• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Thermodynamic and First-principles Assessments of Materials for Solar-driven CO2 Splitting Using Two-step Thermochemical Cycles

    2022-04-12 03:06:14FENGQingyingLIUDongZHANGYingFENGHaoLIQiang
    關(guān)鍵詞:清影張瑩熱化學(xué)

    FENG Qingying, LIU Dong, ZHANG Ying, FENG Hao, LI Qiang

    Thermodynamic and First-principles Assessments of Materials for Solar-driven CO2Splitting Using Two-step Thermochemical Cycles

    FENG Qingying, LIU Dong, ZHANG Ying, FENG Hao, LI Qiang

    (School of Energy and Power Engineering, Nanjing University of Science and Technology, Nanjing 210094, China)

    Carbon-neutral fuel production by solar-driven two-step thermochemical carbon dioxide splitting provides an alternative to fossil fuels as well as mitigates global warming. The success of this technology relies on the advancements of redox materials. Despite the recognition of the entropic effect, usually energy descriptors (enthalpy of formation or energy of oxygen-vacancy formation) were used for computational assessment of material candidates. Here, in the first step, the criteria was derived based on the combination of solid-state change of entropy and formation enthalpy, and was used to thermodynamically assess the viability of material candidates. In the thermodynamic map, a triangular region, featuring large positive solid-state changes of entropy and small enough solid-state changes of formation enthalpy, was found for qualified candidates. Next, a first-principles DFT+method was presented to fast and reasonably predict the solid-state changes of entropy and formation enthalpy of candidate redox materials, exemplified for pure and Samaria-doped ceria, so that new redox materials can be added to the thermodynamic map. All above results highlight the entropic contributions from polaron-defect vibrational entropy as well as ionic (oxygen vacancies) and electronic (polarons) configurational entropy.

    carbon dioxide splitting; two-step thermochemical cycle; first principles; entropy; solar fuel

    Using solar energy to convert carbon dioxide (CO2) into carbon-neutral fuels provides an alternative to fossil fuels and mitigates global warming. In analogy to conv-entional chemical plants, a solar-fuel plant is able to operate overnight addressing the intermittency of solar energy. Regarding this, concentrated solar thermochem-ical CO2splitting holds promise because cost-effective and high-density heat storage can be integrated into this technology[1]. Direct CO2splitting by thermolysis, req-uires temperature as high as 3000 ℃ except for separa-tion of oxygen from fuel products. Therefore, research converged to the two-step redox cycles based on partial reduction (or non-stoichiometric, oxygen-vacancy) and oxidation of non-volatile oxides (or redox materials), because this type of cycles features the combinations of practical operation temperature and high thermodynamic efficiency[1-3].

    Although considerable materials[4]have been examined including ceria[5-8], ferrites[9-11]and perovskites[12-14], the state-of-the-art solar-to-chemical energy conversion effi-c-i-ency was as low as ~5% for solar thermochemical CO2splitting[5]. Therefore, computational assessments of mat-e-rials are still of great importance[15-17]. Intuitively, the the-rmodynamically suitable redox materials can be ide-ntified based on the fundamental concept that the change in the Gibbs free energy, Δ, should be negative for the two cycle steps (Reactions (2) and (3)). Thereby, solid-state enthalpy and entropy of reduction excluding the contri-butions from gaseous species (whose thermodynamic pro-perty data is available for a wide range of conditions) can be used as the descriptors for thermodynamic assess-ments of redox materials. Particularly, Meredig[18]and Shah,.[19]raised the importance of entropic effects. Unfortunately, obtaining reliable thermodynamic data, esp-ecially the reduction entropy, of redox material candida-tes, either computationally or experimentally is often challenging[11-12,20-24]. For example, Bork,.[12]used CALPHAD models to access or extrapolate needed the-rmodynamic properties of perovskites, but models with this level of sophistication are not available for many redox material candidates[2]. Michalsky,.[22]found that the Gibbs free energy for formation of many bulk oxides (equivalent to solid-state enthalpy and entropy of reduction) scaled with their oxygen-vacancy formation energy at their most stable surfaces. However, this sca-ling feature was only demonstrated in the stoichiometric regime. Muhich,.[11]developed an assessment method where only the enthalpy of reduction was used, but this method only worked for the assessments within the same class of materials (hercynite in their work) because the reduction entropy is approximately the same for the her-cynite family.

    Therefore, this study provided general descriptors and criteria for thermodynamic assessments of proposed or newly discovered redox materials, and to provide first- principles methods for fast predictions of these descriptors. Here, pure and Samaria-doped ceria were taken as benc-h-mark materials because they own fast splitting kinetics, excellent high-temperature and cycling stability[5-8], and also provide a platform for first-principles investigations of the effects of typical defects including oxygen vacan-cies, polarons and dopant ions[25].

    1 Thermodynamic derivation of desc--ri--ptors and criteria

    In this section, the descriptors was proposed, and then the criteria was derived for thermodynamic assessments of the viability of material candidates. In the derivation, complementary constraints were presented in considera-tion of non-stoichiometric reaction mechanism, theoretical efficiency and practical operating conditions of the solar- driven two-step thermochemical process to extend the thermodynamic framework described by Meredig and Wolvertor[18].

    This study starts with the fundamental concept that the change in the Gibbs free energy, Δ, should be negative for the two cycle steps (Reactions (2) and (3)) so that they are thermodynamically favorable. This gives Eq. (1–2).

    where Δfrepresents the enthalpy of formation,represents entropy,represents pressure (kPa) andis the ideal gas constant. Solid-state entropy and solid-state enthalpy of formation are assumed to be temperature- independent. Observed from Eq. (1) and (2), solid-state change of entropy, Δsolid, and change of enthalpy of formation, Δsolid

    depend on the redox material, while the rest quantities for gaseous species are independent and were well docu-mented[26]. Therefore, Δsolidwith unit of J?(0.5 mol O2)–1?K–1and Δsolidwith unit of kJ?(0.5 mol O2)–1, defined in Eq. (3), were used as descriptors for thermodynamic assessments in this work. By substituting Eq. (3) into Eq. (1) and (2), Eq. (4–5), two of the assessment criteria, are obtained.

