• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Controllable Formation of PbI2 and PbI2(DMSO)Nano Domains in Perovskite Films through Precursor Solvent Engineering

    2022-03-31 12:25:16WusongZhaLianpingZhangLongWenJiachenKangQunLuoQinChenShangfengYangChangQiMa
    物理化學(xué)學(xué)報(bào) 2022年3期

    Wusong Zha, Lianping Zhang, Long Wen, Jiachen Kang, Qun Luo,4,*, Qin Chen,Shangfeng Yang, Chang-Qi Ma,4,*

    1 Nano Science and Technology Institute, University of Science and Technology of China, Suzhou 215123, Jiangsu Province, China.

    2 Printable Electronics Research Center, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences,Suzhou 215123, Jiangsu Province, China.

    3 Institute of Nanophotonic, Jinan University, Guangzhou 511443, China.

    4 Suzhou Institute of Nano-Tech and Nano-Bionics Nanchang, Chinese Academy of Sciences, Nanchang 330200, China.

    5 Department of Materials Science and Engineering, Synergetic Innovation Center of Quantum Information & Quantum Physics,University of Science and Technology of China, Hefei 230026, China.

    Abstract:Perovskite solar cells (PSCs)attract much attention for their high efficiency and low processing cost. Power conversion efficiencies (PCEs)higher than 25% have been reported in literature, demonstrating the excellent application prospect of PSCs. In general, the crystallinity and the film composition of perovskite thin films are significant factors in determining device performance. Much effort has been made to control the growth process of perovskite films through the use of additives, passivation layers, special atmosphere treatments, precursor regulation etc. Among these methods, precursor solvent engineering is a simple and direct way to control the perovskite quality, but the controllability of components through solvent engineering is still difficult and has not yet been reported. Herein, we report the controlled formation of PbI2 and PbI2 with dimethyl sulfoxide (DMSO)nano domains through precursor solvent engineering. In particular, tuning the solvent content of the dimethyl sulfoxide: 1,4-butyrolactone:N,N-dimethylformamide (DMSO : GBL : DMF)in the perovskite precursor solution, controlled the content of PbI2 and PbI2(DMSO)domains. Due to the lower boiling point and weaker coordination of DMF relative to DMSO, part of methylammonium iodide (MAI)would escape from the wet films during the evaporation process. Therefore, the PbI2(DMSO)can’t completely convert to perovskite crystals and is retained in the final films as residual PbI2(DMSO)domains. Both UV-vis absorption spectrum and XRD spectrum confirmed the existence of PbI2 and PbI2(DMSO)domains. Importantly, the content of PbI2(DMSO)was controllable by simply changing the relative proportion of DMF. With an increase in the DMF content, the residual PbI2(DMSO)domains gradually increase. In addition, the influence of PbI2 and PbI2(DMSO)domains on the device performance was systematically investigated. The formation of PbI2(DMSO)domains caused a decrease in external quantum efficiency (EQE)of the device over 300-425 nm, and consequently decreased the device performance.That was because the PbI2(DMSO)domain has strong absorption over 300-425 nm. Therefore, the PbI2(DMSO)domains would absorb the photons over 300-425 nm prior to the perovskite, however the photons absorbed by the PbI2(DMSO)domains are not converted into the photocurrent. Thus, the perovskite solar cell containing PbI2(DMSO)showed an EQE loss over 300-425 nm in the EQE spectra. This work provides a simple method to control the components, especially the content of the PbI2(DMSO)domains, in perovskite films through regulating the precursor solvent. Additionally, this work revealed a PbI2(DMSO)domain related EQE loss phenomenon, highlighting the importance of controlling this component.

    Key Words:Perovskite solar cell;PbI2;PbI2(DMSO);Perovskite precursor;External quantum efficiency

    1 Introduction

    Perovskite solar cells (PSCs)attract much attentions for their outstanding advantages, including strong light absorption, long carrier diffusion length, tunable band structure and easy solution-based processes,etc1-4. The power conversion efficiency (PCE)of PSCs has rapidly increased from the initial 3.8% to over 25%5-8. Especially, the report of over 20% efficiency for large-area (> 1 cm2)devices9-11demonstrates the excellent application prospect in the future.

    Crystalline property of the perovskite film is critical for achieving high performance perovskite solar cells12-15.Therefore, many efforts have been made in controlling the crystal growth during the formation of perovskite films though using additives16,17, surface modification18,19, component ion tuning20, as well as processing temperature optimization and so on21-24. PbI2domain is an important ingredient of perovskite, and it can passivate the boundary defects in the perovskite film25,26.Several works have been focused on the influence of PbI2domain on the device performance. Aydinet al.27demonstrated that PbI2could be easily formed in the grain boundary of perovskite crystal, which could passivate the defects of perovskite film. Zhouet al.28also revealed the passivation effect of PbI2and realized the high open circuit voltage (Voc)solar cells with 1.15 V. Youet al.29revealed the existence of moderate residual PbI2can deliver stable and high efficiency of solar cells without hysteresis. In these works, the formation of PbI2domains was almost achieved through increasing PbI2content in the precursor solution. In addition, the previous reports only revealed the effect of PbI2domains on open circuit voltage (Voc).However, the formation of perovskite crystals films is a complex reaction between PbI2and MAI from liquid phase to solid phase.Besides the original stoichiometric ratio of PbI2and MAI in the precursor, the solvent works a lot during such conversion process. However, the crystalline control through solvent regulation is rare reported.

