• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Synthesis, Crystal Structure and Theoretical Calculations of N-Benzyl-1-(5-(3-chlorophenyl)-1,3,4- oxadiazol-2-yl)cyclopentanamine①

    2018-06-20 12:00:38ALIRmzniFATEMEHZinliNsrbiYOUNESHnihpourSANGWOOJooMASOOMEShikhiKATARZYNAlpokurTADEUSZLisFARIDEHGournlou
    結(jié)構(gòu)化學(xué) 2018年5期

    ALI Rmzni FATEMEH Zinli Nsrbi, b YOUNES Hnihpour SANG WOO Joo MASOOME Shikhi KATARZYNA ?lpokur TADEUSZ Lis FARIDEH Gournlou

    ?

    Synthesis, Crystal Structure and Theoretical Calculations of N-Benzyl-1-(5-(3-chlorophenyl)-1,3,4- oxadiazol-2-yl)cyclopentanamine①

    ALI Ramazania②FATEMEH Zeinali Nasrabadia, bYOUNES Hanifehpourc②SANG WOO Jooc②MASOOME SheikhidKATARZYNA ?lepokuraeTADEUSZ LiseFARIDEH Gouranlouf

    a(45195-313,)b()c(712-749,)d()e(50-383)f()

    -benzyl-1-(5-(3-chlorophenyl)-1,3,4-oxadiazol-2-yl)cyclopentanamine was syn- thesized via one-pot reaction of appropriate benzylamine, cyclopentanone, (-isocyanimino)tri- phenylphosphorane and-chlorobenzoic acid. The quantum theoretical calculations for crystal structure were performed by density functional theory (DFT/B3LYP/6-311+G*). From the optimized structure, geometric parameters were obtained and experimental measurements were compared with the calculated data. Frontier molecular orbitals (FMOs), total density of states (DOS), molecular electrostatic potential (MEP), molecular properties, natural charges, NMR parameters and NBO analysis for the product were investigated by theoretical calculations.

    -isocyaniminotriphenylphosphorane, cyclopentanone,-chlorobenzoic acid, 1,3,4-oxadiazole, aza-Wittig reaction, DFT, NBO analysis;

    1 INTRODUCTION

    Multicomponent reactions (MCR) have appeared as an efficient and powerful tool in modern syn- thetic organic chemistry due to their valued features such as atom economy, straightforward reaction design, and the opportunity to construct target com- pounds by the introduction of several diversity elements in a single chemical event[1]. MCR, leading to interesting heterocyclic scaffolds, are especially useful for the construction of diverse chemical libraries of ‘druglike’ molecules. The iso- cyanide-based MCR are very important in this area[2-4]. Isocyanide-based multicomponent reactions (abbreviated to IMCRs by Ugi and D?mling) by virtue of their synthetic potential, their inherent atom efficiency, convergent nature, ease implemen- tation, and the generation of molecular diversity,have attracted considerable attention because of the advantages that they offer to the field of combina- torial chemistry[5-7].

    In recent years, there has been considerable inves- tigation on different classes of oxadiazoles. Particu- larly, compounds containing 1,3,4-oxadiazole nuc- leus have been shown to possess a wide range of pharmacological and therapeutic activities. Some 1,3,4-oxadiazoles have shown analgesic, anti- inflammatory, anticonvulsant, tranquilizing, myore- laxant, antidepressant, vasodilatatory, diuretic, antiulcer, antiarythmic, antiserotoninic, spasmolytic, hypotensive, antibronchocontrictive, anticholinergic, and antiemetic activities. Additionally, many 1,3,4- oxadiazole derivatives have been reported as active inhibitors of several enzymes[8-11].

    Recently, the intramolecular version of the- Wittig-type reaction has attracted much attention because it has exhibited high potential for the synthesis of a wide variety of nitrogen heterocycles, which can be attributed, in good measure, to the rapid progress in the preparation of functionalized iminophosphoranes. Existence of the nucleophilicity at the nitrogen is a factor of essential mechanistic importance in the use of these iminophosphoranes as-Wittig reagents. Iminophosphoranes are important reagents in synthetic organic chemistry, especially in the synthesis of naturally occurring products, compounds with biological and pharmaco- logical activity[12, 13]. However, the organic chemi- stry of (-isocyanimino) triphenylphosphorane 4 remains almost unexplored. (-isocyanimino)tri- phenylphosphorane 4 is expected to have synthetic potential because it provides a reaction system in which the iminophosphorane group can react with a reagent having a carbonyl functionality[12, 13]. In recent years, we have established a one-pot method for the synthesis of organophosphorus com- pounds[14-16]. In this paper, we report an interesting four-component reaction of (-isocyanimino)tri- phenylphosphorane 4 (Scheme 1).

    In recent years, computational chemistry has become an important tool for chemists and a well- accepted partner for experimental chemistry[17-19]. Density functional theory (DFT) method has become a major tool in the methodological arsenal of computational organic chemists. Wang et al. investigated intramolecular charge-transfer in symmetric bi-1,3,4-oxadiazole derivatives with TD-CAM-B3LYP method (CAM-B3LYP/6- 311+G**)[20]. Ge et al. studied frontier molecular orbitals of the novel 5-(3-aryl-1H-pyrazol-5-yl)-2-(3-butyl-1-chloroimidazo[1,5-a]-pyridin-7-yl)-1,3,4-oxadiazole derivatives with existence different substitutions using the DFT calculations[21]. Srinivas et al. reported DFT and TD-DFT studies of 1,3,4-oxadiazole derivatives. In fact, they investigated the effect of various substituents on electronic, optical and geometric properties of compounds[22]. Behzad et al. studied four possible tautomers of 5-amino- 1,3,4-oxadiazole-2(3H)-one by calculations at the DFT-B3LYP/6-311++G* level of theory in the gas phase and in solution and in a micro hydrated environment[23]. In the present work, we investigate the energetic and structural properties of the crystal structures of-benzyl-1-(5-(3-chlorophenyl)-1,3,4- oxadiazol-2-yl)cyclopentanamine using the DFT calculations. The optimized geometry, frontier mole- cular orbitals (FMO), detail of quantum molecular descriptors, molecular electrostatic potential (MEP), chemical tensors, natural charge and NBO analysis were calculated.

    2 EXPERIMENTAL

    2. 1 Materials and methods

    (-Isocyanimino)triphenylphosphorane 4 was prepared based on reported procedures[13]. Other starting materials and solvents were obtained from Merck (Germany) and Fluka (Switzerland) and were used without further purification. The methods used to follow the reactions are TLC and NMR which indicated that there is no side product. Melting point was measured on an Electrothermal 9100 apparatus and uncorrected. IR spectrum was measured on a Jasco 6300 FTIR spectrometer.1H and13C NMR spectra (CDCl3) were recorded on a BRUKER DRX-250 AVANCE spectrometer at 250.1 and 62.9 MHz, and a BRUKER AVANCE III spectrometer at 400.2 and 100.6 MHz, respectively. Elemental analyses were performed using a Heraeus CHN- O-Rapid analyzer. Preparative layer chromato- graphy (PLC) plates were prepared from Merck silica gel (F254) powder.

