• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Doublet luminescence due to coexistence of excitons and electron-hole plasmas in optically excited CH3NH3PbBr3 single crystal

    2022-04-12 03:47:28JieWang王杰GuangZheMa馬廣哲LuCao曹露MinGao高敏andDongShi石東
    Chinese Physics B 2022年4期
    關(guān)鍵詞:王杰高敏

    Jie Wang(王杰) Guang-Zhe Ma(馬廣哲) Lu Cao(曹露) Min Gao(高敏) and Dong Shi(石東)

    1School of Optoelectronic Science and Engineering,University of Electronic Science and Technology of China,Chengdu 610054,China

    2School of Materials and Energy,University of Electronic Science and Technology of China,Chengdu 610054,China

    Keywords: semiconductor,crystal,surface,luminescence

    1. Introduction

    Research interests in metal halide perovskite semiconductors has been rekindled following the breakthroughs in solar-to-electric power conversion efficiencies achieved via the use of the prototypical hybrid methylammonium lead trihalide perovskites, CH3NH3PbX3(X= Br, or I), in photovoltaic cells.[1-3]A couple of solution-processed material processing protocols,including the well matured one-step and sequential spin coating,[4,5]strongly backgrounded the fast development of perovskite photovoltaics in the past decade.[6-9]More recently,while perovskite photovoltaic technologies are approaching the edge of commercialization,[10]other applications of the halide perovskites for lasing,[11,12]light-emitting diodes,[13,14]photodetectors,[15,16]x-ray detectors[17,18]were lightened simultaneously.

    Driven by the pursuit for ever-increasing device performances, intensive research efforts were devoted to improved solution-processed materials processing by scientist with diverse academic backgrounds.[19-22]Most remarkable among the advances in material processing was the growth of high-quality single crystals that enabled improved understanding on the optoelectronic superiorities of halide perovskites.[23,24]To the delight of fundamental researchers interested in catching the intrinsic material physics, room-temperature solution-grown CH3NH3PbBr3and CH3NH3PbI3single crystals demonstrated extraordinarily low trap-sate densities that are superior to a wide array of established inorganic semiconductors.[23]Therefore, the extrinsic effects associated with defects, surface roughness and midgap states get largely suppressed when running spectroscopic characterizations.[25-27]Indeed, new optical phenomena shown by high-quality halide perovskite single crystals other than their polycrystalline thin-film counterparts are being observed.[28]One of the most intriguing phenomena is the occurrence of doublet luminescence shown the front-face PL from high-quality single crystals of the most studied prototypical CH3NH3PbBr3and CH3NH3PbI3perovskites.[23,28,29]Although repeatedly observed,the underlying physical mechanism that leads to the occurrence of such doublet PL remains poorly understood. A crystal-clear elucidation on the physical origin of the doublet PL is an outstanding quest,in view of its direct consequence on diverse optoelectronic functionalities.

    We were thus motivated to revisited the spectroscopic properties shown by one of the most studied prototypical hybrid metal halide perovskites, CH3NH3PbBr3, in its single crystal form. Practically,single-crystal samples with variable surface roughness were prepared and used for spectroscopic characterizations. By interpreting the spectroscopic data according the established physical theorems in semiconductor optics, we figured out the physical origin of the doublet luminescence, i.e., the coexistence of surface-specific excitons and electron-hole plasma inside the crystal bulk of optically excited CH3NH3PbBr3single crystal.

    2. Materials and methods

    2.1. Materials

    The two CH3NH3PbBr3perovskite precursors,CH3NH3Br and PbBr2were purchased from Xi’an Polymer Light Technology Corp.The solvent, N, Ndimethylformamide (DMF) was purchased from Shanghai Titan Scientific Co.,Ltd.

    2.2. Methods

    2.2.1. Crystallization

    Room-temperature slow solvent evaporation from the precursors’ solution in DMF yielded high-quality CH3NH3PbBr3single crystals. In particular, PbBr2and CH3NH3Br (1:1 by molar~1.0 M) were dissolved in DMF in screw capped vials, stirred for 3 hours, filtered through a syringe filter(?=0.45μm),and eventually yields a colorless and transparent solution. Then, the solvent was allowed to evaporated out of the solution phase at room temperature and 1.5 atm in a nitrogen-filled gloved box. The crystallization procedure is schematically shown in Fig.1(a).

    Fig.1. (a)Schematic diagram of the crystallization processes. Yellow sphere represents CH3NH+3, blue sphere represents Pb2+, pink sphere represents Br-. (b)Experimental powder XRD profile of CH3NH3PbBr3 single crystal ground into powders. (c)Photograph of one piece of CH3NH3PbBr3 single crystal with ~5 mm dimensions.

