• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Tunable electronic properties of GaS-SnS2 heterostructure by strain and electric field

    2022-04-12 03:44:46DaHuaRen任達(dá)華QiangLi李強(qiáng)KaiQian錢楷andXingYiTan譚興毅
    Chinese Physics B 2022年4期
    關(guān)鍵詞:任達(dá)華

    Da-Hua Ren(任達(dá)華) Qiang Li(李強(qiáng)) Kai Qian(錢楷) and Xing-Yi Tan(譚興毅)

    1School of Information Engineering,Hubei Minzu University,Enshi 44500,China

    2Science of Physics and Technology,Wuhan University,Wuhan 430072,China

    3School of Advanced Materials and Mechatronic Engineering,Hubei Minzu University,Enshi 44500,China

    4Department of Physics,Chongqing Three Gorges University,Wanzhou 404100,China

    Keywords: GaS-SnS2 heterostructure,type-II band alignment,optical properties,density functional theory

    1. Introduction

    Van der Waals (vdW) heterostructures can be used in unusual electronic devices because of their peculiar physical properties and excellent performances.[1]Additionally,vertically stacked heterostructures have innovative applications in electronic devices,such as ultrathin photodetectors,[2]solar cells,[3]memory devices,[4]flexible sensors, and transistors.[5,6]Specifically, two-dimensional (2D) vdW heterostructure with type-II band alignment has promising potentials in photovoltaics devices and photocatalysts[7-11]due to their fascinating electronic and optical properties. In type-II heterostructures, the photogenerated holes and electrons are spatially located in different layers. As a result, the recombination of carriers can be effectively prevented and the light energy utilization is significantly enhanced.[12]Moreover, GaS is a typical layered group III-VI compound and each layer is composed of S-Ga-Ga-S repeating units along thecaxis withD3hsymmetry. The interlayer interactions between layers belong in weak vdW force. The GaS can be used for a promising near-blue light emitting devices because of the indirect band gap of 2.5 eV.[13]More interestingly, monolayer GaS can be easily mechanically cleavaged.[14]The photodetectors based on GaS nanosheet have higher photoresponsivity than graphene, 2D MoS2.[15]Recent researches indicate that the vdW heterostructures based on monolayer GaS are able to exhibit type-II band alignment, such as GaS-GaSe,[16]GaSMoSe2,[17]and GaS-InS.[18]

    Furthermore,tin disulfide(SnS2)has attracted intense attention in solar energy conversion, optoelectronics, and photocatalyst because of its CdI2-type layered structure with a sustainable band gap (2.2 eV-2.35 eV) and high electrical conductivity.[19]The SnS2consists of an S-Sn-S triple layer and the interlayer interaction belongs in the vdW force. The SnS2single-layer is synthesized by liquid exfoliation. The experimental researches indicate that the SnS2single-layer is of a semiconductor with a band gap of 2.29 eV and can be used in visible-light water splitting due to the high photo-conversion efficiency.[20]However,an inconvenient band edge alignment of pristine SnS2hinders the efficient photocatalyst from splitting water.[21]Recent efforts have demonstrated that the electronic and optical properties of SnS2can be greatly tailored by external means, such as doping,[22]electric field,[23]and stacking heterostructure with other 2D materials.[24]

    Up to now,the combination of SnS2with different semiconductors, such as SnS2-TiO2,[24]SnS2-g-C3N4,[25]SnS2-SnO2,[26]SnS2-RGO,[27]and ZrS2-SnS2,[28]has been reported to enhance photocatalytic performance. In addition,the heterostructure based on 2D SnS2,such as SnS2-BiPO4[29]heterostructure,are able to be formed into a type-II band structure, which shows good electronic and optical behaviors in photocatalyst and optoelectronic applications. Even though there exist a few of researches on 2D heterostructure based on 2D SnS2,the understanding of the role and evolution of SnS2in the GaS-SnS2heterostrucutre has not been demonstrated.

    Herein,we constructe a novel 2D GaS-SnS2heterostructure and study the structural, electronic, optical, photocalytic properties. Note that 2D SnS2, together with 2D GaS, can form a vdW heterostructure due to their similar structures and same lattice constants. Generally,it is also worth studying the superior structure and excellent properties of GaS-SnS2heterostructure, which could potentially provide a platform for applications in photocalyst and optoelectronic devices.

    2. Computational methods

    Ab initio calculations were performed within the framework of density functional theory (DFT).[30,31]as implemented in the Viennaab initiosimulations package(VASP).[32]Electronic exchange and correlation effects were described with the Perdew-Burke-Ernzerhof (PBE)[33]functional of generalized gradient approximation (GGA)[34]and HSE06[35]hybrid function. Electron-ion interactions were treated with the projector augmented wave (PAW)method,[36,37]with an energy cutoff being 500 eV and Brillouin zone sampling ofK-mesh set to be 11×11×1 for relaxation. TheK-mesh points for density of states (DOS)and energy band structure calculations were assumed to be 13×13×1, and the energy criterion was set to be 105eV until the residual force was smaller than 103eV/°A.Especially,the vacuum layer thickness is fixed at more than 25 °A to avoid spurious interactions in the neighboring images. As the longrange vdW interaction is important for holding the 2D heterostructure together, the vdW-D3 approach[38]was used to describe long-range electron correlation effects.