    In this work, we adopted a solvent engineering strategy to regulate the component of perovskite films by tuning the solvent ratio of DMSO:GBL:DMF in the perovskite precursor solution.The formation of PbI2and PbI2(DMSO)domains within the perovskite films was successfully controlled, and the EQE loss for the device related to PbI2and PbI2(DMSO)domains was demonstrated.

    2 Experiment sections

    Poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate)(PEDOT:PSS Clevios PVP AI 4083)was purchased from Heraeus Precious Metals GmbH & Co. KG. MAI (99.85%), PbI2(99.95%), PbCl2(99.95%)were purchased from Xi’an Polymer Light Technology Corp. [6,6]-phenyl-C61-butyric acid methyl ester (PC61BM)was purchased from Solenne B.V.

    The perovskite solar cells were fabricated according to the following procedure. Patterned indium-tin oxide (ITO)substrates were subsequently sonically cleaned in detergent aqueous solution, deionized water, acetone, and isopropanol, and finally treated in a ultraviolet ozone (UVO)for 30 min.PEDOT:PSS aqueous solution filtered through a 0.45 mm filter was spin-coated on the ITO electrode (3500 r·min-1, 60 s), and then baked at 140 °C in air for 10 min. After that the ITO/PEDOT:PSS substrates were then transferred to a nitrogenfilled glove-box for the deposition of perovskite layer.

    Methylammonium iodide (MAI, 206.7 mg), lead iodide (PbI2,613.1 mg)and lead chloride (PbCl2, 38.9 mg)were stirred in 1 mL of mixture solvent at 60 °C for 3 h, and the mixture solvent is made up of dimethyl sulfoxide (DMSO, HPLC, Aladdin), 1,4-butyrolactone (GBL,HPLC,Aladdin) andN,N-dimethylformamide (DMF, HPLC, Aladdin)with a ratio of 0.3 :(0.7 -x):x, volume fraction,x= 0, 0.05, 0.1, 0.15, 0.2, 0.25.Inside the glovebox, the resulting solution was spin coated by a consecutive two step spin-coating process at 1000 r·min-1for 10 s, and 4000 r·min-1for 20 s. During the spin-coating step at 28 s after the beginning of the spin coating, anhydrous toluene (450 mL)was quickly dropped onto the center of the films. The substrate was annealed on a hotplate at 100 °C for 10 min to form a CH3NH3PbClxI3-xfilm. The PC61BM layer was spin coated on the perovskite layer at 1800 r·min-1for 60 s from the PC61BM solution (25 mg·mL-1in CB). Finally, 100 nm Al electrode was evaporated deposited at vacuum degree of 4 × 10-4Pa.

    Layer thickness of the perovskite films were measured by an Alpha Step profilometer (Veeo, Dektak 150); The XRD spectra of the perovskite films were obtained by a Bruker D8 Advance X-ray diffractometer with CuKαradiation (λ= 0.15418 nm). The UV-Vis absorption spectra were recorded with a Lambda 750 UV-Vis NIR Spectro-photometer (PerkinElmer). The current density-voltage (J-V)curves were measured using a Keithley 2400 under simulated AM 1.5G sun light illumination (100 mW·cm-2).

    External quantum efficiencies (EQE)were measured under simulated one sun operation conditions using a bias light of 532 nm from a solid-state laser (Changchun New Industries, MGLIII-532). Light from a 150 W tungsten halogen lamp (Osram 64642)was used as probe light and modulated with a mechanical chopper before passing the monochromator (Zolix, Omni-l300)to select the wavelength. The response was recorded as the voltage by anI-Vconverter (QE-IV Convertor, Suzhou D&R Instruments), using a lock-in amplifier (Stanford Research Systems SR 830). A calibrated Si cell was used as reference. The test device was kept behind a quartz window in a nitrogen filled container.

    3 Results and discussion

    As shown in Fig. 1a, the perovskite solar cell with structure of ITO/PEDOT:PSS/Perovskite/PC61BM/Al was fabricated as research model. PEDOT:PSS was coated on ITO layer, and perovskite, PC61BM, Al layers were deposited layer by layer.Ternary mixed solvent of DMSO:GBL:DMF was used to dissolve perovskite precursor and control the component of perovskite films. By regulating the volume ratio of DMF from 0% to 25%, a series of perovskite solar cells (PSCs)have been fabricated. Fig. 1b,c show theJ-Vcurves and EQE spectra of the perovskite solar cells, and the statistical photovoltaic performance data are listed in Table 1. As seen here, with the increase of content DMF from 0% to 25%, the open circuit voltage (VOC)showed slight change (around 1.00 V, Table 1). In case of short circuit current density (JSC)of the devices, we also found slight change. In detail,JSCincreased from 18.83 mA·cm-2(0% DMF)to 19.51 mA·cm-2(10% DMF), and then fall to 19.29 mA·cm-2(25% DMF). The fill factor (FF)changed a little as the content of DMF was within 20%. As a result, with the increase of DMF content from 0% to 25%, the power conversion efficiency (PCE)of devices first rose from 13.31% (0% DMF)to 14.05% (10% DMF), and then decreased to 12.41% (25% DMF), with a saturation at 10% DMF. This result indicated similar device performance could be obtained through regulating the content of DMF in the precursor solution as long as the content of DMF was controlled within a certain range.

    Table 1 Device performance of the perovskite solar cells.