    2.2.2. Structural and spectroscopic characterizations

    The phase purity of the as-grown CH3NH3PbBr3single crystals was confirmed by x-ray diffraction(XRD)which can give detailed lattice information. The diffractometer,Maxshima XRD-7000 that equips with the standard Cu-Kα1excitation radiation source and a diffracted beam monochromator, was used. The surface morphologies of the as-grown pristine single crystals were characterized by Asylum MFP-3D atomic force microscopy(AFM).The absorbance of highly transparent CH3NH3PbBr3single crystals was recorded in a transmission mode using Shimadzu UV-2600 spectrometer.The front-face steady-state PL and time-resolved photoluminescence (TRPL) were recorded by FluoTime 300 fluorometer(PicoQuant)equipped with a time-correlated single photon counting(TCSPC)detector. The crystal sample was photoexcited by a picosecond pulsed diode laser(PicoHarp, LDH-DC-405M,exciting at 400 nm,repetition rate: 0.2 MHz).

    3. Results and discussion

    Figure 1(a) schemes the crystallization procedure via slow solvent evaporation out of the precursor (PbBr2and CH3NH3Br, 1:1 by molar) solution in DMF. Slow solvent evaporation at room temperature allows for balanced ionic incubation in the solution phase, whereby freely solvated Pb2+and Br-ions self-assemble into the energetically more stable octahedral corrodinates,[PbX6]4-. Once crystallization starts when both precursors saturates along with solvent evaporation,the solution phase remains invariable in concentration afterwards. This leads to invariable stoichiometric conditions surrounding the enlarging crystal surfaces all around. In this scenario,by gingerly screwing down the cap without causing too much disturbance,freshly incubated perovskite single crystals would be obtained. In the presence of passvation by the constituent ions in the solution, the crystal surface is expected to be characterized by naturally orientated surface dangling bonds.

    The crystal phase purity of the room-temperature grown single crystals was confirmed by powder XRD. A random batch of the as-grown single crystals were collected, grinded into powders, and then mounted in the sample holder of the diffractometer. The collected XRD data was shown in Fig.1(b). Characteristic diffractions at 2θ=15.1°,30.2°,and 33.8°, which are assigned to the characteristic (001), (002),and (210) planes of the cubic CH3NH3PbBr3single crystal,are observed.[3]All diffractions were precisely assigned to the its well-known room-temperature cubic lattice symmetry,indicating crystal phase purity. Figure 1(c) shows a representative photograph of one piece of the as-grown pristine CH3NH3PbBr3single crystal. Notably,the sharp edges of the regular square shapes nicely reflect its cubic crystal symmetry.

    The surface morphologies of freshly grown pristine CH3NH3PbBr3single crystals were characterized by AFM.One best-case top-view morphology showing rather smooth surface and least density of surface nanoparticles is shown in Fig. 2(a). One moderate-case and one worst-case morphologies showing increased surface roughness are selectively provided in Figs.2(b)and 2(c),respectively.--

    Fig.2. (a)-(c)Pristine surface morphologies of three CH3NH3PbBr3 single crystal samples viewed under AFM. (d)-(f) Front-face PL spectra corre sponding to the crystal surface morphologies shown in(a)-(c),respectively.

    When recording the luminescence spectra generated by front-face photoexcitation, the illuminated surface was oriented about 30°from the incident excitation beam. In this way, the incident light got distributed over large surface area and moreover,strong reflection of light entering the emission monochromator was avoided.[31]The collected PL spectra as a function of photon energy with two components were shown in Figs. 2(d)-2(f) for each case. Notably, the high-energy PL component peaks at 2.26 eV and the low-energy one at 2.15 eV.The peak positions of both components remain invariable regardless of their relative intensities. Similar doublet PL was also observed for high-quality CH3NH3PbI3single crystal in previous studies.[28]Interestingly,the high-energy PL component augments dramatically along with increased surface roughness, indicating that the high-energy PL is attributable to surface-specific emission,while the low-energy PL component is attributable to bulk-specific luminescence.

    We further found that by having a piece of high-quality single crystal kept in the saturated mother solution that contains abundant constituent ions,the low-energy PL component became significantly augmented over the high-energy one. In this case, a basically mono-peak PL with asymmetric spectral line-shape, as shown in Fig. 3(a), was observed. The mono-component bulk-dominated PL,peaking at 2.15 eV,carries a long PL tail that extends toward lower photon energy.In addition, a full width at half-maximum (FWHM) value,?!?5 meV,is determined. In general,every solid has a surface connecting its bulk to the outer world. For the case with a high-quality CH3NH3PbBr3single crystal, an ideal crystal surface is expected to be an atomically flat surface that carries abundant dangling bonds orienting naturally along the lattice axis without causing lattice deviations and subsequent midgap states formation. To maintain the natural orientation of the dangling bonds, passivation - most preferred by the constituent ions from the outer surroundings over the crystal surface-is required.[32,33]Otherwise,structural deviation at the lattice peripheries are inevitable. In our case, the precursor ions in the colorless saturated mother solution help complete the octahedral coordination at the perovskite lattice periphery and thereby suppress structural distortions. The diagram shown in Fig.3(b)schematically illustrates the passivation effect of the ion-abundant mother solution.