    2. 2 General procedure for the preparation of compound 5

    To a magnetically stirred solution of benzyl amine 2 (1 mmol), cyclopentanone 1 (1 mmol) and (-isocyanimino)triphenylphosphorane 4 (1 mmol) in CH2Cl2(5 mL) was added dropwise a solution of-chlorobenzoic acid 3 (1 mmol) in CH2Cl2(5 mL) at room temperature over 15 min. The mixture was stirred for 12 h. The solvent was removed under reduced pressure, and the viscous residue was purified by preparative layer chromatography (PLC) (silica gel (F254) powder; petroleum ether-ethyl acetate 4:1). The characterization data of the compound are given below.

    2. 2. 1-benzyl-1-(5-(3-chlorophenyl)- 1,3,4-oxadiazol-2-yl)cyclopentanamine (5)

    White powder, m.p. 81~83; yield: 90%. IR (KBr): 3289, 2971, 1694, 1547,1440, 884, 791, 693 cm?1.1H NMR (250.0 MHzCDCl3):= 1.42~2.33 (9H, m, CH2of cyclopentan and NHamine), 3.67 (2H, s, CH2), 7.27~8.00 (9H,m, CHarom).13C NMR (62.5 MHzCDCl3):= 32.88, 37.56 (CH2of cyclopentan), 48.99 (CH2), 64.38 (C of cyclopentan), 124.97, 126.83, 127.04, 128.10, 128.41, 130.39, 131.64 (9CH), 125.65, 135.12, 140.10 (3C), 163.82, 171.00 (2C=N). Anal. Calcd. (%) for C20H20ClN3O (353.85): C, 67.89; H, 5.70; N, 11.88. Found (%): C, 67.81; H, 5.76; N, 11.80.

    2. 3 Preparation of single crystals of N-benzyl-1-(5-(3-chlorophenyl)-1,3,4-oxadiazol-2 yl)cyclopentanamine (5)

    Colorless single crystals of-benzyl-1-(5-(3- chlorophenyl)-1,3,4-oxadiazol-2-yl)cyclopentanamine (5) were obtained from slow evaporation of its dichloromethane/light petroleum ether (1:3) solution (20~25 ℃). The colorless single crystals were filtered off, washed with a cold mixture of dichloro- methane/light petroleum ether (1:3) and dried at room temperature.

    2. 4 X-ray crystallography of compound 5

    The crystallographic measurement of 5 was performed on a Kuma KM4-CCD κ-geometry auto- mated four-circle diffractometer with graphite-monochromatizedMoradiation (= 0.71073 ?) (Fig. 1). The data were collected at 110(2) K by using the Oxford-Cryosystems cooler. Data were corrected for Lorentz and polarization effects. Data collection, cell refinement, data reduction, and analysis were carried out with CrysAlisCCD and CrysAlisRED, respectively[24]. The structure was solved by direct methods with the SHELXS97 program[25], and refined by full-matrix least-squares technique with SHELXL2013[25]and anisotropic thermal parameters for non-H atoms. All H atoms were found in difference Fourier maps and refined isotropically. In the final refinement cycles, the C-bonded H atoms were repositioned in their cal- culated positions and refined using a riding model, with C–H = 0.95~0.99 ? andiso(H) = 1.2eq(C). N-bonded H atom was refined isotropically withiso(H) = 1.2eq(N). Figures were made with the Diamond program[26].

    C20H20ClN3O,M= 353.84, colorless block, crystal size 0.27 × 0.17 × 0.10 mm3,monoclinic, space group21/,= 5.420(2),= 36.782(8),= 8.814(3) ?,= 93.67(3)°,= 1753.5(10) ?3,= 110(2) K,= 4,= 0.23 mm-1(for Mo,= 0.71073 ?),absorption correction: multi-scan,min= 0.968,max= 1.000, 28708 reflections measured, 7811 unique (int= 0.029), 5561 observed (2()), (sin/)max= 0.844 ??1, parameters = 229, restraints = 0,=0.043 (observed refl.),= 0.112 (all refl.),= 1.01, (Δmax) = 0.52 and (Δmin) = –0.20 e·??3.

    3 COMPUTATIONAL DETAILS

    In this work, we have carried out quantum theoretical calculations and optimized its structure (starting from the solid-state structure) using B3LYP/6-311+G* level (DFT)[27]by the Gaussian 09W program package[28]and calculate its pro-perties. The electronic properties such as EHOMO, ELUMO, HOMO-LUMO energy gap (?),HOMO-1,LUMO+1, natural charges, molecular properties, dipole moment (μ) and point group were detec- ted[17]. The optimized molecular structure, HOMO and LUMO surfaces were visualized using GaussView 05 program[29]. Also we calculated NMR parameters such as chemical shift isotropic (CSI) and chemical shift anisotropic (CSA) for the title structures using B3LYP/6-311+G* level[30, 31]. The electronic structure of the title compound was studied by using Natural Bond Orbital (NBO) analysis at the same level in order to understand various second-order interactions between the filled orbitals of one subsystem and vacant orbitals of another subsystem, which is a measure of the inter-molecular delocalization or hyper conjugation[32].

    4 RESULTS AND DISCUSSION

    The 1:1 imine intermediate generated by the condensation reaction of cyclopentanone 1 with benzyl amine 2 is trapped by 4 in the presence of-chlorobenzoic acid 3 and leads to the formation of 1,3,4-oxadiazole derivatives 5 and triphenylphos- phine oxide 6 (Scheme 2). The reaction proceeds smoothly and cleanly under mild and neutral conditions and no side reactions were observed.

    Scheme 1. Four-component synthesis of 1,3,4-oxadiazole 5

    We also used 3-chlorobenzoperoxoic acid instead of 3-chlorobenzoic acid in this reaction, but the same product of 1,3,4-oxadiazole was observed.

    A mechanistic pathway for the reaction is provided in Scheme 2. On the basis of the chemistry of isocyanides, it is reasonable to assume that the first step may involve the formation of imine 7 by the condensation reaction of cyclopentanone 1 with the benzyl amine 2. The next step may involve nucleophilic addition of the (-isocyanimino)tri- phenylphosphorane 4 to the imine intermediate 7, which is facilitated by its protonation with the-chlorobenzoic acid 3, leading to nitrilium intermediate 8. This intermediate may be attacked by the conjugate base of the carboxylic acid to form the 1:1:1 adduct 9. The intermediate 9 then under- goes intramolecular-Wittig reaction[33-36]of iminophosphorane moiety with the ester carbonyl group to afford the isolated sterically congested 1,3,4-oxadiazole 5 by the removal of triphenyl- phosphine oxide 6 from intermediate 10.

    Scheme 2. Proposed mechanism for the formation of sterically congested 1,3,4-oxadiazole 5

    4. 1 Crystal structure and optimized geometry

    The optimized structure of compound 5 has been calculated by DFT (B3LYP/6-311+G*) (see Fig. 1b) and the selected bond lengths and bond angles of the crystal structure and the theoretical parameters (for the molecule of the opposite configuration,with the opposite values of torsion angles) are listed in Table 1.

    The crystal of 5 is built up from molecules shown in Fig. 1a. The values of bond lengths and valence angles correspond well with those typical for the respective types of chemical connections[37]. In the crystal structure of 5 the angle between 1,3,4-oxa- diazole and phenyl rings is about 63°. The chloro- phenyl ring is only slightly twisted relative to the oxadiazole, which is reflected in the value of O(1)– C(14)–C(15)–C(20) torsion angle close to 10° (see Table 1 for details). Cyclopentyl ring adopts enve- lope conformation with the C(8) atom puckered (Cremer--Pople puckering parameters2 and2[38]= 0.429(1) ? and 352.1(2)°, respectively; pseudoro- tation parametersandm[39]= 154.0(1)° and 44.1(1)°, respectively; calculated with Platon[40]).

