• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Tunable electronic properties of GaS-SnS2 heterostructure by strain and electric field

    2022-04-12 03:44:46DaHuaRen任達(dá)華QiangLi李強(qiáng)KaiQian錢楷andXingYiTan譚興毅
    Chinese Physics B 2022年4期
    關(guān)鍵詞:任達(dá)華

    Da-Hua Ren(任達(dá)華) Qiang Li(李強(qiáng)) Kai Qian(錢楷) and Xing-Yi Tan(譚興毅)

    1School of Information Engineering,Hubei Minzu University,Enshi 44500,China

    2Science of Physics and Technology,Wuhan University,Wuhan 430072,China

    3School of Advanced Materials and Mechatronic Engineering,Hubei Minzu University,Enshi 44500,China

    4Department of Physics,Chongqing Three Gorges University,Wanzhou 404100,China

    Keywords: GaS-SnS2 heterostructure,type-II band alignment,optical properties,density functional theory

    1. Introduction

    Van der Waals (vdW) heterostructures can be used in unusual electronic devices because of their peculiar physical properties and excellent performances.[1]Additionally,vertically stacked heterostructures have innovative applications in electronic devices,such as ultrathin photodetectors,[2]solar cells,[3]memory devices,[4]flexible sensors, and transistors.[5,6]Specifically, two-dimensional (2D) vdW heterostructure with type-II band alignment has promising potentials in photovoltaics devices and photocatalysts[7-11]due to their fascinating electronic and optical properties. In type-II heterostructures, the photogenerated holes and electrons are spatially located in different layers. As a result, the recombination of carriers can be effectively prevented and the light energy utilization is significantly enhanced.[12]Moreover, GaS is a typical layered group III-VI compound and each layer is composed of S-Ga-Ga-S repeating units along thecaxis withD3hsymmetry. The interlayer interactions between layers belong in weak vdW force. The GaS can be used for a promising near-blue light emitting devices because of the indirect band gap of 2.5 eV.[13]More interestingly, monolayer GaS can be easily mechanically cleavaged.[14]The photodetectors based on GaS nanosheet have higher photoresponsivity than graphene, 2D MoS2.[15]Recent researches indicate that the vdW heterostructures based on monolayer GaS are able to exhibit type-II band alignment, such as GaS-GaSe,[16]GaSMoSe2,[17]and GaS-InS.[18]

    Furthermore,tin disulfide(SnS2)has attracted intense attention in solar energy conversion, optoelectronics, and photocatalyst because of its CdI2-type layered structure with a sustainable band gap (2.2 eV-2.35 eV) and high electrical conductivity.[19]The SnS2consists of an S-Sn-S triple layer and the interlayer interaction belongs in the vdW force. The SnS2single-layer is synthesized by liquid exfoliation. The experimental researches indicate that the SnS2single-layer is of a semiconductor with a band gap of 2.29 eV and can be used in visible-light water splitting due to the high photo-conversion efficiency.[20]However,an inconvenient band edge alignment of pristine SnS2hinders the efficient photocatalyst from splitting water.[21]Recent efforts have demonstrated that the electronic and optical properties of SnS2can be greatly tailored by external means, such as doping,[22]electric field,[23]and stacking heterostructure with other 2D materials.[24]

    Up to now,the combination of SnS2with different semiconductors, such as SnS2-TiO2,[24]SnS2-g-C3N4,[25]SnS2-SnO2,[26]SnS2-RGO,[27]and ZrS2-SnS2,[28]has been reported to enhance photocatalytic performance. In addition,the heterostructure based on 2D SnS2,such as SnS2-BiPO4[29]heterostructure,are able to be formed into a type-II band structure, which shows good electronic and optical behaviors in photocatalyst and optoelectronic applications. Even though there exist a few of researches on 2D heterostructure based on 2D SnS2,the understanding of the role and evolution of SnS2in the GaS-SnS2heterostrucutre has not been demonstrated.

    Herein,we constructe a novel 2D GaS-SnS2heterostructure and study the structural, electronic, optical, photocalytic properties. Note that 2D SnS2, together with 2D GaS, can form a vdW heterostructure due to their similar structures and same lattice constants. Generally,it is also worth studying the superior structure and excellent properties of GaS-SnS2heterostructure, which could potentially provide a platform for applications in photocalyst and optoelectronic devices.

    2. Computational methods

    Ab initio calculations were performed within the framework of density functional theory (DFT).[30,31]as implemented in the Viennaab initiosimulations package(VASP).[32]Electronic exchange and correlation effects were described with the Perdew-Burke-Ernzerhof (PBE)[33]functional of generalized gradient approximation (GGA)[34]and HSE06[35]hybrid function. Electron-ion interactions were treated with the projector augmented wave (PAW)method,[36,37]with an energy cutoff being 500 eV and Brillouin zone sampling ofK-mesh set to be 11×11×1 for relaxation. TheK-mesh points for density of states (DOS)and energy band structure calculations were assumed to be 13×13×1, and the energy criterion was set to be 105eV until the residual force was smaller than 103eV/°A.Especially,the vacuum layer thickness is fixed at more than 25 °A to avoid spurious interactions in the neighboring images. As the longrange vdW interaction is important for holding the 2D heterostructure together, the vdW-D3 approach[38]was used to describe long-range electron correlation effects.

