• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Comprehensive performance of a ball-milled La0.5Pr0.5Fe11.4Si1.6B0.2Hy/Al magnetocaloric composite

    2022-04-12 03:48:18JiaoHongHuang黃焦宏YingDeZhang張英德NaiKunSun孫乃坤YangZhang張揚(yáng)XinGuoZhao趙新國(guó)andZhiDongZhang張志東
    Chinese Physics B 2022年4期
    關(guān)鍵詞:英德張揚(yáng)

    Jiao-Hong Huang(黃焦宏) Ying-De Zhang(張英德) Nai-Kun Sun(孫乃坤) Yang Zhang(張揚(yáng))Xin-Guo Zhao(趙新國(guó)) and Zhi-Dong Zhang(張志東)

    1State Key Laboratory of Baiyunobo Rare Earth Resource Researches and Comprehensive Utilization,Baotou Research Institute of Rare Earths,Baotou 014030,China

    2School of Science,Shenyang Ligong University,Shenyang 110159,China

    3Shenyang National Laboratory for Materials Science,Institute of Metal Research,Chinese Academy of Sciences,Shenyang 110016,China

    Keywords: ball milling,mechanical behavior,room-temperature magnetic refrigeration,La(Fe,Si)13

    1. Introduction

    La(Fe,Si)13-based hydrides have demonstrated a great potential for applications in room-temperature magnetic refrigeration by virtue of their large magnetic entropy change, abundant constituent elements and cascading of magnetic transition temperature across the near room-temperature range by Mn substitution or adjustment of the hydrogen content.[1,2]However, due to the hydrogen embrittlement effect, La(Fe,Si)13-based hydrides can only exist in powder form, which poses a challenge for shaping these materials into bulk magnetocaloric refrigerants for various regenerator configurations.Recently, a metal-bonding approach was employed for bulk formation of La(Fe,Si)13hydrides and this had the simultaneous effect of enhancing the mechanical and thermal conduction properties.[3-5]Compared with other metal bonders,such as Cu,Bi,In and Sn,metal Al possesses a better comprehensive performance with a unique combination of strength and corrosion resistance,non-toxicity and low cost,and high ductility and thermal conductivity.[6]In first-order transition of giant magnetocaloric materials, substitution or addition of B could reduce the lattice volume discontinuities at the transition temperature, thereby reducing the hysteresis loss[7]and improving mechanical stability.[8]

    In our previous works,[9,10]a series of La(Fe,Si)13bulk hydrides were prepared by sintering under high hydrogen pressure. Unfavorably, in these sintered hydrides, a large number of micropores were distributed in the main phase matrix,substantially reducing the compressive strength and thermal conductivity. Considering these aforementioned factors,in this work we employ metal Al as a bonder to produce La0.5Pr0.5Fe11.4Si1.6B0.2Hy/Al bulk composites. Hydrogenation and compactness shaping of the magnetocaloric composites were fulfilled in one step via a high-pressure sintering process. The comprehensive performance associated with application in magnetic refrigeration was systematically explored.

    2. Experiment

    The parent compounds of LaFe11.4Si1.56and La0.5Pr0.5Fe11.4Si1.6B0.2were prepared by melting starting materials with purity of≥99.9 wt.% using a mediumfrequency induction furnace, as described in detail in Ref. [11]. The ball milling method was employed to homogeneously mix the La(Fe,Si)13-based compounds with metal Al according to weight ratios of 60:1, 10:1, and 5:1; the resultant composites are referred to as 1.6 wt.% Al, 9 wt.%Al, and 16.7% wt.% Al samples, respectively. The materials were sealed in a hardened steel vial in a high-purity argon atmosphere and then ball milled for 30 min. The ball-milled powders were cold-pressed into thin plates (12.6-mm diameter, 1-mm thick) and sintered for 10 min at 290°C in a high-pressure H2atmosphere of 50 MPa for hydrogenation and compaction. Subsequent annealing was conducted at 200°C for 2 h to reduce interface defects.Importantly,a highpressure atmosphere was retained during the whole annealing and cooling process to suppress hydrogen desorption.

    X-ray diffraction (XRD) analysis was carried out using Cu-Kαradiation in a Rigaku D/Max-γA diffractometer. The microstructure and elemental composition of the composites were characterized by means of a FEI Quanta 200 F scanning electron microscope (SEM) equipped with an energydispersed x-ray(EDX)spectrometer. The compressive strainstress curve was measured with a universal testing machine.The magnetic properties were measured with a superconducting quantum interference device magnetometer using the reciprocating sample option as the measurement mode. The adiabatic temperature changes ΔTadwere directly measured using a self-made setup.[11]A laser flash thermal conductivity apparatus(LFA 457)was employed for measuring the thermal conductivityλalong the vertical direction of the sintered thin plates by directly measuring the thermal diffusivity,D,and indirectly deriving the specific capacityCpusing a representative Cu sample.