    In the crystal lattice, molecules of 5 are joined to each other via N–H×××N hydrogen bonds giving rise to chains running down the-axis as shown in Fig. 2a (for geometrical details see Table 2). The adjacent chains are further linked by C–H×××and C–Cl×××interactions to form double layers parallel to the (010) plane (Fig. 2b).

    As can be seen in Table 1, the calculated para- meters reveal good approximation and can be used as a foundation to calculate the other parameters for the title compound. We found that most of the calcu- lated bond lengths are slightly longer than X-ray values due to the fact that experimental result corresponds to interacting molecules in the crystal lattice, whereas computational method deals with an isolated molecule in gaseous phase[41]. The average differences of the theoretical parameters from the experimental for bond lengths of compound 5 were found to be about 0.001 ? (O1–C14), 0.003 ? (O1–C13), 0.009 ? (N1–C1), 0.003 ? (N1–C8), 0.001 ? (N2–C13), 0.02 ? (N2–N3) and 0.004 ? (N3–C14). According to Table 1, the bond lengths of N1–C1in X-ray and optimized structure of compound 5 are 1.4602(13) and 1.4689 ? respectively, whereas experimental and theoretical values for the bond lengths of N1–C8are 1.4707(12) and 1.4686 ?, respectively. It is shown the N1–C1is shorter than N1–C8.

    Fig. 1. (a) X-ray crystal structure of compound 5 at 50% probability displacement ellipsoids(b) Theoretical geometric structure of compound 5 (optimized using the B3LYP/6-311+G* level)

    Table 1. Selected Experimental and Calculated Interatomic Distances (?), Dihedral Angles (°) and Torsion Angles (°) for 5

    Fig. 2. Arrangement of molecule 5 within the () molecular chain running down the-axis, and () the layer parallel to (010) plane. N–H···N, C–H···and C–Cl···interactions are shown as dashed and dotted lines, respectively. H atoms not involved in these contacts are omitted for clarity. Symmetry codes are as in Table 1

    Table 2. Geometry of N–H···N, C–H···π and C–Cl···π Interactions (?, o) in 5

    Symmetry codes: (i)+1,,; (ii)–1,,; (iii),,+1; (iv), –+0.5,-0.5;1 isthe centroid of C2~C7 ring;2 is the centroid of the oxadiazole ring

    4. 2 Electronic properties

    Quantum chemical methods are important for obtaining information about molecular structure and electrochemical behavior. A frontier molecular orbitals (FMO) analysis[42]was done for the compound using at the B3LYP/6-311+G* level. FMO results such asHOMO,HOMO-1,LUMO,LUMO+1and the HOMO-LUMO energy gap (?) of the title compound, are summarized in Table 3. The values of energy of the highest occupied molecular orbital (HOMO) can act as an electron donor and the lowest unoccupied molecular orbital (LUMO) can act as the electron acceptor[43]. As shown in Fig. 3 and Table 3,HOMO,HOMO-1,LUMOandLUMO+1of the title compound are –6.65, 7.02, –2.0 and –1.11 eV, respectively. As seen in Fig. 4, charge transfer is taking place within molecule. The graphic pictures of orbitals show the HOMO-1 orbital of molecule is localized mainly on oxadiazole ring and CH2–NH group, whereas the HOMO orbital of molecule is localized mainly on chlorinated ring and the Cl atom. The LUMO orbital of molecule is localized mainly on the oxadiazoleand chlorinated rings, whereas the LUMO+1 orbital of molecule is localized mainly on the phenyl ring. As seen in Fig. 3, the HOMO-LUMO energy gap (?) of the compound is 4.65 eV that reflects the chemical activity of the molecule. Also the calculated energy gap clearly is shown in DOS plot (see Fig. 4)[42].

    A detail of quantum molecular descriptors of the title compound such as ionization potential (), electron affinity (), chemical hardness (), electronic chemical potential () and electrophilicity () were calculated and are listed in Table 2. Dipole moment (μ) is a good measure for the asymmetric nature of a structure[17]. The size of the dipole moment depends on the composition and dimen- sionality of the 3structures. As shown in Table 3, dipole moment of the title structure is 4.143 Debye that the high value of dipole moment is due to its asymmetric character that the atoms are irregularly arranged which gives rise to the increased dipole moment. Also the point group of structure is1 (see Table 3).

    Table 3. Molecular Properties of Compound 5 Calculated Using the DFT (B3LYP/6-311+G*)

    Fig. 3. Calculated Frontier molecular orbitals of compound 5 (?E: energy gap between LUMO and HOMO)

    Fig. 4. Calculated DOS plots of compound (using the B3LYP/6-311+G* method)

    4. 3 Molecular electrostatic potential (MEP)

    The molecular electrostatic potential (MEP) was checked out by theoretical calculations using B3LYP/6-311+G* level of theory. Molecular elec- trostatic potential shows the electronic density and is useful in recognition sites for electrophilic attack and nucleophilic reactions as well as hydrogen bonding interactions[44]. The electrostatic potential at the surface is different values and different colors. The negative areas (red, orange and yellow color) of MEP were related to electrophilic reactivity, the positive areas (blue color) to the nucleophilic reactivity and green color is neutral regions. According to the MEP map in Fig. 5, negative region of the compound is mainly focused on N17and N18atoms and phenyl ring with more red color intensity. Therefore, there are three positions on the compound for electrophilic attack. Also the lowest electron density with the highest intensity blue color is observed for hydrogen atom in N8–H33. Therefore, it is the suitable site for nucleophilic activity.

    Fig. 5. Molecular electrostatic potential (MEP) maps of compound 5 calculated using the B3LYP/6-311+G* level

    4. 4 Atomic charge and NMR parameters

    We calculated the charge distributions for equilibrium geometry of molecule by NBO method (natural charge)[17]using the B3LYP/6-311+G* level (Atoms labeling is according to Fig. 2). The total charge of the investigated molecules is equal to zero. According to Table 4, the results of NBO analysis reveal the highest positive charge is observed for C10and C16atoms in the oxadiazole ring (0.519 and 0.488 e, respectively), while the highest value of negative charge is observed for the N8atom (–0.664 e). Also the O15atom has great negative charge (–0.494 e). All carbon atoms of the chlorinated ring and phenyl ring have negative charges. The carbon atoms of cyclopentan ring bear negative charges except the C9atom that has positive charge (0.073 e). All hydrogen atoms have positive charges and the H33atom in N–H group has the highest positive charge (0.354 e).

    The NMR parameters such as isotropic chemical shift (CSI) and anisotropic chemical shift (CSA) for the title compound are summarized in Table 3. Of carbon atoms, the C10and C16atoms have the lowest CSIvalue, so they are deshielded more (CSIvalue = 6.172 ppm and CSIvalue = 11.487 ppm, respec- tively) than the other carbons atoms due to their direct connect to O15atom. While the C12and C13atoms are shielded more (CSIvalue = 157.160 ppm and CSAvalue = 156.795 ppm) than the other carbon atoms. The Cl25atom has the highest CSI(677.527 ppm) and CSA(507.547 ppm) values. Therefore, it is shielded more than the other atoms.