    The optical properties of 2D GaS-SnS2heterostructures are described by the complex dielectric functionε(ω) =ε1(ω)+iε2(ω),whereε1(ω)andε2(ω)are the real part and the imaginary part,respectively. At the same time,the imaginary part is calculated by summing up all possible transitions from the occupied to the unoccupied states,which is related to the band structure in the absorption behaviors.[39]The imaginary part is given by

    wherePis the principal value. The absorption coefficient is then obtained as follows:[40,41]

    3. Results and discussion

    3.1. Stability and structures

    Stacking patterns can modulate the electronic properties of the vdW heterostructures. In stacking (AA), the Sn atom is placed on the top of Ga atom, while the S atom in SnS2layer is situated on the top of S atom in GaS layer. In stacking(AB),the S atom in SnS2layer is placed on the top of Ga atom while the Sn atom is located at the hexagonal site. In stacking (AC), the Sn atom is placed on the top of S atom in GaS layer, while the S atom in SnS2layer is settled at the hexagonal site. In stacking (AD), the Sn atom is placed on the top of S atom in GaS layer while the S atom in SnS2layer lies on the top of Ga atom. We check the structural stability of these heterostructures by calculating their binding energy values,interlayer distances and thermal stabilities. Therefore,a typical stacking configuration (AA) is constructed due to the lowest adhesion energy and thermal stability. The relaxed structure is shown in Fig.1. After relaxation,the equilibrium lattice constants of GaS monolayer(a=b=3.585 °A),SnS2monolayer(a=b=3.699 °A) and AA stacking GaS-SnS2heterostructure (a=b= 3.636 °A), calculated with GGA-PBE, are in consistence with other reported results.[14,16-19]It is clear that the hexagonal unit parameter of GaS-SnS2heterostructure is 3.636 °A.The lattice mismatch of GaS-SnS2heterostructure is 1.7%,meaning that the structure of GaS-SnS2heterostructure is acceptable.

    To describe the vdW interaction,the interface binding energy(ΔE)of GaS-SnS2heterostructure is calculated to be

    where ΔErefers to the interface binding energy at the interface of GaS-SnS2heterostructure;EHS,EGaS,ESnS2,Srepresent respectively the total energy of heterostructure, GaS monolayer, SnS2monolayer, the interface areas of the heterostructure. Obviously, the interface binding energy of GaS-SnS2heterostructure is-27.8 meV/°A2, demonstrating that the interaction between two layers is physically vdW force. The interface binding energy is negative,suggesting that the GaSSnS2heterostructure has favorable energy during the formation. In addition,the AIMD simulation of the GaS-SnS2heterostructure for the most favorable stacking AA pattern is also performed to confirm the thermal stability at room temperature as can be seen in Fig.2. Obviously,the variation of total energy of the GaS-SnS2heterostructure is quite small during 6800 fs,indicating that the GaS-SnS2heterostructure is thermally stable at room temperature.

    Fig.1. Relaxed structures of four typical stacking patterns of GaS-SnS2 heterostructure,with red,yellow,and blue spheres representing Ga,S,and Sn atoms,respectively.

    Fig.2. Thermal stability of GaS-SnS2 heterostructure.

    As shown in Fig.3,the optimal distance between S atom in the GaS layer and S atom in the SnS2layer is 3.705 °A,meaning that no bonds between S atoms are formed and this heterostructure is formed by the same magnitude order of vdW forces as typical vdW graphite.[42]

    Fig. 3. Plot for the 4-th order polynomial fit interface binding energy as a function of interlayer distance of GaS-SnS2 heterostructure.

    3.2. Electronic properties

    In the following, projection-resolved band structures of GaS monolayer, SnS2monolayer, GaS-SnS2heterostructure are depicted in Fig. 4. The GaS-SnS2heterostructure is an indirect band gap semiconductor. The valence band maximum (VBM) and the conduction band minimum (CBM) of the GaS-SnS2heterostructure are located at theMpoint andK →Gof Brillouin zone (BZ). The band gap of GaS-SnS2heterostructure is 1.82 eV from the HSE06 calculation,smaller than those of both individual GaS (3.19 eV) monolayer and individual SnS2(2.31 eV)monolayer,which accord well with the theoretical values of GaS(3.29 eV),[15]SnS2(2.39 eV).[43]Specially,GaS-SnS2heterostructure has a type-II band alignment, which is beneficial to separating the photogenerated holes and electrons in different layers, preventing the carriers from being recombined, and enhancing the light energy utilization. Therefore, the band gap of the GaS-SnS2heterostructure can be significantly changed by vertically stacking the heterostructure,which can provide a good opportunity to work on band engineering and photoelectronic device designs.

