧美成人午夜精品| 国产成人av激情在线播放| 国产亚洲av嫩草精品影院| 亚洲熟妇中文字幕五十中出| 亚洲精品中文字幕在线视频| 国产99久久九九免费精品| 可以在线观看的亚洲视频| 亚洲,欧美精品.| 妹子高潮喷水视频| 成人欧美大片| 99久久精品国产亚洲精品| 久久中文字幕一级| 亚洲国产毛片av蜜桃av| 亚洲国产日韩欧美精品在线观看 | 自拍欧美九色日韩亚洲蝌蚪91| 日本免费a在线| 在线观看免费视频网站a站| 在线观看免费视频日本深夜| 久久久久久久久免费视频了| 免费在线观看黄色视频的| 极品教师在线免费播放| 日本欧美视频一区| 97人妻天天添夜夜摸| 九色国产91popny在线| 午夜亚洲福利在线播放| 国产xxxxx性猛交| 国产精品一区二区精品视频观看| 亚洲欧洲精品一区二区精品久久久| 午夜免费激情av| 亚洲成人国产一区在线观看| 国产亚洲精品av在线| 99久久综合精品五月天人人| 母亲3免费完整高清在线观看| 丁香欧美五月| 免费无遮挡裸体视频| av天堂久久9| av福利片在线| 女性生殖器流出的白浆| 国产野战对白在线观看| 欧美日韩瑟瑟在线播放| 久久久久精品国产欧美久久久| 精品欧美国产一区二区三| 精品久久久久久久毛片微露脸| 国产高清激情床上av| 日韩中文字幕欧美一区二区| 精品一区二区三区av网在线观看| 久99久视频精品免费| 一个人免费在线观看的高清视频| 日本欧美视频一区| 黄色成人免费大全| 啦啦啦韩国在线观看视频| 麻豆国产av国片精品| 成人亚洲精品一区在线观看| 亚洲国产精品sss在线观看| 久久国产精品影院| 亚洲色图综合在线观看| e午夜精品久久久久久久| 久久久久久久精品吃奶| 黄色视频不卡| 国产三级在线视频| 午夜激情av网站| 精品一区二区三区av网在线观看| 性少妇av在线| 亚洲精品中文字幕一二三四区| 国产主播在线观看一区二区| 精品少妇一区二区三区视频日本电影| 免费在线观看日本一区| 女人精品久久久久毛片| 中国美女看黄片| 久久久久久久午夜电影| 亚洲片人在线观看| 欧美亚洲日本最大视频资源| 丝袜美足系列| 国产av一区在线观看免费| 一级作爱视频免费观看| 欧美成人性av电影在线观看| 久久久久亚洲av毛片大全| 欧美不卡视频在线免费观看 | 亚洲熟妇熟女久久| 波多野结衣av一区二区av| 黑人巨大精品欧美一区二区mp4| 日日夜夜操网爽| 非洲黑人性xxxx精品又粗又长| 欧美成人性av电影在线观看| 久久精品影院6| 久久狼人影院| 每晚都被弄得嗷嗷叫到高潮| 熟妇人妻久久中文字幕3abv| 久久人妻av系列| 麻豆国产av国片精品| av视频在线观看入口| 欧美午夜高清在线| 欧美日韩精品网址| 校园春色视频在线观看| 成人手机av| av视频在线观看入口| 精品乱码久久久久久99久播| 日韩精品青青久久久久久| 久热爱精品视频在线9| 看黄色毛片网站| 最新美女视频免费是黄的| 很黄的视频免费| 18禁裸乳无遮挡免费网站照片 | 国产精品野战在线观看| 欧美中文日本在线观看视频| 午夜免费激情av| 亚洲七黄色美女视频| 国产成年人精品一区二区| 午夜影院日韩av| 亚洲精品在线美女| 国产精品国产高清国产av| 91老司机精品| 日韩欧美三级三区| 国产高清视频在线播放一区| 老司机在亚洲福利影院| 国产成人精品久久二区二区免费| 91九色精品人成在线观看| 亚洲国产日韩欧美精品在线观看 | 欧美精品啪啪一区二区三区| 亚洲在线自拍视频| 精品午夜福利视频在线观看一区| 免费在线观看黄色视频的| 老鸭窝网址在线观看| 成人亚洲精品一区在线观看| 国产高清激情床上av| 午夜影院日韩av| 日本免费一区二区三区高清不卡 | 亚洲成人精品中文字幕电影| 亚洲中文字幕一区二区三区有码在线看 | 午夜日韩欧美国产| 一级毛片女人18水好多| 精品欧美一区二区三区在线| 18禁黄网站禁片午夜丰满| 18美女黄网站色大片免费观看| 极品教师在线免费播放| 19禁男女啪啪无遮挡网站| 精品国产美女av久久久久小说| 丁香欧美五月| 乱人伦中国视频| 在线观看免费视频日本深夜| 亚洲va日本ⅴa欧美va伊人久久| 看免费av毛片| www.