    Table 4. Natural Charge (NBO Charges, e) and NMR Parameters (ppm) Such as Chemical Shift Isotropic (CSI) and Chemical Shift Anisotropic (CSA) for Compound 5 Using the B3LYP/6-311+G* Method (Atom Numbering is According to Fig. 2)

    4. 5 NBO analysis

    Natural bond orbital (NBO) analysis is an important method for studying intra- and intermo- lecular bonding and interaction between bonds[45]. The results of NBO analysis such as the occupation numbers with their energies for the interacting NBOs (interaction between natural bond orbital A and natural bond orbital B (A-B)) and the polariza- tion coefficient amounts of atoms for structure 5 are presented using the B3LYP/6-311+G* level is summarized in Table 5 (Atoms labeling is according to Fig. 2). The size of polarization coefficients shows the importance of two hybrids in the formation of bond. In structure 5, the calculated bonding orbital for O15–C16is BD(1) = 0.83062.28+ 0.55693.080.01with high occupancy 1.98862 a.u. and low energy –0.93176 a.u.. The polarization coefficients of O15= 0.8306 and C16= 0.5569 show importance of O15in forming the O15–C16bond rather than the C6atom. Also the high polarization coefficient of O15atom instead of C16suggests the O15atom is more electron-rich (–0.494 e) than the C16atom (0.488 e). The calculated bonding orbital for the C9–C10bond is the BD(1) = 0.69903.09+ 0.71521.42with high occupancy 1.96814 a.u. and energy –0.67046 a.u.. The polarization coefficients of C9= 0.6990 and C10= 0.7152 show importance of C10in forming the C9–C10bond instead of the C9atom. According to the calculated bonding orbital for the C7–N8, C10–N18, C16–N17and N8–C9bonds, the polarization coefficient of Na toms is greater than the C atoms, which shows the importance of N atoms in forming C7–N8, C10–N18, C16–N17and N8–C9bonds rather than C atoms. The bonding orbitals of C10–N18and C16–N17bonds have high occupancy (1.99169 and 1.99135 a.u., respectively) and the low energy (–0.91008 and –0.90137 a.u., respectively), while the occupancy of bonding orbital of C7–N8and N8–C9bonds is 1.98344 and 1.97717 a.u. with energies of –0.71288 and –0.73149 a.u., respectively. In the other hand, the C–N bonds in oxadiazole ring have high occupancy and low energy than C–N bonds in the amine group.

    Table 5. Calculated Natural Bond Orbitals (NBO) and the Polarization Coefficient for Each Hybrid in Selected Bonds of Compound 5 Using the B3LYP/6-311+G* Level (Atoms Numbering is According to Fig. 1)

    aA–B is the bond between atoms A and B (A: natural bond orbital and the polarization coefficient of atom; A–B: natural bond orbital and the polarization coefficient of atom B)

    Electron donor orbital, acceptor orbital and the interacting stabilization energy resulting from the second-order micro disturbance theory[45]are repor- ted in Table 6. The electron delocalization from filled NBOs (donors) to the empty NBOs (acceptors) describes a conjugative electron transfer process between them[46]. For each donor () and acceptor (), the stabilization energy(2)associated with the delocalization→is estimated. The resonance energy ((2)) detected the quantity of participation of electrons in the resonance between atoms[46]. According to Table 9, the BD(2)C10–N18orbital par- ticipates as donor and the anti-bonding BD*(1)N8– C9, BD*(2)C9–C11and BD*(2)C16–N17orbitals as acceptor, and their resonance energies (E(2)) are 3.05, 1.95 and 10.47 kcal/mol, respectively. These values indicate large charge transfer from the BD(2)C10– N18to the anti-bonding orbital of BD*(2)C16–N17(BD(2)C10–N18→BD*(2)C16–N17). Also the reso- nance energies ((2)) for BD(2)C16–N17→ BD*(2)C10–N18and BD(2)C16–N17→BD*(2)C19– C20are 10.30 and 8.73 kcal/mol, respectively, showing large charge transfer from the BD(2)C16– N17to the anti-bonding orbital of BD*(2)C10–N18. From the NBO analysis results, the LP(1)N8orbital participates as donor and the anti-bonding BD*(1)C2–C7, BD*(1)C9–C10, BD*(1)C9–C11and BD*(1)C9–C15orbitals as acceptor and their resonance energies ((2)) are 0.73, 8.97, 0.64 and 1.15 kcal/mol, respectively. These values indicate large charge transfer from the LP(1)N8to anti- bonding orbital of BD*(1)C9–C10(LP(1)N8→ BD*(1)C9–C10). The LP(1)Cl25and LP(2)Cl25orbital participates as donor and the anti-bonding BD*(1)C23-C24orbital as acceptor and their resona- nce energies ((2)) are 1.57 and 4.15 kcal/mol, respectively. Therefore, charge transfer from the LP(2)Cl25to the anti-bonding orbital of BD*(1)C23– C24(LP(1)Cl15→BD*(1)C23–C24) is more than the LP(1)Cl15→BD*(1)C23–C24. While charge transfer in LP(3)Cl15→BD*(2)C23–C24has more resonance energy ((2)= 12.50 kcal/mol) than LP(1)Cl15→ BD*(1)C23–C24and LP(2)Cl15→BD*(1)C23–C24.

    Table 6. Significant Donor–acceptor Interactions and the Second Order Perturbation Energies of Compound 5 Calculated Using the B3LYP/6-311+G* Level (Atoms Numbering is According to Fig. 2)

    a(2)means energy of hyperconjucative interactions.bEnergy difference between donor and acceptorandNBO orbitals.c(,) is the Fock matrix element betweenandNBO orbitals.

    5 CONCLUSION

    In summary, we believe that the reported method offers a mild, simple, and efficient route for the preparation of fully substituted 1,3,4-oxadiazol of type 5. Ease work-up, high yield and fairly mild reaction conditions make it a useful addition to modern synthetic methodologies. Other aspects of this synthetic process are under investigation. In the present study, also the electronic properties and geometric parameters of compound 5 have been analyzed using the DFT calculations (B3LYP/6- 311+G*). The theoretical results and the experi- mental data have been found to support each other. The FMO analysis suggests that charge transfer is taking place within molecule 5 and the HOMO orbital is localized mainly on chlorinated ring and the Cl atom,whereas the LUMO orbital resides on the oxadiazole ring and chlorinated ring. According to the MEP map, negative region of compound is mainly focused on both N atoms of 1,3,4-oxadiazole ring and phenyl ring, whereas the lowest electron density is observed for amine hydrogen atom, so it is a suitable site for nucleophilic activity.

    (1) Zhu, J.; Bienayme, H. Eds. Wiley. Weinheim 2005.

    (2) Domling, A. Recent developments in isocyanide based multicomponent reactions in applied chemistry.. 2006, 106, 17–89.

    (3) Yavari, I.; Mirzaei, A.; Hossaini, Z.; Souri, S. Diastereoselective synthesis of fused [1,3]oxazines from ethyl pyruvate, activated acetylenes and N-heterocycles.. 2010, 14, 343–347.

    (4) Ramazani, A.; Zeinali Nasrabadi, F.; Karimi, Z.; Rouhani, M. Preparation of fully substituted 1,3,4-oxadiazole derivatives from N-isocyaniminotriphenylphosphorane, (E)-cinnamic acids, chloroacetone and primary amines.. 2011, 32, 2700–2704.

    (5) Ugi, I.; Werner, B.; D?mling, A. The chemistry of isocyanides, their multicomponent reactions and their libraries.2003, 8, 53–66.

    (6) Yavari, I.; Hossaini, Z.; Sabbaghan, M. Synthesis of functionalized 5-imino-2,5-dihydro-furans through the reaction of isocyanides with activated acetylenes in the presence of ethyl bromopyruvate.. 2006, 10, 479–482.