    Fig. 4. Projection-resolved band structure of (a) GaS monolayer, (b) SnS2 monolyer,and(c)GaS-SnS2 heterostructure,with red and blue lines denoting contributions from GaS and SnS2 layers,respectively.

    As reflected in the projection-resolved band structure,the band gap of GaS monolayer decreases due to the downshift of CBM atMpoint as well as the upshift of VBM atK →Gpoint. The contribution of VBM of GaS-SnS2heterostructure is GaS layer and that of CBM is SnS2layer,in which the red and blue lines present the DOS of GaS and SnS2layer in GaS-SnS2heterostructure,respectively,in Fig.5. Obviously,in the GaS-SnS2heterostructure, the VBM and CBM are respectively confined in GaS and SnS2layer,respectively,indicating that the GaS-SnS2heterostructure has a type-II band alignment.

    Fig.5. Projected density of states(PDOS)of GaS monolayer,SnS2 monolayer, GaS-SnS2 heterostructure, where Fermi level is set to zero as indicated by the black dashed line.

    3.3. Effect of external electric field and biaxial strain on band gap of GaS-SnS222 heterostructure

    External electric field is extensively considered as an efficient strategy to expand the semiconductors with desirable band gap into photoelectronic devices. Therefore, it is extremely important that an external electric field (Eext) be applied to changing the band gap of GaS-SnS2heterostructure as depicted in Fig.6. The band gap of GaS-SnS2heterostructure, which remains indirect semiconductor, changes a lot in theEextrange from-0.1 V/°A to 0.1 V/°A.Note that the electric field direction from the bottom (GaS layer) to the top (SnS2layer) is the positiveZdirection ofEext, perpendicular to the interface. The band gap decreases from-0.1 V/°A to 0.1 V/°A,which accelerates electrons(holes)from the conduction band-CB(valence band-VB)of the SnS2(GaS)layer to the CB(VB)of the GaS(SnS2)layer as shown in Fig.6(b).

    Fig.6. Variation of(a)band gap and(b)band alignment of GaS-SnS2 heterostructure with external electric field.

    Biaxial strain is effectively able to tailor the electronic performance of heterostructure. Here, the effect of biaxial strain from-8% to 10% on the electronic property of GaSSnS2heterostructure is discussed, namely the corresponding lattice parameter of the heterostrucutre unit cell is effectively modified. Fortunately,the structure of the heterostructure under biaxial strain is successfully relaxed and has the hexagonal lattice symmetry according to the same state of the irreducible Brillouin zone. The change of the band gap under biaxial strain is shown in Fig. 7. As the compress strain increases from-4% to-8%, the band gap first decreases, for the VBM increases more rapidly than the CBM.And the compress strain increases from 0 to-4%, the band gap then increases due to the more fast-growing CBM. Meanwhile, the band gap decreases monotonically when the tensile strain increases from 0 to 10%due to the CBM moving more speedily down to fermi level than the VBM.

    Although the outermost two S layers in the GaS-SnS2heterostructure have the same electronegativity, the sixth Sn layer on the SnS2side has greater electronegativity (2.44e)than the second Ga layer on the GaS side(2.14e). Therefore,the electrons at the interface are depleted on the GaS side but accumulated on the SnS2side,forming a built-in electric field from GaS layer to SnS2layer. The smaller charge transfer at the interface leads to the weaker interaction between Sn and Ga atoms.

    Fig.7. Variation of(a)band gap and(b)band alignment with biaxial strain of GaS-SnS2 heterostructure.

    Fig.8. (a)Charge density difference and(b)planar-averaged charge density difference of GaS-SnS2 heterostructure along Z direction.

    The planar-averaged charge density difference along theZdirection is described as Δρ=ρGaS-SnS2-ρGaS-ρSnS2,where,ρGaS-SnS2,ρGaS,ρSnS2are the planar-averaged charge densities of GaS-SnS2heterostructure, GaS monolayer, and SnS2monolayer. As shown in Fig. 8, the positive value and the negative value represent the charge accumulation and the charge depletion, respectively. Both electrons and holes under built-in electric field move towards the opposite directions,which can accelerate the separation of photo-generated electrons or holes to improve photocatalytic activity.

    3.4. Photocatalyst and absorption behaviors

    The absorption coefficient of GaS-SnS2heterostructure is calculated,and the results are shown in Fig.9(a). It is clear that the first peak in the absorption spectrum of GaS-SnS2heterostructure is locates at 2.25 eV,which is mainly contributed by the SnS2layer. The absorption behavior of GaS-SnS2heterostructure is more improved than that of the individual GaS monlayer and SnS2monolayer. The absorption spectrum of GaS-SnS2heterostructure covers the visible light, which makes it well suitable for the application of optoelectronic devices in visible light region.

