• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Doublet luminescence due to coexistence of excitons and electron-hole plasmas in optically excited CH3NH3PbBr3 single crystal

    2022-04-12 03:47:28JieWang王杰GuangZheMa馬廣哲LuCao曹露MinGao高敏andDongShi石東
    Chinese Physics B 2022年4期
    關(guān)鍵詞:王杰高敏

    Jie Wang(王杰) Guang-Zhe Ma(馬廣哲) Lu Cao(曹露) Min Gao(高敏) and Dong Shi(石東)

    1School of Optoelectronic Science and Engineering,University of Electronic Science and Technology of China,Chengdu 610054,China

    2School of Materials and Energy,University of Electronic Science and Technology of China,Chengdu 610054,China

    Keywords: semiconductor,crystal,surface,luminescence

    1. Introduction

    Research interests in metal halide perovskite semiconductors has been rekindled following the breakthroughs in solar-to-electric power conversion efficiencies achieved via the use of the prototypical hybrid methylammonium lead trihalide perovskites, CH3NH3PbX3(X= Br, or I), in photovoltaic cells.[1-3]A couple of solution-processed material processing protocols,including the well matured one-step and sequential spin coating,[4,5]strongly backgrounded the fast development of perovskite photovoltaics in the past decade.[6-9]More recently,while perovskite photovoltaic technologies are approaching the edge of commercialization,[10]other applications of the halide perovskites for lasing,[11,12]light-emitting diodes,[13,14]photodetectors,[15,16]x-ray detectors[17,18]were lightened simultaneously.

    Driven by the pursuit for ever-increasing device performances, intensive research efforts were devoted to improved solution-processed materials processing by scientist with diverse academic backgrounds.[19-22]Most remarkable among the advances in material processing was the growth of high-quality single crystals that enabled improved understanding on the optoelectronic superiorities of halide perovskites.[23,24]To the delight of fundamental researchers interested in catching the intrinsic material physics, room-temperature solution-grown CH3NH3PbBr3and CH3NH3PbI3single crystals demonstrated extraordinarily low trap-sate densities that are superior to a wide array of established inorganic semiconductors.[23]Therefore, the extrinsic effects associated with defects, surface roughness and midgap states get largely suppressed when running spectroscopic characterizations.[25-27]Indeed, new optical phenomena shown by high-quality halide perovskite single crystals other than their polycrystalline thin-film counterparts are being observed.[28]One of the most intriguing phenomena is the occurrence of doublet luminescence shown the front-face PL from high-quality single crystals of the most studied prototypical CH3NH3PbBr3and CH3NH3PbI3perovskites.[23,28,29]Although repeatedly observed,the underlying physical mechanism that leads to the occurrence of such doublet PL remains poorly understood. A crystal-clear elucidation on the physical origin of the doublet PL is an outstanding quest,in view of its direct consequence on diverse optoelectronic functionalities.

    We were thus motivated to revisited the spectroscopic properties shown by one of the most studied prototypical hybrid metal halide perovskites, CH3NH3PbBr3, in its single crystal form. Practically,single-crystal samples with variable surface roughness were prepared and used for spectroscopic characterizations. By interpreting the spectroscopic data according the established physical theorems in semiconductor optics, we figured out the physical origin of the doublet luminescence, i.e., the coexistence of surface-specific excitons and electron-hole plasma inside the crystal bulk of optically excited CH3NH3PbBr3single crystal.

    2. Materials and methods

    2.1. Materials

    The two CH3NH3PbBr3perovskite precursors,CH3NH3Br and PbBr2were purchased from Xi’an Polymer Light Technology Corp.The solvent, N, Ndimethylformamide (DMF) was purchased from Shanghai Titan Scientific Co.,Ltd.

    2.2. Methods

    2.2.1. Crystallization

    Room-temperature slow solvent evaporation from the precursors’ solution in DMF yielded high-quality CH3NH3PbBr3single crystals. In particular, PbBr2and CH3NH3Br (1:1 by molar~1.0 M) were dissolved in DMF in screw capped vials, stirred for 3 hours, filtered through a syringe filter(?=0.45μm),and eventually yields a colorless and transparent solution. Then, the solvent was allowed to evaporated out of the solution phase at room temperature and 1.5 atm in a nitrogen-filled gloved box. The crystallization procedure is schematically shown in Fig.1(a).

    Fig.1. (a)Schematic diagram of the crystallization processes. Yellow sphere represents CH3NH+3, blue sphere represents Pb2+, pink sphere represents Br-. (b)Experimental powder XRD profile of CH3NH3PbBr3 single crystal ground into powders. (c)Photograph of one piece of CH3NH3PbBr3 single crystal with ~5 mm dimensions.