    Fig. 1 (a)The device structure, (b)J-V curves, (c)EQE spectra of the perovskite solar cells, and (d)Evolution of EQE value at 385 and 625 nm.

    However, the EQE spectra (Fig. 1c)shows interesting variation for these devices. As showed in this figure, a regular decrease of EQE from 300 to 450 nm was observed. In contrast,from 550 to 750 nm, EQE values increased gradually with the increase of DMF content. Meanwhile, a gradual red shift in the response edge around 700 nm was observed as well. Because of the different change tendency of these device in short wavelength and long wavelength regions, the dependence of EQE value on the content of DMF was drew in Fig. 1d.

    As illustrated above, the regulation of DMF content in the precursor solution would cause the decrease of EQE value in 300-450 nm, while increase the EQE value in long wavelength region. In order to reveal the reason of DMF content dependent-JSCchange, we firstly measured the layer thickness of the perovskite films and investigated the impact of thicknesses on the performance. As the result showing in Table 1, with the increase of DMF content, the layer thickness of the perovskite film increased gradually from 290 to 367 nm. Knowing DMF has lower boiling point (152.8 °C)than DMSO (189 °C)and GBL (204°C)24,30, the fast evaporation of DMF would lead to the fast formation of perovskite layer, which was ascribed to the main reason for the increase of layer thickness. A thicker perovskite layer could enhance absorption31,32and improve the EQE value33,34. To better understand such relationship between the thickness of perovskite layer and EQE results, the simulation of EQE was showed in Fig. 2. Optical simulation showed that,with the increase of DMF content from 0% to 25%, a red shift of EQE curve over 550-750 nm was detected for the cells.Meanwhile, the EQE intensity from 600 to 800 nm increased for the thicker perovskite film. This result was corresponded with the experiment result. However, in range of 350 to 425 nm, all of the devices had the same EQE value in simulation result.Based on the optical simulation result we know the EQE regular decrease over 350-425 nm is not due to the optical effect caused by layer thickness.

    Fig. 2 Simulation EQE spectra of PSCs with different thickness perovskite thin films.

    Further, we measured the XRD patterns of the perovskite films with different DMF contents. As showed in Fig. 3a, all the films display diffraction peaks at 14.08°, 28.41°, 31.85°,corresponding to (110), (220), (310)planes of the CH3NH3PbI3-xClxcrystals35,36, indicating the formation of orthorhombic crystal structure of the perovskite films37. In addition, we found the halfwidth of diffraction peak of the 15% DMF films were slight narrower than that of the film w/o DMF,suggesting increased crystal size. Similar results were observed in the SEM images (Fig. S1, Supporting Information)of these films. This result is reasonable because the weaker coordination of DMF with PbI2would lead to faster growth rate of perovskite crystals. In addition, a diffraction peak at 12.65° that can be assigned to the crystal of PbI2was detected in these films,indicating the formation of PbI2crystals in perovskite films38,39.In addition, with increase of DMF content, a diffraction peak at 9.20° was observed, which could be ascribed to PbI2(DMSO)39,40.Fig. 3b shows the diffraction peak changing tendency of PbI2(DMSO)(9.20°)and PbI2(12.65°). With DMF content increasing, the PbI2(DMSO)diffraction peak at 9.20° increased gradually, while the PbI2diffraction peak changed less. Since the change tendency of the PbI2(DMSO)diffraction peaks intensity exhibited the same variation of EQE decrease in 300-450 nm,the formation of PbI2(DMSO)might be the reason of EQE loss.

    Fig. 3 (a)XRD patterns of the perovskite films and (b)PbI2/PbI2(DMSO)diffraction peak changing tendency with different DMF contents.

    In order to confirm the relation of PbI2(DMSO)domain and EQE decrease, we carefully analyzed the EQE spectra. The EQE difference spectrum between the control sample and the DMF-based sample was obtained through reducing EQE value by that of the reference sample (0% DMF). The results are showed in Fig. 4a. With the increase of the DMF content from 5% to 25% DMF, the difference intensity enhanced gradually. It indicated the EQE loss over 350-450 nm increased gradually with the increasing of DMF solvent. Knowing the perovskite solar cells have strong light harvest and conversion ability, the EQE loss in the wavelength of 300-450 nm might be ascribed to the formation of other materials which has low photoelectric response in 350-450 nm33,41,42. Fig. 4b shows the absorption spectra of the PbI2(DMSO). In this figure, one can find PbI2(DMSO)has strong absorbance over 400-500 nm.Especially, an absorption cut-off edge at 425 nm was observed.This absorption band of PbI2(DMSO)was in good agreement with the EQE loss in 300-450 nm, so the existence of PbI2(DMSO)maybe the reason of EQE loss43. In other words,with the DMF content increasing from 0% to 25%, the residual PbI2(DMSO)leads to the EQE loss over 350-450 nm.

    Fig. 4 (a)EQE difference spectrum and (b)absorbance of PbI2(DMSO).

