夏增剛
摘 要:質(zhì)子交換膜燃料電池是一種直接將儲存在H2的化學能經(jīng)與O2反應(yīng)轉(zhuǎn)化成電能、熱能和水的電化學裝置。它不受卡諾循環(huán)的限制,轉(zhuǎn)化效率高,可以長時間連續(xù)運行,具有運行溫度低、功率密度高、響應(yīng)快、啟動快、穩(wěn)定性好以及當使用純氫氣時不會造成環(huán)境污染等特點,是未來汽車的理想動力裝置之一。合適的濕度條件是燃料電池健康高效運行的必要條件,本文針對水在燃料電池內(nèi)的傳輸問題進行綜述歸納,為燃料電池內(nèi)的水傳輸問題建立研究基礎(chǔ)。
關(guān)鍵詞:質(zhì)子交換膜燃料電池 水傳輸
Review on Water Transport Mechanism of Proton Exchange Membrane Fuel Cell Stack
Xia Zenggang
Abstract:Proton exchange membrane fuel cell is an electrochemical device that directly converts the chemical energy stored in H2 into electrical energy, thermal energy and water by reacting with O2. It is not limited by Carnot cycle, has high conversion efficiency and can operate continuously for a long time. It has the characteristics of low operating temperature, high power density, fast response, fast start-up, good stability and no environmental pollution when using pure hydrogen. It is one of the ideal power devices for cars in the future. Appropriate humidity conditions are necessary for the healthy and efficient operation of fuel cells. This paper summarizes the water transport in fuel cells, and establishes a research foundation for the water transport in fuel cells.
Key words:proton exchange membrane fuel cell, water transport
1 研究背景與意義
質(zhì)子交換膜燃料電池技術(shù)因具有,啟動快,效率高,溫度低,功率密度高,運行平穩(wěn),使用純氫時不會造成環(huán)境污染等優(yōu)點。隨著環(huán)境污染與全球氣候變暖問題的日益嚴重,其作為一種汽車動力系統(tǒng)解決方案而日益受到關(guān)注[1-2]。
對于車載應(yīng)用,質(zhì)子交換膜燃料電池系統(tǒng)的耐久性與可靠性的提升是最具有挑戰(zhàn)性的問題。燃料電池電堆的正常工作的需要適中的濕度范圍,所以良好水管理是提升質(zhì)子交換膜燃料電池可靠性與耐久性的重要手段[3-4]。
隨著燃料電池技術(shù)的發(fā)展,對于實用的車載質(zhì)子交換膜燃料的電池系統(tǒng),MEA普遍趨勢是越來越薄,對水的傳輸性能更好,容易發(fā)生水淹故障。燃料電池在高電流密度下,產(chǎn)生更多的水且工作壓力更大,氣態(tài)水更容易液化,堵塞氣體擴散層(GDL)與流道,阻礙反應(yīng)氣體傳質(zhì),造成反應(yīng)欠氣,電堆性能下降同時損害電堆耐久性[5]。所以燃料電池水狀態(tài)傳輸機理是燃料電池系統(tǒng)研究的重要問題。
2 燃料電池內(nèi)部水傳輸
燃料電池內(nèi)部的水傳輸機制如圖1所示,主要有TOD (Thermal-osmotic drag),EOD (Electro-osmotic drag),BD(Back Diffusion)和HP(Hydraulic Permeation)[6]。
在質(zhì)子交換膜燃料電池中對水傳輸起主要作用的是electro-osmotic drag 和 back diffusion,水傳輸?shù)臋C制決定電解質(zhì)膜的濕度,其對質(zhì)子的傳輸非常重要[7]。
質(zhì)子交換膜燃料電池工作的過程中,質(zhì)子從陽極傳輸?shù)疥帢O,同時牽引水分子同樣從陽極向陰極運動,這種現(xiàn)象被稱為EOD[8]。如果膜的濕度過高,EOD現(xiàn)象會導(dǎo)致water flooding,影響反應(yīng)的效率,并造成催化劑退化。EOD現(xiàn)象中,水的傳輸速率和質(zhì)子從陽極向陰極的傳輸速率密切相關(guān),所以本文提出的診斷模型將電堆電流密度作為重要的模型輸入[9]。Zhiping et al.在研究中發(fā)現(xiàn)EOD的速率和溫度密切相關(guān),當溫度上升,EOD系數(shù)明顯增加[10]。
在陰極產(chǎn)生的過量的水會因濃度梯度向陽極滲透,這種現(xiàn)象稱為BD(Back Diffusion)[11]。BD的速率和水濃度梯度,膜的厚度、壓力梯度以及溫度有關(guān)[12-13]。
由于Thermal-osmotic Drag現(xiàn)象,水會從較冷的區(qū)域向較熱的區(qū)域流動[14-15],燃料電池系統(tǒng)中,氫氣來自氫瓶,如堆氫氣溫度相對固定,模型將陰極入口溫度作為模型輸入,反映TOD現(xiàn)象。
3 質(zhì)子交換膜燃料電池水的兩相流
很多可視化的實驗證實了液態(tài)水在流道內(nèi)的積聚將經(jīng)歷離散小液滴(Stray droplets)、穩(wěn)定的較大液滴(Stable droplets)、環(huán)狀薄膜(Liquid Film)和水團(Slug)四個階段[16]。液態(tài)水的增加會阻礙氣體傳質(zhì),對降低燃料電池的耐久性和經(jīng)濟性。