    2.2.2. Structural and spectroscopic characterizations

    The phase purity of the as-grown CH3NH3PbBr3single crystals was confirmed by x-ray diffraction(XRD)which can give detailed lattice information. The diffractometer,Maxshima XRD-7000 that equips with the standard Cu-Kα1excitation radiation source and a diffracted beam monochromator, was used. The surface morphologies of the as-grown pristine single crystals were characterized by Asylum MFP-3D atomic force microscopy(AFM).The absorbance of highly transparent CH3NH3PbBr3single crystals was recorded in a transmission mode using Shimadzu UV-2600 spectrometer.The front-face steady-state PL and time-resolved photoluminescence (TRPL) were recorded by FluoTime 300 fluorometer(PicoQuant)equipped with a time-correlated single photon counting(TCSPC)detector. The crystal sample was photoexcited by a picosecond pulsed diode laser(PicoHarp, LDH-DC-405M,exciting at 400 nm,repetition rate: 0.2 MHz).

    3. Results and discussion

    Figure 1(a) schemes the crystallization procedure via slow solvent evaporation out of the precursor (PbBr2and CH3NH3Br, 1:1 by molar) solution in DMF. Slow solvent evaporation at room temperature allows for balanced ionic incubation in the solution phase, whereby freely solvated Pb2+and Br-ions self-assemble into the energetically more stable octahedral corrodinates,[PbX6]4-. Once crystallization starts when both precursors saturates along with solvent evaporation,the solution phase remains invariable in concentration afterwards. This leads to invariable stoichiometric conditions surrounding the enlarging crystal surfaces all around. In this scenario,by gingerly screwing down the cap without causing too much disturbance,freshly incubated perovskite single crystals would be obtained. In the presence of passvation by the constituent ions in the solution, the crystal surface is expected to be characterized by naturally orientated surface dangling bonds.

    The crystal phase purity of the room-temperature grown single crystals was confirmed by powder XRD. A random batch of the as-grown single crystals were collected, grinded into powders, and then mounted in the sample holder of the diffractometer. The collected XRD data was shown in Fig.1(b). Characteristic diffractions at 2θ=15.1°,30.2°,and 33.8°, which are assigned to the characteristic (001), (002),and (210) planes of the cubic CH3NH3PbBr3single crystal,are observed.[3]All diffractions were precisely assigned to the its well-known room-temperature cubic lattice symmetry,indicating crystal phase purity. Figure 1(c) shows a representative photograph of one piece of the as-grown pristine CH3NH3PbBr3single crystal. Notably,the sharp edges of the regular square shapes nicely reflect its cubic crystal symmetry.

    The surface morphologies of freshly grown pristine CH3NH3PbBr3single crystals were characterized by AFM.One best-case top-view morphology showing rather smooth surface and least density of surface nanoparticles is shown in Fig. 2(a). One moderate-case and one worst-case morphologies showing increased surface roughness are selectively provided in Figs.2(b)and 2(c),respectively.--

    Fig.2. (a)-(c)Pristine surface morphologies of three CH3NH3PbBr3 single crystal samples viewed under AFM. (d)-(f) Front-face PL spectra corre sponding to the crystal surface morphologies shown in(a)-(c),respectively.

    When recording the luminescence spectra generated by front-face photoexcitation, the illuminated surface was oriented about 30°from the incident excitation beam. In this way, the incident light got distributed over large surface area and moreover,strong reflection of light entering the emission monochromator was avoided.[31]The collected PL spectra as a function of photon energy with two components were shown in Figs. 2(d)-2(f) for each case. Notably, the high-energy PL component peaks at 2.26 eV and the low-energy one at 2.15 eV.The peak positions of both components remain invariable regardless of their relative intensities. Similar doublet PL was also observed for high-quality CH3NH3PbI3single crystal in previous studies.[28]Interestingly,the high-energy PL component augments dramatically along with increased surface roughness, indicating that the high-energy PL is attributable to surface-specific emission,while the low-energy PL component is attributable to bulk-specific luminescence.

    We further found that by having a piece of high-quality single crystal kept in the saturated mother solution that contains abundant constituent ions,the low-energy PL component became significantly augmented over the high-energy one. In this case, a basically mono-peak PL with asymmetric spectral line-shape, as shown in Fig. 3(a), was observed. The mono-component bulk-dominated PL,peaking at 2.15 eV,carries a long PL tail that extends toward lower photon energy.In addition, a full width at half-maximum (FWHM) value,?!?5 meV,is determined. In general,every solid has a surface connecting its bulk to the outer world. For the case with a high-quality CH3NH3PbBr3single crystal, an ideal crystal surface is expected to be an atomically flat surface that carries abundant dangling bonds orienting naturally along the lattice axis without causing lattice deviations and subsequent midgap states formation. To maintain the natural orientation of the dangling bonds, passivation - most preferred by the constituent ions from the outer surroundings over the crystal surface-is required.[32,33]Otherwise,structural deviation at the lattice peripheries are inevitable. In our case, the precursor ions in the colorless saturated mother solution help complete the octahedral coordination at the perovskite lattice periphery and thereby suppress structural distortions. The diagram shown in Fig.3(b)schematically illustrates the passivation effect of the ion-abundant mother solution.