    3. Results and discussion

    For a good compactness effect, with the premise of ensuring stability of the 1:13 main phase, the sintering temperature should be as high as possible. To explore the optimum sintering temperature, we first sintered the ballmilled LaFe11.4Si1.56/Al composite at 500°C for 2 h. The XRD pattern shows a strong combined reflection peak of the Fe3Al0.5Si0.5phase andα-Fe at~45°and an intermetallic phase, Fe2Al5, is also formed. Notably, upon hydrogenation the reflections of the cubic NaZn13-type structure unexpectedly shift to higher angles, indicating substantial decomposition of the 1:13 main phase (Fig. 1(a)). After checking the phase constitutions of the sintered composites, the optimum sintering temperature and time were determined to be 290°C and 10 min,respectively.Selected XRD patterns of asprepared La0.5Pr0.5Fe11.4Si1.6B0.2Hy/Al composites are shown in Fig. 1(b). For the 1.6 wt.% Al sample, the reflection peak of pure Al is not detected,and with increase in the Al content to 9 wt.%and 16.7 wt.%,an apparent reflection peak of pure Al is observed. Small reflection peaks were identified to correspond toθ-Al2O3and FeAl9Si3, indicating that Al is easy to oxidize in the ball milling process.

    Figures 2(a)-2(c)illustrate the fracture and surface morphology of the 9 wt.%Al sample. An EDX study was carried out in eight typical areasA-Hfor analyzing the Al distribution and phase compositions. The grey areaAon the fracture surface has a small concentration of Al (2.5 at.%) and a predominant concentration of the 1:13 main phase. The elemental compositions in the dark areaBare mostly Al (28 at.%)and O(71 at.%)with small concentration of Fe(0.6 at.%)and Si (0.2 at.%), indicating that this kind of grey area predominantly consists of Al2O3. AreaC, corresponding to a single large La0.5Pr0.5Fe11.4Si1.6B0.2Hyparticle, has the smallest Al concentration of 1.5 at.% and areasDandEcontain an Al concentration of 10 at.%-15 at.%. The surface morphology in Fig. 2(c) clearly shows three typical areas, a white areaF, a grey areaGand a dark grey areaH. The Al concentrations for areasFandGare 15 at.% and 1 at.%, respectively. AreaHcontains 41 at.%O and 13 at.%Al,indicating that this kind of dark grey area on the surface is mainly composed of Al2O3.

    Fig.1. Selected XRD patterns of(a)LaFe11.4Si1.56 and LaFe11.4Si1.56Hy/Al(4 wt.%)composite and(b)La0.5Pr0.5Fe11.4Si1.6B0.2Hy/Al composites.

    From the expanded view of fracture morphology(Fig.2(b))and surface morphology(Fig.2(c)),we can clearly observe that the particles have a large size distribution ranging from submicron to~10 microns with a predominant number of particles having sizes of several microns; this can be ascribed to the ball milling process. In contrast, La(Fe,Si)13-based bulk hydrides prepared by other methods generally have much larger particle sizes of tens of microns.[12,13]Together,the results of XRD and EDX analyses indicate that upon ball milling, aluminum oxides fill up the gaps and pure Al, Fe-Al-Si alloys andα-Fe are distributed in the 1:13 main phase particles;these cannot be individually identified.

    Fig.2. SEM images of(a)and(b)fracture morphology and(c)surface morphology of La0.5Pr0.5Fe11.4Hy/Al(9 wt.%).