    In the next step, thermodynamic principles are applied to analyse the solar-to-chemical (STC) energy conversion efficiency of the two-step thermochemical process to provide complementary criteria. STC efficiency,STC=STT×TTC, whereSTTis solar-to-thermal efficiency, andTTCis thermal-to-chemical efficiency. Ideally,TTC=Δ1298K/ Δsolid, where Δ1298K(~256 kJ?(0.5 mol O2)–1) is the cha-nge in the Gibbs free energy at 298 K for CO2ther-molysis (Reaction 1). By assuming an achievableSTTof 70%, a targetTTCof 28.6% is required to achieve a practicalSTCof 20%, which is competitive to the technology that a solar photovoltaic device coupled with an electrolyser[27]. Miller,.[2]analysed that potential redox materials should be able to achieve a theoretical thermal-to-chemical efficiency which is twice of the targetTTC(Eq. (6)).

    Therefore, Eq. (4) to (6) were used to calculate the boundary values of (Δsolid, Δsolid). Eq. (4) and (5) tell that the (Δsolid, Δsolid) boundary varies with operating temperatures (HandL) and operating pressure (O2). For the thermal reduction step of a practical solar ther-mochemical reactor,H=2000 K[18]andO2=0.101 kPa[2]were used as the upper limit for the reduction tempera-ture and the lower limit for the pressure respectively. For the oxidation step, the exothermic reaction is thermody-namically favorable for low temperatures, but suffers fromslow kinetics. Thus,Lof 1000 K[18]was used as the lower limit for the oxidation temperature. Now, the criteria is summarized as Eq. (7) with the descriptors, Δsolidand Δsolid, defined in Eq. (3).

    As shown in Fig. 1, the (Δsolid, Δsolid) area below the purple curve features theoretical thermal-to-chemical efficiency which is twice higher than the target. (Δsolid, Δsolid) below the green curve and above the blue curve are thermodynamically favorable for thermal reduction step (Reaction (2)) and CO2splitting step (Reaction (3)) res-pectively. Therefore, the combination of Δsolidand Δsolidof qualified redox material should fall in the shaded triangular region.

    These results highlight the importance of accurate predictions of Δsolidand Δsolid, which are investigated in Section 2. Fig. 1 also shows that a positive Δsolidopensthe favorable region, so redox materials with large positive Δsolidbenefits reaction thermodynamics. However, this is non-trivial for redox materials in the stoichiometric regime, because the reduced oxide has fewer atoms and thereby, fewer vibrational degrees of freedom.

    Fig. 1 Thermodynamic assessment map

    The combination of Δsolidand Δsolidof redox material candidates should fall in the shaded triangular region. The experimental data points (open scatters) of (Δsolid, Δsolid) were plotted for pure CeO2/CeO2–δand 10% Samaria-doped Ce0.9Sm0.1O1.95/Ce0.9Sm0.1O1.95–δredox pairs (=0.01–0.05)[28-29]. The calculation results (solid scatters) in Section 2 were also plotted for these redox pairs (=0.03). Error bars represent standard deviations. Colourful figure is available on website

    Fig. 1 plots the experimental data[28-29]of (Δsolid, Δsolid) for pure CeO2/CeO2–δand 10% Samaria-doped Ce0.9Sm0.1O1.95/Ce0.9Sm0.1O1.95–δredox pairs (=0.01–0.05) as well. Results show that Δsolid, Δsolidof both pure and doped ceria fall in the favorable region except for the pure ceria redox pair with=0.01. These results are reas-o-nable because pure and doped ceria are usually used as benchmark redox materials in literature[5-8].

    The favorable region varies with operating temperature and pressure as shown in Fig. 2. Therefore, it is important to recognize that the developed thermodynamic frame-work can further be used for reactor testing to design optimal operating condition of a specific qualified redox pair. For example, results show that thermodynamically favorable thermal reduction step (Reaction (2)) can be per-for-med at lower temperatures (Fig. 2(a)) and higher pre-ssures (Fig. 2(b)) for pure and doped ceria redox pairs with larger Δsolid(smaller). These milder operating con-di-tions can significantly reduce thermal radiation loss and reactor design complexity.

    Fig. 2 Variations of the favorable regions with operating conditions of the thermal reduction step (Reaction (2))

    (a) Temperature.H=2000 and 1773 K; (b) Pressure.O2=0.101, 1.01 and 101 kPa. Other conditions in (a, b) are the same with those in Fig. 1; Colourful figure is available on website

    2 First-principles predictions of desc---riptors

    In this section, first-principles calculations were applied to the predictions of the descriptors (Δsolid, Δsolid) so that new redox materials can be added to the thermody-namic assessment map of Fig. 1.

    In the first step, fast and reasonable predictions of (Δsolid, Δsolid) were demonstrated. Δsolidin Eq. (8) includes both vibrational (Δvib) and configurational (Δconf) entropic contributions[25].

    Vibrational entropic contributions originate from the formations of defects, including oxygen vacancies as well as polarons[28,30], during the partial reduction step (Reaction (4)).