    The occurrence of the asymmetric bulk-PL from highquality CH3NH3PbBr3single crystal is a universal phenomenon as it has been repeatedly observed previously.[23,34]In this regard, the physical mechanism that leads to the occurrence of the asymmetric PL should be,in principle,rooted in the framework of the intrinsic material physics. The direct bandgap nature defines that the radiative recombination within the lattice bulk of CH3NH3PbBr3single crystal is an inverse process of ligth absorption, which can be expressed via the established van Roosbroeck-Shockley relation[35,36]

    In this expression,γspon(E) represents the spontaneous emission from the bandedge, and its spectral line-shape is, therefore, correlated with the distribution of the electronic density of states(DOS)at the bandedge. One accessible spectroscopic parameter related to the bandedge DOS is the dimensionless steepness factor,σ, the value of which can be directly determined from the absorption edge according to its correlation with the absorption coefficient,α(E),via

    Figures 3(c)-3(e)show the simulatedγspon(E)corresponding toσ=1.5,2.0,and 3.0 respectively. In this scenario,the lineshape of spontaneous emission spectrum is subjected to the value ofσ.The slope ofγspon(E)at the high-energy side is determined bykBT,while at the low-energy side it is determined bykBT/(σ-1).In Fig.3(c),the slope at low-energy region is smaller than that at high-energy region,therefore,the observed PL spectrum is asymmetric and is characterized by a long tail that extends to lower energies. Whenσ=2.0, the simulated spectrum becomes symmetric as displayed in Fig.3(d). When increasingσto 3.0, the simulated spectrum becomes asymmetric again,but it is characterized by a long tail that extends toward higher energies as shown in Fig.3(e).the lowerEBthan the room-temperature thermal energy,kBT~26 meV,it is within conceivable expectation that the concentration of excitons in optically excited CH3NH3PbBr3singlecrystal bulk should be sufficiently low because of thermal dissociation. Thus, many-body electron-hole (e-h) plasma occurs in the excited phase. On the other hand, it has been repeatedly confirmed that the surface-abundant polycrystalline thin film shows much stronger excitonic feature, and this indicates the co-existence of excitons and e-h plasmas.[39]In a general scenario, the crystal surface behaves as giant lattice defects whereby excitons are apt to adhere.

    Fig. 3. (a) Asymmetric bulk-specific PL spectrum. The peak position and the FWHM are also reported. Inset: photograph of solution-passivated CH3NH3PbBr3 single crystal. (b) Schematic crystal lattice diagram showing largely suppressed deviation when passivated in mother solution. (c)-(e)Simulated bandedge emission spectral line-shapes corresponding to σ =1.5,2.0,and 3.0,respectively.

    Fig.4. (a)Normalized logarithm absorbance(blue markers)as a function of photon energy. The black solid line shows the linear fti to the linear region of absorption tail,which yields EU=18 meV.(b)Absorbance data(grey makers) along with Elliott fti (black solid line) overlaid, the blue and the pink areas reflect the contributions to the absorbance from a sum of discrete excitonic states and band-to-band continuum excitations,respectively.

    Based on the above-made discussions, it is clear that the asymmetric bulk luminescence with long tail that extends to lower energies corresponds toσvalues between 1.0 and 2.0.This is equivalent to set the values of the Urbach energy,EU, between 26 meV and 13 meV, according to their relationship,σ=kBT/EU. To confirm this point, we recorded and plotted the logarithmic absorbance against photon energies as shown in Fig. 4(a). Linear fit of the absorption edge yieldsEU= 18 meV, which corroborates our attribution of the low-energy PL to the intrinsic bulk emission from bandedge states. Although the absorbance of the CH3NH3PbBr3single crystal does not develop into a sharp excitonic peak as that observed in its polycrystalline thin film counterpart,the absorbance data was fitted well with the established Elliott formula.[37,38]The absorbance data along with the Elliott fit were shown in Fig.4(b). By performing the Elliott fit,contributions to the overall absorption intensity from discrete excitonic states below the gap and band-to-band continuum transitions are decoupled. As shown in Fig. 4(b), absorption by a sum of discrete excitons peaking atEX=2.194 eV and band gap energy ofEG=2.206 eV were determined. This in turns leads to the determination of the exciton binding energy,EB=12 meV, according toEB=EG-EX. In view of

    The co-existence of excitons and e-h plasmas in optically excited CH3NH3PbBr3single crystal was further verified by TRPL measurement. Figure 5 shows the TRPL traces probed under picosecond pulsed photoexcitation at 400 nm.Apparently, the TRPL traces can be fitted well with a biexponential function. The bi-exponent fit (blue solid line)was plotted together with the TRPL traces in Fig. 5. The close to unity value of the reduced chi square,χ2R, and the symmetric distribution of the standard deviation,δk, jointly indicate the accpetalbe goodness-of-fit (GOF). Two lifetime components,τ1~2791±166 ns representing the lifetime of diffusive e-h plasma andτ2~179±81 ns representing the liftime of surface-specific excitons, were obtained. In addition, the remarkably low intensity ratio ofτ2further reflects sufficiently low density of excitons in optically excited highquality CH3NH3PbBr3single crystal.