    The optical properties of 2D GaS-SnS2heterostructures are described by the complex dielectric functionε(ω) =ε1(ω)+iε2(ω),whereε1(ω)andε2(ω)are the real part and the imaginary part,respectively. At the same time,the imaginary part is calculated by summing up all possible transitions from the occupied to the unoccupied states,which is related to the band structure in the absorption behaviors.[39]The imaginary part is given by

    wherePis the principal value. The absorption coefficient is then obtained as follows:[40,41]

    3. Results and discussion

    3.1. Stability and structures

    Stacking patterns can modulate the electronic properties of the vdW heterostructures. In stacking (AA), the Sn atom is placed on the top of Ga atom, while the S atom in SnS2layer is situated on the top of S atom in GaS layer. In stacking(AB),the S atom in SnS2layer is placed on the top of Ga atom while the Sn atom is located at the hexagonal site. In stacking (AC), the Sn atom is placed on the top of S atom in GaS layer, while the S atom in SnS2layer is settled at the hexagonal site. In stacking (AD), the Sn atom is placed on the top of S atom in GaS layer while the S atom in SnS2layer lies on the top of Ga atom. We check the structural stability of these heterostructures by calculating their binding energy values,interlayer distances and thermal stabilities. Therefore,a typical stacking configuration (AA) is constructed due to the lowest adhesion energy and thermal stability. The relaxed structure is shown in Fig.1. After relaxation,the equilibrium lattice constants of GaS monolayer(a=b=3.585 °A),SnS2monolayer(a=b=3.699 °A) and AA stacking GaS-SnS2heterostructure (a=b= 3.636 °A), calculated with GGA-PBE, are in consistence with other reported results.[14,16-19]It is clear that the hexagonal unit parameter of GaS-SnS2heterostructure is 3.636 °A.The lattice mismatch of GaS-SnS2heterostructure is 1.7%,meaning that the structure of GaS-SnS2heterostructure is acceptable.

    To describe the vdW interaction,the interface binding energy(ΔE)of GaS-SnS2heterostructure is calculated to be

    where ΔErefers to the interface binding energy at the interface of GaS-SnS2heterostructure;EHS,EGaS,ESnS2,Srepresent respectively the total energy of heterostructure, GaS monolayer, SnS2monolayer, the interface areas of the heterostructure. Obviously, the interface binding energy of GaS-SnS2heterostructure is-27.8 meV/°A2, demonstrating that the interaction between two layers is physically vdW force. The interface binding energy is negative,suggesting that the GaSSnS2heterostructure has favorable energy during the formation. In addition,the AIMD simulation of the GaS-SnS2heterostructure for the most favorable stacking AA pattern is also performed to confirm the thermal stability at room temperature as can be seen in Fig.2. Obviously,the variation of total energy of the GaS-SnS2heterostructure is quite small during 6800 fs,indicating that the GaS-SnS2heterostructure is thermally stable at room temperature.

    Fig.1. Relaxed structures of four typical stacking patterns of GaS-SnS2 heterostructure,with red,yellow,and blue spheres representing Ga,S,and Sn atoms,respectively.

    Fig.2. Thermal stability of GaS-SnS2 heterostructure.

    As shown in Fig.3,the optimal distance between S atom in the GaS layer and S atom in the SnS2layer is 3.705 °A,meaning that no bonds between S atoms are formed and this heterostructure is formed by the same magnitude order of vdW forces as typical vdW graphite.[42]

    Fig. 3. Plot for the 4-th order polynomial fit interface binding energy as a function of interlayer distance of GaS-SnS2 heterostructure.

    3.2. Electronic properties

    In the following, projection-resolved band structures of GaS monolayer, SnS2monolayer, GaS-SnS2heterostructure are depicted in Fig. 4. The GaS-SnS2heterostructure is an indirect band gap semiconductor. The valence band maximum (VBM) and the conduction band minimum (CBM) of the GaS-SnS2heterostructure are located at theMpoint andK →Gof Brillouin zone (BZ). The band gap of GaS-SnS2heterostructure is 1.82 eV from the HSE06 calculation,smaller than those of both individual GaS (3.19 eV) monolayer and individual SnS2(2.31 eV)monolayer,which accord well with the theoretical values of GaS(3.29 eV),[15]SnS2(2.39 eV).[43]Specially,GaS-SnS2heterostructure has a type-II band alignment, which is beneficial to separating the photogenerated holes and electrons in different layers, preventing the carriers from being recombined, and enhancing the light energy utilization. Therefore, the band gap of the GaS-SnS2heterostructure can be significantly changed by vertically stacking the heterostructure,which can provide a good opportunity to work on band engineering and photoelectronic device designs.