熟女人妻精品国产| 夜夜夜夜夜久久久久| 狠狠狠狠99中文字幕| 黑丝袜美女国产一区| 黄色视频不卡| 午夜福利,免费看| 国产精品久久久人人做人人爽| 男女午夜视频在线观看| 纯流量卡能插随身wifi吗| 国产亚洲精品久久久久久毛片| 手机成人av网站| 欧美乱色亚洲激情| 一区二区三区国产精品乱码| 精品久久久久久久久久免费视频| 色尼玛亚洲综合影院| e午夜精品久久久久久久| 国产极品粉嫩免费观看在线| 青草久久国产| 亚洲五月天丁香| а√天堂www在线а√下载| 两个人免费观看高清视频| 午夜福利18| 亚洲精品一区av在线观看| 亚洲av成人不卡在线观看播放网| 亚洲精品av麻豆狂野| 女人被狂操c到高潮| 国产国语露脸激情在线看| 深夜精品福利| 免费看a级黄色片| 岛国在线观看网站| 国产精品亚洲美女久久久| 中文字幕高清在线视频| 欧美一级a爱片免费观看看 | 我的亚洲天堂| 日韩有码中文字幕| 国产成人影院久久av| 啪啪无遮挡十八禁网站| 国产高清有码在线观看视频 | 欧美日韩乱码在线| 老司机午夜十八禁免费视频| 日日爽夜夜爽网站| 悠悠久久av| 国产野战对白在线观看| 18禁美女被吸乳视频| 国产精品久久久久久精品电影 | 人人澡人人妻人| 精品久久久精品久久久| 99国产综合亚洲精品| 91国产中文字幕| 高清在线国产一区| 欧美激情久久久久久爽电影 | 国产精品二区激情视频| 中文字幕另类日韩欧美亚洲嫩草| 国产精品久久视频播放| 成年女人毛片免费观看观看9| 看片在线看免费视频| 激情在线观看视频在线高清| 色哟哟哟哟哟哟| 亚洲片人在线观看| 免费女性裸体啪啪无遮挡网站| av超薄肉色丝袜交足视频| 欧美中文日本在线观看视频| 九色国产91popny在线| 91九色精品人成在线观看| 一边摸一边做爽爽视频免费| 色在线成人网| 一二三四社区在线视频社区8| 日韩 欧美 亚洲 中文字幕| 自线自在国产av| 国产成年人精品一区二区| 岛国视频午夜一区免费看| 亚洲aⅴ乱码一区二区在线播放 | 99久久国产精品久久久| 国产麻豆69| 国产片内射在线| 色婷婷久久久亚洲欧美| 每晚都被弄得嗷嗷叫到高潮| 免费av毛片视频| 夜夜爽天天搞| 欧美一级毛片孕妇| 欧美乱色亚洲激情| 中文字幕av电影在线播放| 欧美日韩瑟瑟在线播放| 亚洲伊人色综图| 在线视频色国产色| 欧美成人性av电影在线观看| 亚洲成a人片在线一区二区| svipshipincom国产片| 一本大道久久a久久精品| 乱人伦中国视频| 长腿黑丝高跟| 1024视频免费在线观看| 国产亚洲av嫩草精品影院| 俄罗斯特黄特色一大片| 一个人观看的视频www高清免费观看 | av电影中文网址| 成人国产一区最新在线观看| 亚洲自拍偷在线| 国产一区二区在线av高清观看| e午夜精品久久久久久久| 日韩欧美在线二视频| 国产精品国产高清国产av| av有码第一页| 成人国语在线视频| 超碰成人久久| 久久婷婷人人爽人人干人人爱 | 久久国产亚洲av麻豆专区| 亚洲国产看品久久| 两个人视频免费观看高清| 亚洲天堂国产精品一区在线| 自线自在国产av| 国产精品久久久久久人妻精品电影| 欧美大码av| av中文乱码字幕在线| 免费观看人在逋| 级片在线观看| 亚洲 国产 在线| 免费看美女性在线毛片视频| 成人三级做爰电影| 亚洲精品中文字幕在线视频| 国产一区二区激情短视频| 女人被狂操c到高潮| 一级毛片高清免费大全| 每晚都被弄得嗷嗷叫到高潮| 精品乱码久久久久久99久播| 最近最新中文字幕大全免费视频| e午夜精品久久久久久久| 校园春色视频在线观看| 日本免费一区二区三区高清不卡 | 后天国语完整版免费观看| 在线国产一区二区在线| 