    It can be seen from the above conclusion that the residual PbI2(DMSO)can lead to the EQE loss over 350-450 nm. The possible mechanism was given in Fig. 5. The formation process of perovskite films from precursors could be described as follow:the dissolved PbI2would mainly form PbI2(DMSO)colloidal in the solution due to strong coordination ability of DMSO. After spin-coating, PbI2(DMSO), PbI2and MAI co-existed in the wet film. Chemical reaction between PbI2(DMSO)/PbI2and MAI occurred during the thermal annealing process and converted to perovskite crystals. With the addition of DMF in the precursor solution, more MAI would escape from the wet films during the evaporation process of DMF relative to the case of without DMF,since DMF had lower boiling point (152.8 °C)than DMSO (189°C)and GBL (204 °C). The loss of MAI in the wet films then caused un-complete conversion from PbI2(DMSO)/PbI2to perovskite. Consequently, the Pb2(DMSO)domain remained in the perovskite films. With increase of DMF content, more MAI was lost, leading to more residual Pb2(DMSO)domain. The DMF content-dependent XRD and device performance results were highly related to the Pb2(DMSO)domain.

    Fig. 5 Schematic diagram of DMF leading the formation of PbI2(DMSO)domains.

    Since PbI2(DMSO)is an intermediate phase formed during the crystallization of perovskite phase, we tried to remove this phase through thermal annealing. For case of 20% DMF precursor, a series of perovskite films annealed for different time were fabricated, and Fig. S2 showed the EQE spectra of these cells. The results showed an increasing tendency of EQE spectra over 350-450 nm, which indicated that the PbI2(DMSO)intermediate phase can be controlled by thermal annealing.However, when the annealing time increases from 6 to 10 min,the EQE spectra showed negligible change over 350-450 nm,demonstrating the PbI2(DMSO)domains couldn’t be completely removed trough prolonging annealing time for this sample. In addition, the formation of perovskite is depended on the reaction between MAI and PbI2, so increasing the MAI ratio in the perovskite precursor solution can also reduce the extra PbI2(DMSO)44,45. Herein, we used the ternary mixture solvent(DMSO:GBL:DMF)of 3 : 5 : 2 (volume ratio)to dissolve different ratios of MAI and PbI2to prepare the precursors.Specifically, the ratio of MAI and PbI2is from 1.2 mol·L-1: 1.4 mol·L-1(1.2M : 1.4M)to 1.45M : 1.4M. XRD patterns of the perovskite films are shown in Fig. 6. As seen here, all the films have diffraction peaks at 14.08°, 28.41°, 31.85°, corresponding to (110), (220), (310)planes of the CH3NH3PbI3-xClxcrystals,indicating the formation of orthorhombic crystal structure of the perovskite films. This result confirmed that the addition of MAI could not change the perovskite structure, which was in keeping with the result of changing DMF content. However, the diffraction peak of 9.20° decreased gradually with the increasing of MAI ratio. When the concentration of MAI comes to 1.45M,MAI : Pb = 1.45M : 1.4M, the diffraction peaks of 9.20° and 12.65° were not observed, which demonstrated the extra PbI2(DMSO)and PbI2have been converted into perovskite totally.

    Fig. 6 XRD patterns of the perovskite films prepared from the precursor solution with different ratio of MAI to PbI2.

    The XRD result proved that increasing MAI ratio in perovskite precursor could reduce the extra PbI2(DMSO).Correspondingly, we fabricated the perovskite solar cells with these films. Fig. 7 shows theJ-Vcurves and EQE spectra, and the statistical photovoltaic performance data are listed in Table 2. Herein, the thickness of perovskite layers was similar. With the increase of MAI content, the EQE spectra over 350-450 nm increased gradually, demonstrating that the MAI can reduce the extra PbI2(DMSO), which is correspond to the XRD results.Meanwhile, theVOCof the devices decreased from 1.05 V (MAI: PbI2= 1.2M : 1.4M)to 0.72 V (MAI : PbI2= 1.4M : 1.4M), and then came to 1.00 V with the ratio of MAI to PbI2was 1.45M :1.4M. We know nonradiative recombination due to various films defect is a main origin ofVOCloss. So, improving the films quality and passivating the films defects are two strategies to achieve highVOC. PbI2can effectively passivate the films defects, and thus improve the deviceVOC28. In these cases of MAI : PbI2= 1.2M : 1.4M, 1.25M : 1.4M, 1.30M : 1.4M, 1.35M :1.4M, and 1.40M : 1.4, the XRD patterns of these films all showed the existence of excess PbI2. Therefore, the defect passivation effect by PbI2would be expected in these films. With the increase of MAI content, the content of PbI2decrease gradually, thereby insufficient defect passivation by less PbI2lead to lowerVOC. As the ratio of MAI to PbI2increased to 1.45M: 1.4M, pure perovskite phase was observed in the XRD patterns.The sharp increase ofVOCmight imply the improved crystal quality and less films defects of the perovskite films as compared to other films.

    Table 2 Device performance of the perovskite solar cells.

    Fig. 7 J-V curves (a)and EQE spectra (b)of perovskite solar cells with different MAI concentrations.

    4 Conclusions

    In this work, we adopted a solvent engineering strategy to regulate the component and thickness of perovskite films. By varying the DMF concentration of the perovskite precursor solutions in the mixed solvents of DMSO:GBL:DMF, the content of PbI2(DMSO)domains and the films thickness were systematically regulated. Both UV-vis absorption spectrum and XRD spectrum proved the existence of PbI2(DMSO)domains,which decreased the devices EQE over 300-450 nm. Finally, by increasing the ratio of MAI in perovskite precursor solution, the residual PbI2(DMSO)would transform to perovskite completely and the power conversion obtained a higher enhancement to 15.61%. This work provided a new solvent engineering strategy to in-situ tune the formation of PbI2and PbI2(DMSO)domains in perovskite films.