    Fig. 4. Projection-resolved band structure of (a) GaS monolayer, (b) SnS2 monolyer,and(c)GaS-SnS2 heterostructure,with red and blue lines denoting contributions from GaS and SnS2 layers,respectively.

    As reflected in the projection-resolved band structure,the band gap of GaS monolayer decreases due to the downshift of CBM atMpoint as well as the upshift of VBM atK →Gpoint. The contribution of VBM of GaS-SnS2heterostructure is GaS layer and that of CBM is SnS2layer,in which the red and blue lines present the DOS of GaS and SnS2layer in GaS-SnS2heterostructure,respectively,in Fig.5. Obviously,in the GaS-SnS2heterostructure, the VBM and CBM are respectively confined in GaS and SnS2layer,respectively,indicating that the GaS-SnS2heterostructure has a type-II band alignment.

    Fig.5. Projected density of states(PDOS)of GaS monolayer,SnS2 monolayer, GaS-SnS2 heterostructure, where Fermi level is set to zero as indicated by the black dashed line.

    3.3. Effect of external electric field and biaxial strain on band gap of GaS-SnS222 heterostructure

    External electric field is extensively considered as an efficient strategy to expand the semiconductors with desirable band gap into photoelectronic devices. Therefore, it is extremely important that an external electric field (Eext) be applied to changing the band gap of GaS-SnS2heterostructure as depicted in Fig.6. The band gap of GaS-SnS2heterostructure, which remains indirect semiconductor, changes a lot in theEextrange from-0.1 V/°A to 0.1 V/°A.Note that the electric field direction from the bottom (GaS layer) to the top (SnS2layer) is the positiveZdirection ofEext, perpendicular to the interface. The band gap decreases from-0.1 V/°A to 0.1 V/°A,which accelerates electrons(holes)from the conduction band-CB(valence band-VB)of the SnS2(GaS)layer to the CB(VB)of the GaS(SnS2)layer as shown in Fig.6(b).

    Fig.6. Variation of(a)band gap and(b)band alignment of GaS-SnS2 heterostructure with external electric field.

    Biaxial strain is effectively able to tailor the electronic performance of heterostructure. Here, the effect of biaxial strain from-8% to 10% on the electronic property of GaSSnS2heterostructure is discussed, namely the corresponding lattice parameter of the heterostrucutre unit cell is effectively modified. Fortunately,the structure of the heterostructure under biaxial strain is successfully relaxed and has the hexagonal lattice symmetry according to the same state of the irreducible Brillouin zone. The change of the band gap under biaxial strain is shown in Fig. 7. As the compress strain increases from-4% to-8%, the band gap first decreases, for the VBM increases more rapidly than the CBM.And the compress strain increases from 0 to-4%, the band gap then increases due to the more fast-growing CBM. Meanwhile, the band gap decreases monotonically when the tensile strain increases from 0 to 10%due to the CBM moving more speedily down to fermi level than the VBM.

    Although the outermost two S layers in the GaS-SnS2heterostructure have the same electronegativity, the sixth Sn layer on the SnS2side has greater electronegativity (2.44e)than the second Ga layer on the GaS side(2.14e). Therefore,the electrons at the interface are depleted on the GaS side but accumulated on the SnS2side,forming a built-in electric field from GaS layer to SnS2layer. The smaller charge transfer at the interface leads to the weaker interaction between Sn and Ga atoms.

    Fig.7. Variation of(a)band gap and(b)band alignment with biaxial strain of GaS-SnS2 heterostructure.

    Fig.8. (a)Charge density difference and(b)planar-averaged charge density difference of GaS-SnS2 heterostructure along Z direction.

    The planar-averaged charge density difference along theZdirection is described as Δρ=ρGaS-SnS2-ρGaS-ρSnS2,where,ρGaS-SnS2,ρGaS,ρSnS2are the planar-averaged charge densities of GaS-SnS2heterostructure, GaS monolayer, and SnS2monolayer. As shown in Fig. 8, the positive value and the negative value represent the charge accumulation and the charge depletion, respectively. Both electrons and holes under built-in electric field move towards the opposite directions,which can accelerate the separation of photo-generated electrons or holes to improve photocatalytic activity.

    3.4. Photocatalyst and absorption behaviors

    The absorption coefficient of GaS-SnS2heterostructure is calculated,and the results are shown in Fig.9(a). It is clear that the first peak in the absorption spectrum of GaS-SnS2heterostructure is locates at 2.25 eV,which is mainly contributed by the SnS2layer. The absorption behavior of GaS-SnS2heterostructure is more improved than that of the individual GaS monlayer and SnS2monolayer. The absorption spectrum of GaS-SnS2heterostructure covers the visible light, which makes it well suitable for the application of optoelectronic devices in visible light region.