    Fig.5. (a)TRPL traces(grey)recorded at 2.15 eV for CH3NH3PbBr3 single crystal along with bi-exponential fit (blue solid line). The yielded two lifetime components and the reduced chi-square are also reported. (b)Standard deviations traced along with bi-exponential fit,showing high-level GOF.

    4. Conclusion and outlook

    In summary,we developed a room-temperature solutionbased crystallization that affords high-quality CH3NH3PbBr3single crystal with atomically flat pristine surfaces. The largely suppressed pristine crystal surface roughness enabled us to observe the unmasked intrinsic luminescence with asymmetric spectral line-shape from the crystal bulk. The agreement between the experimental spectroscopic data and theoretical simulations validates our attribution for the doublet luminescence. Our study confirms that the low-energy PL component with asymmetric spectral line-shape is only attributable to the intrinsic bulk emission from the band-edge states, while the high-energy PL component is attributable to surface-specific emission by excitons.Coexistence of excitons and e-h plasmas were indicated by plausible spectroscopic features. Further efforts aimed at revealing more in-depth intrinsic material physics based on high-quality single-crystal material platform are strongly encouraged.

    Acknowledgment

    Project supported by the National Natural Science Foundation of China(Grant No.51872038).

    猜你喜歡
    王杰高敏
    “一不怕苦二不怕死”的解放軍戰(zhàn)士王杰
    中藥飲片調(diào)劑中審方差錯(cuò)情況分析及改進(jìn)措施
    Probing thermal properties of vanadium dioxide thin films by time-domain thermoreflectance without metal film?
    一個(gè)新的三元不等式鏈
    代表中國(guó)
    王杰 中共中央黨校教授
    王杰:國(guó)學(xué)與為政智慧
    商周刊(2018年17期)2018-08-31 02:20:12
    The optimization for the eradication of Ebola
    1例白血病合并痛風(fēng)繼發(fā)高敏綜合征(DHS)的護(hù)理
    背著同學(xué)去上學(xué)