    Fig. 3 Supercells for DFT+U calculations

    (a) Bulk CeO2supercell; (b) CeO2supercell with a single oxygen- vacancy defect; (c) CeO2supercell with a single polaron defect(The charge density of the polaron is also shown); (d) Sm-doped CeO2supercell (Methods in Supporting Materials)

    Δvib, Δconfand Δsolidof the CeO2/CeO2–δand Ce0.9Sm0.1O1.95/ Ce0.9Sm0.1O1.95–δredox pairs (=0.03) were calculated before the comparison of these calculation results with experimentally measured Δsolidand Δsolid[28-29,31]. Table 1 shows that this applied theoretical method can predict Δsolidand Δsolidof pure and Sm-doped ceria pairs, and expectedly other redox materials with reasonable accuracy. Particularly for Δsolidof the CeO2/CeO2–δredox pair (= 0.03), it was demonstrated that the relative differences between calculated and measured values are below 12%, although it is found in references[20, 23] that this method might over-estimate Δsolid. Regarding Δsolidof pure and Sm-doped ceria pairs (=0.03), the relative differences are also below 12%, demonstrating sufficient accuracy of this method which is expected to be more efficient enabled by the advancement and power of high-throughput com-pu-ta-tional tools[15-16].

    Table 1 Comparison between calculated and measured values of ΔSsolid and ΔHsolid

    Entropy and enthalpy units are J·(0.5 mol O2)–1·K–1and kJ·(0.5 mol O2)–1;Obtained from measured reduction entropy minus 0.5O2

    Fig. 4 Variations of , , ΔSvib, and ΔSsolid with temperature

    Solid and dash curves are for CeO2/CeO2–δand Ce0.9Sm0.1O1.95/Ce0.9Sm0.1O1.95–δredox pairs (=0.03), respectively; Colourful figure is available on website

    3 Discussion

    Based on the results of this work, a viable screening approach of materials for solar-driven CO2splitting using two-step thermochemical cycles was proposed as shown in Fig. 5.

    The first step is to calculate the descriptors, the com-bination of Δsolidand Δsoliddefined in Eq. (3) by the developed DFT+based first-principles approach. As described in Introduction, despite the recognition of the entropic effect, energy descriptors (enthalpy of formation or energy of oxygen-vacancy formation) were usually used for the screening of material candidates in literature [11-12, 22]. Therefore, (Δsolid, Δsolid) represents a more general descriptor.

    The second step is to screen material candidates by the derived criteria defined in Eq. (7) and find out qualified redox materials. As described in Section 1, these criteria were derived by comprehensively considering non-stoic-hi-o-me-tric reaction mechanism, theoretical efficiency and practical operating conditions. It has to be pointed out that materials with (Δsolid, Δsolid) near the boundary of the favorable region (Fig. 1) should also be screened as qualified redox materials considering the accuracy of DFT calculations. In addition, Eq. (6) varies with target solar-to-chemical and thermal-to-chemical efficiencies as well as achievable solar-to-thermal efficiency. For example, Δsolidis ≤ 600 kJ?(0.5 mol O2)–1in Eq. (6) with the target solar-to-chemical efficiency reseted from 20% to 15%. Resultantly, the solid square scatter is inside the favorable region.

    The third step is to perform reactor testing using qua-lified redox material. Thermodynamics of redox mate-rial candidates represents an initial screening criterion[23,32], which was demonstrated in this work. Reaction kinetics of redox material candidates, which is characterized in reactor testing, is the important subsequent criterion[33-34], although reaction kinetics is out of the scope of this work.

    4 Conclusions

    In summary, this work presented a rationale for therm-o-dynamic and first-principles assessments of redox mat-erials for solar-driven CO2splitting using two-step ther-m-o-chemical cycles. The combination of solid-state change of entropy (Δsolid) and enthalpy of formation (Δsolid) was used as the descriptor. Comprehensive criteria based on it were derived to obtain the (Δsolid, Δsolid) map. It was found that a triangular region in this map identified qualified material candidates featuring large positive Δsolidand small enough Δsolid. Furthermore, a DFT+based first-principles approach was developed to fast and rea-sonably predict Δsolidand Δsolidfor redox materials with-out available thermochemical data. This rationale was exemplified for pure and samaria-doped ceria.

    The authors would like to acknowledge Dr. Steffen Grieshammer for helpful discussions on DFT calculations and Prof. Sheng Chen for VASP access.

    Supporting materials related to this article can be found at https://doi.org/10.15541/jim20210164.

    [1] LU Y, ZHU L, AGRAFIOTIS C,Solar fuels production: two-step thermochemical cycles with cerium-based oxides., 2019, 75: 100785.

    [2] MILLER J, MCDANIEL A, ALLENDORF M. Considerations in the design of materials for solar-driven fuel production using metal- oxide thermochemical cycles., 2014, 4: 1300469.

    [3] HAO Y, ZOU W, AN R. Let the sun shine into a brighter future: an interview with Prof. Aldo Steinfeld., 2017, 62: 1102–1103.

    [4] ABANADES S, CHARVIN P, FLAMANT G,Screening of water-splitting thermochemical cycles potentially attractive for hydrogen production by concentrated solar energy., 2006, 31: 2805–2822.

    [5] MARXER D, FURLER P, TAKACS M,Solar thermochemical splitting of CO2into separate streams of CO and O2with high selectivity, stability, conversion, and efficiency., 2017, 10: 1142–1149.

    [6] HAO Y, YANG C K, HAILE S M. Ceria-zirconia solid solutions (Ce1–xZrO2-delta,≤0.2) for solar thermochemical water splitting: a thermodynamic study., 2016, 26: 6073–6082.

    [7] GRIESHAMMER S, MARTIN M. Influence of defect interactions on the free energy of reduction in pure and doped ceria., 2017, 5: 9241–9249.

    [8] BULFIN B, CALL F, LANGE M,. Thermodynamics of CeO2thermochemical fuel production., 2015, 29: 1001–1009.

    [9] MUHICH C L, EVANKO B W, WESTON K C,Efficient generation of H2by splitting water with an isothermal redox cycle., 2013, 341: 540–542.

    [10] Al-SHANLITI I A, BAYON A, WEIMER A W. Reduction kinetics of hercynite redox materials for solar thermochemical water splitting., 2020, 389: 124429.