    Fig. 9. (a) Absorption spectra of GaS-SnS2 heterostructure and (b)schematic migrating carrier.

    A schematic plot to depict the dynamic process of photogenerated carrier at the GaS-SnS2interface is shown in Fig. 9(b). In the GaS-SnS2heterostructure, the photogenerated electrons of the GaS layer start to transfer to the SnS2layer in the conduction band,which are motivated by the conduction band offset (CBO) (1.45 eV). Meanwhile, the photogenerated holes move from the valence band of the SnS2layer into the GaS layer, which are driven by a large valence band offset (VBO) (0.57 eV). Hence, the GaS-SnS2heterostructure, exhibiting a type-II band alignment, can be utilized as a photocatalyst.

    As is well known,the lifetime of photogenerated carriers is significantly influenced by the build-in electric field.Hence,build-in electric field induced by ground state charge transfer are investigated based on bader charge analysis.[44]The charge transferring from the GaS layer to the SnS2layer is 0.938e, leading to an electric field from the GaS layer to the SnS2layer. This electric field will promote interlayer charge transfer and prohibit carrier recombination, favoring a good light harvesting efficiency.

    4. Conclusions

    In this work,the electronic and optical properties of GaSSnS2heterostructure have been investigated with density functional theory. It is found that the hexagonal GaS-SnS2heterostructure is a stable semiconductor with a suitable indirect band gap. Interestingly, the GaS-SnS2heterostructure has a type-II band alignment, which is beneficial to photocatalyst.In the GaS-SnS2heterostructure,the charge transferring from the GaS layer to the SnS2layer is 0.938ebased on bader charge analysis, forming a build-in electric field for charge separation.The absorption behavior of GaS-SnS2heterostructure is enhanced in comparison with that of the individual GaS monlayer and SnS2monolayer,indicating that the GaS-SnS2heterostructure is very efficient at absorbing the visible light to expand the application into photocatalyst and opto-electronic devices.

    Acknowledgements

    Project supported by the National Natural Science Foundation of China (Grant No. 1186040026), the Incubation Project for High-Level Scientific Research Achievements of Hubei Minzu University, China (Grant No. 4205009), and the Fund of the Educational Commission of Hubei Province,China(Grant No.T201914).