    (7) Zeinali Nasrabadi, F.; Ramazani, A.; Ahmadi, Y. Synthesis of sterically congested 1,3,4-oxadiazole derivatives from aromatic carboxylic acids, N,N-dicyclohexylcarbodiimide and (N-isocyanimino)triphenylphosphorane.. 2011, 15, 791–798.

    (8) Holla, B. S.; Gonsalves, R.; Shenoy, S. Synthesis and antibacterial studies of a new series of 1,2-bis(1,3,4-oxadiazol-2-yl)ethanes and 1,2-bis(4-amino-1,2,4-triazol-3-yl)ethanes.2000, 35, 267–271.

    (9) Baxendale, I. R.; Ley, S. V.; Martinelli, M. The rapid preparation of 2-aminosulfonamide-1,3,4-oxadiazoles using polymer-supported reagents and microwave heating.2005, 61, 5323–5349.

    (10) El-Sayed, W. A.; El-Essawy, F. A.; Ali, O. M.; Nasr, B. S.; Abdalla, M. M.; Abdel-Rahman, A. A. H. Synthesis and antiviral evaluation of new 2,5-disubstituted 1,3,4-oxadiazole derivatives and their acyclic nucleoside analogues.. 2010, 141, 1021–1028.

    (11) Wang, Y.; Sauer, D. R.; Djuric, S. W. A simple and efficient one step synthesis of 1,3,4-oxadiazoles utilizing polymer-supported reagents and microwave heating.. 2006, 47, 105–108.

    (12) Palacios, F.; Aparicio, D.; Rubiales, G.; Alonso, C.; de los Santos, J. M. Synthetic applications of intramolecular aza-wittig reaction for the preparation of heterocyclic compounds.. 2009, 13, 810–828.

    (13) Stolzenberg, H.; Weinberger, B.; Fehlhammer, W. P.; Pühlhofer, F. G.; Weiss, R. Free and metal-coordinated (N-isocyanimino)triphenylphosphorane: X-ray structures and selected reactions.. 2005, 21, 4263–4271.

    (14) (a) Ramazani, A.; Bodaghi, A. One-pot, four-component synthesis of dialkyl [indane-1,3-dione-2-ylidene]alkoxysuccinates.. 2000, 41, 567–568. (b) Aghahosseini, H.; Ramazani, A.; ?lepokura, K.; Lis, T. Synthesis and X-ray single crystal structure analysis of a new 2-chlorobenzyl ammonium salt of phosphonic acid.2017, 192, 638–642. (c) Ramazani, A.; Shajari, N.; Gouranlou, F. A facile synthetic approach to dimethyl-2-arylamino-3-(triphenylphosphoranylidene) succinates from electron-poor primary arylamins.2001, 174, 223–227.

    (15) Ramazani, A.; Rahimifard, M.; Souldozi, A. Silica-gel catalyzed stereoselective conversion of stabilized phosphorus ylides to dialkyl (Z)-2-(2-methoxycarbonyl-phenoxy)-2-butenedioates in solvent-free conditions.. 2007, 182, 1–5.

    (16) (a) Taran, J.; Ramazani, A.; Aghahosseini, H.; Gouranlou, F.; Tarasi, R.; Khoobi, M.; Joo, S. W. One-pot three-component syntheses of-aminophosphonates from a primary amine, quinoline-4-carbaldehyde and a phosphite in the presence of MCM-41@PEI as an efficient nanocatalyst.. 2017, 192, 776-781. (b) Ramazani, A.; Amini, I.; Massoudi, A. Dipotassium hydrogen phosphate powder-catalyzed stereoselective synthesis of N-vinyl pyrazoles in solvent-free conditions.2006, 181, 2225–2229.

    (17) Sheikhi, M.; Sheikh, D.; Ramazani, A. Three-component synthesis of electron-poor alkenes using isatin derivatives, acetylenic esters, triphenylphosphine and theoretical study.. 2014, 67, 151–159.

    (18) Shoaei, S. M.; Kazemizadeh, A. R.; Ramazani, A. Synthesis and infrared spectra computation of sterically congested 2,2 disubstituted indane-1,3-dione derivatives.. 2011, 30, 568–574.

    (19) Shahab, S.; Filippovich, L.; Almodarresiyeh, H. A.; Sheikhi, M.; Kumar, R. Thermostable broad band polarizing PVA-film: theoretical and experimental investigations.2018, 2, 186–197.

    (20) Wang, H.; Liu, H.; Bai, F. Q.; Qu, S.; Jia, X.; Ran, X.; Chen, F.; Bai, B.; Zhao, C.; Liu, Z.; Zhang, H. X.; Li, M. Theoretical and experimental study on intramolecular charge-transfer in symmetric bi-1,3,4-oxadiazole derivatives.. 2015, 312, 20–27.

    (21) Ge, Q.; Jia, J.; Wang, T.; Sun, H. W.; Duan, G. Y.; Wang, J. W. The synthesis, characterization and optical properties of novel 5-(3-aryl-1H-pyrazol-5-yl)-2-(3-butyl-1-chloroimidazo [1, 5-a] pyridin-7-yl)-1,3,4-oxadiazole.. 2014, 123, 336–341.

    (22) Srinivasa, K.; Sivakumara, G.; Kumara, C. R.; Reddya, M. A.; Bhanuprakasha, K.; Raob,V. J.; Chenc, C. W.; Hsuc, Y. C.; Linc, J. T. Novel 1,3,4-oxadiazole derivatives as efficient sensitizers for dye-sensitized solar cells: a combined experimental and computational study.2011, 161, 1671–1681.

    (23) Chahkandi, B.; Tayyari, S. F.; Bakhshaeia, M.; Chahkandi, M. Investigation of simple and water assisted tautomerism in a derivative of 1,3,4-oxadiazole: a DFT study.. 2013, 44, 120–128

    (24) CrysAlisCCD and CrysAlisREDin KM4-CCD Software; Oxford Diffraction Ltd.: Abingdon, England 2009.

    (25) Sheldrick, G. M. A short history of SHELX.2008, 64, 112–122.

    (26) Brandenburg, K. DIAMOND. Crystal Impact GbR: Bonn, Germany 2005.

    (27) Kohn, W.; Becke, A. D.; Parr, R. G.Density functional theory of electronic structure.. 1996, 100, 12974–12980.

    (28) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R.E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, ?.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian, Inc., Wallingford CT 2009.

    (29) Frisch, A.; Nielson, A. B.; Holder, A. J.., Pittsburgh, PA 2000.

    (30) Monajjemi, M.; Sheikhi, M.; Mahmodi Hashemi, M.; Molaamin, F.; Zhiani, R. NMR and NBO calculation of benzimidazoles and pyrimidines: nano physical parameters investigation... 2012, 7, 2010–2031.

    (31) Yahyaei, H.; Kazamizadeh, A. R.; Ramazani, A. Synthesis and chemical shifts calculation of-acyloxycarboxamides derived from indane-1,2,3-trione by DFT and HF methods.2012, 31, 1346–1356.

    (32) Shahab, S.; Sheikhi, M.; Filippovich, L.; Dikusar Anatol’evich, E.; Yahyaei, H. Quantum chemical modeling of new derivatives of (E,E)-azomethines: synthesis, spectroscopic (FT-IR, UV/Vis, polarization) and thermophysical investigations.. 2017, 1137, 335–348.