    The distribution of ductile Al bonder in the 1:13 phase matrix as well as the fact that the gaps are filled up with Al2O3should remarkably enhance the mechanical and thermal conduction properties. As shown in Fig. 3, the compressive strength of 42 MPa for the 1.6 wt.% Al-bonded composite is in a similar range of magnitude to the sintered(36 MPa-46 MPa)[9]and epoxy-resin-bonded La(Fe,Si)13hydrides (52 MPa).[13]Moreover, these bulk hydrides prepared by different methods all show a similar shape of the stressstrain curve associated with the mechanical behavior of brittle materials. As the Al content increases to 9 wt.%, the stress-strain diagram demonstrates typical characteristic of ductile materials, with a long yielding stage beginning at the yield strength of~44 MPa followed by a strain hardening process. This ductile mechanical behavior has not previously been observed in La(Fe,Si)13composites bonded by other ductile metals such as In,[4]Sn,[14]and Bi,[15]and is also absent in a LaFe11Co0.8Si1.2/10 wt.% Al composite prepared by the hot-pressing method.[6]The present 16.7 wt.% Al sample demonstrates an ultimate compressive strength of 388 MPa,much higher than the values for the hotpressed LaFe11Co0.8Si1.2/10 wt.% Al composite (186 MPa)and 20 wt.% Cu-bonded La0.8Ce0.2(Fe0.95Co0.05)11.8Si1.2(248 MPa).[12]Consolidated alumina powder bodies show particle size-dependent plastic to brittle transition due to the fact that, for a given applied pressure, larger forces exist between larger particles as a result of the smaller number of contacts per unit volume.[16]Smaller wood particle sizes correspond to a higher ultimate compression strength in woodbased composites, as the larger surface area for smaller particles could act as an adhesive factor in the composite system and lead to a more efficient stress transfer.[17]It has been observed in SiC particle-reinforced Al-Cu alloy composites that a small particle size of several microns and uniform distribution of the reinforcing phase corresponded to the highest yield strength and ultimate tensile strength.[18]According to these previous results, the high compressive strength and mechanical behavior of ductile materials in the present La0.5Pr0.5Fe11.4Si1.6B0.2Hy/Al composite can be ascribed to the fact that the ball milling results in Al particles being distributed in the whole matrix as well as the small particle size of the composites.

    Fig. 3. Compressive stress-strain curves for La0.5Pr0.5Fe11.4Si1.6B0.2Hy/Al composites.

    Next, we evaluate the magnetocaloric properties of the Al-bonded composites. The thermomagnetic curves of the composites in a field of 0.01 T are shown in Fig. 4(a). The Curie temperature,TC,defined as the minimum of the dM/dTversusTcurves, is~320 K for the 1.6 wt.% Al sample and~324 K for the two samples with higher Al contents.The temperature dependence of ΔSm(T,B) calculated from the isothermal magnetization data (Figs. 4(b)-4(d)) using the Maxwell relationship is shown in Fig. 5(a). The maximum value of ΔSmof the La0.5Pr0.5Fe11.4Si1.6B0.2Hy/Al composites is reduced by approximately fivefold to~1.2 J/kg·K-1.5 J/kg·K for a magnetic field change of 1.5 T compared with(La,Pr)(Fe,Si)13-based hydrides.[19-21]This can be mainly ascribed to the small particle size[22]due to the ball milling process as well as the existence of non-magnetocaloric phases of Fe-Al-Si alloys and pure Al. The directly measured adiabatic temperature change ΔTadis represented in Fig.5(b). The peak value of ΔTadfor a field change of 1.5 T is 0.54 K at 322 K,0.48 K at 330 K and 0.45 K at 325 K for the 1.6 wt.% Al,9 wt.%Al,and 16.7 wt.%Al composites,respectively.

    Fig. 5. The temperature dependence of ΔSm (a) and ΔTad (b) for La0.5Pr0.5Fe11.4Si1.6B0.2Hy/Al composites.

    High thermal conductivity of magnetocaloric materials is desirable for application in a refrigerant device in order to afford efficient heat transfer to the heat exchange fluid.Hot-pressing or sintering cannot ensure uniform distribution of thermal conductive metal particles in La(Fe,Si)13hydride matrices, making theλvalues lower than expected, such as 2 W/K·m-3 W/K·m for the 4 wt.% Cu bonded,[3]5 W/K·m for the 15 wt.% silver-epoxy bonded[23]and 6.8 W/K·m for the 25 wt.%Sn bonded[14]composites.Figure 6 represents the thermal conductivity of La0.5Pr0.5Fe11.4Si1.6B0.2Hy/Al composites in the temperature range covering the phase transition temperature. Theλvalues in the paramagnetic state are generally a little higher than those in the ferromagnetic state. The room-temperatureλin the cross-plane direction of the sintered plates is 1.9 W/K·m, 3.7 W/K·m, and 11.1 W/K·m for the 1.6 wt.%,9 wt.%,and 16.7 wt.%Albonded composites,respectively,indicating that metal Al has a similar effect on thermal conductive improvement of La(Fe,Si)13hydrides to metal In.[4]A plastically deformed La(Fe,Si)13plate demonstrated significant anisotropic thermal conductivity in cross-plane and in-plane directions mainly due to the in-plane elongation ofα-Fe and the 1:13 phase grains caused by open-die forging.[24]The present composites prepared by ball milling and shortduration sintering do not exhibit an apparent anisotropic microstructure,so we expect no substantial directional difference inλfor the Al-bonded La-Fe-Si composites.

    Fig. 6. Thermal conductivity of La0.5Pr0.5Fe11.4Si1.6B0.2Hy/Al composites at temperatures across the phase transition temperature.