    猜你喜歡
    任達(dá)華
    Band alignment in SiC-based one-dimensional van der Waals homojunctions?
    腳踏500雙皮鞋一路走來,任達(dá)華戲里戲外纖塵不染
    任達(dá)華:抱著學(xué)習(xí)的態(tài)度在內(nèi)地拍戲
    《密戰(zhàn)》首映 任達(dá)華摸郭富城肌肉
    《密戰(zhàn)》首映 任達(dá)華摸郭富城肌肉
    《極致追擊》 昆凌感恩任達(dá)華“護(hù)腹”
    任達(dá)華:甜蜜老爸
    cookie world(2010年7期)2010-08-12 01:41:26
    影帝任達(dá)華:愛妻永遠(yuǎn)是我的“女王”
    家庭百事通(2010年6期)2010-04-29 00:44:03
    譚詠麟 曾志偉 任達(dá)華
    電影畫刊(1999年10期)1999-06-05 14:43:50
    黄色配什么色好看| 亚洲国产精品合色在线| .国产精品久久| 自拍偷自拍亚洲精品老妇| 亚洲自偷自拍三级| 色精品久久人妻99蜜桃| 99久国产av精品| 尾随美女入室| 亚洲 国产 在线| 欧美黑人欧美精品刺激| www.www免费av| 老司机午夜福利在线观看视频| 国产在线男女| 在线国产一区二区在线| 久久精品综合一区二区三区| 免费不卡的大黄色大毛片视频在线观看 | 国产极品精品免费视频能看的| 九九久久精品国产亚洲av麻豆| 精品无人区乱码1区二区| 国产精品电影一区二区三区| 精品福利观看| 亚洲乱码一区二区免费版| 亚洲乱码一区二区免费版| 欧美bdsm另类| www日本黄色视频网| 黄片wwwwww| 在线免费观看的www视频| 国产高清视频在线观看网站| 精品福利观看| 国产乱人视频| 日日撸夜夜添| 男女之事视频高清在线观看| 午夜免费激情av| 午夜爱爱视频在线播放| 亚洲第一电影网av| 国产伦在线观看视频一区| 伦理电影大哥的女人| 一进一出抽搐gif免费好疼| www日本黄色视频网| 欧美日韩中文字幕国产精品一区二区三区| 听说在线观看完整版免费高清| or卡值多少钱| 免费看美女性在线毛片视频| 国产精品久久视频播放| 乱系列少妇在线播放| 国产精品伦人一区二区| 少妇熟女aⅴ在线视频| 午夜福利在线在线| 深爱激情五月婷婷| 色av中文字幕| 九九在线视频观看精品| АⅤ资源中文在线天堂| 久久精品国产亚洲网站| 亚洲va日本ⅴa欧美va伊人久久| 亚洲成人精品中文字幕电影| 啪啪无遮挡十八禁网站| 真实男女啪啪啪动态图| 日本-黄色视频高清免费观看| 久久中文看片网| 18禁裸乳无遮挡免费网站照片| 久久99热6这里只有精品| 麻豆国产av国片精品| 国产av在哪里看| av在线观看视频网站免费| 欧美精品国产亚洲| 真人一进一出gif抽搐免费| 国产高清三级在线| 亚洲 国产 在线| 国产精品爽爽va在线观看网站| 亚洲成人久久爱视频| 99久久精品一区二区三区| 在线观看av片永久免费下载| 在线观看美女被高潮喷水网站| 日本黄色片子视频| 欧美激情久久久久久爽电影| 91麻豆精品激情在线观看国产| 97热精品久久久久久| 免费看日本二区| 欧美最黄视频在线播放免费| 久久久精品大字幕| 嫩草影院精品99| 九色成人免费人妻av| 91狼人影院| 国语自产精品视频在线第100页| 免费在线观看影片大全网站| 国产精品福利在线免费观看| 欧美性感艳星| 啦啦啦啦在线视频资源| 精品久久久噜噜| 在线国产一区二区在线| 看片在线看免费视频| 99久久久亚洲精品蜜臀av| 女生性感内裤真人,穿戴方法视频| 久99久视频精品免费| 波多野结衣巨乳人妻| 91午夜精品亚洲一区二区三区 | 精品人妻一区二区三区麻豆 | 日本黄色视频三级网站网址| 亚洲精品成人久久久久久| 12—13女人毛片做爰片一| 国产精品久久久久久久久免| 欧美另类亚洲清纯唯美| 亚洲国产高清在线一区二区三| 亚洲av免费在线观看| 亚洲欧美日韩高清专用| 日本三级黄在线观看| 久久精品国产亚洲网站| 欧美一区二区精品小视频在线| 又黄又爽又刺激的免费视频.