    [11] MUHICH C L, EHRHART B D, WITTE V A,Predicting the solar thermochemical water splitting ability and reaction mechan-ism of metal oxides: a case study of thehercynite family of water splitting cycles., 2015, 8: 3687–3699.

    [12] BORK A H, POVODEN-KARADENIZ E, RUPP J L. Modeling the-r-mochemical solar-to-fuel conversion: CALPHAD for thermo-dynamic assessment studies of perovskites, exemplified for (La,Sr)MnO3, 2017, 7: 1601086.

    [13] FU M, WANG L, MA T,Mechanism of CO production around oxygen vacancy of LaMnO3: an efficient and rapid evaluation of the doping effect on the kinetics and thermodynamic driving force of CO2-splitting., 2020, 8: 1709–1716.

    [14] WANG L, MA T, DAI S,Experimental study on the high performance of Zr doped LaCoO3for solar thermochemical CO production., 2020, 389: 124426.

    [15] BARTEL C J, RUMPTZ J R, WEIMER A W,High-throughput equilibrium analysis of active materials for solar thermochemical ammonia synthesis., 2019, 11: 24850–24858.

    [16] EMERY A A, SAAL J E, KIRKLIN S,High-throughput computational screening of perovskites for thermochemical water splitting applications., 2016, 28: 5621–3564.

    [17] GAUTAM G S, CARTER E A. Evaluating transition-metal oxides within DFT-SCAN and SCAN+U frameworks for solar thermoch-emical applications., 2018, 2: 095401.

    [18] MEREDIG B, WOLVERTOR C. First-principles thermodynamic framework for the evaluation of thermochemical H2O– or CO2- spli-tting materials., 2009, 80: 308–310.

    [19] SHAH P R, KIM T, ZHOU G,Evidence for entropy effects in the reduction of ceria-zirconia solutions., 2006, 18: 5363–5369.

    [20] NAGHAVI S S, EMERY A A, HANSEN H,Giant onsite electronic entropy enhances the performance of ceria for water splitting., 2017, 8: 285.

    [21] ONG M, CAMPBELL Q, DABO I,First-principles investi-gation of BiVO3for thermochemical water splitting., 2019, 44: 1425–1430.

    [22] MICHALSKY R, BOTU V, HARGUS C M,Design principles for metal oxide redox materials for solar-driven isothermal fuel production., 2015, 5: 1401082.

    [23] GOPAL C B, VAN DE WALLE A.thermodynamics of intrinsic oxygen vacancies in ceria., 2012, 86: 5505–5511.

    [24] ZACHERLE T, SCHRIEVER A, DE SOUZA R A,.analysis of the defect structure of ceria., 2013, 87: 134104.

    [25] GRIESHAMMER S, ZACHERLE T, MARTIN M. Entropies of defect formation in ceria from first principles., 2013, 15: 15935–15942.

    [26] CHASE M W. NIST-JANAF Thermochemical Tables, 4th Edition. New York: American Institute of Physics, 1998: 647–1745.

    [27] CHENG W H, RICHTER M H, SULLIVAN I,. CO2reduction to CO with 19% efficiency in a solar-driven gas diffusion electrode flow cell under outdoor solar illumination., 2020, 5: 470–476.

    [28] PANLENER R J, BLUMENTHAL R N, GARNIER J E. A thermo-dynamic study of nonstoichiometric cerium dioxide.,1975, 36: 1213–1222.

    [29] KOBAYASHI T, WANG S, DOKIYA M,Oxygen nonstoi-chiometry of Ce1? ySmO2?0.5y?x(=0.1, 0.2)., 1999, 126: 349–357.

    [30] KEATING P R L, SCANLON D O, MORGAN B J,Analysis of intrinsic defects in CeO2using a Koopmans-like GGA+approach., 2012, 116: 2443–2452.

    [31] BULFIN B, HOFFMANN, L, DE OLIVEIRA L,Statistical thermodynamics of non-stoichiometric ceria and ceria zirconia solid solutions.., 2016, 18: 23147–23154.

    [32] DAVENPORT T C, YANG C K, KUCHARCZYK C J,. Implications of exceptional material kinetics on thermochemical fuel production rates., 2016, 4: 764–770.

    [33] DAVENPORT T C, KEMEI M, IGNATOWICH M J,Interplay of material thermodynamics and surface reaction rate on the kinetics of thermochemical hydrogen production., 2017, 42: 16932–16945.

    [34] BULFIN B, LOWE A J, KEOGH K A,. An analytical model of CeO2oxidation and reduction., 2013, 117: 24129–24137.

    太陽(yáng)能驅(qū)動(dòng)的兩步熱化學(xué)循環(huán)二氧化碳裂解反應(yīng)活性材料的熱力學(xué)與第一性原理評(píng)價(jià)

    馮清影, 劉東, 張瑩, 馮浩, 李強(qiáng)

    (南京理工大學(xué) 能源與動(dòng)力工程學(xué)院, 南京 210094)

    太陽(yáng)能驅(qū)動(dòng)兩步熱化學(xué)循環(huán)裂解二氧化碳可制備碳中性燃料, 為替代化石燃料、緩解全球變暖提供了技術(shù)途徑。新型活性材料的開(kāi)發(fā)對(duì)該技術(shù)非常重要。已有研究通常采用能量描述符(材料生成焓或氧空位生成能)評(píng)價(jià)候選材料, 忽略了材料熵的重要性。本研究采用活性材料的熵和生成焓的組合作為描述符, 提出評(píng)價(jià)準(zhǔn)則, 開(kāi)展材料可行性的熱力學(xué)分析。結(jié)果表明, 活性材料應(yīng)兼具較大的正的熵變與較小的生成焓變。在此基礎(chǔ)上, 本研究以氧化鈰和釤摻雜的氧化鈰為例, 發(fā)展了基于第一性原理的活性材料熵和生成焓的計(jì)算方法, 為新型材料的篩選與開(kāi)發(fā)提供基礎(chǔ)。計(jì)算結(jié)果揭示了極化子振動(dòng)熵以及氧空位和極化子構(gòu)型熵對(duì)活性材料熵變的貢獻(xiàn)。