    Supporting Information:available free of chargeviathe internet at http://www.whxb.pku.edu.cn.

    欧美黄色片欧美黄色片| 麻豆av在线久日| 国产av码专区亚洲av| 这个男人来自地球电影免费观看 | 亚洲 欧美一区二区三区| 又黄又粗又硬又大视频| 国产野战对白在线观看| 免费女性裸体啪啪无遮挡网站| 99香蕉大伊视频| 亚洲情色 制服丝袜| 黄色视频在线播放观看不卡| 精品人妻在线不人妻| 亚洲成av片中文字幕在线观看| 午夜福利在线免费观看网站| 99国产综合亚洲精品| 美女大奶头黄色视频| av又黄又爽大尺度在线免费看| 99九九在线精品视频| 欧美日韩亚洲高清精品| 成人免费观看视频高清| 国产一区二区在线观看av| 综合色丁香网| 国产乱来视频区| 欧美黑人精品巨大| 国产极品天堂在线| 一级毛片电影观看| 99久久综合免费| 91精品国产国语对白视频| 国产成人免费无遮挡视频| 男男h啪啪无遮挡| netflix在线观看网站| 国产在视频线精品| 国产精品99久久99久久久不卡 | 日韩 欧美 亚洲 中文字幕| 一个人免费看片子| 国产又色又爽无遮挡免| 在线天堂中文资源库| 日本黄色日本黄色录像| 欧美激情高清一区二区三区 | 天天躁日日躁夜夜躁夜夜| 午夜日韩欧美国产| 一级毛片我不卡| 婷婷色综合www| 超碰成人久久| 国产 精品1| 最近2019中文字幕mv第一页| 亚洲国产成人一精品久久久| 搡老岳熟女国产| 欧美av亚洲av综合av国产av | 色吧在线观看| 精品久久蜜臀av无| av国产久精品久网站免费入址| 纯流量卡能插随身wifi吗| 亚洲久久久国产精品| 汤姆久久久久久久影院中文字幕| 成人漫画全彩无遮挡| 九色亚洲精品在线播放| 18禁国产床啪视频网站| 亚洲色图 男人天堂 中文字幕| 国产亚洲最大av| 精品久久久精品久久久| www日本在线高清视频| 婷婷色av中文字幕| 国产一卡二卡三卡精品 | 欧美日韩国产mv在线观看视频| 中文字幕制服av| 不卡视频在线观看欧美| 成人国产麻豆网| 国产1区2区3区精品| 女的被弄到高潮叫床怎么办| 久久精品人人爽人人爽视色| 最近最新中文字幕免费大全7| 色播在线永久视频| 自线自在国产av| 啦啦啦 在线观看视频| 波多野结衣一区麻豆| 黄片播放在线免费| 国产精品久久久久久精品古装| 亚洲视频免费观看视频| 欧美精品一区二区免费开放| 黄色毛片三级朝国网站| 亚洲少妇的诱惑av| 国产成人精品无人区| 777米奇影视久久| 老司机深夜福利视频在线观看 | 一区二区三区激情视频| 成年人免费黄色播放视频| 亚洲色图 男人天堂 中文字幕| 色视频在线一区二区三区| 久久久精品区二区三区| 女性生殖器流出的白浆| 日韩大片免费观看网站| 亚洲综合精品二区| 在线观看人妻少妇| 国产精品久久久久久人妻精品电影 | 大码成人一级视频| 久久国产亚洲av麻豆专区| 国产精品一区二区在线不卡| 久久综合国产亚洲精品| 中文乱码字字幕精品一区二区三区| 校园人妻丝袜中文字幕| 免费观看a级毛片全部| 欧美国产精品va在线观看不卡| 视频区图区小说| 免费高清在线观看视频在线观看| 午夜福利网站1000一区二区三区| 亚洲精品久久成人aⅴ小说| 午夜免费观看性视频| 男女午夜视频在线观看| 女人高潮潮喷娇喘18禁视频| 九九爱精品视频在线观看| 天堂俺去俺来也www色官网| 一本久久精品| 精品第一国产精品| 99九九在线精品视频| 国产无遮挡羞羞视频在线观看| 成年av动漫网址| h视频一区二区三区| 国产成人精品久久久久久| 精品国产一区二区久久| 美女扒开内裤让男人捅视频| svipshipincom国产片| 午夜91福利影院| 久久精品久久久久久久性| 国产精品久久久av美女十八| 久久鲁丝午夜福利片| 中文天堂在线官网| 日韩不卡一区二区三区视频在线| 国产人伦9x9x在线观看| 国产精品亚洲av一区麻豆 | 国产在线一区二区三区精| 国产在线视频一区二区| 久久天躁狠狠躁夜夜2o2o | 久久久久久久久免费视频了| 一级a爱视频在线免费观看| 91成人精品电影| 久久精品熟女亚洲av麻豆精品| 侵犯人妻中文字幕一二三四区| 999精品在线视频| 国产爽快片一区二区三区| 欧美黑人精品巨大| 亚洲中文av在线| 天天操日日干夜夜撸| 一本—道久久a久久精品蜜桃钙片| 日日爽夜夜爽网站| 建设人人有责人人尽责人人享有的| avwww免费| 