    4. Conclusion

    We have developed a novel route for the fabrication of La(Fe,Si)13hydride-based bulk materials via ballmilling mixing and sintering at high hydrogen pressure.Upon incorporating 9 wt.%-16.7 wt.% Al, the as-prepared La0.5Pr0.5Fe11.4Si1.6B0.2Hy/Al composites demonstrate the mechanical behavior of ductile materials with a yield strength of 44 MPa and ultimate strength of 269 MPa-388 MPa. The 16.7 wt.%Al-bonded composite has a high thermal conductivity of 11.1 W/K·m,which is comparable to the effect of metal In bonding. The ball milling process facilitates the homogeneous distribution of metal Al in the matrix, but simultaneously reduces the particle size even to the submicron range,leading to a substantial decrease in the magnetocaloric effect.

    Acknowledgments

    Project supported by the Open Research Project of State Key Laboratory of Baiyunobo Rare Earth Resource Researches and Comprehensive Utilization and the National Natural Science Foundation of China (Grant Nos. 51771197 and 52171187).

    猜你喜歡
    英德張揚(yáng)
    盧英德:百事可樂女王
    愛,無須張揚(yáng)
    小讀者(2021年2期)2021-03-29 05:03:48
    The Brief History of the Ancient Olympic Games
    魔高一丈 就要張揚(yáng) Ducati XDiavel
    車迷(2020年7期)2020-08-10 06:41:00
    凸顯理念,學(xué)也張揚(yáng)
    不與對(duì)手正面交鋒
    幸福(2019年11期)2019-05-13 09:44:34
    激戰(zhàn)長(zhǎng)空之英德怒戰(zhàn)
    對(duì)弗萊克斯納現(xiàn)代大學(xué)職能觀的理解——《現(xiàn)代大學(xué)論——美英德大學(xué)研究》讀后感
    低調(diào)而不張揚(yáng)的七都
    蘇州雜志(2016年6期)2016-02-28 16:32:18
    英德瓊影
    源流(2016年10期)2016-02-13 08:09:04
    国产激情偷乱视频一区二区| 蜜臀久久99精品久久宅男| 免费播放大片免费观看视频在线观看| 亚洲人成网站在线播| 亚洲av男天堂| 丝袜喷水一区| 国产高清有码在线观看视频| 久久精品人妻少妇| 日韩视频在线欧美| 人妻少妇偷人精品九色| 免费高清在线观看视频在线观看| 欧美高清成人免费视频www| 超碰97精品在线观看| 欧美日韩国产mv在线观看视频 | 波多野结衣巨乳人妻| 69人妻影院| 亚洲精品成人久久久久久| 久久久欧美国产精品| 成人性生交大片免费视频hd| 爱豆传媒免费全集在线观看| 搞女人的毛片| 成年免费大片在线观看| 69人妻影院| 美女主播在线视频| 