    (33) (a) Ramazani, A.; Tofangchi Mahyari, A.; Rouhani, M.; Rezaei, A. A novel three-component reaction of a secondary amine and a 2-hydroxybenzaldehyde derivative with an isocyanide in the presence of silica gel: an efficient one-pot synthesis of benzo[b]furan derivatives.. 2009, 50, 5625–5627. (b) Ramazani, A.; Ahmadi, Y.; Tarasi, R. Efficient one-pot synthesis of disubstituted 1,3,4-oxadiazole derivatives from the reaction of (N-isocyanimino)triphenylphosphorane, acetaldehyde, a secondary amine, and an electron-poor (E)-cinnamic acid.2011, 22, 79–84.

    (34) (a) Souldozi, A.; Ramazani, A.; Bouslimani, N.; Welter, R. The reaction of (N-isocyanimino) triphenylphosphorane with dialkyl acetylenedicarboxylates in the presence of 1,3-diphenyl-1,3-propanedione: a novel three-component reaction for the stereoselective synthesis of dialkyl (Z)-2-(5,7-diphenyl-1,3,4-oxadiazepin-2-yl)-2-butenedioates.2007, 48, 2617–2620. (b) Souldozi, A.; Ramazani, A. The reaction of (N-isocyanimino)triphenylphosphorane with benzoic acid derivatives: a novel synthesis of 2-aryl-1,3,4-oxadiazole derivatives.2007, 48, 1549–1551.

    (35) (a) Souldozi, A.; Ramazani, A. Iminophosphorane-mediated one-pot synthesis of 1,3,4-oxadiazole derivatives.2008, 235–242. (b) Souldozi, A.; ?lepokura, K.; Lis, T.; Ramazani, A. Synthesis and single crystal X-ray Structure of 2-(1,3,4-oxadiazol-2-yl)aniline.. 2007, 62b, 835–840.

    (36) (a) Ramazani, A.; Rezaei, A. Novel one-pot, four-component condensation reaction: an efficient approach for the synthesis of 2,5-disubstituted 1,3,4-oxadiazole derivatives by a Ugi-4CR/aza-wittig sequence.. 2010, 12, 2852–2855. (b) Ramazani, A.; Ahmadi, Y.; Rouhani, M.; Shajari, N.; Souldozi, A. The reaction of (N-isocyanimino) triphenylphosphorane with an electron-poor α-haloketone in the presence of aromatic carboxylic acids: a novel three-component reaction for the synthesis of disubstituted 1,3,4-oxadiazole derivatives.2010, 21, 368–372.

    (37) Allen, F. H.; Watson, D. G.; Brammer, L.; G Orpen, A.; Taylor, R. Typical Interatomic Distances: Organic Compounds, in “International Tables for Crystallohraphy, Vol. C, 3rd edition (Chapter 9.5), ed. E. Prince, Kluwer Academic Publishers, Dordrecht/Boston/London 2004.

    (38) Cremer, D.; Pople, J. A.General definition of ring puckering coordinates.. 1975, 97, 1354–1358.

    (39) Rao, S. T.; Westhof, E.; Sundaralingam, M. Pseudorotation parameters P and Tau(M).. 1981, A37, 421–425.

    (40) Spek, A. L. Structure validation in chemical crystallography.. 2009, D65, 148–155.

    (41) Tanak, H. Crystal structure, spectroscopy, and quantum chemical studies of (E)-2-[(2-chlorophenyl)iminomethyl]-4-trifluoromethoxyphenol..2011, 115, 13865–13876.

    (42) Sheikhi, M.; Sheikh, D. Quantum chemical investigations on phenyl-7,8- dihydro-[1,3] -dioxolo[4,5-g] quinolin-6(5h)-one,. 2014, 159, 761–767.

    (43) Vipin Das, K. G.; YohannanPanicker, C.; Narayana, B.; Nayak, P. S.; Sarojini, B. K.; Al-Saadi, A. A. FT-IR, molecular structure, first order hyperpolarizability, NBO analysis, HOMO and LUMO and MEP analysis of 1-(10H-phenothiazin-2-yl)ethanone by HF and density functional methods.. 2015, 135, 162–171.

    (44) Habibi, D.; Faraji, A. R.; Sheikh, D.; Sheikhi, M.; Abedi, S. Application of supported Mn(III), Fe(III) and Co(II) as heterogeneous, selective and highly reusable nano catalysts for synthesis of arylaminotetrazoles, and DFT studies of the products.2014, 4, 47625–47636.

    (45) Weinhold, F.; Landis, C. R. Natural bond orbitals and extensions of localizedbonding concepts.2001, 2, 91–104.

    (46) Guidara, S.; Ahmed, A. B.; Abid, Y.; Feki, H. Molecular structure, vibrational spectra and nonlinear optical properties of 2,5-dimethylanilinium chloride monohydrate: a density functional theory approach.2014, 127, 275–285.

    12 May 2017;

    26 February 2018 (CCDC 1422045)

    ① This project was supported by the University of Zanjan, the grant NRF-2015-002423 of the National Research Foundation of Korea

    E-mails: aliramazani@gmail.com, aliramazani@znu.ac.ir, y_hanifehpour@yu.ac.kr, swjoo1@gmail.com and swjoo@yu.ac.kr