久久国产精品大桥未久av| 国产熟女午夜一区二区三区| 国产亚洲午夜精品一区二区久久| 女人爽到高潮嗷嗷叫在线视频| 亚洲国产成人一精品久久久| 亚洲第一青青草原| 国产女主播在线喷水免费视频网站| 七月丁香在线播放| 成年美女黄网站色视频大全免费| 香蕉丝袜av| 国产欧美日韩综合在线一区二区| 国产精品一区二区在线不卡| 一级毛片我不卡| 成年av动漫网址| 人妻一区二区av| 欧美精品人与动牲交sv欧美| 夫妻午夜视频| 亚洲熟女毛片儿| 久久久国产欧美日韩av| 午夜福利免费观看在线| 美女大奶头黄色视频| 可以免费在线观看a视频的电影网站 | 国产在视频线精品| 国产xxxxx性猛交| 伊人亚洲综合成人网| 一级毛片 在线播放| 日日摸夜夜添夜夜爱| 欧美 日韩 精品 国产| 国产探花极品一区二区| 国产精品无大码| 久久99热这里只频精品6学生| 麻豆精品久久久久久蜜桃| 人妻一区二区av| 国产国语露脸激情在线看| 美女福利国产在线| 黄色视频在线播放观看不卡| 天天躁狠狠躁夜夜躁狠狠躁| 午夜福利在线免费观看网站| av片东京热男人的天堂| 色婷婷久久久亚洲欧美| 久久精品熟女亚洲av麻豆精品| 亚洲精品久久久久久婷婷小说| 91老司机精品| 热99国产精品久久久久久7| 97在线人人人人妻| 永久免费av网站大全| 一级毛片 在线播放| 99久久综合免费| 国产深夜福利视频在线观看| 国产成人精品在线电影| 国产一区二区在线观看av| 无限看片的www在线观看| 久久狼人影院| 亚洲av日韩在线播放| 人人妻人人澡人人看| 久久青草综合色| 极品少妇高潮喷水抽搐| 亚洲一码二码三码区别大吗| 精品第一国产精品| 女的被弄到高潮叫床怎么办| 精品国产乱码久久久久久男人| 夫妻午夜视频| 老汉色∧v一级毛片| 天天添夜夜摸| 中文精品一卡2卡3卡4更新| 少妇人妻精品综合一区二区| 十八禁网站网址无遮挡| 亚洲精品视频女| 国产精品免费大片| 777久久人妻少妇嫩草av网站| 午夜福利,免费看| 国产 一区精品| 亚洲 欧美一区二区三区| 天天躁夜夜躁狠狠躁躁| 精品人妻熟女毛片av久久网站| 色精品久久人妻99蜜桃| 国产亚洲午夜精品一区二区久久| 欧美日韩av久久| 久热这里只有精品99| 一级,二级,三级黄色视频| 国产亚洲午夜精品一区二区久久| 最近2019中文字幕mv第一页| 熟女av电影| 如日韩欧美国产精品一区二区三区| 天堂8中文在线网| 999精品在线视频| 国产精品.久久久| 99久久精品国产亚洲精品| 又黄又粗又硬又大视频| 巨乳人妻的诱惑在线观看| 美女脱内裤让男人舔精品视频| 成人国语在线视频| 青春草国产在线视频| 你懂的网址亚洲精品在线观看| 综合色丁香网| 亚洲视频免费观看视频| 一边亲一边摸免费视频| 丁香六月天网| 亚洲av成人精品一二三区| 亚洲精品成人av观看孕妇| 99精国产麻豆久久婷婷| 国产免费视频播放在线视频| 国产午夜精品一二区理论片| 中文精品一卡2卡3卡4更新| 亚洲专区中文字幕在线 | 欧美日韩精品网址| 你懂的网址亚洲精品在线观看| 久久99热这里只频精品6学生| 久久婷婷青草| 一本色道久久久久久精品综合| 欧美亚洲日本最大视频资源| 亚洲一区二区三区欧美精品| 欧美 亚洲 国产 日韩一| 精品人妻熟女毛片av久久网站| 久久久国产一区二区| 老熟女久久久| 日本一区二区免费在线视频| 激情视频va一区二区三区| 亚洲一码二码三码区别大吗| 欧美人与性动交α欧美软件| 国产高清不卡午夜福利| 久久精品久久精品一区二区三区| 欧美变态另类bdsm刘玥| av网站在线播放免费| 久久精品国产a三级三级三级| 欧美亚洲 丝袜 人妻 在线| 老司机深夜福利视频在线观看 | 亚洲欧美成人精品一区二区| 男女高潮啪啪啪动态图| 国产精品久久久av美女十八| 一区二区av电影网| 婷婷成人精品国产| av网站免费在线观看视频| 女人爽到高潮嗷嗷叫在线视频| 十八禁网站网址无遮挡| 欧美日韩视频高清一区二区三区二| 久久精品熟女亚洲av麻豆精品| 99久久精品国产亚洲精品| 如何舔出高潮| 青草久久国产| 韩国av在线不卡| 亚洲七黄色美女视频| 国产成人免费无遮挡视频| 国产一卡二卡三卡精品 | 纯流量卡能插随身wifi吗| 亚洲精品自拍成人| 一边摸一边抽搐一进一出视频| 成人亚洲精品一区在线观看| 日本爱情动作片www.