    Fig. 9. (a) Absorption spectra of GaS-SnS2 heterostructure and (b)schematic migrating carrier.

    A schematic plot to depict the dynamic process of photogenerated carrier at the GaS-SnS2interface is shown in Fig. 9(b). In the GaS-SnS2heterostructure, the photogenerated electrons of the GaS layer start to transfer to the SnS2layer in the conduction band,which are motivated by the conduction band offset (CBO) (1.45 eV). Meanwhile, the photogenerated holes move from the valence band of the SnS2layer into the GaS layer, which are driven by a large valence band offset (VBO) (0.57 eV). Hence, the GaS-SnS2heterostructure, exhibiting a type-II band alignment, can be utilized as a photocatalyst.

    As is well known,the lifetime of photogenerated carriers is significantly influenced by the build-in electric field.Hence,build-in electric field induced by ground state charge transfer are investigated based on bader charge analysis.[44]The charge transferring from the GaS layer to the SnS2layer is 0.938e, leading to an electric field from the GaS layer to the SnS2layer. This electric field will promote interlayer charge transfer and prohibit carrier recombination, favoring a good light harvesting efficiency.

    4. Conclusions

    In this work,the electronic and optical properties of GaSSnS2heterostructure have been investigated with density functional theory. It is found that the hexagonal GaS-SnS2heterostructure is a stable semiconductor with a suitable indirect band gap. Interestingly, the GaS-SnS2heterostructure has a type-II band alignment, which is beneficial to photocatalyst.In the GaS-SnS2heterostructure,the charge transferring from the GaS layer to the SnS2layer is 0.938ebased on bader charge analysis, forming a build-in electric field for charge separation.The absorption behavior of GaS-SnS2heterostructure is enhanced in comparison with that of the individual GaS monlayer and SnS2monolayer,indicating that the GaS-SnS2heterostructure is very efficient at absorbing the visible light to expand the application into photocatalyst and opto-electronic devices.

    Acknowledgements

    Project supported by the National Natural Science Foundation of China (Grant No. 1186040026), the Incubation Project for High-Level Scientific Research Achievements of Hubei Minzu University, China (Grant No. 4205009), and the Fund of the Educational Commission of Hubei Province,China(Grant No.T201914).