    The occurrence of the asymmetric bulk-PL from highquality CH3NH3PbBr3single crystal is a universal phenomenon as it has been repeatedly observed previously.[23,34]In this regard, the physical mechanism that leads to the occurrence of the asymmetric PL should be,in principle,rooted in the framework of the intrinsic material physics. The direct bandgap nature defines that the radiative recombination within the lattice bulk of CH3NH3PbBr3single crystal is an inverse process of ligth absorption, which can be expressed via the established van Roosbroeck-Shockley relation[35,36]

    In this expression,γspon(E) represents the spontaneous emission from the bandedge, and its spectral line-shape is, therefore, correlated with the distribution of the electronic density of states(DOS)at the bandedge. One accessible spectroscopic parameter related to the bandedge DOS is the dimensionless steepness factor,σ, the value of which can be directly determined from the absorption edge according to its correlation with the absorption coefficient,α(E),via

    Figures 3(c)-3(e)show the simulatedγspon(E)corresponding toσ=1.5,2.0,and 3.0 respectively. In this scenario,the lineshape of spontaneous emission spectrum is subjected to the value ofσ.The slope ofγspon(E)at the high-energy side is determined bykBT,while at the low-energy side it is determined bykBT/(σ-1).In Fig.3(c),the slope at low-energy region is smaller than that at high-energy region,therefore,the observed PL spectrum is asymmetric and is characterized by a long tail that extends to lower energies. Whenσ=2.0, the simulated spectrum becomes symmetric as displayed in Fig.3(d). When increasingσto 3.0, the simulated spectrum becomes asymmetric again,but it is characterized by a long tail that extends toward higher energies as shown in Fig.3(e).the lowerEBthan the room-temperature thermal energy,kBT~26 meV,it is within conceivable expectation that the concentration of excitons in optically excited CH3NH3PbBr3singlecrystal bulk should be sufficiently low because of thermal dissociation. Thus, many-body electron-hole (e-h) plasma occurs in the excited phase. On the other hand, it has been repeatedly confirmed that the surface-abundant polycrystalline thin film shows much stronger excitonic feature, and this indicates the co-existence of excitons and e-h plasmas.[39]In a general scenario, the crystal surface behaves as giant lattice defects whereby excitons are apt to adhere.

    Fig. 3. (a) Asymmetric bulk-specific PL spectrum. The peak position and the FWHM are also reported. Inset: photograph of solution-passivated CH3NH3PbBr3 single crystal. (b) Schematic crystal lattice diagram showing largely suppressed deviation when passivated in mother solution. (c)-(e)Simulated bandedge emission spectral line-shapes corresponding to σ =1.5,2.0,and 3.0,respectively.

    Fig.4. (a)Normalized logarithm absorbance(blue markers)as a function of photon energy. The black solid line shows the linear fti to the linear region of absorption tail,which yields EU=18 meV.(b)Absorbance data(grey makers) along with Elliott fti (black solid line) overlaid, the blue and the pink areas reflect the contributions to the absorbance from a sum of discrete excitonic states and band-to-band continuum excitations,respectively.

    Based on the above-made discussions, it is clear that the asymmetric bulk luminescence with long tail that extends to lower energies corresponds toσvalues between 1.0 and 2.0.This is equivalent to set the values of the Urbach energy,EU, between 26 meV and 13 meV, according to their relationship,σ=kBT/EU. To confirm this point, we recorded and plotted the logarithmic absorbance against photon energies as shown in Fig. 4(a). Linear fit of the absorption edge yieldsEU= 18 meV, which corroborates our attribution of the low-energy PL to the intrinsic bulk emission from bandedge states. Although the absorbance of the CH3NH3PbBr3single crystal does not develop into a sharp excitonic peak as that observed in its polycrystalline thin film counterpart,the absorbance data was fitted well with the established Elliott formula.[37,38]The absorbance data along with the Elliott fit were shown in Fig.4(b). By performing the Elliott fit,contributions to the overall absorption intensity from discrete excitonic states below the gap and band-to-band continuum transitions are decoupled. As shown in Fig. 4(b), absorption by a sum of discrete excitons peaking atEX=2.194 eV and band gap energy ofEG=2.206 eV were determined. This in turns leads to the determination of the exciton binding energy,EB=12 meV, according toEB=EG-EX. In view of