    亚洲电影在线观看av| 成人特级黄色片久久久久久久| 黑人巨大精品欧美一区二区mp4| 久久精品91蜜桃| 此物有八面人人有两片| 一个人免费在线观看的高清视频| 免费人成视频x8x8入口观看| 免费在线观看亚洲国产| 韩国av一区二区三区四区| 欧美亚洲日本最大视频资源| 岛国视频午夜一区免费看| 最近最新免费中文字幕在线| 欧美中文综合在线视频| 久热爱精品视频在线9| av天堂在线播放| 美女高潮到喷水免费观看| 成人手机av| 在线播放国产精品三级| 国产黄片美女视频| 国产高清激情床上av| 欧美日韩亚洲综合一区二区三区_| 欧美成人一区二区免费高清观看 | 99精品欧美一区二区三区四区| 久久国产乱子伦精品免费另类| 久9热在线精品视频| 国产精品精品国产色婷婷| 日韩欧美免费精品| 久久天躁狠狠躁夜夜2o2o| 亚洲中文字幕日韩| 亚洲国产精品合色在线| 看片在线看免费视频| 中文资源天堂在线| 手机成人av网站| 成年女人毛片免费观看观看9| 琪琪午夜伦伦电影理论片6080| 一个人免费在线观看的高清视频| 黄色视频,在线免费观看| 欧美在线一区亚洲| 亚洲成av人片免费观看| 国产日本99.免费观看| 老司机福利观看| svipshipincom国产片| 天天一区二区日本电影三级| 999久久久精品免费观看国产| 亚洲欧美一区二区三区黑人| 男女午夜视频在线观看| 欧美三级亚洲精品| 一进一出抽搐gif免费好疼| 午夜视频精品福利| 男女午夜视频在线观看| 久久精品国产亚洲av香蕉五月| 国产精品久久久久久精品电影 | 麻豆av在线久日| 一个人观看的视频www高清免费观看 | 中文字幕人妻丝袜一区二区| or卡值多少钱| 色精品久久人妻99蜜桃| 黄色片一级片一级黄色片| 欧美中文综合在线视频| 精品少妇一区二区三区视频日本电影| 精华霜和精华液先用哪个| 免费女性裸体啪啪无遮挡网站| 日本一区二区免费在线视频| 91在线观看av| 搡老岳熟女国产| 国产亚洲精品久久久久5区| www国产在线视频色| 欧美 亚洲 国产 日韩一| 波多野结衣高清无吗| 欧美日韩中文字幕国产精品一区二区三区| 午夜老司机福利片| 久久精品亚洲精品国产色婷小说| 一级a爱片免费观看的视频| 欧美激情高清一区二区三区| 久久草成人影院| 亚洲va日本ⅴa欧美va伊人久久| 国产三级在线视频| 色播亚洲综合网| 日本三级黄在线观看| 777久久人妻少妇嫩草av网站| 国产成人系列免费观看| 又大又爽又粗| 国产成人av激情在线播放| 久久婷婷成人综合色麻豆| 变态另类丝袜制服| 国产成人av教育| 人人妻人人看人人澡| 国产男靠女视频免费网站| 国产一区二区三区在线臀色熟女| 久久久水蜜桃国产精品网| 欧美乱妇无乱码| 亚洲欧美日韩高清在线视频| 久久久久亚洲av毛片大全| 亚洲av日韩精品久久久久久密| 别揉我奶头~嗯~啊~动态视频| 亚洲人成网站高清观看| 久久香蕉精品热| 男女做爰动态图高潮gif福利片| 国产成人精品久久二区二区91| 中出人妻视频一区二区| 美女国产高潮福利片在线看| 亚洲片人在线观看| 两性夫妻黄色片| 中文字幕久久专区| 天天躁狠狠躁夜夜躁狠狠躁| 亚洲aⅴ乱码一区二区在线播放 | 亚洲自偷自拍图片 自拍| 欧美av亚洲av综合av国产av| 色精品久久人妻99蜜桃| 黄色毛片三级朝国网站| 美女大奶头视频| 夜夜爽天天搞| 脱女人内裤的视频| 美女大奶头视频| 久久亚洲真实| 日韩大尺度精品在线看网址| 久久久国产欧美日韩av| 久久天躁狠狠躁夜夜2o2o| 黑人欧美特级aaaaaa片| 老司机靠b影院| 亚洲中文av在线| 很黄的视频免费| 无限看片的www在线观看| 国产精品久久久av美女十八| 桃红色精品国产亚洲av| 麻豆一二三区av精品| 亚洲 国产 在线| 久久中文字幕一级| 正在播放国产对白刺激| 18禁观看日本| 国产高清有码在线观看视频 | 亚洲欧洲精品一区二区精品久久久| 国产黄片美女视频| 久久久久久久午夜电影| 老司机午夜福利在线观看视频| 亚洲 欧美一区二区三区| 亚洲精品在线观看二区| 琪琪午夜伦伦电影理论片6080| 精品久久久久久久末码| 黄片大片在线免费观看| 欧美三级亚洲精品| av天堂在线播放| 久久99热这里只有精品18| 亚洲av第一区精品v没综合| 欧美日韩福利视频一区二区| 成人18禁高潮啪啪吃奶动态图| 国产99久久九九免费精品| 欧美乱色亚洲激情| 日本免费一区二区三区高清不卡| 亚洲第一av免费看| 久久久国产精品麻豆| tocl精华| 久久伊人香网站| 两性午夜刺激爽爽歪歪视频在线观看 | 日本一区二区免费在线视频| 精品一区二区三区av网在线观看| 免费在线观看亚洲国产| 免费人成视频x8x8入口观看| 国产国语露脸激情在线看| www.