亚洲成人精品中文字幕电影| 国产精品秋霞免费鲁丝片| 国产精品免费视频内射| 免费看美女性在线毛片视频| 亚洲欧美日韩高清在线视频| 欧美+亚洲+日韩+国产| 久久久久久久午夜电影| 高清在线国产一区| 亚洲精品一区av在线观看| 18美女黄网站色大片免费观看| 丝袜美足系列| 久久中文看片网| 两性夫妻黄色片| 色播在线永久视频| av在线播放免费不卡| 国产极品粉嫩免费观看在线| 亚洲成人免费电影在线观看| 一夜夜www| 亚洲精品国产一区二区精华液| 精品一区二区三区视频在线观看免费| 日日干狠狠操夜夜爽| 亚洲精品av麻豆狂野| av欧美777| 欧美激情高清一区二区三区| 精品国内亚洲2022精品成人| 精品国产美女av久久久久小说| 99久久精品国产亚洲精品| 日韩中文字幕欧美一区二区| 欧美中文综合在线视频| 一区二区日韩欧美中文字幕| 日本三级黄在线观看| 欧美日本亚洲视频在线播放| 性色av乱码一区二区三区2| 国产精品永久免费网站| 亚洲全国av大片| 两个人视频免费观看高清| 亚洲精品av麻豆狂野| 久热这里只有精品99| 最近最新中文字幕大全免费视频| 国产在线精品亚洲第一网站| 天堂动漫精品| 在线播放国产精品三级| 好男人电影高清在线观看| 国产精品 国内视频| 搞女人的毛片| 19禁男女啪啪无遮挡网站| 多毛熟女@视频| 欧美成人午夜精品| 叶爱在线成人免费视频播放| 91大片在线观看| 亚洲精品在线观看二区| 久久人妻熟女aⅴ| 多毛熟女@视频| 免费看a级黄色片| 精品欧美国产一区二区三| 亚洲一区二区三区不卡视频| 国产av精品麻豆| 黄色毛片三级朝国网站| 亚洲男人天堂网一区| 国内精品久久久久久久电影| 色婷婷久久久亚洲欧美| 国产精品久久久久久人妻精品电影| 欧美日本视频| 免费高清视频大片| 久久久久国产一级毛片高清牌| 美国免费a级毛片| 国产一区二区三区在线臀色熟女| 两个人看的免费小视频| 一区福利在线观看| 中文字幕人妻丝袜一区二区| 亚洲一卡2卡3卡4卡5卡精品中文| 精品日产1卡2卡| 我的亚洲天堂| 一级黄色大片毛片| 精品人妻1区二区| 欧美激情极品国产一区二区三区| 国产国语露脸激情在线看| 亚洲熟妇中文字幕五十中出| tocl精华| 天堂影院成人在线观看| 免费观看精品视频网站| 韩国精品一区二区三区| 精品国产乱码久久久久久男人| 国产精品亚洲av一区麻豆| 在线观看舔阴道视频| 此物有八面人人有两片| 日韩欧美免费精品| 很黄的视频免费| 亚洲一区中文字幕在线| 亚洲视频免费观看视频| 欧美人与性动交α欧美精品济南到| 黄色毛片三级朝国网站| 亚洲欧美日韩无卡精品| 色播亚洲综合网| 波多野结衣巨乳人妻| 深夜精品福利| 国产单亲对白刺激| 精品人妻在线不人妻| 中文字幕色久视频| 国产av在哪里看| 后天国语完整版免费观看| 777久久人妻少妇嫩草av网站| 女性生殖器流出的白浆| 精品久久久久久久久久免费视频| 9191精品国产免费久久| 男女床上黄色一级片免费看| 久久久久精品国产欧美久久久| 亚洲成人精品中文字幕电影| 精品一区二区三区四区五区乱码| 18美女黄网站色大片免费观看| 无限看片的www在线观看| 久久精品人人爽人人爽视色| 9色porny在线观看| 国产91精品成人一区二区三区| 日本在线视频免费播放| 国产真人三级小视频在线观看| 精品一区二区三区四区五区乱码| 亚洲全国av大片| 久久久久国内视频| 国产伦一二天堂av在线观看| 欧美老熟妇乱子伦牲交| 丰满人妻熟妇乱又伦精品不卡| 美女午夜性视频免费| 老司机午夜十八禁免费视频| 国产欧美日韩一区二区三区在线| 91国产中文字幕| 黄色a级毛片大全视频| 中文字幕人成人乱码亚洲影| 亚洲欧美精品综合久久99| 涩涩av久久男人的天堂| 国产麻豆成人av免费视频| 老司机靠b影院| 亚洲色图 男人天堂 中文字幕| 精品人妻1区二区| 午夜久久久在线观看| www.999成人在线观看| 欧美乱码精品一区二区三区| 