    二氧化碳裂解; 兩步熱化學(xué)循環(huán); 第一性原理; 熵; 太陽(yáng)能制燃料

    TK51

    A

    1000-324X(2022)02-0223-07

    10.15541/jim20210164

    2021-03-15;

    2021-05-20;

    2021-06-10

    Basic Science Center Program for Ordered Energy Conversion of the National Natural Science Foundation of China (51888103); National Natural Science Foundation of China (52006103); Fundamental Research Funds of the Central Universities (30919011403, 30920021137)

    FENG Qingying(1996–), female, PhD candidate. E-mail: fqy@njust.edu.cn

    馮清影(1996–), 女, 博士研究生. E-mail: fqy@njust.edu.cn

    ZHANG Ying, PhD. E-mail: ying.zhang@njust.edu.cn; LI Qiang, professor. E-mail: liqiang@njust.edu.cn

    張瑩, 博士. E-mail: ying.zhang@njust.edu.cn; 李強(qiáng), 教授. E-mail: liqiang@njust.edu.cn

    猜你喜歡
    清影張瑩熱化學(xué)
    “熱化學(xué)方程式”知識(shí)揭秘
    張耀恒
    張瑩:傳承匠心 追求極致
    張瑩美術(shù)作品
    稠油硫酸鹽熱化學(xué)還原生成H2S實(shí)驗(yàn)研究
    十二月
    Washback Effect of CET —4 Test on Englis Listening Learning
    高超聲速熱化學(xué)非平衡對(duì)氣動(dòng)熱環(huán)境影響
    例析熱化學(xué)中焓變計(jì)算的常見(jiàn)題型
    應(yīng)該聽(tīng)誰(shuí)的
    亚洲av不卡在线观看| 精品国产一区二区三区久久久樱花| 最近的中文字幕免费完整| 伦理电影免费视频| 中文精品一卡2卡3卡4更新| 自拍欧美九色日韩亚洲蝌蚪91 | 大香蕉97超碰在线| 成人无遮挡网站| 91精品国产国语对白视频| 毛片一级片免费看久久久久| 日日摸夜夜添夜夜爱| 99久久综合免费| 午夜91福利影院| 国产免费一区二区三区四区乱码| 午夜福利视频精品| 日韩欧美精品免费久久| 亚洲高清免费不卡视频| av卡一久久| 最近手机中文字幕大全| 插阴视频在线观看视频| 能在线免费看毛片的网站| 欧美 亚洲 国产 日韩一| 51国产日韩欧美| 欧美成人精品欧美一级黄| 丁香六月天网| 成人综合一区亚洲| 日本欧美视频一区| a级一级毛片免费在线观看| 国产伦在线观看视频一区| 国产探花极品一区二区| 性高湖久久久久久久久免费观看| 国产精品一区二区三区四区免费观看| 色94色欧美一区二区| 精品国产一区二区三区久久久樱花| 久久99一区二区三区| 2022亚洲国产成人精品| 日韩伦理黄色片| 久久久久久久久大av| av免费在线看不卡| 精品久久国产蜜桃| 亚洲精品国产色婷婷电影| 免费观看性生交大片5| 男男h啪啪无遮挡| videossex国产| 日韩亚洲欧美综合| 丝袜脚勾引网站| a级毛色黄片| 99热这里只有精品一区| 精品人妻一区二区三区麻豆| 又黄又爽又刺激的免费视频.| 国产色婷婷99| 在线播放无遮挡| 看十八女毛片水多多多| 国产白丝娇喘喷水9色精品| 最近中文字幕2019免费版| 两个人的视频大全免费| 国产精品国产三级专区第一集| av免费观看日本| 日日撸夜夜添| 男女边吃奶边做爰视频| 国产高清国产精品国产三级| 亚洲情色 制服丝袜| 91久久精品国产一区二区成人| 欧美精品人与动牲交sv欧美| 色网站视频免费| 大话2 男鬼变身卡| 欧美日韩在线观看h| 欧美日韩在线观看h| 国产成人91sexporn| av一本久久久久| 在线观看免费高清a一片| 一区二区三区乱码不卡18| 一本一本综合久久| 国产精品一区www在线观看| 热re99久久精品国产66热6| 国产亚洲一区二区精品| 国产精品蜜桃在线观看| 十八禁高潮呻吟视频 | 又大又黄又爽视频免费| 人人妻人人澡人人看| 爱豆传媒免费全集在线观看| 久久久精品94久久精品| 视频中文字幕在线观看| 好男人视频免费观看在线| 欧美日韩av久久| 欧美丝袜亚洲另类| 国产乱人偷精品视频| 欧美老熟妇乱子伦牲交| 免费看光身美女| 精品国产一区二区三区久久久樱花| 