    The co-existence of excitons and e-h plasmas in optically excited CH3NH3PbBr3single crystal was further verified by TRPL measurement. Figure 5 shows the TRPL traces probed under picosecond pulsed photoexcitation at 400 nm.Apparently, the TRPL traces can be fitted well with a biexponential function. The bi-exponent fit (blue solid line)was plotted together with the TRPL traces in Fig. 5. The close to unity value of the reduced chi square,χ2R, and the symmetric distribution of the standard deviation,δk, jointly indicate the accpetalbe goodness-of-fit (GOF). Two lifetime components,τ1~2791±166 ns representing the lifetime of diffusive e-h plasma andτ2~179±81 ns representing the liftime of surface-specific excitons, were obtained. In addition, the remarkably low intensity ratio ofτ2further reflects sufficiently low density of excitons in optically excited highquality CH3NH3PbBr3single crystal.

    Fig.5. (a)TRPL traces(grey)recorded at 2.15 eV for CH3NH3PbBr3 single crystal along with bi-exponential fit (blue solid line). The yielded two lifetime components and the reduced chi-square are also reported. (b)Standard deviations traced along with bi-exponential fit,showing high-level GOF.

    4. Conclusion and outlook

    In summary,we developed a room-temperature solutionbased crystallization that affords high-quality CH3NH3PbBr3single crystal with atomically flat pristine surfaces. The largely suppressed pristine crystal surface roughness enabled us to observe the unmasked intrinsic luminescence with asymmetric spectral line-shape from the crystal bulk. The agreement between the experimental spectroscopic data and theoretical simulations validates our attribution for the doublet luminescence. Our study confirms that the low-energy PL component with asymmetric spectral line-shape is only attributable to the intrinsic bulk emission from the band-edge states, while the high-energy PL component is attributable to surface-specific emission by excitons.Coexistence of excitons and e-h plasmas were indicated by plausible spectroscopic features. Further efforts aimed at revealing more in-depth intrinsic material physics based on high-quality single-crystal material platform are strongly encouraged.

    Acknowledgment

    Project supported by the National Natural Science Foundation of China(Grant No.51872038).