九草在线视频观看| 蜜桃久久精品国产亚洲av| 69av精品久久久久久| 国产一区亚洲一区在线观看| 只有这里有精品99| 十八禁国产超污无遮挡网站| 精品久久久久久久末码| 国产精品日韩av在线免费观看| 蜜臀久久99精品久久宅男| 网址你懂的国产日韩在线| 真实男女啪啪啪动态图| 性色avwww在线观看| xxx大片免费视频| 久久99精品国语久久久| 成人高潮视频无遮挡免费网站| 欧美极品一区二区三区四区| 亚洲精品国产成人久久av| 中文欧美无线码| 国产黄片美女视频| 十八禁国产超污无遮挡网站| 国产精品一二三区在线看| 欧美激情在线99| 亚洲伊人久久精品综合| 成人欧美大片| 建设人人有责人人尽责人人享有的 | 身体一侧抽搐| 老师上课跳d突然被开到最大视频| 18禁在线无遮挡免费观看视频| 国产欧美另类精品又又久久亚洲欧美| 在现免费观看毛片| 美女大奶头视频| 九草在线视频观看| 成人美女网站在线观看视频| 亚洲va在线va天堂va国产| 日韩三级伦理在线观看| 大话2 男鬼变身卡| 日韩视频在线欧美| 成年免费大片在线观看| 国产免费视频播放在线视频 | 嫩草影院精品99| 最近中文字幕2019免费版| 午夜视频国产福利| 欧美高清性xxxxhd video| 免费看a级黄色片| 99热这里只有是精品50| 亚洲精品久久午夜乱码| 婷婷色综合大香蕉| 亚洲色图av天堂| 成人美女网站在线观看视频| 最近视频中文字幕2019在线8| 成人综合一区亚洲| 精品午夜福利在线看| 丝瓜视频免费看黄片| 亚洲精品日本国产第一区| 国产老妇伦熟女老妇高清| 成人无遮挡网站| 久久午夜福利片| 精品久久久久久久久av| 日韩中字成人| 日产精品乱码卡一卡2卡三| 国产91av在线免费观看| 国产视频内射| 大片免费播放器 马上看| 观看美女的网站| 搡老乐熟女国产| 国产精品人妻久久久影院| 男的添女的下面高潮视频| 高清午夜精品一区二区三区| 午夜视频国产福利| av在线老鸭窝| videos熟女内射| 极品教师在线视频| 久久久久性生活片| 少妇丰满av| 寂寞人妻少妇视频99o| 伊人久久精品亚洲午夜| 亚洲人成网站高清观看| 精品亚洲乱码少妇综合久久| 少妇熟女欧美另类| 国产亚洲精品久久久com| 国产av国产精品国产| 男女边吃奶边做爰视频| 在线免费观看的www视频| 美女大奶头视频| 白带黄色成豆腐渣| 特级一级黄色大片| 久久久欧美国产精品| 国产免费又黄又爽又色| 精品人妻一区二区三区麻豆| 又爽又黄无遮挡网站| 嫩草影院新地址| 日韩av免费高清视频| 高清av免费在线| 国产成人91sexporn| 成人国产麻豆网| 日产精品乱码卡一卡2卡三| 日日啪夜夜撸| 2022亚洲国产成人精品| 国产一级毛片七仙女欲春2| 高清午夜精品一区二区三区| 少妇高潮的动态图| 80岁老熟妇乱子伦牲交| 亚洲av不卡在线观看| 淫秽高清视频在线观看| 特级一级黄色大片| 黄色欧美视频在线观看| 亚洲av成人精品一区久久| 亚洲国产精品国产精品| 高清毛片免费看| 成人鲁丝片一二三区免费| 欧美丝袜亚洲另类| 久久韩国三级中文字幕| 久久精品综合一区二区三区| 亚洲伊人久久精品综合| 日韩精品有码人妻一区| 蜜臀久久99精品久久宅男| 国产黄色免费在线视频| 插逼视频在线观看| 久久鲁丝午夜福利片| 欧美变态另类bdsm刘玥| 青春草视频在线免费观看| 成人欧美大片| 赤兔流量卡办理| 免费少妇av软件| 又黄又爽又刺激的免费视频.| 亚洲在线自拍视频| 日本一本二区三区精品| 在线观看人妻少妇| 国产成人精品一,二区| 九九爱精品视频在线观看| 天堂影院成人在线观看| 成年女人在线观看亚洲视频 | 久久精品人妻少妇| 成人毛片60女人毛片免费| av网站免费在线观看视频 | 免费观看精品视频网站| 大又大粗又爽又黄少妇毛片口| 国产探花在线观看一区二区| 91精品一卡2卡3卡4卡| 午夜精品国产一区二区电影 | 国产精品国产三级国产av玫瑰| 久久精品久久久久久噜噜老黄| 99久久精品热视频| 日韩欧美三级三区| 日本猛色少妇xxxxx猛交久久| 综合色av麻豆| 久久久精品94久久精品| 久久久久久伊人网av| 国产欧美另类精品又又久久亚洲欧美| 国产精品一及| 免费看a级黄色片| 