在线观看| 久久精品aⅴ一区二区三区四区| 亚洲伊人久久精品综合| 久久久久久久大尺度免费视频| 国产av精品麻豆| 日韩大片免费观看网站| 中文字幕精品免费在线观看视频| 精品视频人人做人人爽| 最近最新中文字幕免费大全7| 欧美日韩亚洲高清精品| 69精品国产乱码久久久| 丝袜在线中文字幕| 午夜av观看不卡| 久久久久国产精品人妻一区二区| 亚洲第一区二区三区不卡| 一二三四中文在线观看免费高清| 亚洲国产精品999| 午夜久久久在线观看| 欧美成人精品欧美一级黄| 十八禁人妻一区二区| 男人爽女人下面视频在线观看| 黑丝袜美女国产一区| 黄色毛片三级朝国网站| 国产精品.久久久| 精品少妇久久久久久888优播| av视频免费观看在线观看| 狂野欧美激情性xxxx| 男人舔女人的私密视频| 在线观看免费午夜福利视频| 亚洲国产成人一精品久久久| 日本一区二区免费在线视频| 久久久久久人人人人人| 亚洲一卡2卡3卡4卡5卡精品中文| 老司机靠b影院| 麻豆av在线久日| 成年人午夜在线观看视频| 叶爱在线成人免费视频播放| 99久久99久久久精品蜜桃| 99国产精品免费福利视频| 国产片内射在线| 精品视频人人做人人爽| 2018国产大陆天天弄谢| 精品一品国产午夜福利视频| 熟女少妇亚洲综合色aaa.| 无遮挡黄片免费观看| 亚洲伊人久久精品综合| 精品亚洲成国产av| 日韩中文字幕视频在线看片| av在线老鸭窝| 一本—道久久a久久精品蜜桃钙片| 18禁观看日本| 中文欧美无线码| 天堂俺去俺来也www色官网| 日韩av不卡免费在线播放| 热99国产精品久久久久久7| 大陆偷拍与自拍| 日日摸夜夜添夜夜爱| 久久鲁丝午夜福利片| 亚洲精品久久午夜乱码| 亚洲久久久国产精品| 人人澡人人妻人| 亚洲欧美成人精品一区二区| 在线观看国产h片| 亚洲精华国产精华液的使用体验| 人人澡人人妻人| 一本一本久久a久久精品综合妖精| 国产亚洲最大av| 两个人免费观看高清视频| xxx大片免费视频| 国产成人精品福利久久| 毛片一级片免费看久久久久| 欧美最新免费一区二区三区| 99久久综合免费| 精品酒店卫生间| 国精品久久久久久国模美| 不卡视频在线观看欧美| 国产av国产精品国产| 在线精品无人区一区二区三| 亚洲色图综合在线观看| 久久女婷五月综合色啪小说| 天天躁日日躁夜夜躁夜夜| 99国产综合亚洲精品| 9191精品国产免费久久| 你懂的网址亚洲精品在线观看| 人妻人人澡人人爽人人| 国产成人精品久久久久久| 免费日韩欧美在线观看| 精品福利永久在线观看| 国产精品一区二区精品视频观看| 亚洲av中文av极速乱| 最近2019中文字幕mv第一页| 这个男人来自地球电影免费观看 | 国产熟女午夜一区二区三区| 久久久久久久大尺度免费视频| 日本av免费视频播放| 国产精品久久久久久久久免| 视频区图区小说| 国产深夜福利视频在线观看| 中国三级夫妇交换| 欧美在线黄色| av一本久久久久| 久久亚洲国产成人精品v| 人人澡人人妻人| 久久久久精品人妻al黑| 亚洲 欧美一区二区三区| 五月开心婷婷网| 精品卡一卡二卡四卡免费| 欧美最新免费一区二区三区| 女人爽到高潮嗷嗷叫在线视频| 中文字幕人妻丝袜制服| 欧美日韩av久久| 亚洲av中文av极速乱| 丰满饥渴人妻一区二区三| 亚洲天堂av无毛| 亚洲国产成人一精品久久久| 日日撸夜夜添| 国产免费又黄又爽又色| 男女高潮啪啪啪动态图| 91精品三级在线观看| 国产av国产精品国产| 90打野战视频偷拍视频| 不卡av一区二区三区| 亚洲av欧美aⅴ国产| 少妇 在线观看| 91国产中文字幕| 欧美 日韩 精品 国产| 午夜老司机福利片| 国产又爽黄色视频| 国产高清国产精品国产三级| 国产一区二区三区综合在线观看| 黄色毛片三级朝国网站| 在线天堂最新版资源| 女性被躁到高潮视频| 亚洲国产欧美一区二区综合| 亚洲av综合色区一区| 看非洲黑人一级黄片| 黑人巨大精品欧美一区二区蜜桃| 中文字幕色久视频| 午夜免费男女啪啪视频观看| 19禁男女啪啪无遮挡网站| www.熟女人妻精品国产| 亚洲,欧美精品.