| 免费人成在线观看视频色| 国产在线男女| 亚洲第一区二区三区不卡| 婷婷色综合大香蕉| 色综合亚洲欧美另类图片| 黄色视频,在线免费观看| 嫩草影院新地址| 毛片一级片免费看久久久久 | 美女cb高潮喷水在线观看| aaaaa片日本免费| 高清在线国产一区| 欧美一级a爱片免费观看看| 亚洲七黄色美女视频| 色播亚洲综合网| 男人和女人高潮做爰伦理| 99在线视频只有这里精品首页| 夜夜夜夜夜久久久久| 老司机午夜福利在线观看视频| av在线亚洲专区| 欧美最新免费一区二区三区| 国产精品久久久久久精品电影| 国产精品国产三级国产av玫瑰| 欧美zozozo另类| 午夜激情欧美在线| 99热6这里只有精品| 又爽又黄a免费视频| 日日夜夜操网爽| 久久久久九九精品影院| 啦啦啦啦在线视频资源| 黄色欧美视频在线观看| 三级男女做爰猛烈吃奶摸视频| 麻豆久久精品国产亚洲av| 男女啪啪激烈高潮av片| 草草在线视频免费看| 69人妻影院| 在现免费观看毛片| 99久久成人亚洲精品观看| 成人高潮视频无遮挡免费网站| 亚洲乱码一区二区免费版| 国产欧美日韩精品亚洲av| 国模一区二区三区四区视频| 人妻久久中文字幕网| 在线播放无遮挡| 1000部很黄的大片| 免费不卡的大黄色大毛片视频在线观看 | 亚洲va日本ⅴa欧美va伊人久久| 精品人妻1区二区| 精品久久久久久久久av| 国产精华一区二区三区| 日韩欧美在线二视频| 黄色一级大片看看| 国产女主播在线喷水免费视频网站 | 在线免费观看不下载黄p国产 | 成人三级黄色视频| 国产男人的电影天堂91| 国产黄色小视频在线观看| 国产视频内射| 人妻丰满熟妇av一区二区三区| 国产亚洲精品久久久久久毛片| 国产精品久久久久久精品电影| 丝袜美腿在线中文| 麻豆av噜噜一区二区三区| 亚洲在线观看片| 亚洲成人免费电影在线观看| 国产高清激情床上av| 乱人视频在线观看| 久久久国产成人免费| av黄色大香蕉| 久久久久国产精品人妻aⅴ院| 亚洲专区中文字幕在线| 在线免费观看的www视频| 69av精品久久久久久| 国内精品久久久久久久电影| 亚洲在线自拍视频| 亚洲av五月六月丁香网| 久久欧美精品欧美久久欧美| 床上黄色一级片| 狂野欧美白嫩少妇大欣赏| 赤兔流量卡办理| 欧美+亚洲+日韩+国产| 天堂√8在线中文| 精品欧美国产一区二区三| 99热这里只有是精品在线观看| 亚洲精品乱码久久久v下载方式| 精品国内亚洲2022精品成人| 婷婷精品国产亚洲av| 欧美日本亚洲视频在线播放| 少妇的逼好多水| 亚洲精品久久国产高清桃花| 亚洲成a人片在线一区二区| 午夜日韩欧美国产| 神马国产精品三级电影在线观看| 哪里可以看免费的av片| 亚洲最大成人手机在线| 最近最新中文字幕大全电影3| 久久香蕉精品热| 欧美bdsm另类| 在线观看美女被高潮喷水网站| 欧美3d第一页| 18+在线观看网站| 亚洲电影在线观看av| 97人妻精品一区二区三区麻豆| 欧美一区二区亚洲| 别揉我奶头~嗯~啊~动态视频| 九色国产91popny在线| 网址你懂的国产日韩在线| 久久精品久久久久久噜噜老黄 | 亚洲四区av| 欧美极品一区二区三区四区| 国产在线男女| 久久热精品热| 亚洲18禁久久av| 亚洲国产精品成人综合色| 最新在线观看一区二区三区| 成人精品一区二区免费| 最好的美女福利视频网| 少妇丰满av| av视频在线观看入口| 成人亚洲精品av一区二区| 99久久九九国产精品国产免费| 久久精品久久久久久噜噜老黄 | 免费观看的影片在线观看| 直男gayav资源| 天天一区二区日本电影三级| 亚洲美女黄片视频| 18禁在线播放成人免费| 成人鲁丝片一二三区免费| 亚洲国产日韩欧美精品在线观看| 又粗又爽又猛毛片免费看| 国产成人福利小说| 无人区码免费观看不卡| 国产午夜福利久久久久久| 亚洲精品日韩av片在线观看| 日韩欧美免费精品| 久久久久国内视频| 亚洲男人的天堂狠狠| 免费看光身美女| 久久欧美精品欧美久久欧美| 99九九线精品视频在线观看视频| 女人被狂操c到高潮| 国产毛片a区久久久久| 精华霜和精华液先用哪个| а√天堂www在线а√下载| 中文字幕精品亚洲无线码一区| 看片在线看免费视频| 免费看a级黄色片| 免费观看人在逋| 一卡2卡三卡四卡精品乱码亚洲| 欧美日韩瑟瑟在线播放| 色噜噜av男人的天堂激情| 女人十人毛片免费观看3o分钟| 性欧美人与动物交配| 久久久久免费精品人妻一区二区| 日韩一本色道免费dvd| 日韩强制内射视频| 中文字幕精品亚洲无线码一区| 亚洲性久久影院| 精品久久久久久,| 露出奶头的视频| 国产中年淑女户外野战色| 91在线观看av| www日本黄色视频网| 亚洲黑人精品在线| 精品久久久噜噜| 午夜福利在线在线| 欧美性猛交黑人性爽| 国产真实乱freesex| av在线亚洲专区| 在线免费观看的www视频| 成人亚洲精品av一区二区| 精品人妻1区二区| 99在线视频只有这里精品首页| .