    猜你喜歡
    任達(dá)華
    Band alignment in SiC-based one-dimensional van der Waals homojunctions?
    腳踏500雙皮鞋一路走來,任達(dá)華戲里戲外纖塵不染
    任達(dá)華:抱著學(xué)習(xí)的態(tài)度在內(nèi)地拍戲
    《密戰(zhàn)》首映 任達(dá)華摸郭富城肌肉
    《密戰(zhàn)》首映 任達(dá)華摸郭富城肌肉
    《極致追擊》 昆凌感恩任達(dá)華“護(hù)腹”
    任達(dá)華:甜蜜老爸
    cookie world(2010年7期)2010-08-12 01:41:26
    影帝任達(dá)華:愛妻永遠(yuǎn)是我的“女王”
    家庭百事通(2010年6期)2010-04-29 00:44:03
    譚詠麟 曾志偉 任達(dá)華
    電影畫刊(1999年10期)1999-06-05 14:43:50
    久久精品国产综合久久久| h视频一区二区三区| 男女床上黄色一级片免费看| 亚洲人成电影观看| 美女扒开内裤让男人捅视频| 午夜福利影视在线免费观看| 久久久久久久国产电影| 男女床上黄色一级片免费看| 一区二区三区精品91| 日本猛色少妇xxxxx猛交久久| 咕卡用的链子| 中文字幕亚洲精品专区| 国产精品二区激情视频| 久久精品亚洲av国产电影网| 激情五月婷婷亚洲| 欧美日韩精品网址| 两个人免费观看高清视频| 美女脱内裤让男人舔精品视频| 欧美日韩福利视频一区二区| 欧美久久黑人一区二区| 国产无遮挡羞羞视频在线观看| 考比视频在线观看| 丝袜人妻中文字幕| 嫁个100分男人电影在线观看 | 欧美精品亚洲一区二区| 国产淫语在线视频| 亚洲av欧美aⅴ国产| 中文字幕色久视频| 国产老妇伦熟女老妇高清| 午夜福利视频在线观看免费| 黄频高清免费视频| 女人精品久久久久毛片| 一本大道久久a久久精品| 三上悠亚av全集在线观看| 男女床上黄色一级片免费看| 操出白浆在线播放| 日日夜夜操网爽| 啦啦啦啦在线视频资源| 欧美日本中文国产一区发布| 一区在线观看完整版| 丰满迷人的少妇在线观看| 欧美日韩av久久| 亚洲欧美色中文字幕在线| 国产精品一区二区在线观看99| 麻豆国产av国片精品| 免费av中文字幕在线| 在现免费观看毛片| 在线观看一区二区三区激情| 一级毛片黄色毛片免费观看视频| 极品人妻少妇av视频| 日日爽夜夜爽网站| 亚洲精品一区蜜桃| 国产伦人伦偷精品视频| 中文字幕色久视频| 狂野欧美激情性bbbbbb| 国产精品国产av在线观看| 欧美在线一区亚洲| bbb黄色大片| 久久青草综合色| a 毛片基地| 天天影视国产精品| 日本a在线网址| 中文精品一卡2卡3卡4更新| 久久青草综合色| 免费在线观看影片大全网站 | 91麻豆av在线| 中文乱码字字幕精品一区二区三区| 一个人免费看片子| av网站免费在线观看视频| 最新在线观看一区二区三区 | 我要看黄色一级片免费的| 日韩精品免费视频一区二区三区| www.自偷自拍.com| 欧美老熟妇乱子伦牲交| 国产亚洲欧美在线一区二区| 亚洲精品日韩在线中文字幕| 日本vs欧美在线观看视频| av欧美777| 欧美变态另类bdsm刘玥| 免费观看人在逋| 99精品久久久久人妻精品| 欧美精品av麻豆av| 免费日韩欧美在线观看| av天堂在线播放| 十八禁网站网址无遮挡| 国产精品 国内视频| 国产97色在线日韩免费| 中文字幕高清在线视频| 亚洲成人免费电影在线观看 | 久久人妻熟女aⅴ| 后天国语完整版免费观看| 自拍欧美九色日韩亚洲蝌蚪91| 国产av国产精品国产| 国产视频一区二区在线看| 日本五十路高清| 欧美人与善性xxx| 日本a在线网址| 国产国语露脸激情在线看| 日韩大片免费观看网站| 亚洲情色 制服丝袜| 欧美人与性动交α欧美软件| 啦啦啦啦在线视频资源| 亚洲第一av免费看| 亚洲第一青青草原| 日本a在线网址| 嫁个100分男人电影在线观看 | 国产深夜福利视频在线观看| av欧美777| 免费观看人在逋| 男人操女人黄网站| 各种免费的搞黄视频| 多毛熟女@视频| 欧美国产精品一级二级三级| 午夜福利视频精品| 丰满饥渴人妻一区二区三| 少妇精品久久久久久久| 亚洲第一青青草原| 免费观看av网站的网址| 国产精品国产三级专区第一集| 中文字幕人妻熟女乱码| 这个男人来自地球电影免费观看| 日本av免费视频播放| 国产97色在线日韩免费| 日韩av免费高清视频| 日日夜夜操网爽| 黄色视频在线播放观看不卡| 