    猜你喜歡
    王杰高敏
    “一不怕苦二不怕死”的解放軍戰(zhàn)士王杰
    中藥飲片調(diào)劑中審方差錯(cuò)情況分析及改進(jìn)措施
    Probing thermal properties of vanadium dioxide thin films by time-domain thermoreflectance without metal film?
    一個(gè)新的三元不等式鏈
    代表中國(guó)
    王杰 中共中央黨校教授
    王杰:國(guó)學(xué)與為政智慧
    商周刊(2018年17期)2018-08-31 02:20:12
    The optimization for the eradication of Ebola
    1例白血病合并痛風(fēng)繼發(fā)高敏綜合征(DHS)的護(hù)理
    背著同學(xué)去上學(xué)
    26uuu在线亚洲综合色| 日本-黄色视频高清免费观看| 秋霞伦理黄片| 一级av片app| 亚洲综合精品二区| 舔av片在线| 七月丁香在线播放| 亚洲av欧美aⅴ国产| 日本免费在线观看一区| 男女边摸边吃奶| 国产av码专区亚洲av| 最近手机中文字幕大全| 亚洲va在线va天堂va国产| 国产中年淑女户外野战色| 极品教师在线视频| 国产精品蜜桃在线观看| 狂野欧美激情性bbbbbb| 美女主播在线视频| 日韩电影二区| 欧美另类一区| 高清在线视频一区二区三区| 直男gayav资源| 简卡轻食公司| eeuss影院久久| 熟妇人妻不卡中文字幕| 永久免费av网站大全| 色视频www国产| 97超视频在线观看视频| 免费看a级黄色片| 亚洲av日韩在线播放| 精品国产露脸久久av麻豆| 三级经典国产精品| a级一级毛片免费在线观看| 久久精品国产亚洲av天美| 麻豆乱淫一区二区| 最近手机中文字幕大全| 国产一区二区三区综合在线观看 | 国产精品.久久久| 免费看日本二区| 精品久久久久久久末码| 国产精品国产三级国产av玫瑰| 国产黄频视频在线观看| 制服丝袜香蕉在线| 岛国毛片在线播放| 精品视频人人做人人爽| 亚洲精品乱码久久久v下载方式| 亚洲人与动物交配视频| 能在线免费看毛片的网站| 国产综合精华液| 一级片'在线观看视频| 男女下面进入的视频免费午夜| 欧美精品一区二区大全| 久久鲁丝午夜福利片| 午夜免费观看性视频| 精品亚洲乱码少妇综合久久| 麻豆乱淫一区二区| 亚洲精品日本国产第一区| av卡一久久| 国产精品女同一区二区软件| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 国产精品秋霞免费鲁丝片| 神马国产精品三级电影在线观看| 人体艺术视频欧美日本| 天天一区二区日本电影三级| 日韩一区二区视频免费看| 国产在线一区二区三区精| 又爽又黄无遮挡网站| 国产成人aa在线观看| 国产亚洲精品久久久com| 国精品久久久久久国模美| av一本久久久久| 欧美精品国产亚洲| 日韩不卡一区二区三区视频在线| 亚洲精品,欧美精品| 22中文网久久字幕| 美女脱内裤让男人舔精品视频| www.av在线官网国产| 另类亚洲欧美激情| 久久久久久久亚洲中文字幕| 蜜桃久久精品国产亚洲av| 建设人人有责人人尽责人人享有的 | 在线免费观看不下载黄p国产| 亚洲综合精品二区| 69人妻影院| av在线天堂中文字幕| 男女边吃奶边做爰视频| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 夫妻午夜视频| 亚洲av福利一区| 美女国产视频在线观看| 少妇被粗大猛烈的视频| 汤姆久久久久久久影院中文字幕| 亚洲av日韩在线播放| 国产熟女欧美一区二区| 看十八女毛片水多多多| 免费看光身美女| 久久亚洲国产成人精品v| 国产在线男女| 青春草视频在线免费观看| 亚洲图色成人| 女的被弄到高潮叫床怎么办| 热re99久久精品国产66热6| 秋霞在线观看毛片| 最近2019中文字幕mv第一页| 国产老妇伦熟女老妇高清| 亚洲精品国产av成人精品| 91精品伊人久久大香线蕉| 亚洲精品久久午夜乱码| 国产高清国产精品国产三级 | 国产国拍精品亚洲av在线观看| 美女国产视频在线观看| 免费播放大片免费观看视频在线观看| 日韩欧美精品v在线| 国产极品天堂在线| 国内少妇人妻偷人精品xxx网站| 你懂的网址亚洲精品在线观看| 国产黄片美女视频| 国产欧美亚洲国产| 免费av观看视频| 波多野结衣巨乳人妻| 国产欧美日韩精品一区二区| 欧美97在线视频| 精品一区二区三卡| 国产成人精品一,二区| 九草在线视频观看| 人人妻人人爽人人添夜夜欢视频 | 亚洲av国产av综合av卡| 久久精品人妻少妇| 国内少妇人妻偷人精品xxx网站| 人妻夜夜爽99麻豆av| 在线看a的网站| 国产午夜福利久久久久久| 精品熟女少妇av免费看| 一级毛片黄色毛片免费观看视频| 老司机影院毛片| 大陆偷拍与自拍| av福利片在线观看| 亚洲av二区三区四区| 国产白丝娇喘喷水9色精品| 黄色一级大片看看| 伦理电影大哥的女人| 九草在线视频观看| 国产精品.