久久免费观看电影| 国产午夜精品久久久久久一区二区三区| 美女主播在线视频| 日韩伦理黄色片| 啦啦啦在线观看免费高清www| 久久人人爽av亚洲精品天堂| 嫩草影院入口| 久久精品夜色国产| 婷婷色av中文字幕| 国产免费又黄又爽又色| 国产毛片在线视频| 久久人妻熟女aⅴ| 蜜臀久久99精品久久宅男| 亚洲av.av天堂| 男女边吃奶边做爰视频| 少妇猛男粗大的猛烈进出视频| 卡戴珊不雅视频在线播放| 男人和女人高潮做爰伦理| 亚洲av综合色区一区| 欧美精品高潮呻吟av久久| 少妇的逼水好多| 国产男女超爽视频在线观看| 91午夜精品亚洲一区二区三区| 99热国产这里只有精品6| 精品久久久久久久久av| 天堂8中文在线网| 亚洲国产最新在线播放| 亚洲国产精品成人久久小说| 99热这里只有精品一区| 国产精品不卡视频一区二区| 波野结衣二区三区在线| 三级国产精品欧美在线观看| 一区二区三区精品91| 亚洲一级一片aⅴ在线观看| 欧美性感艳星| 日韩免费高清中文字幕av| 狂野欧美白嫩少妇大欣赏| 国产爽快片一区二区三区| 丁香六月天网| 亚洲久久久国产精品| 精品熟女少妇av免费看| 深夜a级毛片| 亚洲国产欧美在线一区| 18禁在线播放成人免费| 一区二区三区四区激情视频| 色婷婷久久久亚洲欧美| 亚洲精品中文字幕在线视频 | 五月开心婷婷网| 亚洲激情五月婷婷啪啪| 女人精品久久久久毛片| 久久青草综合色| 麻豆乱淫一区二区| 日日啪夜夜爽| 国产毛片在线视频| 日韩欧美 国产精品| 日韩精品有码人妻一区| 一级a做视频免费观看| 精品久久久精品久久久| 性色av一级| 日韩欧美一区视频在线观看 | 国产黄片视频在线免费观看| 在线 av 中文字幕| 久久久久久人妻| 80岁老熟妇乱子伦牲交| 全区人妻精品视频| 日本与韩国留学比较| 国产男女内射视频| 久久韩国三级中文字幕| 国产日韩欧美视频二区| 国产高清三级在线| 国产高清不卡午夜福利| 国产真实伦视频高清在线观看| 久久久国产一区二区| 中国国产av一级| 日本欧美国产在线视频| 在线亚洲精品国产二区图片欧美 | 国产精品国产av在线观看| 女人久久www免费人成看片| 亚洲精品自拍成人| 五月伊人婷婷丁香| 亚洲精品国产成人久久av| 高清欧美精品videossex| 久久久久久久久久成人| 亚洲成人一二三区av| 亚洲不卡免费看| 国产伦在线观看视频一区| 男女免费视频国产| 国产一区二区在线观看日韩| 国产日韩一区二区三区精品不卡 | 18禁裸乳无遮挡动漫免费视频| 国产男女内射视频| 国产免费一区二区三区四区乱码| 亚洲欧美日韩另类电影网站| 久久国产精品男人的天堂亚洲 | 成人漫画全彩无遮挡| 精品少妇内射三级| 少妇人妻精品综合一区二区| 久久国产精品男人的天堂亚洲 | 女性被躁到高潮视频| 久久精品国产a三级三级三级| 亚洲,欧美,日韩| 日本黄大片高清| 日韩不卡一区二区三区视频在线| 中国国产av一级| 亚洲欧美一区二区三区国产| 中文字幕人妻熟人妻熟丝袜美| 日本黄色日本黄色录像| 亚洲av中文av极速乱| 亚洲国产欧美在线一区| 久久精品久久精品一区二区三区| 国产淫片久久久久久久久| av线在线观看网站| 国产成人一区二区在线| 永久免费av网站大全| 一级毛片 在线播放| 久久精品久久精品一区二区三区| 亚洲欧美日韩另类电影网站| 精品一区二区三卡| 一级毛片黄色毛片免费观看视频| 日韩伦理黄色片| 久久99热这里只频精品6学生| 久久久久国产精品人妻一区二区| 国产在线男女| 看十八女毛片水多多多| 如日韩欧美国产精品一区二区三区 | 国产真实伦视频高清在线观看| 爱豆传媒免费全集在线观看| 午夜老司机福利剧场| 久久久久久久国产电影| 久久婷婷青草| 亚洲电影在线观看av| 日韩伦理黄色片| 我要看日韩黄色一级片| 日韩 亚洲 欧美在线| 国产高清三级在线| 女人久久www免费人成看片| 国产午夜精品久久久久久一区二区三区| 亚洲欧洲精品一区二区精品久久久 | 春色校园在线视频观看| 午夜精品国产一区二区电影| 国产av一区二区精品久久| .国产精品久久| 国产熟女午夜一区二区三区 | 日日撸夜夜添| 91精品国产国语对白视频| 国产精品久久久久久久久免| 91精品一卡2卡3卡4卡| 中文天堂在线官网| 99热网站在线观看| 久久午夜福利片| 91成人精品电影| 免费av不卡在线播放| 26uuu在线亚洲综合色| 成人18禁高潮啪啪吃奶动态图 | 久久97久久精品| 国产精品国产三级国产专区5o| 久热这里只有精品99| 天天操日日干夜夜撸| 精品久久国产蜜桃| 狂野欧美激情性bbbbbb| 久久狼人影院| 国产免费福利视频在线观看| 亚州av有码| 一本大道久久a久久精品| 亚洲精品国产av蜜桃| 久久鲁丝午夜福利片| 国产一区二区在线观看日韩| 最近中文字幕高清免费大全6| 狠狠精品人妻久久久久久综合| 亚洲无线观看免费| 婷婷色综合大香蕉| 91久久精品国产一区二区成人| 超碰97精品在线观看| 亚洲国产精品999| 亚洲天堂av无毛| 久久人人爽av亚洲精品天堂| 