国产精品久久| 日本免费a在线| 成人精品一区二区免费| 有码 亚洲区| 九色国产91popny在线| 日韩精品有码人妻一区| 成熟少妇高潮喷水视频| 久久国产乱子免费精品| 性欧美人与动物交配| 久久精品人妻少妇| 简卡轻食公司| 成人毛片a级毛片在线播放| 国模一区二区三区四区视频| h日本视频在线播放| 99九九线精品视频在线观看视频| 免费av观看视频| 国产男人的电影天堂91| 国产高清三级在线| 久久久久久久久久黄片| av在线老鸭窝| 88av欧美| 欧美一级a爱片免费观看看| www.色视频.com| 午夜福利成人在线免费观看| 亚洲成人中文字幕在线播放| 91精品国产九色| 精品人妻1区二区| 成人性生交大片免费视频hd| av在线蜜桃| 欧美zozozo另类| 欧美潮喷喷水| 国产真实伦视频高清在线观看 | 国产在线男女| 18禁黄网站禁片免费观看直播| 日韩高清综合在线| 人妻丰满熟妇av一区二区三区| 精品国产三级普通话版| 九九爱精品视频在线观看| 亚洲成人中文字幕在线播放| 久久久国产成人精品二区| 欧美+亚洲+日韩+国产| 亚洲国产色片| 成人av一区二区三区在线看| 精品一区二区三区视频在线| 日韩欧美 国产精品| 亚洲最大成人手机在线| 人妻夜夜爽99麻豆av| 免费观看的影片在线观看| 又紧又爽又黄一区二区| 俺也久久电影网| 国产高清不卡午夜福利| 亚洲精品久久国产高清桃花| 99视频精品全部免费 在线| 欧美成人a在线观看| 国产毛片a区久久久久| 国产黄色小视频在线观看| 在线观看舔阴道视频| 狂野欧美激情性xxxx在线观看| 欧洲精品卡2卡3卡4卡5卡区| 又粗又爽又猛毛片免费看| 一级毛片久久久久久久久女| 99热这里只有是精品50| 亚洲 国产 在线| 国产黄色小视频在线观看| 久久久久久久亚洲中文字幕| 十八禁网站免费在线| 久久久久久久亚洲中文字幕| 国产亚洲91精品色在线| 日韩一区二区视频免费看| 国产av不卡久久| 日韩大尺度精品在线看网址| 女生性感内裤真人,穿戴方法视频| 99热这里只有是精品50| 男人舔女人下体高潮全视频| 麻豆国产av国片精品| 小蜜桃在线观看免费完整版高清| 少妇丰满av| 在现免费观看毛片| 在线国产一区二区在线| 精品人妻1区二区| 亚洲七黄色美女视频| 观看免费一级毛片| 亚洲真实伦在线观看| 免费在线观看成人毛片| 国产三级在线视频| 如何舔出高潮| 草草在线视频免费看| 九九爱精品视频在线观看| 国产主播在线观看一区二区| 日本在线视频免费播放| 精品乱码久久久久久99久播| 免费观看精品视频网站| 日本精品一区二区三区蜜桃| 99热这里只有是精品50| 天堂√8在线中文| 99精品在免费线老司机午夜| 国产一区二区亚洲精品在线观看| 人人妻人人看人人澡| 嫩草影院精品99| 亚洲精华国产精华液的使用体验 | 亚洲av美国av| 免费观看精品视频网站| 亚洲精品国产成人久久av| 日韩欧美在线乱码| 一夜夜www| 国产精品亚洲美女久久久| 欧美一区二区国产精品久久精品| 久久人妻av系列| 免费看a级黄色片| a在线观看视频网站| 色5月婷婷丁香| 国产伦精品一区二区三区视频9| bbb黄色大片| 两个人的视频大全免费| 99热6这里只有精品| 最好的美女福利视频网| 人妻久久中文字幕网| 精品国产三级普通话版| 真实男女啪啪啪动态图| 女生性感内裤真人,穿戴方法视频| 午夜视频国产福利| 偷拍熟女少妇极品色| 伊人久久精品亚洲午夜| 天天躁日日操中文字幕| 999久久久精品免费观看国产| 一本久久中文字幕| 免费观看精品视频网站| 九色成人免费人妻av| 日韩一区二区视频免费看| 国产精品爽爽va在线观看网站| 日日摸夜夜添夜夜添av毛片 | 国产精品一区二区三区四区免费观看 | 成人午夜高清在线视频| 熟妇人妻久久中文字幕3abv| 天天躁日日操中文字幕| 国产极品精品免费视频能看的| 在线免费十八禁| 亚洲av中文av极速乱 | 他把我摸到了高潮在线观看| 国产在线精品亚洲第一网站| 色哟哟·www| 在线观看舔阴道视频| 69人妻影院| 亚洲av二区三区四区| 最近最新免费中文字幕在线| 三级国产精品欧美在线观看| 午夜激情福利司机影院| 亚洲欧美日韩无卡精品| 欧美高清性xxxxhd video| 国产精品,欧美在线| 啦啦啦观看免费观看视频高清| 亚洲国产欧洲综合997久久,| 色综合婷婷激情| 美女xxoo啪啪120秒动态图| 搡老熟女国产l中国老女人| 日本a在线网址| 伦理电影大哥的女人| 亚洲va在线va天堂va国产| 国产高潮美女av| 午夜激情欧美在线| eeuss影院久久| 中文字幕人妻熟人妻熟丝袜美| 波多野结衣高清作品| 成人精品一区二区免费| 岛国在线免费视频观看| 国产亚洲精品久久久久久毛片| 久9热在线精品视频| 人人妻,人人澡人人爽秒播| 女人被狂操c到高潮| 亚洲美女视频黄频| 成人综合一区亚洲| 欧美性猛交╳xxx乱大交人| 黄色一级大片看看| 日本欧美国产在线视频| 免费看a级黄色片| 国产精品久久电影中文字幕| 看片在线看免费视频| 欧美性感艳星| av福利片在线观看| 可以在线观看的亚洲视频| 亚洲成人精品中文字幕电影| 精品人妻一区二区三区麻豆 | 日本爱情动作片www.