国产爽快片一区二区三区| 日韩电影二区| 看十八女毛片水多多多| 亚洲精品日韩在线中文字幕| 日韩大片免费观看网站| 日本av手机在线免费观看| 国产精品熟女久久久久浪| 亚洲成人免费电影在线观看 | 国产极品粉嫩免费观看在线| 欧美中文综合在线视频| 丝袜美足系列| 国产成人啪精品午夜网站| 99热国产这里只有精品6| 日本vs欧美在线观看视频| 精品一区二区三区av网在线观看 | kizo精华| 丝袜美腿诱惑在线| 亚洲精品日韩在线中文字幕| 日韩中文字幕视频在线看片| 9色porny在线观看| 国产片特级美女逼逼视频| 欧美日韩亚洲高清精品| h视频一区二区三区| 久久久国产精品麻豆| 一级,二级,三级黄色视频| 亚洲伊人久久精品综合| 久久ye,这里只有精品| 精品卡一卡二卡四卡免费| 亚洲专区国产一区二区| 在线观看人妻少妇| 熟女av电影| 久久久久久久久久久久大奶| 精品一区二区三区四区五区乱码 | 热re99久久精品国产66热6| avwww免费| 午夜福利免费观看在线| av网站免费在线观看视频| 亚洲欧洲国产日韩| 国产人伦9x9x在线观看| 夜夜骑夜夜射夜夜干| 啦啦啦啦在线视频资源| 国产午夜精品一二区理论片| 天堂中文最新版在线下载| 性少妇av在线| www.av在线官网国产| 久久久久精品人妻al黑| 大型av网站在线播放| 少妇的丰满在线观看| 一区二区三区四区激情视频| 曰老女人黄片| 亚洲伊人色综图| 国产又爽黄色视频| 岛国毛片在线播放| 一区二区三区精品91| 国产片内射在线| 久久久久网色| 波多野结衣av一区二区av| 国产免费现黄频在线看| 午夜av观看不卡| 成人影院久久| 五月天丁香电影| 丝袜喷水一区| 亚洲av日韩精品久久久久久密 | 黑人猛操日本美女一级片| 99久久99久久久精品蜜桃| 久久久精品区二区三区| 欧美变态另类bdsm刘玥| 男女下面插进去视频免费观看| 国产成人一区二区三区免费视频网站 | 亚洲熟女精品中文字幕| 欧美另类一区| 中文乱码字字幕精品一区二区三区| www.自偷自拍.com| 亚洲国产精品999| 国产精品av久久久久免费| 99精品久久久久人妻精品| 国产一区二区 视频在线| 精品福利观看| 韩国精品一区二区三区| 久久av网站| 亚洲精品日韩在线中文字幕| 日本猛色少妇xxxxx猛交久久| 又黄又粗又硬又大视频| 超碰97精品在线观看| 免费看不卡的av| 日本a在线网址| 亚洲综合色网址| 一区二区三区乱码不卡18| 悠悠久久av| 国产一卡二卡三卡精品| 十八禁人妻一区二区| 亚洲欧洲日产国产| 99国产精品一区二区三区| 亚洲图色成人| 90打野战视频偷拍视频| 午夜av观看不卡| 欧美久久黑人一区二区| 国产精品久久久久久精品电影小说| av在线老鸭窝| 国产亚洲精品久久久久5区| 观看av在线不卡| 我的亚洲天堂| 丰满饥渴人妻一区二区三| 尾随美女入室| 欧美亚洲 丝袜 人妻 在线| 欧美少妇被猛烈插入视频| a 毛片基地| 一区二区日韩欧美中文字幕| 亚洲黑人精品在线| 婷婷丁香在线五月| 高清欧美精品videossex| 极品少妇高潮喷水抽搐| 国产免费现黄频在线看| 黄色片一级片一级黄色片| 少妇猛男粗大的猛烈进出视频| 妹子高潮喷水视频| 99re6热这里在线精品视频| 久久免费观看电影| 免费久久久久久久精品成人欧美视频| 美国免费a级毛片| 97在线人人人人妻| 99国产综合亚洲精品| 亚洲国产av新网站| 好男人视频免费观看在线| 婷婷成人精品国产| 最黄视频免费看| 高清不卡的av网站| 中文字幕亚洲精品专区| 女性生殖器流出的白浆| 免费观看a级毛片全部| 美女福利国产在线| 成人国产一区最新在线观看 | av在线播放精品| 少妇粗大呻吟视频| 亚洲成av片中文字幕在线观看| 亚洲色图 男人天堂 中文字幕| 精品第一国产精品| 少妇粗大呻吟视频| videosex国产| 国产成人一区二区三区免费视频网站 | www.熟女人妻精品国产| 欧美日韩精品网址| 久久天堂一区二区三区四区| 久久天躁狠狠躁夜夜2o2o | 久久毛片免费看一区二区三区| 国产黄频视频在线观看| 国产高清国产精品国产三级| 手机成人av网站| 午夜免费观看性视频| 亚洲精品自拍成人| 一级毛片电影观看| 在线观看www视频免费| 看免费成人av毛片| 女警被强在线播放| 人人妻人人添人人爽欧美一区卜| 日韩中文字幕欧美一区二区 | 久久久久国产一级毛片高清牌| 中文乱码字字幕精品一区二区三区| 考比视频在线观看| 欧美精品一区二区免费开放| 在线观看免费高清a一片| 免费黄频网站在线观看国产| 亚洲国产精品一区二区三区在线| 一本色道久久久久久精品综合| 日韩免费高清中文字幕av| 丝袜喷水一区| 国产福利在线免费观看视频| 免费av中文字幕在线| 国产日韩欧美视频二区| 欧美日本中文国产一区发布| 亚洲欧美成人综合另类久久久| 一本综合久久免费| 在线观看一区二区三区激情| av网站免费在线观看视频| 青春草亚洲视频在线观看| 免费看av在线观看网站| 亚洲中文av在线| 啦啦啦在线观看免费高清www| 777久久人妻少妇嫩草av网站| 亚洲,欧美精品.