韩国高清视频一区二区三区| 亚洲人成网站在线观看播放| 高清黄色对白视频在线免费看 | 亚洲国产精品国产精品| 亚洲经典国产精华液单| 99久久精品热视频| 亚洲色图综合在线观看| 久热久热在线精品观看| 国产成人freesex在线| 69精品国产乱码久久久| 久久青草综合色| 香蕉精品网在线| 精品人妻熟女毛片av久久网站| 一级,二级,三级黄色视频| 激情五月婷婷亚洲| 少妇 在线观看| 中文乱码字字幕精品一区二区三区| 中文在线观看免费www的网站| 99视频精品全部免费 在线| 日日撸夜夜添| 亚洲精品国产av成人精品| 国产亚洲av片在线观看秒播厂| 精品国产一区二区三区久久久樱花| 国产成人免费观看mmmm| 亚洲综合精品二区| 久久久a久久爽久久v久久| 久久人妻熟女aⅴ| 中文精品一卡2卡3卡4更新| 色婷婷久久久亚洲欧美| 男人添女人高潮全过程视频| 一级,二级,三级黄色视频| 久久久久人妻精品一区果冻| 另类精品久久| 少妇高潮的动态图| 国内揄拍国产精品人妻在线| 美女内射精品一级片tv| 伊人久久国产一区二区| 男女免费视频国产| 亚洲国产欧美在线一区| 51国产日韩欧美| 麻豆成人av视频| 亚洲精品日韩av片在线观看| 国产精品久久久久久av不卡| 99热这里只有是精品50| 我的老师免费观看完整版| av一本久久久久| 超碰97精品在线观看| 免费大片黄手机在线观看| 九九久久精品国产亚洲av麻豆| 高清欧美精品videossex| 免费人成在线观看视频色| av在线观看视频网站免费| 黄色怎么调成土黄色| 丝瓜视频免费看黄片| 欧美日韩一区二区视频在线观看视频在线| 自拍欧美九色日韩亚洲蝌蚪91 | 国产免费一级a男人的天堂| 国产亚洲午夜精品一区二区久久| 51国产日韩欧美| 看免费成人av毛片| 七月丁香在线播放| 午夜激情福利司机影院| 一个人看视频在线观看www免费| 一区在线观看完整版| 精品卡一卡二卡四卡免费| 成人美女网站在线观看视频| 22中文网久久字幕| 午夜免费鲁丝| 欧美精品高潮呻吟av久久| 制服丝袜香蕉在线| 亚洲av电影在线观看一区二区三区| 青春草国产在线视频| 久久久久久久久久久免费av| 欧美精品国产亚洲| 建设人人有责人人尽责人人享有的| 在线精品无人区一区二区三| 日韩制服骚丝袜av| 国产精品嫩草影院av在线观看| 国产又色又爽无遮挡免| 国产真实伦视频高清在线观看| 在线观看免费高清a一片| 少妇精品久久久久久久| 欧美三级亚洲精品| 我要看日韩黄色一级片| 中文字幕亚洲精品专区| 久久人妻熟女aⅴ| 久久ye,这里只有精品| 久久久久久久国产电影| 高清黄色对白视频在线免费看 | 精品一品国产午夜福利视频| 国产黄频视频在线观看| 大片免费播放器 马上看| 男人添女人高潮全过程视频| 国产亚洲5aaaaa淫片| 中文字幕av电影在线播放| 精品亚洲乱码少妇综合久久| 纵有疾风起免费观看全集完整版| 久久久久人妻精品一区果冻| 在线亚洲精品国产二区图片欧美 | 久久99一区二区三区| 亚洲欧洲日产国产| 成人二区视频| 九九在线视频观看精品| 亚洲精品国产色婷婷电影| 亚洲美女搞黄在线观看| 亚洲av日韩在线播放| 亚洲情色 制服丝袜| 精品亚洲成a人片在线观看| 天天躁夜夜躁狠狠久久av| 99九九线精品视频在线观看视频| 欧美成人午夜免费资源| 国产女主播在线喷水免费视频网站| 亚洲av电影在线观看一区二区三区| 99久久人妻综合| 亚洲精品aⅴ在线观看| 校园人妻丝袜中文字幕| 精品亚洲成国产av| 欧美亚洲 丝袜 人妻 在线| 六月丁香七月| 成人综合一区亚洲| 国产精品偷伦视频观看了| 亚洲va在线va天堂va国产| 人人妻人人看人人澡| 视频区图区小说| 国产成人aa在线观看| 国产成人精品福利久久| 免费不卡的大黄色大毛片视频在线观看| 人妻系列 视频| 伦精品一区二区三区| 色吧在线观看| 最近的中文字幕免费完整| 九草在线视频观看| 日韩中文字幕视频在线看片| 啦啦啦啦在线视频资源| 人妻制服诱惑在线中文字幕| 婷婷色综合大香蕉| 最近手机中文字幕大全| 久久av网站| 国产欧美另类精品又又久久亚洲欧美| 亚洲av综合色区一区| 永久网站在线| 久久久久人妻精品一区果冻| av在线老鸭窝| 中文欧美无线码| 精品国产国语对白av| 人人妻人人看人人澡| 精品一区二区免费观看| 人妻系列 视频| 久久人妻熟女aⅴ| 丰满迷人的少妇在线观看| 久久久久久人妻| 一级毛片黄色毛片免费观看视频| 中国国产av一级| 精品亚洲成国产av| 亚洲精品日韩av片在线观看| 国产亚洲精品久久久com| 久久亚洲国产成人精品v| 亚洲综合色惰| 少妇 在线观看| 人体艺术视频欧美日本| 美女xxoo啪啪120秒动态图| 久久久久久久久久成人| 永久网站在线| 国产精品福利在线免费观看| 只有这里有精品99| 欧美亚洲 丝袜 人妻 在线| 91午夜精品亚洲一区二区三区| 一级毛片黄色毛片免费观看视频| 亚洲天堂av无毛| 亚洲四区av| 一级毛片aaaaaa免费看小| 草草在线视频免费看| a级毛色黄片| 