| 日本av手机在线免费观看| 久久精品人人爽人人爽视色| 老司机深夜福利视频在线观看 | 免费观看人在逋| 久久久久精品性色| 大香蕉久久成人网| 韩国精品一区二区三区| 色综合欧美亚洲国产小说| 久久毛片免费看一区二区三区| 亚洲av电影在线观看一区二区三区| 亚洲成av片中文字幕在线观看| 午夜福利视频精品| 亚洲av日韩在线播放| 亚洲自偷自拍图片 自拍| 欧美日韩综合久久久久久| 日韩欧美精品免费久久| 一级片免费观看大全| 在线免费观看不下载黄p国产| 国产精品成人在线| 中文字幕制服av| 色吧在线观看| 两个人免费观看高清视频| 欧美日韩视频高清一区二区三区二| 亚洲av日韩精品久久久久久密 | 黄网站色视频无遮挡免费观看| 看非洲黑人一级黄片| 久久久国产欧美日韩av| 男女边吃奶边做爰视频| 99国产精品免费福利视频| 久久影院123| 秋霞伦理黄片| 夫妻午夜视频| 亚洲久久久国产精品| 精品卡一卡二卡四卡免费| 久久99一区二区三区| 亚洲欧美激情在线| 最新的欧美精品一区二区| 777久久人妻少妇嫩草av网站| 久久免费观看电影| 18禁动态无遮挡网站| 婷婷色综合大香蕉| 亚洲五月色婷婷综合| 国产成人精品久久久久久| 美女国产高潮福利片在线看| 国产一区二区三区av在线| 精品亚洲乱码少妇综合久久| 国产精品欧美亚洲77777| 不卡视频在线观看欧美| 无限看片的www在线观看| 亚洲精品自拍成人| 嫩草影视91久久| 中文精品一卡2卡3卡4更新| 亚洲成人国产一区在线观看 | 亚洲精品一区蜜桃| 多毛熟女@视频| 亚洲精品美女久久av网站| 欧美日韩国产mv在线观看视频| 美女大奶头黄色视频| 国产精品久久久久久久久免| 狂野欧美激情性xxxx| 国产一卡二卡三卡精品 | 亚洲成av片中文字幕在线观看| 精品国产国语对白av| 纵有疾风起免费观看全集完整版| 欧美亚洲日本最大视频资源| 少妇的丰满在线观看| 宅男免费午夜| 咕卡用的链子| 一级,二级,三级黄色视频| 纯流量卡能插随身wifi吗| 亚洲av福利一区| 国产成人一区二区在线| 日韩免费高清中文字幕av| 亚洲激情五月婷婷啪啪| 嫩草影视91久久| 亚洲国产中文字幕在线视频| www.av在线官网国产| 女性被躁到高潮视频| 国产一区二区三区av在线| 在线观看人妻少妇| 9色porny在线观看| 99精国产麻豆久久婷婷| 亚洲熟女毛片儿| 免费不卡黄色视频| 亚洲成人国产一区在线观看 | 涩涩av久久男人的天堂| av天堂久久9| 成人亚洲欧美一区二区av| 水蜜桃什么品种好| 少妇人妻 视频| 精品人妻在线不人妻| 一二三四中文在线观看免费高清| 亚洲av欧美aⅴ国产| 中文字幕制服av| 欧美日韩亚洲国产一区二区在线观看 | 久久人人97超碰香蕉20202| 欧美日韩亚洲国产一区二区在线观看 | 久久精品熟女亚洲av麻豆精品| 免费观看性生交大片5| 亚洲av日韩在线播放| 999精品在线视频| 亚洲国产欧美在线一区| 在线天堂中文资源库| 中文乱码字字幕精品一区二区三区| 哪个播放器可以免费观看大片| 色94色欧美一区二区| 精品卡一卡二卡四卡免费| 最近最新中文字幕大全免费视频 | www.av在线官网国产| av女优亚洲男人天堂| 久久精品久久久久久噜噜老黄| 精品一区二区三卡| 日日摸夜夜添夜夜爱| 母亲3免费完整高清在线观看| 天天躁夜夜躁狠狠躁躁| 欧美另类一区| 色网站视频免费| 国产亚洲av高清不卡| 女人精品久久久久毛片| 亚洲,欧美,日韩| 国产精品嫩草影院av在线观看| 欧美人与性动交α欧美精品济南到| 一级爰片在线观看| 看免费av毛片| 中文天堂在线官网| 99久久人妻综合| 制服人妻中文乱码| 黄频高清免费视频| 女的被弄到高潮叫床怎么办| √禁漫天堂资源中文www| 波野结衣二区三区在线| 国产乱来视频区| 国产一区二区在线观看av| 宅男免费午夜| 日本欧美国产在线视频| 在线观看免费午夜福利视频| 欧美变态另类bdsm刘玥| 女人爽到高潮嗷嗷叫在线视频| 两性夫妻黄色片| 亚洲国产看品久久| 91精品国产国语对白视频| 国产黄色免费在线视频| 无遮挡黄片免费观看| 亚洲精品久久午夜乱码| 电影成人av| av在线app专区| 人人澡人人妻人| 男女下面插进去视频免费观看| 久久久久久久国产电影| 欧美精品av麻豆av| 欧美激情高清一区二区三区 | 精品久久蜜臀av无| 大香蕉久久网| 一边摸一边做爽爽视频免费| 狂野欧美激情性xxxx| 岛国毛片在线播放| 亚洲五月色婷婷综合| 亚洲成国产人片在线观看| 国产欧美亚洲国产| 免费黄色在线免费观看| 亚洲精品乱久久久久久| 看免费成人av毛片| 最近2019中文字幕mv第一页| 最新在线观看一区二区三区 | 国产伦人伦偷精品视频| 丰满饥渴人妻一区二区三| 国产国语露脸激情在线看| 在线观看人妻少妇| 国产精品免费大片| 91精品三级在线观看| 日日摸夜夜添夜夜爱| 欧美亚洲 丝袜 人妻 在线| 日本欧美视频一区| 在线观看免费高清a一片| 大香蕉久久成人网| 日韩精品免费视频一区二区三区| 欧美日韩国产mv在线观看视频| 日本色播在线视频|