视频在线观看一区二区三区| 欧美大码av| 日韩大尺度精品在线看网址 | 国产成人啪精品午夜网站| 亚洲成av片中文字幕在线观看| 亚洲国产日韩欧美精品在线观看 | 日韩欧美国产在线观看| 亚洲少妇的诱惑av| 久久久久国产一级毛片高清牌| 日韩欧美一区二区三区在线观看| 国产1区2区3区精品| 免费女性裸体啪啪无遮挡网站| 国产精品亚洲一级av第二区| 国内精品久久久久久久电影| 国产熟女午夜一区二区三区| 成人三级黄色视频| 成人18禁高潮啪啪吃奶动态图| 国产成人精品在线电影| 曰老女人黄片| 国产欧美日韩一区二区精品| 国产在线观看jvid| 欧美一级a爱片免费观看看 | 亚洲无线在线观看| 精品福利观看| 99香蕉大伊视频| 久久国产精品男人的天堂亚洲| 精品久久久久久久久久免费视频| 精品国产乱码久久久久久男人| 国产视频一区二区在线看| 国产欧美日韩综合在线一区二区| 一级a爱片免费观看的视频| 亚洲天堂国产精品一区在线| 成在线人永久免费视频| 亚洲欧美激情在线| 日本撒尿小便嘘嘘汇集6| 国产成人系列免费观看| 久久人人爽av亚洲精品天堂| 国产亚洲精品久久久久5区| 成人特级黄色片久久久久久久| 欧美色欧美亚洲另类二区 | 久久久久久久久中文| 电影成人av| 久久人人97超碰香蕉20202| www.精华液| 国产精品日韩av在线免费观看 | 桃红色精品国产亚洲av| 色在线成人网| 夜夜躁狠狠躁天天躁| 久久人妻熟女aⅴ| 亚洲精品中文字幕在线视频| 精品午夜福利视频在线观看一区| 国产一区二区三区综合在线观看| 日韩精品中文字幕看吧| 精品熟女少妇八av免费久了| 精品国产一区二区三区四区第35| 中文字幕久久专区| 免费人成视频x8x8入口观看| 亚洲 国产 在线| 丰满人妻熟妇乱又伦精品不卡| 91成年电影在线观看| 久久国产精品影院| 亚洲成a人片在线一区二区| 国产精品免费一区二区三区在线| 黑人操中国人逼视频| 免费看十八禁软件| 亚洲美女黄片视频| 亚洲第一电影网av| 国产精品爽爽va在线观看网站 | 欧美激情久久久久久爽电影 | 侵犯人妻中文字幕一二三四区| 中文字幕另类日韩欧美亚洲嫩草| 国产伦一二天堂av在线观看| 一夜夜www| 国产精品国产高清国产av| 久久久久久久精品吃奶| 欧美精品亚洲一区二区| 一本久久中文字幕| 每晚都被弄得嗷嗷叫到高潮| 国产麻豆成人av免费视频| 最好的美女福利视频网| 国产成人欧美在线观看| 欧美黑人精品巨大| xxx96com| 天堂√8在线中文| 亚洲午夜理论影院| 国产伦人伦偷精品视频| 国产精品乱码一区二三区的特点 | av免费在线观看网站| 91国产中文字幕| 天天躁夜夜躁狠狠躁躁| 极品人妻少妇av视频| 国产真人三级小视频在线观看| 伦理电影免费视频| 欧美日本中文国产一区发布| 亚洲午夜理论影院| 国产成人精品无人区| 亚洲成人免费电影在线观看| 久99久视频精品免费| 午夜免费成人在线视频| 亚洲欧美精品综合久久99| 国产私拍福利视频在线观看| 精品久久久久久久人妻蜜臀av | 精品久久久久久成人av| 欧美老熟妇乱子伦牲交| 黄色毛片三级朝国网站| 久久久久久免费高清国产稀缺| 色精品久久人妻99蜜桃| 伊人久久大香线蕉亚洲五| 午夜久久久在线观看| 黄色视频不卡| www日本在线高清视频| 香蕉国产在线看| 欧美日本亚洲视频在线播放| 天堂影院成人在线观看| 嫩草影院精品99| 精品卡一卡二卡四卡免费| 18美女黄网站色大片免费观看| 日韩精品青青久久久久久| 成人18禁在线播放| 在线永久观看黄色视频| 国产精品野战在线观看| 99国产精品一区二区蜜桃av| 每晚都被弄得嗷嗷叫到高潮| 午夜福利成人在线免费观看| www.999成人在线观看| 欧美性长视频在线观看| 一本久久中文字幕| 亚洲专区中文字幕在线| 女人精品久久久久毛片| 久久精品国产亚洲av香蕉五月| 91精品国产国语对白视频| 欧美成人性av电影在线观看|