久久久| 人人妻人人澡人人爽人人夜夜| 看十八女毛片水多多多| 亚洲经典国产精华液单| 老司机影院毛片| 欧美日韩一区二区视频在线观看视频在线 | 久久亚洲国产成人精品v| 中国美白少妇内射xxxbb| 人人妻人人看人人澡| 日韩欧美一区视频在线观看 | 大片电影免费在线观看免费| 少妇的逼好多水| 久久精品综合一区二区三区| 久久久久久久午夜电影| 国产亚洲最大av| 一级二级三级毛片免费看| 久久久久久久精品精品| 一二三四中文在线观看免费高清| 欧美成人a在线观看| 好男人视频免费观看在线| 亚洲欧美清纯卡通| 亚洲国产精品成人久久小说| 水蜜桃什么品种好| 国产乱来视频区| 一级av片app| 日本三级黄在线观看| 国产综合懂色| 国产淫语在线视频| 午夜免费男女啪啪视频观看| 国产伦在线观看视频一区| 国产欧美亚洲国产| 久久久久久久久久人人人人人人| 免费观看av网站的网址| 国产永久视频网站| 国产极品天堂在线| 亚洲成人中文字幕在线播放| 国内揄拍国产精品人妻在线| 色吧在线观看| xxx大片免费视频| 日韩强制内射视频| 69人妻影院| 能在线免费看毛片的网站| 色婷婷久久久亚洲欧美| 国产黄色视频一区二区在线观看| 热re99久久精品国产66热6| 99热这里只有精品一区| 乱码一卡2卡4卡精品| 男人添女人高潮全过程视频| 日韩成人伦理影院| 欧美激情久久久久久爽电影| 国产男女超爽视频在线观看| 亚洲欧美精品自产自拍| 久久久午夜欧美精品| 26uuu在线亚洲综合色| 亚洲精品乱久久久久久| 夫妻午夜视频| 久久精品久久精品一区二区三区| av国产久精品久网站免费入址| 好男人在线观看高清免费视频| 99热这里只有是精品在线观看| 国产91av在线免费观看| videos熟女内射| 18+在线观看网站| 亚洲av二区三区四区| 国产高潮美女av| av播播在线观看一区| 日韩制服骚丝袜av| 大片电影免费在线观看免费| 亚洲av一区综合| 精品久久久精品久久久| 欧美xxxx性猛交bbbb| 蜜桃久久精品国产亚洲av| 久久精品熟女亚洲av麻豆精品| 十八禁网站网址无遮挡 | 老司机影院成人| 啦啦啦啦在线视频资源| 中文字幕人妻熟人妻熟丝袜美| 可以在线观看毛片的网站| 天天一区二区日本电影三级| 天堂中文最新版在线下载 | 听说在线观看完整版免费高清| 精品少妇黑人巨大在线播放| 人体艺术视频欧美日本| 国产极品天堂在线| 亚洲国产精品专区欧美| 国产一区二区亚洲精品在线观看| 日日摸夜夜添夜夜爱| 亚洲欧美中文字幕日韩二区| 中文字幕亚洲精品专区| 男人添女人高潮全过程视频| 亚洲最大成人中文| 日本黄大片高清| 成人黄色视频免费在线看| 国产欧美另类精品又又久久亚洲欧美| 91久久精品国产一区二区三区| 性插视频无遮挡在线免费观看| 亚洲av免费高清在线观看| 美女高潮的动态| 日本一本二区三区精品| 国产成人午夜福利电影在线观看| 成人免费观看视频高清| 交换朋友夫妻互换小说| 国产精品成人在线| 高清日韩中文字幕在线| 2018国产大陆天天弄谢| 综合色丁香网| 毛片女人毛片| 婷婷色av中文字幕| 成人美女网站在线观看视频| 不卡视频在线观看欧美| 在线看a的网站| 男女下面进入的视频免费午夜| 有码 亚洲区| av卡一久久| 建设人人有责人人尽责人人享有的 | 在线观看一区二区三区| 色哟哟·www| 欧美成人a在线观看| 秋霞在线观看毛片| 观看免费一级毛片| 久久精品国产亚洲av涩爱| 亚洲第一区二区三区不卡| 久久国产乱子免费精品| 一边亲一边摸免费视频| 亚洲aⅴ乱码一区二区在线播放| 精品一区二区三区视频在线| 国产爽快片一区二区三区| 赤兔流量卡办理| 国产有黄有色有爽视频| 深夜a级毛片| 麻豆国产97在线/欧美| 大片免费播放器 马上看| 麻豆精品久久久久久蜜桃| 真实男女啪啪啪动态图| 不卡视频在线观看欧美| 成人毛片a级毛片在线播放| 五月伊人婷婷丁香| 大片电影免费在线观看免费| 日本爱情动作片www.