4 結(jié)語
水傳輸是質(zhì)子交換膜燃料電池的核心傳質(zhì)問題之一,和燃料電池的耐久性、可靠性提升關(guān)系密切。本文對四種重要水傳輸機理進行綜述,并分析了兩相流的4個階段,為燃料電池水傳輸機理研究提供理論指導(dǎo)。
參考文獻:
[1]Zhan Z,Wang C,F(xiàn)u W,et al. Visualization of water transport in a transparent PEMFC[J]. International Journal of Hydrogen Energy, 2012,37(1):1094-1105.
[2]Hissel D,et al. Model-based diagnosis for proton exchange membrane fuel cells[J]. Mathematics & Computers in Simulation,2010,81(2):158-170.
[3]Iranzo A , Boillat P . Liquid water distribution patterns featuring back-diffusion transport in a PEM fuel cell with neutron imaging[J]. International Journal of Hydrogen Energy,2014,39(30):17240-17245.
[4]Seong J Y,Bae Y C,Sun Y K.Water activities of polymeric membrane/water systems in fuel cells[J]. Journal of power sources,2006,157(2):p.733-738.
[5]Li H et al. A review of water flooding issues in the proton exchange membrane fuel cell. J Power Sources 2008;178(1):103-17.
[6]Ijaodola O S,El-Hassan Z,Ogungbemi E,et al. Energy efficiency improvements by investigating the water flooding management on proton exchange membrane fuel cell (PEMFC)[J]. Energy, 2019,179(JUL.15):246-267.
[7]Wei D,Haijiang W,Xiao-Zi Y, Jonathan JM,Daijun Y, Jinli Q,Jianxin M. A review on water balance in the membrane electrode assembly of proton exchange membrane fuel cells. Int J Hydrogen Energy December2009;34(23):9461e78.
[8]Thomas AZ,John D,Judith Valerio,Shimshon G. The water content dependence of electro-osmotic drag in proton-conducting polymer electrolytes. Electrochim Acta 1995;40(3):297e302.
[9]Yong HP,Jerald AC. An experimental investigation of electro-osmotic drag coefficients in a polymer electrolyte membrane fuel cell. Int J Hydrogen Energy December 2008;33(24):7513e20.
[10]Zhiping L, Zhangyong C, Yuxia Z, Zhen L, Jing L. Electro-osmotic drag coefficient and proton conductivity in Nafion? membrane for PEMFC. Int J Hydrogen Energy A.
[11] Springer TE, Zawodzinski TA, Gottesfeld S. Polymer electrolyte fuel cell model. J Electrochem Soc J. Electrochem. Soc. August 1991;138(8).
[12]Qiao Z, Paul M,Jay B. Diffusion and interfacial transport of water in NafionJ. Phys Chem B 2011;115(12):2717-27.
[13]Majsztrik P,Bocarsly A,Benziger J. Water permeation through nafion Membranes:the role of water activity. J Phys Chem B 2008;112(51):16280-9.
[14]Soowhan K,Mench MM. Investigation of temperature-driven water transport in polymer electrolyte fuel cell:thermo-osmosis in membranes. J Membr Sci2009;328:113-20.
[15]German C,Mariano A, Ana MCL. Effect of water content in the gas diffusion layer of H2/O2 PEM fuel cell. J Mater Sci Eng 2016;6(7e8):213-21.
[16]Hussaini, I. S. , & Wang, C. Y. (2009). Visualization and quantification of cathode channel flooding in pem fuel cells.Journal of Power Sources,187(2),444-451.