在线观看 | 97超视频在线观看视频| 午夜视频国产福利| 久久久久久久精品吃奶| 日本黄大片高清| 国产日本99.免费观看| 一区福利在线观看| 国产探花在线观看一区二区| 国产伦人伦偷精品视频| 国产亚洲精品久久久久久毛片| 人妻少妇偷人精品九色| 国产真实伦视频高清在线观看 | 欧美一区二区国产精品久久精品| 少妇熟女aⅴ在线视频| 97热精品久久久久久| 22中文网久久字幕| 亚洲av电影不卡..在线观看| 欧美黑人欧美精品刺激| 91狼人影院| videossex国产| 国产高清视频在线播放一区| 成人二区视频| 亚州av有码| 韩国av一区二区三区四区| 日本 欧美在线| 国产高清视频在线播放一区| 婷婷丁香在线五月| 十八禁网站免费在线| 欧美日韩国产亚洲二区| a在线观看视频网站| 97碰自拍视频| 国产精品永久免费网站| 精品久久国产蜜桃| 又黄又爽又免费观看的视频| 久9热在线精品视频| 久久国产乱子免费精品| 淫妇啪啪啪对白视频| 亚洲无线在线观看| 老熟妇乱子伦视频在线观看| 成人av在线播放网站| 亚洲成人中文字幕在线播放| 亚洲在线自拍视频| 天美传媒精品一区二区| 国产午夜福利久久久久久| 色视频www国产| 丰满的人妻完整版| 国产亚洲精品综合一区在线观看| 久久午夜福利片| 久久精品人妻少妇| 久久精品国产亚洲av天美| 国产精品国产三级国产av玫瑰| 国产成人a区在线观看| 99在线人妻在线中文字幕| 美女被艹到高潮喷水动态| 女生性感内裤真人,穿戴方法视频| 波多野结衣巨乳人妻| 国产精品自产拍在线观看55亚洲| 在线播放无遮挡| 嫩草影院精品99| 尾随美女入室| 天美传媒精品一区二区| 少妇熟女aⅴ在线视频| 久久久久久久精品吃奶| 一个人看的www免费观看视频| 中亚洲国语对白在线视频| 在线观看免费视频日本深夜| 成年人黄色毛片网站| 国产真实伦视频高清在线观看 | 亚洲性夜色夜夜综合| 女同久久另类99精品国产91| 97超级碰碰碰精品色视频在线观看| 草草在线视频免费看| 午夜视频国产福利| 欧美xxxx黑人xx丫x性爽| 嫩草影视91久久| 欧洲精品卡2卡3卡4卡5卡区| 亚洲精品国产成人久久av| 欧美最新免费一区二区三区| 韩国av在线不卡| 国产私拍福利视频在线观看| 国产伦一二天堂av在线观看| 男人的好看免费观看在线视频| 国产av在哪里看| 真实男女啪啪啪动态图| 校园人妻丝袜中文字幕| av在线蜜桃| 欧美另类亚洲清纯唯美| 有码 亚洲区| 黄色日韩在线| 99热这里只有是精品在线观看| 国产精品国产三级国产av玫瑰| 国产精品99久久久久久久久| 1024手机看黄色片| 人人妻人人澡欧美一区二区| 国产精品伦人一区二区| 热99在线观看视频| 十八禁国产超污无遮挡网站| 国产一区二区在线av高清观看| 99久久精品一区二区三区| 最近视频中文字幕2019在线8| 韩国av一区二区三区四区| 国产黄色小视频在线观看| 老熟妇乱子伦视频在线观看| 嫁个100分男人电影在线观看| 我的老师免费观看完整版| 国产成人aa在线观看| 亚洲美女黄片视频| 免费黄网站久久成人精品| 88av欧美| 日韩在线高清观看一区二区三区 | 99精品在免费线老司机午夜| 最近最新免费中文字幕在线| 最好的美女福利视频网| 亚洲欧美日韩高清在线视频| 欧美在线一区亚洲| 久久欧美精品欧美久久欧美| 十八禁国产超污无遮挡网站| 成人午夜高清在线视频| 日韩精品青青久久久久久| 最近最新中文字幕大全电影3| 精品免费久久久久久久清纯| 日本免费一区二区三区高清不卡| av黄色大香蕉| 69人妻影院| 亚洲精品亚洲一区二区| 老女人水多毛片| 国产高清有码在线观看视频| 日韩精品青青久久久久久| 国产色爽女视频免费观看| 国产高清有码在线观看视频| 男人舔奶头视频| 国产成人a区在线观看| 国产精品精品国产色婷婷| 一个人看的www免费观看视频| 欧美色视频一区免费| 最好的美女福利视频网| 亚洲av电影不卡..在线观看| 在线免费观看的www视频| 国产伦精品一区二区三区四那| 99九九线精品视频在线观看视频| 国产黄片美女视频| 麻豆成人午夜福利视频| 亚洲美女黄片视频| 国内久久婷婷六月综合欲色啪| 十八禁网站免费在线| 在线观看舔阴道视频| 一夜夜www| 熟女电影av网| 国产成人av教育| 久久精品国产自在天天线| 十八禁国产超污无遮挡网站| 久久久久久久午夜电影|