熟女人妻精品国产| 亚洲国产精品合色在线| 亚洲欧美日韩无卡精品| 国产精品自产拍在线观看55亚洲| 午夜福利视频1000在线观看| 狂野欧美激情性xxxx| 正在播放国产对白刺激| 九色国产91popny在线| 婷婷亚洲欧美| 国产在线观看jvid| 极品教师在线免费播放| 黄色片一级片一级黄色片| 免费一级毛片在线播放高清视频| 在线观看免费视频日本深夜| 国产又爽黄色视频| 国产精品自产拍在线观看55亚洲| 后天国语完整版免费观看| 高清在线国产一区| 曰老女人黄片| 亚洲欧美日韩无卡精品| 日韩欧美免费精品| 十分钟在线观看高清视频www| 国产单亲对白刺激| 欧美日韩中文字幕国产精品一区二区三区| 一个人免费在线观看的高清视频| 香蕉丝袜av| 两性夫妻黄色片| 欧美国产日韩亚洲一区| 日韩精品中文字幕看吧| 欧美日本亚洲视频在线播放| 欧美日韩中文字幕国产精品一区二区三区| 男女视频在线观看网站免费 | 国产精品日韩av在线免费观看| 亚洲精品中文字幕一二三四区| 麻豆成人午夜福利视频| 亚洲在线自拍视频| 成人特级黄色片久久久久久久| av中文乱码字幕在线| 国产精品日韩av在线免费观看| e午夜精品久久久久久久| 在线观看66精品国产| 欧美激情极品国产一区二区三区| 欧美一级毛片孕妇| 亚洲精品国产区一区二| 亚洲五月天丁香| 久久国产亚洲av麻豆专区| 久久人人精品亚洲av| 欧美成人一区二区免费高清观看 | 午夜福利成人在线免费观看| 久久久久亚洲av毛片大全| 久久精品夜夜夜夜夜久久蜜豆 | 一本一本综合久久| 国产乱人伦免费视频| 国产午夜精品久久久久久| 成年女人毛片免费观看观看9| 日本成人三级电影网站| 黄色视频不卡| 日本三级黄在线观看| 久久精品人妻少妇| 午夜免费激情av| 一本大道久久a久久精品| 在线永久观看黄色视频| 中文字幕精品亚洲无线码一区 | 黑丝袜美女国产一区| 国产精品 欧美亚洲| 国产午夜福利久久久久久| 黄频高清免费视频| 国产成人av激情在线播放| 精华霜和精华液先用哪个| 一级作爱视频免费观看| 日韩中文字幕欧美一区二区| 大型av网站在线播放| 国产精品电影一区二区三区| 草草在线视频免费看| 国产熟女午夜一区二区三区| 麻豆成人av在线观看| 欧美性猛交╳xxx乱大交人| 天堂影院成人在线观看| 啦啦啦免费观看视频1| 中文字幕人妻熟女乱码| 一边摸一边做爽爽视频免费| 国产精品久久久久久人妻精品电影| 人人澡人人妻人| 国产成人系列免费观看| bbb黄色大片| 曰老女人黄片| 18禁美女被吸乳视频| 久久青草综合色| 午夜福利欧美成人| 老司机午夜十八禁免费视频| 色哟哟哟哟哟哟| 69av精品久久久久久| 国产99久久九九免费精品| 一区二区日韩欧美中文字幕| 少妇的丰满在线观看| 免费在线观看影片大全网站| 日韩高清综合在线| 两性午夜刺激爽爽歪歪视频在线观看 | 天天躁狠狠躁夜夜躁狠狠躁| 久久久国产成人免费| 曰老女人黄片| 日日干狠狠操夜夜爽| 中文字幕av电影在线播放| 丰满的人妻完整版| 99久久精品国产亚洲精品| 亚洲国产日韩欧美精品在线观看 | 日韩欧美三级三区| 免费观看人在逋| 特大巨黑吊av在线直播 | videosex国产| 亚洲成a人片在线一区二区| 国产成+人综合+亚洲专区| 男人舔女人下体高潮全视频| 十八禁人妻一区二区| 天天添夜夜摸| 两性夫妻黄色片| 看片在线看免费视频| 欧美av亚洲av综合av国产av| 久久天躁狠狠躁夜夜2o2o| 中文字幕久久专区| www.自偷自拍.com| 欧美日韩乱码在线| 日韩欧美在线二视频| 妹子高潮喷水视频| 女生性感内裤真人,穿戴方法视频| 日本一区二区免费在线视频| 亚洲一区二区三区不卡视频| 国产三级在线视频| 国产一区二区激情短视频| 精品国产一区二区三区四区第35| 国产又爽黄色视频| 俄罗斯特黄特色一大片| svipshipincom国产片| 黄色 视频免费看| 成人亚洲精品一区在线观看| 成人三级做爰电影| 国产99白浆流出| АⅤ资源中文在线天堂| 很黄的视频免费| 国产熟女xx| 男女下面进入的视频免费午夜 | 亚洲精华国产精华精| 九色国产91popny在线| 自线自在国产av| 极品教师在线免费播放| 亚洲精品国产一区二区精华液| 精品福利观看| 91麻豆精品激情在线观看国产| 午夜免费激情av| 一级毛片高清免费大全| 美女大奶头视频| 十八禁人妻一区二区| 人人妻人人看人人澡| 国产精品香港三级国产av潘金莲| 免费搜索国产男女视频| 日韩欧美国产在线观看| 悠悠久久av| 国产亚洲精品久久久久5区| www.