| 在线观看免费午夜福利视频| 午夜福利视频精品| tube8黄色片| 亚洲一码二码三码区别大吗| 黑人猛操日本美女一级片| 黄色 视频免费看| 国产高清不卡午夜福利| 日韩av免费高清视频| 老司机亚洲免费影院| 另类亚洲欧美激情| 免费高清在线观看视频在线观看| 脱女人内裤的视频| av线在线观看网站| 51午夜福利影视在线观看| 国产亚洲欧美精品永久| 亚洲精品一卡2卡三卡4卡5卡 | 亚洲av综合色区一区| 久久鲁丝午夜福利片| 久久精品久久久久久噜噜老黄| 亚洲情色 制服丝袜| 蜜桃国产av成人99| 国产男女超爽视频在线观看| 高清av免费在线| 日韩中文字幕欧美一区二区 | 黄色怎么调成土黄色| 亚洲图色成人| 精品福利永久在线观看| 国产一区二区 视频在线| 999精品在线视频| 九草在线视频观看| 亚洲成国产人片在线观看| 精品少妇一区二区三区视频日本电影| 黄片小视频在线播放| 精品国产一区二区久久| 亚洲欧美清纯卡通| 欧美97在线视频| 中文欧美无线码| 一级毛片女人18水好多 | 精品久久久久久电影网| 国产精品熟女久久久久浪| 日韩精品免费视频一区二区三区| 丝袜人妻中文字幕| 亚洲成人手机| 国产xxxxx性猛交| 久久九九热精品免费| 欧美乱码精品一区二区三区| kizo精华| 少妇人妻久久综合中文| 狂野欧美激情性bbbbbb| 90打野战视频偷拍视频| 久久久久视频综合| 老司机靠b影院| 狠狠婷婷综合久久久久久88av| 国产成人免费观看mmmm| 一级黄色大片毛片| 中文字幕人妻丝袜一区二区| 菩萨蛮人人尽说江南好唐韦庄| 99久久综合免费| 美女中出高潮动态图| 亚洲色图 男人天堂 中文字幕| 丝袜美足系列| 成年动漫av网址| 免费在线观看黄色视频的| 女性被躁到高潮视频| 人人妻人人爽人人添夜夜欢视频| 超色免费av| 青春草亚洲视频在线观看| 国产亚洲av片在线观看秒播厂| 这个男人来自地球电影免费观看| 亚洲国产欧美网| 精品亚洲成a人片在线观看| 日韩一本色道免费dvd| 亚洲,一卡二卡三卡| av天堂在线播放| 中文欧美无线码| 色婷婷久久久亚洲欧美| 久久精品人人爽人人爽视色| 在线观看国产h片| 亚洲伊人色综图| 亚洲一区二区三区欧美精品| 一本久久精品| 欧美日韩福利视频一区二区| 久久精品亚洲熟妇少妇任你| 捣出白浆h1v1| av网站在线播放免费| 亚洲国产成人一精品久久久| 亚洲黑人精品在线| 真人做人爱边吃奶动态| 国产欧美日韩一区二区三 | 精品免费久久久久久久清纯 | 久久国产精品影院| 国产成人精品在线电影| 欧美另类一区| 丝瓜视频免费看黄片| 麻豆av在线久日| 亚洲精品国产av成人精品| 国产欧美日韩精品亚洲av| xxx大片免费视频| 欧美成人精品欧美一级黄| 最近最新中文字幕大全免费视频 | 亚洲中文av在线| 丰满人妻熟妇乱又伦精品不卡| 亚洲精品中文字幕在线视频| 香蕉丝袜av| 校园人妻丝袜中文字幕| 搡老岳熟女国产| 人人妻人人澡人人看| 久久久久网色| 成人亚洲精品一区在线观看| 精品一区在线观看国产| 国产在线一区二区三区精| 亚洲激情五月婷婷啪啪| 亚洲国产最新在线播放| 一二三四社区在线视频社区8| 男女边吃奶边做爰视频| 99久久人妻综合| 国产亚洲欧美在线一区二区| 欧美精品av麻豆av| 国产日韩欧美亚洲二区| 电影成人av| 丰满少妇做爰视频| 亚洲国产日韩一区二区| 国产成人啪精品午夜网站| 嫩草影视91久久| 免费看十八禁软件| 最近手机中文字幕大全| 日韩 欧美 亚洲 中文字幕| 美女主播在线视频| 亚洲五月色婷婷综合| 亚洲av日韩精品久久久久久密 | 久久精品久久久久久久性| 永久免费av网站大全| 男男h啪啪无遮挡| 欧美黑人精品巨大| 亚洲av成人精品一二三区| 亚洲av综合色区一区| 日韩一本色道免费dvd| 无限看片的www在线观看| 久久毛片免费看一区二区三区| 国产一区二区三区av在线| 在现免费观看毛片| 亚洲人成77777在线视频| av一本久久久久| 久久国产精品男人的天堂亚洲| 女警被强在线播放| 国产精品一二三区在线看| 亚洲av日韩在线播放| 日韩免费高清中文字幕av| 