少妇人妻一区二区三区视频| 久久精品国产自在天天线| eeuss影院久久| 国内揄拍国产精品人妻在线| 久久这里只有精品中国| av国产免费在线观看| 日韩欧美精品v在线| 97超碰精品成人国产| 韩国高清视频一区二区三区| 国产美女午夜福利| 乱系列少妇在线播放| 国产精品女同一区二区软件| 国产成人精品婷婷| 一级毛片久久久久久久久女| 亚洲欧美日韩东京热| 18+在线观看网站| 成年女人在线观看亚洲视频 | 97超视频在线观看视频| 欧美日韩在线观看h| 国产黄频视频在线观看| 免费观看a级毛片全部| 亚洲成人中文字幕在线播放| 91av网一区二区| 国产熟女欧美一区二区| 麻豆成人av视频| 欧美激情国产日韩精品一区| 久久久久久久久久成人| 国产v大片淫在线免费观看| 久久精品国产亚洲网站| 激情五月婷婷亚洲| 免费看美女性在线毛片视频| 久久99热这里只频精品6学生| 久久99热这里只频精品6学生| 18禁在线播放成人免费| 欧美日韩视频高清一区二区三区二| 一个人免费在线观看电影| 99九九线精品视频在线观看视频| 亚洲精品国产成人久久av| av国产久精品久网站免费入址| 丰满少妇做爰视频| 成人午夜高清在线视频| 床上黄色一级片| 亚洲欧美日韩卡通动漫| 视频中文字幕在线观看| 亚洲自偷自拍三级| 一级片'在线观看视频| 国国产精品蜜臀av免费| 少妇裸体淫交视频免费看高清| 18禁在线无遮挡免费观看视频| 久久久色成人| 99热6这里只有精品| 男人狂女人下面高潮的视频| 久久久久久久久久久丰满| 久99久视频精品免费| 欧美3d第一页| 别揉我奶头 嗯啊视频| 可以在线观看毛片的网站| 免费人成在线观看视频色| 亚洲丝袜综合中文字幕| 亚洲无线观看免费| 国产成人午夜福利电影在线观看| 欧美激情国产日韩精品一区| 日韩,欧美,国产一区二区三区| 亚洲av中文字字幕乱码综合| 免费少妇av软件| 成人一区二区视频在线观看| 久久久久久久久久成人| 一级爰片在线观看| 国产色婷婷99| 成人一区二区视频在线观看| 欧美人与善性xxx| 日本免费在线观看一区| 成人毛片60女人毛片免费| 国产黄色免费在线视频| 黄色配什么色好看| 精品久久久久久久人妻蜜臀av| 观看免费一级毛片| 天堂网av新在线| 久久这里有精品视频免费| 免费av观看视频| 成人高潮视频无遮挡免费网站| 午夜福利在线观看免费完整高清在| www.av在线官网国产| 高清视频免费观看一区二区 | 少妇高潮的动态图| 日本-黄色视频高清免费观看| 日韩精品青青久久久久久| 五月伊人婷婷丁香| 亚洲综合色惰| 一级毛片电影观看| 亚洲熟妇中文字幕五十中出| 久久久精品94久久精品| 成人午夜高清在线视频| 男人和女人高潮做爰伦理| 日本黄色片子视频| 51国产日韩欧美| 建设人人有责人人尽责人人享有的 | 草草在线视频免费看| 99久久精品热视频| 国产亚洲午夜精品一区二区久久 | 极品少妇高潮喷水抽搐| 99久久人妻综合| 国产探花在线观看一区二区| 18+在线观看网站| .国产精品久久| 一区二区三区高清视频在线| 少妇被粗大猛烈的视频| 少妇被粗大猛烈的视频| 亚洲精品久久午夜乱码| 久久久色成人| 非洲黑人性xxxx精品又粗又长| 成人亚洲精品av一区二区| 成人一区二区视频在线观看| 亚洲av二区三区四区| 一级毛片黄色毛片免费观看视频| 欧美xxⅹ黑人| 少妇被粗大猛烈的视频| 国产一区二区亚洲精品在线观看| 欧美一区二区亚洲| 丰满乱子伦码专区| 一区二区三区免费毛片| 亚洲精品国产av成人精品| 午夜激情久久久久久久| 亚洲欧洲日产国产| av在线播放精品| 精品一区二区三区视频在线| 亚洲av不卡在线观看| 日韩欧美一区视频在线观看 | 成人漫画全彩无遮挡| 一区二区三区四区激情视频| 美女cb高潮喷水在线观看| 国产麻豆成人av免费视频| 亚洲国产精品国产精品| 国产中年淑女户外野战色| 国产 一区精品| 爱豆传媒免费全集在线观看| 日日干狠狠操夜夜爽| 禁无遮挡网站| 国产69精品久久久久777片| 国产麻豆成人av免费视频| 97热精品久久久久久| 蜜桃亚洲精品一区二区三区| 高清在线视频一区二区三区| 欧美高清成人免费视频www| 大香蕉久久网| 身体一侧抽搐| 久久99精品国语久久久| 