熟女人妻精品国产| av天堂在线播放| 一本久久中文字幕| 好看av亚洲va欧美ⅴa在| 男女做爰动态图高潮gif福利片| xxxwww97欧美| 女人高潮潮喷娇喘18禁视频| 在线看三级毛片| 男人舔女人的私密视频| 国产极品粉嫩免费观看在线| 精品电影一区二区在线| 免费在线观看完整版高清| 精品久久久久久成人av| 日韩精品免费视频一区二区三区| 夜夜夜夜夜久久久久| 12—13女人毛片做爰片一| 国产色视频综合| 不卡av一区二区三区| 日韩欧美三级三区| 99热6这里只有精品| 国产伦一二天堂av在线观看| 欧美av亚洲av综合av国产av| 俄罗斯特黄特色一大片| 狂野欧美激情性xxxx| 亚洲五月色婷婷综合| 亚洲中文av在线| 婷婷丁香在线五月| 亚洲成人免费电影在线观看| 亚洲狠狠婷婷综合久久图片| www.精华液| 老熟妇仑乱视频hdxx| 精品国产乱子伦一区二区三区| 色哟哟哟哟哟哟| 日日干狠狠操夜夜爽| 我的亚洲天堂| 国产三级在线视频| 一区二区三区精品91| 国产伦在线观看视频一区| 久久精品国产清高在天天线| 国产国语露脸激情在线看| 国语自产精品视频在线第100页| 亚洲,欧美精品.| 97超级碰碰碰精品色视频在线观看| 亚洲国产精品合色在线| 亚洲中文av在线| 欧美最黄视频在线播放免费| 亚洲中文av在线| 免费一级毛片在线播放高清视频| АⅤ资源中文在线天堂| 亚洲av中文字字幕乱码综合 | 我的亚洲天堂| 深夜精品福利| 成人欧美大片| 国产精品免费一区二区三区在线| 久久久久精品国产欧美久久久| 欧美在线黄色| 一卡2卡三卡四卡精品乱码亚洲| 村上凉子中文字幕在线| 婷婷丁香在线五月| 99re在线观看精品视频| 日本在线视频免费播放| 国产一卡二卡三卡精品| 男女那种视频在线观看| 日韩三级视频一区二区三区| 色综合婷婷激情| a级毛片a级免费在线| 一区二区三区国产精品乱码| av在线天堂中文字幕| 国产亚洲精品一区二区www| 亚洲性夜色夜夜综合| 免费一级毛片在线播放高清视频| 国产午夜精品久久久久久| 日日爽夜夜爽网站| 亚洲av日韩精品久久久久久密| 国产99久久九九免费精品| 在线天堂中文资源库| 亚洲 欧美一区二区三区| 久久香蕉国产精品| 中文资源天堂在线| а√天堂www在线а√下载| www日本在线高清视频| 69av精品久久久久久| 午夜激情av网站| 午夜福利在线观看吧| 国产精品一区二区精品视频观看| 国产精品久久久久久人妻精品电影| 不卡av一区二区三区| а√天堂www在线а√下载| 日韩精品中文字幕看吧| 又大又爽又粗| 悠悠久久av| 免费在线观看黄色视频的| 男人舔女人的私密视频| 在线av久久热| 男女下面进入的视频免费午夜 | 嫩草影视91久久| 国内精品久久久久久久电影| 精品国产超薄肉色丝袜足j| 成人午夜高清在线视频 | 国产av又大| 香蕉久久夜色| 国产精品二区激情视频| aaaaa片日本免费| 在线观看免费视频日本深夜| 亚洲七黄色美女视频| 真人做人爱边吃奶动态| 亚洲男人天堂网一区| 国产成人啪精品午夜网站| 久久久国产欧美日韩av| 操出白浆在线播放| 日韩中文字幕欧美一区二区| 一个人观看的视频www高清免费观看 | 色播在线永久视频| 岛国视频午夜一区免费看| 国产精品久久电影中文字幕| 村上凉子中文字幕在线| 女警被强在线播放| 久久精品91蜜桃| 久久亚洲真实| 天天一区二区日本电影三级| 精品久久久久久久毛片微露脸| 一本精品99久久精品77| av欧美777| 欧美一级毛片孕妇| 国产男靠女视频免费网站| 精品久久蜜臀av无| 亚洲激情在线av| 亚洲在线自拍视频| 天天添夜夜摸| 午夜激情av网站| 给我免费播放毛片高清在线观看| 国产99白浆流出| 变态另类丝袜制服| 亚洲人成网站高清观看| 亚洲精品久久成人aⅴ小说| 欧美大码av| 88av欧美| 国产亚洲精品av在线| 免费观看人在逋| 老熟妇乱子伦视频在线观看| 99riav亚洲国产免费| 老司机靠b影院| 精品一区二区三区四区五区乱码| 亚洲av成人不卡在线观看播放网| 欧美人与性动交α欧美精品济南到| 