在线观看| 99久国产av精品国产电影| 国产v大片淫在线免费观看| 中文字幕久久专区| 精品酒店卫生间| 久久热精品热| 黄片wwwwww| 午夜激情久久久久久久| 国产高清有码在线观看视频| 亚洲欧美日韩另类电影网站 | 国产av国产精品国产| av女优亚洲男人天堂| 成年av动漫网址| 中文资源天堂在线| 午夜福利在线观看免费完整高清在| 黄片无遮挡物在线观看| 中文精品一卡2卡3卡4更新| 国产免费视频播放在线视频| 简卡轻食公司| 丝瓜视频免费看黄片| 国产探花在线观看一区二区| h日本视频在线播放| 蜜臀久久99精品久久宅男| xxx大片免费视频| 欧美成人a在线观看| 久久精品久久久久久久性| 欧美97在线视频| 网址你懂的国产日韩在线| 三级国产精品欧美在线观看| 少妇被粗大猛烈的视频| 成人特级av手机在线观看| 日韩免费高清中文字幕av| 在线亚洲精品国产二区图片欧美 | 国产欧美日韩精品一区二区| 欧美区成人在线视频| 成人国产麻豆网| 精品少妇久久久久久888优播| 麻豆乱淫一区二区| 亚洲av中文字字幕乱码综合| 日本黄大片高清| 成人国产av品久久久| 欧美成人a在线观看| 晚上一个人看的免费电影| 国产伦理片在线播放av一区| 91午夜精品亚洲一区二区三区| 在线观看三级黄色| 欧美日韩国产mv在线观看视频 | 91精品国产九色| 97超碰精品成人国产| 美女脱内裤让男人舔精品视频| 亚洲欧洲国产日韩| 最近中文字幕高清免费大全6| 色视频www国产| 国产精品不卡视频一区二区| 中文字幕av成人在线电影| 久久久国产一区二区| 色婷婷久久久亚洲欧美| 免费黄频网站在线观看国产| 久久久久久久久久人人人人人人| 亚洲欧洲国产日韩| 国产免费视频播放在线视频| 亚洲国产成人一精品久久久| 免费看光身美女| 亚洲欧美日韩无卡精品| 噜噜噜噜噜久久久久久91| 97精品久久久久久久久久精品| 秋霞伦理黄片| 22中文网久久字幕| 日本猛色少妇xxxxx猛交久久| 久久久久网色| 日韩电影二区| 国产爱豆传媒在线观看| 2018国产大陆天天弄谢| 麻豆成人午夜福利视频| 国产探花在线观看一区二区| 寂寞人妻少妇视频99o| 亚洲国产欧美在线一区| 一本一本综合久久| 亚洲在线观看片| av在线蜜桃| 精品久久久久久久久av| 在线免费十八禁| 国产伦精品一区二区三区四那| 天天躁夜夜躁狠狠久久av| 视频中文字幕在线观看| 久久精品国产亚洲av天美| freevideosex欧美| 激情五月婷婷亚洲| 麻豆乱淫一区二区| 国产毛片在线视频| 少妇人妻一区二区三区视频| 亚洲av一区综合| 久久久久久久大尺度免费视频| 精品酒店卫生间| 久久久成人免费电影| 一区二区三区免费毛片| 又爽又黄a免费视频| 日本-黄色视频高清免费观看| 亚洲av福利一区| 国产成人aa在线观看| 亚洲精华国产精华液的使用体验| 国产黄频视频在线观看| 最近中文字幕高清免费大全6| 久久久久久久国产电影| 老司机影院毛片| 五月玫瑰六月丁香| 简卡轻食公司| 精品一区二区三卡| 99精国产麻豆久久婷婷| 五月玫瑰六月丁香| 亚洲欧美一区二区三区国产| 免费看不卡的av| 91aial.com中文字幕在线观看| av在线播放精品| 亚洲精品一区蜜桃| 夜夜看夜夜爽夜夜摸| 日韩av免费高清视频| 日韩一区二区三区影片| 国产一区二区三区综合在线观看 | 国产日韩欧美在线精品| 欧美精品人与动牲交sv欧美| 亚洲精品国产色婷婷电影| 女人被狂操c到高潮| 亚洲经典国产精华液单| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 国产欧美日韩一区二区三区在线 | 国产精品一区二区性色av| 丰满乱子伦码专区| 免费看日本二区| 在线a可以看的网站| 黑人高潮一二区| 在线免费观看不下载黄p国产| 99re6热这里在线精品视频| 国产伦精品一区二区三区视频9| 高清欧美精品videossex| 久热这里只有精品99| 91aial.com中文字幕在线观看| 国产精品久久久久久av不卡| 亚洲人成网站高清观看| 亚洲精品亚洲一区二区| 91在线精品国自产拍蜜月| 老师上课跳d突然被开到最大视频| 日韩欧美 国产精品| 久久综合国产亚洲精品| 亚洲av在线观看美女高潮| 我的老师免费观看完整版| 国产高清国产精品国产三级 | 久久久久久久大尺度免费视频| 99视频精品全部免费 在线| 亚州av有码| 青春草国产在线视频| h日本视频在线播放| 久久人人爽人人爽人人片va| 美女高潮的动态| 99精国产麻豆久久婷婷| 国产精品三级大全| 又爽又黄无遮挡网站| 大陆偷拍与自拍| 亚洲精品国产色婷婷电影| 精品99又大又爽又粗少妇毛片| 国产免费福利视频在线观看| 听说在线观看完整版免费高清| 日本三级黄在线观看| 午夜福利高清视频| 久久久久久久精品精品| 又黄又爽又刺激的免费视频.