国产精品人妻久久久影院| 最近中文字幕高清免费大全6| 国产在视频线精品| 国产精品美女特级片免费视频播放器| 国产美女午夜福利| 男女那种视频在线观看| 亚洲最大成人中文| 成人毛片60女人毛片免费| 国产真实伦视频高清在线观看| 搡女人真爽免费视频火全软件| 亚洲精品乱久久久久久| 噜噜噜噜噜久久久久久91| 性色avwww在线观看| 免费在线观看成人毛片| 亚洲图色成人| 建设人人有责人人尽责人人享有的 | 亚洲国产av新网站| 久久精品夜夜夜夜夜久久蜜豆| 爱豆传媒免费全集在线观看| 日韩av免费高清视频| 少妇的逼好多水| 国精品久久久久久国模美| 好男人在线观看高清免费视频| 美女高潮的动态| 国产久久久一区二区三区| 国产亚洲av片在线观看秒播厂 | 国产伦在线观看视频一区| 欧美极品一区二区三区四区| 亚洲精品456在线播放app| 免费看日本二区| 中文字幕免费在线视频6| 亚洲四区av| 一边亲一边摸免费视频| 九九在线视频观看精品| 国产国拍精品亚洲av在线观看| 久久久久性生活片| 伦理电影大哥的女人| 乱码一卡2卡4卡精品| 狂野欧美白嫩少妇大欣赏| 亚洲国产成人一精品久久久| 亚洲人成网站在线播| 成人av在线播放网站| 中文字幕制服av| 99久久人妻综合| 国产欧美日韩精品一区二区| 国产男女超爽视频在线观看| 久久久亚洲精品成人影院| 日韩欧美 国产精品| 3wmmmm亚洲av在线观看| 最近中文字幕高清免费大全6| 99热这里只有是精品在线观看| 别揉我奶头 嗯啊视频| 男人狂女人下面高潮的视频| 中文字幕久久专区| av福利片在线观看| 最新中文字幕久久久久| 日本爱情动作片www.在线观看| 国产乱来视频区| 久久99热6这里只有精品| 久久精品国产鲁丝片午夜精品| 国产精品不卡视频一区二区| av在线蜜桃| 久久久成人免费电影| 亚洲精品影视一区二区三区av| 亚洲精品影视一区二区三区av| 久久久久久久大尺度免费视频| 精品少妇黑人巨大在线播放| 成年版毛片免费区| 亚洲美女视频黄频| 国产真实伦视频高清在线观看| 我的老师免费观看完整版| 久热久热在线精品观看| 精品少妇黑人巨大在线播放| 久久久亚洲精品成人影院| 99热这里只有是精品在线观看| 国产 一区 欧美 日韩| 黄色配什么色好看| 黄片无遮挡物在线观看| 听说在线观看完整版免费高清| 久久久久性生活片| 亚洲精品,欧美精品| 80岁老熟妇乱子伦牲交| 人妻夜夜爽99麻豆av| 亚洲精品乱久久久久久| 久久久久九九精品影院| 18禁动态无遮挡网站| 波多野结衣巨乳人妻| 中文天堂在线官网| 久久精品综合一区二区三区| 国产片特级美女逼逼视频| 亚洲av不卡在线观看| 日日摸夜夜添夜夜添av毛片| 日韩精品有码人妻一区| 六月丁香七月| 精品99又大又爽又粗少妇毛片| 免费大片黄手机在线观看| 亚洲国产精品sss在线观看| 免费大片18禁| 秋霞在线观看毛片| 久久久精品免费免费高清| 国产午夜福利久久久久久| 美女黄网站色视频| 亚洲精品国产av成人精品| 日本一本二区三区精品| 在线天堂最新版资源| 日韩制服骚丝袜av| 一区二区三区四区激情视频| 亚洲精品国产av蜜桃| av福利片在线观看| 亚洲av男天堂| 毛片女人毛片| 天堂影院成人在线观看| 人体艺术视频欧美日本| 麻豆国产97在线/欧美| 亚洲成人久久爱视频| 日韩在线高清观看一区二区三区| 欧美日韩在线观看h| 日韩av在线大香蕉| 又爽又黄a免费视频| 欧美不卡视频在线免费观看| 日本色播在线视频| 久久97久久精品| 高清在线视频一区二区三区| 国产一级毛片七仙女欲春2| 爱豆传媒免费全集在线观看| 中文乱码字字幕精品一区二区三区 | 国产精品爽爽va在线观看网站| 国产精品伦人一区二区| 岛国毛片在线播放| 亚洲精品色激情综合| 男人和女人高潮做爰伦理| 夜夜爽夜夜爽视频| 亚洲精品aⅴ在线观看| 69av精品久久久久久| 日日啪夜夜爽| 欧美三级亚洲精品| 国产视频首页在线观看| 成人午夜高清在线视频| 午夜久久久久精精品| 日韩欧美 国产精品| 欧美性猛交╳xxx乱大交人| 中文字幕亚洲精品专区| 日日啪夜夜爽| 国产精品久久久久久久电影| 久久久精品欧美日韩精品| 中文字幕亚洲精品专区| 日韩国内少妇激情av| 