一区二区三区高清视频在线| 99热6这里只有精品| 国产又爽黄色视频| 精品第一国产精品| 亚洲av日韩精品久久久久久密| 国产亚洲精品综合一区在线观看 | 久久久精品国产亚洲av高清涩受| av天堂在线播放| 老司机福利观看| 1024香蕉在线观看| 亚洲 欧美一区二区三区| 黄色视频,在线免费观看| 日韩精品中文字幕看吧| 亚洲成av人片免费观看| 男女午夜视频在线观看| 欧美国产日韩亚洲一区| 亚洲精品国产精品久久久不卡| 久久久久久久久中文| 亚洲精品中文字幕一二三四区| 激情在线观看视频在线高清| 黄片大片在线免费观看| 婷婷精品国产亚洲av在线| 特大巨黑吊av在线直播 | 免费观看精品视频网站| 久久中文字幕一级| 久久国产精品影院| 国产精品美女特级片免费视频播放器 | 天堂影院成人在线观看| av有码第一页| 搞女人的毛片| 日本 欧美在线| 成人av一区二区三区在线看| 十分钟在线观看高清视频www| www日本黄色视频网| xxx96com| 亚洲av电影在线进入| 美女国产高潮福利片在线看| 1024手机看黄色片| 国产在线观看jvid| 精品一区二区三区av网在线观看| 亚洲av电影在线进入| 手机成人av网站| 久9热在线精品视频| 国产在线观看jvid| 午夜免费鲁丝| 18禁美女被吸乳视频| 精品国产亚洲在线| av片东京热男人的天堂| 欧美午夜高清在线| 人人妻人人看人人澡| 母亲3免费完整高清在线观看| 久久精品亚洲精品国产色婷小说| 亚洲精华国产精华精| 999久久久国产精品视频| 日韩一卡2卡3卡4卡2021年| 黄色女人牲交| 亚洲av片天天在线观看| 欧美成人一区二区免费高清观看 | 免费无遮挡裸体视频| 好男人在线观看高清免费视频 | 国产成人啪精品午夜网站| 长腿黑丝高跟| 欧美激情久久久久久爽电影| 好男人在线观看高清免费视频 | 美女 人体艺术 gogo| 丁香欧美五月| 黄片播放在线免费| 国产伦人伦偷精品视频| 亚洲精品中文字幕在线视频| 精品欧美一区二区三区在线| 免费高清视频大片| 又黄又爽又免费观看的视频| 中文字幕人妻熟女乱码| 一区福利在线观看| 男男h啪啪无遮挡| a级毛片在线看网站| 天天躁夜夜躁狠狠躁躁| 成人18禁在线播放| 国产精品爽爽va在线观看网站 | 欧美性猛交╳xxx乱大交人| 侵犯人妻中文字幕一二三四区| 午夜精品久久久久久毛片777| 亚洲美女黄片视频| 精品一区二区三区av网在线观看| 亚洲性夜色夜夜综合| 久久香蕉精品热| 最新在线观看一区二区三区| 久久中文看片网| 精品久久久久久成人av| 成人免费观看视频高清| 久久国产精品影院| e午夜精品久久久久久久| 亚洲第一青青草原| 中文字幕精品免费在线观看视频| 十八禁人妻一区二区| 91成人精品电影| 日本在线视频免费播放| 黑丝袜美女国产一区| 熟女电影av网| www国产在线视频色| 老汉色av国产亚洲站长工具| 在线十欧美十亚洲十日本专区| 日本 欧美在线| 午夜免费成人在线视频| 久久人妻av系列| 性色av乱码一区二区三区2| 免费在线观看影片大全网站| 99热这里只有精品一区 | 黄网站色视频无遮挡免费观看| 三级毛片av免费| 国产欧美日韩一区二区三| 久久国产亚洲av麻豆专区| 精品久久久久久久末码| 亚洲精品一区av在线观看| 国产aⅴ精品一区二区三区波| 国产一区二区三区在线臀色熟女| 国产精品99久久99久久久不卡| 精品熟女少妇八av免费久了| 国产主播在线观看一区二区| 免费一级毛片在线播放高清视频| 99国产精品一区二区蜜桃av| 国内毛片毛片毛片毛片毛片| 国产视频一区二区在线看| 亚洲一卡2卡3卡4卡5卡精品中文| 久久精品91蜜桃| 操出白浆在线播放| 夜夜夜夜夜久久久久| 亚洲 国产 在线| 国产视频内射| 中文字幕人成人乱码亚洲影| 欧美一级毛片孕妇| 国产主播在线观看一区二区| 在线播放国产精品三级| 亚洲精品色激情综合| 免费观看精品视频网站| videosex国产| 男男h啪啪无遮挡| 精品国产乱码久久久久久男人| 人妻久久中文字幕网| 一级毛片高清免费大全| 欧美性猛交黑人性爽| 好看av亚洲va欧美ⅴa在| 久久中文字幕人妻熟女| 在线十欧美十亚洲十日本专区| 日韩视频一区二区在线观看| 午夜激情av网站| 亚洲成人久久爱视频| 精品福利观看| 国产成人影院久久av| 老司机靠b影院| 国产麻豆成人av免费视频| 国产三级在线视频| 午夜福利成人在线免费观看|