国产精品九九99| 久久久国产一区二区| 免费黄频网站在线观看国产| 极品人妻少妇av视频| 国产精品久久久久久精品古装| a级毛片在线看网站| 免费在线观看视频国产中文字幕亚洲 | 久久人人爽人人片av| 51午夜福利影视在线观看| 丝袜美足系列| 成年人免费黄色播放视频| 亚洲av电影在线观看一区二区三区| 欧美精品高潮呻吟av久久| 一级毛片 在线播放| 亚洲图色成人| 亚洲欧美成人综合另类久久久| 另类精品久久| 超色免费av| 一级黄片播放器| 国产有黄有色有爽视频| 少妇猛男粗大的猛烈进出视频| 精品少妇黑人巨大在线播放| 欧美少妇被猛烈插入视频| 看免费av毛片| 亚洲精品日韩在线中文字幕| 热re99久久国产66热| 宅男免费午夜| 国产精品欧美亚洲77777| 丝袜喷水一区| 日本一区二区免费在线视频| 国产亚洲一区二区精品| 亚洲七黄色美女视频| 精品国产国语对白av| 九草在线视频观看| 两个人看的免费小视频| 日韩精品免费视频一区二区三区| 亚洲成国产人片在线观看| 成人国产一区最新在线观看 | 亚洲欧美精品综合一区二区三区| 永久免费av网站大全| 免费在线观看视频国产中文字幕亚洲 | 在线观看www视频免费| 这个男人来自地球电影免费观看| 国产精品一区二区精品视频观看| 男女下面插进去视频免费观看| 高清欧美精品videossex| 最新的欧美精品一区二区| 99国产精品一区二区三区| 免费高清在线观看日韩| 高清不卡的av网站| 在线精品无人区一区二区三| 青青草视频在线视频观看| a级片在线免费高清观看视频| 国产成人免费观看mmmm| 成人国产一区最新在线观看 | 婷婷色av中文字幕| 久久精品亚洲av国产电影网| 国产黄色视频一区二区在线观看| 久久中文字幕一级| 久久精品国产综合久久久| 波野结衣二区三区在线| 丁香六月欧美| av有码第一页| 日日摸夜夜添夜夜爱| 国产欧美日韩精品亚洲av| 人人妻人人添人人爽欧美一区卜| 一本一本久久a久久精品综合妖精| 国产一区二区 视频在线| 18禁国产床啪视频网站| 啦啦啦在线观看免费高清www| 天天影视国产精品| 各种免费的搞黄视频| tube8黄色片| 啦啦啦在线观看免费高清www| 美女午夜性视频免费| 久久久国产一区二区| 精品国产一区二区三区四区第35| 91麻豆av在线| avwww免费| 中文精品一卡2卡3卡4更新| 国产日韩欧美在线精品| 久久久久国产一级毛片高清牌| 亚洲国产毛片av蜜桃av| 两人在一起打扑克的视频| 91成人精品电影| 午夜老司机福利片| 欧美成人午夜精品| 91国产中文字幕| 国产日韩欧美视频二区| 一区二区三区精品91| 国产一级毛片在线| 成人手机av| 啦啦啦啦在线视频资源| 国产精品偷伦视频观看了| 水蜜桃什么品种好| 伊人亚洲综合成人网| 不卡av一区二区三区| 精品免费久久久久久久清纯 | 一边摸一边做爽爽视频免费| 1024视频免费在线观看| 麻豆乱淫一区二区| 亚洲人成电影观看| 国产亚洲av高清不卡| 免费人妻精品一区二区三区视频| 老司机深夜福利视频在线观看 | 女性生殖器流出的白浆| 亚洲av片天天在线观看| 中文字幕另类日韩欧美亚洲嫩草| 中文字幕精品免费在线观看视频| 国产熟女欧美一区二区| 日韩免费高清中文字幕av| 51午夜福利影视在线观看| 日本欧美国产在线视频| 国产亚洲精品久久久久5区| netflix在线观看网站| 成人亚洲欧美一区二区av| 国产在视频线精品| 亚洲九九香蕉| 中文乱码字字幕精品一区二区三区| 亚洲黑人精品在线| 亚洲精品第二区| 人成视频在线观看免费观看| 狂野欧美激情性bbbbbb| 又大又爽又粗| 亚洲av综合色区一区| 免费在线观看黄色视频的| 新久久久久国产一级毛片| 777米奇影视久久| 赤兔流量卡办理| av天堂久久9| 一二三四社区在线视频社区8| 免费在线观看日本一区| 成人亚洲精品一区在线观看| 丝袜美足系列| 免费观看人在逋| 水蜜桃什么品种好| 一级片免费观看大全| 亚洲欧美激情在线| bbb黄色大片| 无遮挡黄片免费观看| 首页视频小说图片口味搜索 | 中文字幕色久视频| 日韩欧美一区视频在线观看| 一级毛片电影观看| 99re6热这里在线精品视频| 免费在线观看日本一区| 黑丝袜美女国产一区| 精品久久久精品久久久| 久久99一区二区三区| 亚洲欧美日韩另类电影网站| 国产黄频视频在线观看| 亚洲图色成人| 国产97色在线日韩免费| 精品视频人人做人人爽| 啦啦啦在线观看免费高清www| 亚洲精品一二三| 人人澡人人妻人| 1024香蕉在线观看| 两个人看的免费小视频| www.av在线官网国产| 91九色精品人成在线观看|