亚洲av免费在线观看| 好男人在线观看高清免费视频| 亚洲人成网站高清观看| 97人妻精品一区二区三区麻豆| 性色avwww在线观看| 久久这里有精品视频免费| 九九久久精品国产亚洲av麻豆| 精品欧美国产一区二区三| 黄色配什么色好看| 色吧在线观看| 嘟嘟电影网在线观看| 免费观看av网站的网址| 麻豆国产97在线/欧美| 晚上一个人看的免费电影| 成人毛片a级毛片在线播放| 青青草视频在线视频观看| 亚洲天堂国产精品一区在线| ponron亚洲| 偷拍熟女少妇极品色| 国产一区有黄有色的免费视频 | 美女脱内裤让男人舔精品视频| 丰满乱子伦码专区| 久久久久久久大尺度免费视频| 成人亚洲欧美一区二区av| 国产成年人精品一区二区| 亚洲欧美一区二区三区国产| 国产一区二区三区综合在线观看 | 麻豆av噜噜一区二区三区| 麻豆成人av视频| 久久久久久久久大av| 欧美xxxx性猛交bbbb| 特级一级黄色大片| 精品国产三级普通话版| 国产亚洲av嫩草精品影院| 少妇熟女aⅴ在线视频| 国国产精品蜜臀av免费| videos熟女内射| 国产精品综合久久久久久久免费| 国产片特级美女逼逼视频| 网址你懂的国产日韩在线| a级毛片免费高清观看在线播放| 内地一区二区视频在线| ponron亚洲| 久久国内精品自在自线图片| 日韩在线高清观看一区二区三区| 日日摸夜夜添夜夜添av毛片| 亚洲成人中文字幕在线播放| 婷婷色综合www| 日韩成人伦理影院| 成年女人看的毛片在线观看| 舔av片在线| 51国产日韩欧美| 国产精品一区二区性色av| 久久97久久精品| 免费少妇av软件| 国产黄片美女视频| 国产黄a三级三级三级人| 男人狂女人下面高潮的视频| 国产高清不卡午夜福利| 久久久成人免费电影| 国产精品国产三级国产专区5o| 国产熟女欧美一区二区| 淫秽高清视频在线观看| 天堂影院成人在线观看| 亚洲av国产av综合av卡| 男插女下体视频免费在线播放| 人人妻人人澡人人爽人人夜夜 | 亚洲国产精品专区欧美| 精品99又大又爽又粗少妇毛片| 久久热精品热| 亚洲国产最新在线播放| 久久亚洲国产成人精品v| 七月丁香在线播放| 啦啦啦啦在线视频资源| 成年女人看的毛片在线观看| 欧美xxxx黑人xx丫x性爽| 色5月婷婷丁香| 精品午夜福利在线看| 午夜福利成人在线免费观看| 91午夜精品亚洲一区二区三区| 男人爽女人下面视频在线观看| 看免费成人av毛片| 国产亚洲最大av| 观看免费一级毛片| 美女主播在线视频| 亚洲成人一二三区av| 1000部很黄的大片| 性插视频无遮挡在线免费观看| 欧美日本视频| 亚洲av.av天堂| 国产在视频线在精品| 亚洲精品日韩av片在线观看| 国产黄色视频一区二区在线观看| 国产男女超爽视频在线观看| 91久久精品国产一区二区三区| 精品久久久久久久久久久久久| 深夜a级毛片| 国产黄色视频一区二区在线观看| 最近中文字幕2019免费版| 国产精品爽爽va在线观看网站| 真实男女啪啪啪动态图| 国产一区二区在线观看日韩| 久久精品夜色国产| 免费观看在线日韩| 国产高清有码在线观看视频| 亚洲丝袜综合中文字幕| 少妇丰满av| 国产乱来视频区| 街头女战士在线观看网站| 午夜爱爱视频在线播放| 精品国产露脸久久av麻豆 | 欧美xxxx黑人xx丫x性爽| 在线播放无遮挡| 亚洲精品日韩av片在线观看| 亚洲国产色片| 国产av码专区亚洲av| 日日干狠狠操夜夜爽| 国产亚洲精品av在线| 免费观看a级毛片全部| 如何舔出高潮| 国产av在哪里看| 狂野欧美白嫩少妇大欣赏| 国产黄色免费在线视频| 99热这里只有是精品在线观看| 人人妻人人澡欧美一区二区| 51国产日韩欧美| 只有这里有精品99| 精品人妻熟女av久视频| 欧美区成人在线视频| 日本欧美国产在线视频| 91午夜精品亚洲一区二区三区| 久久精品国产亚洲网站| 少妇人妻一区二区三区视频| 国产精品久久久久久久久免| 26uuu在线亚洲综合色| 极品少妇高潮喷水抽搐| 日韩欧美三级三区| 免费人成在线观看视频色| 亚洲最大成人av| 国产成人一区二区在线| 免费观看无遮挡的男女| 成人亚洲欧美一区二区av| 免费观看的影片在线观看| 亚洲激情五月婷婷啪啪| 超碰97精品在线观看| 国产 一区精品|