| 男女边摸边吃奶| 久久韩国三级中文字幕| 日韩电影二区| 精品久久久久久久久亚洲| 美女cb高潮喷水在线观看| 久久亚洲国产成人精品v| 亚洲欧美日韩东京热| 日韩欧美 国产精品| 最近中文字幕高清免费大全6| 最近最新中文字幕大全电影3| 汤姆久久久久久久影院中文字幕| 亚洲精品影视一区二区三区av| 人妻 亚洲 视频| 欧美bdsm另类| 午夜爱爱视频在线播放| 伊人久久精品亚洲午夜| 777米奇影视久久| 美女高潮的动态| 欧美三级亚洲精品| 日韩成人av中文字幕在线观看| 国产 一区 欧美 日韩| 日本与韩国留学比较| 婷婷色综合www| av在线亚洲专区| 免费电影在线观看免费观看| 国产精品一区www在线观看| 伦理电影大哥的女人| 欧美国产精品一级二级三级 | 亚洲国产av新网站| 久久人人爽人人片av| 九九在线视频观看精品| 激情 狠狠 欧美| tube8黄色片| 免费观看a级毛片全部| 禁无遮挡网站| 日韩国内少妇激情av| 国产男女内射视频| 丝瓜视频免费看黄片| 2022亚洲国产成人精品| 久久久久九九精品影院| 在线精品无人区一区二区三 | 亚洲精品色激情综合| 嘟嘟电影网在线观看| 边亲边吃奶的免费视频| 国产精品久久久久久av不卡| 看黄色毛片网站| 丰满人妻一区二区三区视频av| 亚洲成人一二三区av| 1000部很黄的大片| 国产成人a∨麻豆精品| 欧美高清成人免费视频www| 亚洲一级一片aⅴ在线观看| 成人鲁丝片一二三区免费| 身体一侧抽搐| 午夜福利视频精品| 在线播放无遮挡| 中文精品一卡2卡3卡4更新| 精品99又大又爽又粗少妇毛片| 亚洲精品乱码久久久久久按摩| av国产久精品久网站免费入址| 伦精品一区二区三区| 国产男女内射视频| av在线app专区| 97人妻精品一区二区三区麻豆| 国产 精品1| 一级毛片黄色毛片免费观看视频| 69人妻影院| 亚洲欧美成人精品一区二区| 自拍欧美九色日韩亚洲蝌蚪91 | 国产成人免费观看mmmm| 极品教师在线视频| 国产极品天堂在线| 久久久久精品性色| 九九在线视频观看精品| 丝袜美腿在线中文| 国产伦在线观看视频一区| 精品久久国产蜜桃| 国产高清三级在线| 99久久精品热视频| 亚洲av不卡在线观看| 久久久亚洲精品成人影院| 亚洲四区av| 美女脱内裤让男人舔精品视频| 国产av国产精品国产| 亚洲无线观看免费| 激情五月婷婷亚洲| 大又大粗又爽又黄少妇毛片口| 高清日韩中文字幕在线| 国产爽快片一区二区三区| 国产 一区精品| 国产中年淑女户外野战色| 国产高潮美女av| 99久国产av精品国产电影| 精品国产一区二区三区久久久樱花 | 麻豆成人av视频| 97在线视频观看| 免费人成在线观看视频色| 国产成年人精品一区二区| 精品人妻一区二区三区麻豆| 99热国产这里只有精品6| 久热久热在线精品观看| 中文欧美无线码| 亚洲欧美日韩另类电影网站 | 小蜜桃在线观看免费完整版高清| 大片电影免费在线观看免费| 国产一区有黄有色的免费视频| 久久久久久伊人网av| 直男gayav资源| 视频区图区小说| 女人被狂操c到高潮| 国产精品成人在线| 国产精品一二三区在线看| 国产极品天堂在线| 在线免费观看不下载黄p国产| 22中文网久久字幕| 简卡轻食公司| 男的添女的下面高潮视频| 国产老妇伦熟女老妇高清| 国内精品美女久久久久久| 97热精品久久久久久| 国产高清不卡午夜福利| 一区二区三区免费毛片| 国产男女超爽视频在线观看| 亚洲高清免费不卡视频| 国产精品一区二区在线观看99| 国产精品久久久久久av不卡| 国产白丝娇喘喷水9色精品| 毛片一级片免费看久久久久| h日本视频在线播放| 嫩草影院入口| 欧美最新免费一区二区三区| 亚洲高清免费不卡视频| 波野结衣二区三区在线| 国产免费一区二区三区四区乱码| 夫妻性生交免费视频一级片| 欧美日韩国产mv在线观看视频 | 欧美日韩综合久久久久久| 成人无遮挡网站| 99视频精品全部免费 在线| 最近手机中文字幕大全| 成年女人看的毛片在线观看| 男人和女人高潮做爰伦理| 纵有疾风起免费观看全集完整版| 丝袜脚勾引网站| 亚洲激情五月婷婷啪啪| 青春草国产在线视频| 亚洲欧美日韩无卡精品| 亚洲国产成人一精品久久久| 免费播放大片免费观看视频在线观看| 高清毛片免费看| 国产精品一及| 又黄又爽又刺激的免费视频.| 亚洲国产欧美在线一区| 秋霞伦理黄片| 舔av片在线| 免费看光身美女| 男男h啪啪无遮挡| 在线天堂最新版资源| 在现免费观看毛片| 22中文网久久字幕| 三级国产精品片| av免费观看日本| av线在线观看网站| 亚洲精品乱久久久久久| 精品视频人人做人人爽| 国产精品爽爽va在线观看网站| 欧美+日韩+精品| 国产成人a∨麻豆精品| 精品国产露脸久久av麻豆|