    10.14102/j.cnki.0254-5861.2011-1720

    99热只有精品国产| 女警被强在线播放| 亚洲第一电影网av| 欧美精品亚洲一区二区| 国产高清激情床上av| 国产精品日韩av在线免费观看| 啪啪无遮挡十八禁网站| 免费在线观看黄色视频的| 两个人看的免费小视频| 亚洲五月色婷婷综合| 色在线成人网| а√天堂www在线а√下载| 亚洲aⅴ乱码一区二区在线播放 | 国产精品免费视频内射| 中文在线观看免费www的网站 | 久久久久国产一级毛片高清牌| av福利片在线| 成年免费大片在线观看| 99久久久亚洲精品蜜臀av| 久久精品91蜜桃| 中文字幕久久专区| 一级毛片精品| 成人精品一区二区免费| 日日爽夜夜爽网站| 欧美日韩亚洲国产一区二区在线观看| 欧美人与性动交α欧美精品济南到| 久久精品91无色码中文字幕| 这个男人来自地球电影免费观看| 高清毛片免费观看视频网站| 国产精品美女特级片免费视频播放器 | 在线观看66精品国产| 可以在线观看毛片的网站| АⅤ资源中文在线天堂| 亚洲精品色激情综合| 一夜夜www| e午夜精品久久久久久久| 国产精品电影一区二区三区| 999精品在线视频| 精品国产美女av久久久久小说| 免费观看人在逋| 99久久精品国产亚洲精品| 成人精品一区二区免费| 97碰自拍视频| 黑丝袜美女国产一区| 无人区码免费观看不卡| 91九色精品人成在线观看| 精品电影一区二区在线| 成在线人永久免费视频| 少妇的丰满在线观看| 欧美 亚洲 国产 日韩一| 2021天堂中文幕一二区在线观 | 国产又黄又爽又无遮挡在线| 精品国产亚洲在线| 女生性感内裤真人,穿戴方法视频| 欧美成狂野欧美在线观看| 成人18禁高潮啪啪吃奶动态图| 日本成人三级电影网站| 久热这里只有精品99| 午夜亚洲福利在线播放| 精品日产1卡2卡| 一本大道久久a久久精品| 91字幕亚洲| 欧美黄色片欧美黄色片| 国产色视频综合| 中文在线观看免费www的网站 | 每晚都被弄得嗷嗷叫到高潮| 欧美又色又爽又黄视频| 欧美久久黑人一区二区| 亚洲精品美女久久久久99蜜臀| 草草在线视频免费看| 国产高清视频在线播放一区| 手机成人av网站| 黄色a级毛片大全视频| 精品久久久久久久人妻蜜臀av| 色综合欧美亚洲国产小说| 老司机午夜福利在线观看视频| 免费在线观看成人毛片| 国产精华一区二区三区| 亚洲国产精品成人综合色| 日韩视频一区二区在线观看| 嫩草影院精品99| 免费搜索国产男女视频| 欧美乱妇无乱码| 三级毛片av免费| 久久这里只有精品19| 欧美乱妇无乱码| 国产精华一区二区三区| 国产成人av教育| 成人18禁在线播放| 人人澡人人妻人| 啦啦啦韩国在线观看视频| 亚洲专区字幕在线| 国产一级毛片七仙女欲春2 | 99精品久久久久人妻精品| 成人一区二区视频在线观看| 亚洲 国产 在线| 亚洲无线在线观看| 成人国语在线视频| 一级黄色大片毛片| 天堂动漫精品| 成年女人毛片免费观看观看9| 搞女人的毛片| 在线观看一区二区三区| 高清毛片免费观看视频网站| 怎么达到女性高潮| 波多野结衣av一区二区av| а√天堂www在线а√下载| 国产精品久久电影中文字幕| 久久香蕉精品热| 岛国视频午夜一区免费看| 午夜精品久久久久久毛片777| 久久国产亚洲av麻豆专区| 国产av在哪里看| 国产精品自产拍在线观看55亚洲| 中出人妻视频一区二区| 天天一区二区日本电影三级| 国产私拍福利视频在线观看| 非洲黑人性xxxx精品又粗又长| 中文字幕高清在线视频| 国产不卡一卡二| 久久天躁狠狠躁夜夜2o2o| 午夜福利成人在线免费观看| 国产一区二区三区视频了| 亚洲精品美女久久av网站| 99久久国产精品久久久| 色老头精品视频在线观看| 两个人免费观看高清视频| 日韩高清综合在线| 在线国产一区二区在线| 国产欧美日韩一区二区三| 两性夫妻黄色片| 国产精品香港三级国产av潘金莲| 精品久久久久久久末码| 免费一级毛片在线播放高清视频| 精品人妻1区二区| 一夜夜www| 正在播放国产对白刺激| 久久久久久免费高清国产稀缺| 日韩欧美三级三区| 亚洲欧美一区二区三区黑人| 婷婷精品国产亚洲av| 不卡一级毛片| 日韩精品免费视频一区二区三区| 国产私拍福利视频在线观看| 哪里可以看免费的av片| 久久精品影院6| 免费观看人在逋| 午夜免费激情av| 久久香蕉激情| 国产国语露脸激情在线看| 日本三级黄在线观看| 久久久久国产一级毛片高清牌| 亚洲国产精品久久男人天堂| 中文资源天堂在线| 每晚都被弄得嗷嗷叫到高潮| 久久久久久久久久黄片| 亚洲欧美一区二区三区黑人| 亚洲一区高清亚洲精品| 亚洲av中文字字幕乱码综合 | cao死你这个sao货| 国产精品美女特级片免费视频播放器 | 婷婷亚洲欧美| 老司机靠b影院| 色在线成人网| 亚洲久久久国产精品| av在线天堂中文字幕| tocl精华| 亚洲天堂国产精品一区在线| 老司机深夜福利视频在线观看| 97碰自拍视频| 精品久久久久久久毛片微露脸| 国产真实乱freesex| 正在播放国产对白刺激| 国产激情偷乱视频一区二区| 成人欧美大片| www日本在线高清视频| 一区二区三区激情视频| 黄色 视频免费看| www日本黄色视频网| 听说在线观看完整版免费高清| av福利片在线| 啦啦啦观看免费观看视频高清| 欧美亚洲日本最大视频资源| 亚洲中文av在线| 国产区一区二久久| 999精品在线视频| 欧美日韩乱码在线| 国产精品 欧美亚洲| 亚洲国产高清在线一区二区三 | 国产精华一区二区三区| 婷婷亚洲欧美| 99国产综合亚洲精品| 可以免费在线观看a视频的电影网站| 一边摸一边做爽爽视频免费| 狠狠狠狠99中文字幕| 久久人妻av系列| 亚洲真实伦在线观看| а√天堂www在线а√下载| 欧美色欧美亚洲另类二区| 国产v大片淫在线免费观看| 国产精品一区二区免费欧美| 999久久久精品免费观看国产| 黄色视频不卡| 麻豆成人午夜福利视频| av电影中文网址| 日韩 欧美 亚洲 中文字幕| 久久天躁狠狠躁夜夜2o2o| 我的亚洲天堂| 亚洲 国产 在线| 黄色视频不卡| av片东京热男人的天堂| 一级毛片精品| 妹子高潮喷水视频| 国产一卡二卡三卡精品| 在线观看免费日韩欧美大片| 最新美女视频免费是黄的| 91九色精品人成在线观看| 日韩欧美国产一区二区入口| 在线永久观看黄色视频| 欧美日韩亚洲综合一区二区三区_| 午夜老司机福利片| 一本大道久久a久久精品| 午夜影院日韩av| 国产亚洲精品久久久久5区| 国产久久久一区二区三区| 亚洲精品一卡2卡三卡4卡5卡| 国产精品免费一区二区三区在线| 精品欧美国产一区二区三| 久久久久久久久中文| 国产三级在线视频| 亚洲一码二码三码区别大吗| 在线播放国产精品三级| 欧美精品啪啪一区二区三区| 神马国产精品三级电影在线观看 | a级毛片a级免费在线| 国产极品粉嫩免费观看在线| 国产熟女xx| 天天躁狠狠躁夜夜躁狠狠躁| 久久亚洲真实| 日本三级黄在线观看| 亚洲午夜精品一区,二区,三区| 日韩欧美三级三区| 黄色片一级片一级黄色片| 久久精品亚洲精品国产色婷小说| 男女下面进入的视频免费午夜 | 亚洲国产日韩欧美精品在线观看 | 91av网站免费观看| 91麻豆av在线| 