午夜福利在线观看免费完整高清在| 99九九线精品视频在线观看视频| 十八禁高潮呻吟视频 | 日韩亚洲欧美综合| 日本黄色日本黄色录像| 欧美少妇被猛烈插入视频| 亚洲国产精品国产精品| 91aial.com中文字幕在线观看| 亚洲国产精品成人久久小说| 伦理电影大哥的女人| 色哟哟·www| 99久久人妻综合| 深夜a级毛片| 免费黄色在线免费观看| 国产熟女欧美一区二区| 国产日韩一区二区三区精品不卡 | 在线 av 中文字幕| 女性生殖器流出的白浆| 狂野欧美激情性xxxx在线观看| 在线观看人妻少妇| 深夜a级毛片| 国产av国产精品国产| 国产精品一区二区性色av| 嫩草影院入口| 人妻一区二区av| 国产男女内射视频| 极品少妇高潮喷水抽搐| 26uuu在线亚洲综合色| 99热6这里只有精品| 国产免费一级a男人的天堂| 亚洲国产最新在线播放| 女性生殖器流出的白浆| 久久综合国产亚洲精品| 80岁老熟妇乱子伦牲交| 在线观看三级黄色| 国产日韩欧美亚洲二区| 最新中文字幕久久久久| 国产69精品久久久久777片| 男的添女的下面高潮视频| 日韩欧美精品免费久久| 久久久久国产网址| 青春草亚洲视频在线观看| 免费少妇av软件| 日韩制服骚丝袜av| 国产一级毛片在线| 最新的欧美精品一区二区| 熟女人妻精品中文字幕| 亚洲成色77777| 久久6这里有精品| 色5月婷婷丁香| 狂野欧美激情性xxxx在线观看| 欧美一级a爱片免费观看看| 我的女老师完整版在线观看| 中文字幕亚洲精品专区| 欧美精品一区二区免费开放| 免费黄色在线免费观看| 成人毛片a级毛片在线播放| 美女cb高潮喷水在线观看| 性高湖久久久久久久久免费观看| 人人澡人人妻人| 亚洲精华国产精华液的使用体验| 一级a做视频免费观看| 国产免费又黄又爽又色| 亚洲综合色惰| 纯流量卡能插随身wifi吗| 一区二区三区精品91| 曰老女人黄片| 国产成人精品久久久久久| 能在线免费看毛片的网站| 亚洲经典国产精华液单| 啦啦啦视频在线资源免费观看| 99re6热这里在线精品视频| 人人澡人人妻人| 在线播放无遮挡| 男女国产视频网站| 亚洲丝袜综合中文字幕| 国产成人精品婷婷| 欧美一级a爱片免费观看看| 亚洲自偷自拍三级| 精品久久久噜噜| 亚洲av福利一区| 国产日韩欧美在线精品| 日韩三级伦理在线观看| 欧美精品高潮呻吟av久久| 一本色道久久久久久精品综合| 十八禁高潮呻吟视频 | 亚洲av不卡在线观看| av免费观看日本| 18禁动态无遮挡网站| 少妇被粗大猛烈的视频| 免费看日本二区| 精品久久久久久久久亚洲| 国产一级毛片在线| 国产黄频视频在线观看| 国产精品一二三区在线看| 欧美日韩在线观看h| 国产无遮挡羞羞视频在线观看| 亚洲av国产av综合av卡| 精品一区二区三区视频在线| 国产免费福利视频在线观看| av不卡在线播放| 中文字幕人妻丝袜制服| 一本久久精品| 国产精品久久久久久久电影| 王馨瑶露胸无遮挡在线观看| 久久av网站| av在线播放精品| 黄色一级大片看看| 国产免费一区二区三区四区乱码| av福利片在线观看| 性色avwww在线观看| 天堂中文最新版在线下载| 麻豆成人午夜福利视频| 永久免费av网站大全| 国产精品嫩草影院av在线观看| 人妻夜夜爽99麻豆av| 最近2019中文字幕mv第一页| 男人舔奶头视频| 国产精品国产三级国产专区5o| 国产免费视频播放在线视频| 国产一区二区三区综合在线观看 | 成人国产麻豆网| 国产精品国产av在线观看| 丰满少妇做爰视频| 中文欧美无线码| 夜夜爽夜夜爽视频| 国产成人免费无遮挡视频| 一级,二级,三级黄色视频| 中文字幕人妻熟人妻熟丝袜美| 国产精品女同一区二区软件| 亚洲欧美一区二区三区黑人 | 国产国拍精品亚洲av在线观看| 精品酒店卫生间| 亚洲欧美日韩另类电影网站| 日韩大片免费观看网站| 日韩,欧美,国产一区二区三区| 人妻少妇偷人精品九色| 日韩制服骚丝袜av| 人人妻人人爽人人添夜夜欢视频 | 色网站视频免费| 久久精品久久久久久久性| 欧美精品国产亚洲| 国产黄片美女视频| 青春草国产在线视频| 色婷婷av一区二区三区视频| 欧美+日韩+精品| 亚洲国产精品成人久久小说| 精品久久久久久电影网| 国产精品99久久久久久久久| 国产精品一区www在线观看| 国产成人91sexporn| 99re6热这里在线精品视频| 简卡轻食公司| 亚洲av.av天堂| 国产成人freesex在线| 日韩 亚洲 欧美在线| 最近最新中文字幕免费大全7| 高清视频免费观看一区二区| 久久久久精品性色| 色婷婷av一区二区三区视频| 伊人久久精品亚洲午夜| 最近的中文字幕免费完整| 18禁裸乳无遮挡动漫免费视频| 国产在线免费精品| 三级国产精品片| 国产亚洲欧美精品永久| 久久女婷五月综合色啪小说| 免费看av在线观看网站| 夫妻午夜视频| 肉色欧美久久久久久久蜜桃| 国产91av在线免费观看| 国产精品一区二区在线不卡| 免费观看av网站的网址| 欧美 日韩 精品 国产| 搡老乐熟女国产| 永久免费av网站大全|