女性被躁到高潮视频| 久久精品夜夜夜夜夜久久蜜豆 | 男女那种视频在线观看| 女性被躁到高潮视频| 国产蜜桃级精品一区二区三区| 国产色视频综合| 精品国产乱子伦一区二区三区| 午夜福利在线在线| 国产高清有码在线观看视频 | 操出白浆在线播放| 久久青草综合色| 久久欧美精品欧美久久欧美| 国产伦人伦偷精品视频| √禁漫天堂资源中文www| 国产一区二区三区视频了| a级毛片a级免费在线| 精品无人区乱码1区二区| 好看av亚洲va欧美ⅴa在| 国产精品影院久久| 国产精品,欧美在线| 高清毛片免费观看视频网站| 日本三级黄在线观看| 国产一级毛片七仙女欲春2 | 国产成人av激情在线播放| 激情在线观看视频在线高清| 97人妻精品一区二区三区麻豆 | 午夜激情福利司机影院| 日本一本二区三区精品| 久久久久久免费高清国产稀缺| 香蕉av资源在线| 久久精品成人免费网站| 色av中文字幕| 欧美 亚洲 国产 日韩一| 巨乳人妻的诱惑在线观看| 天天添夜夜摸| 人人妻人人澡人人看| 一本大道久久a久久精品| 日韩欧美一区二区三区在线观看| 久99久视频精品免费| 99国产精品一区二区三区| 久久精品国产清高在天天线| 99riav亚洲国产免费| 欧美久久黑人一区二区| 亚洲一区二区三区色噜噜| 99在线人妻在线中文字幕| 非洲黑人性xxxx精品又粗又长| 婷婷亚洲欧美| 美女高潮到喷水免费观看| 精品无人区乱码1区二区| 老熟妇乱子伦视频在线观看| 97人妻精品一区二区三区麻豆 | 亚洲人成网站高清观看| 999精品在线视频| 18禁美女被吸乳视频| www.熟女人妻精品国产| 日韩欧美国产一区二区入口| 午夜亚洲福利在线播放| 国产高清videossex| 好男人电影高清在线观看| 久久精品国产亚洲av高清一级| 亚洲国产精品久久男人天堂| 一区二区三区高清视频在线| 成人午夜高清在线视频 | 黄片小视频在线播放| 一区二区三区精品91| 黄色毛片三级朝国网站| 最好的美女福利视频网| 欧美成人性av电影在线观看| 亚洲在线自拍视频| 精华霜和精华液先用哪个| 成年人黄色毛片网站| 亚洲欧美日韩高清在线视频| 亚洲真实伦在线观看| 老鸭窝网址在线观看| 91大片在线观看| 国产精品影院久久| 一个人观看的视频www高清免费观看 | 亚洲午夜理论影院| 日韩欧美一区视频在线观看| 丝袜人妻中文字幕| 精品久久久久久久人妻蜜臀av| 伊人久久大香线蕉亚洲五| 久久久久久久午夜电影| 99热6这里只有精品| 女人爽到高潮嗷嗷叫在线视频| 亚洲国产精品sss在线观看| 国产一区二区在线av高清观看| 色综合欧美亚洲国产小说| 亚洲欧美精品综合一区二区三区| 国产精品九九99| 一本久久中文字幕| 欧美最黄视频在线播放免费| 熟女电影av网| 色综合站精品国产| 久久精品国产99精品国产亚洲性色| 精品少妇一区二区三区视频日本电影| 天堂√8在线中文| 可以免费在线观看a视频的电影网站| 麻豆久久精品国产亚洲av| 亚洲精品中文字幕一二三四区| 黑人欧美特级aaaaaa片| 少妇粗大呻吟视频| 亚洲七黄色美女视频| 日本三级黄在线观看| 老司机在亚洲福利影院| 淫秽高清视频在线观看| 亚洲第一电影网av| 欧美+亚洲+日韩+国产| or卡值多少钱| 亚洲国产精品久久男人天堂| 999久久久精品免费观看国产| 成人免费观看视频高清| 亚洲国产中文字幕在线视频| 18禁观看日本| 在线观看午夜福利视频| 国产又黄又爽又无遮挡在线| 婷婷精品国产亚洲av在线| 亚洲国产欧洲综合997久久, | 可以在线观看毛片的网站| avwww免费| 精品熟女少妇八av免费久了| 在线十欧美十亚洲十日本专区| 国产av不卡久久| 日本撒尿小便嘘嘘汇集6| 欧美不卡视频在线免费观看 | 亚洲国产欧洲综合997久久, | 成人三级黄色视频| 欧美成狂野欧美在线观看| 人人妻人人看人人澡| 国产高清激情床上av| 99久久精品国产亚洲精品| 免费在线观看影片大全网站| 欧美性猛交╳xxx乱大交人| 久久人妻av系列| 亚洲国产看品久久| 免费观看精品视频网站| 怎么达到女性高潮| 欧美+亚洲+日韩+国产| 亚洲av熟女| 欧美中文综合在线视频| 黄色 视频免费看| 天天添夜夜摸| 99热这里只有精品一区 | 精品国产乱码久久久久久男人| 精品久久久久久久久久免费视频| 久久国产乱子伦精品免费另类| 大香蕉久久成人网| 亚洲一区二区三区不卡视频| 免费在线观看完整版高清| 色综合欧美亚洲国产小说| 久久人人精品亚洲av| 国产区一区二久久| av在线播放免费不卡| 亚洲avbb在线观看| 少妇被粗大的猛进出69影院| 两个人看的免费小视频| 哪里可以看免费的av片| 久久精品国产综合久久久| 少妇裸体淫交视频免费看高清 | 亚洲精品在线美女| 一级作爱视频免费观看| 亚洲精品一区av在线观看| 久久久国产成人精品二区| 精品国产一区二区三区四区第35| 色尼玛亚洲综合影院| 久久中文看片网| 欧美久久黑人一区二区| 亚洲av日韩精品久久久久久密| 久久久久久久久中文| 亚洲狠狠婷婷综合久久图片| 无限看片的www在线观看| 长腿黑丝高跟| 国产精品 欧美亚洲| 亚洲国产精品sss在线观看| 免费高清视频大片| 最近最新中文字幕大全免费视频| 亚洲av中文字字幕乱码综合 | 欧美成人免费av一区二区三区| 999久久久国产精品视频| 成在线人永久免费视频| 女性生殖器流出的白浆| 精品日产1卡2卡| 黄网站色视频无遮挡免费观看| 亚洲九九香蕉| 50天的宝宝边吃奶边哭怎么回事| 久久精品人妻少妇| 老鸭窝网址在线观看| 国产激情偷乱视频一区二区| 无遮挡黄片免费观看| a级毛片在线看网站| 看黄色毛片网站| 美女高潮喷水抽搐中文字幕| 免费在线观看成人毛片| 久热爱精品视频在线9| 国产黄a三级三级三级人| 好男人在线观看高清免费视频 | 久久精品人妻少妇| 亚洲成av人片免费观看| 亚洲国产精品合色在线| 美女高潮到喷水免费观看| 日韩欧美国产在线观看| 午夜免费成人在线视频| 两性夫妻黄色片| 色老头精品视频在线观看| 国产精品爽爽va在线观看网站 | 日本免费一区二区三区高清不卡| cao死你这个sao货| 黄片播放在线免费| 久久久国产精品麻豆| 日日摸夜夜添夜夜添小说| 日韩欧美国产一区二区入口| 久久久国产欧美日韩av| 一边摸一边抽搐一进一小说| 欧美乱色亚洲激情| 国产黄a三级三级三级人| 国产精品 欧美亚洲| 女人高潮潮喷娇喘18禁视频| 日韩有码中文字幕| 熟女电影av网| 69av精品久久久久久| netflix在线观看网站| 亚洲av美国av| 色尼玛亚洲综合影院| www日本黄色视频网| 国产97色在线日韩免费| 亚洲全国av大片| 可以免费在线观看a视频的电影网站| 国产蜜桃级精品一区二区三区| 黑人欧美特级aaaaaa片| 精品久久久久久久毛片微露脸| 日韩精品中文字幕看吧| 最近在线观看免费完整版| 神马国产精品三级电影在线观看 | 成人一区二区视频在线观看| 性色av乱码一区二区三区2| 黑人巨大精品欧美一区二区mp4| 精品熟女少妇八av免费久了| www日本黄色视频网| 国产在线精品亚洲第一网站| 精品久久久久久久毛片微露脸| 激情在线观看视频在线高清| 久9热在线精品视频| 日韩成人在线观看一区二区三区| 级片在线观看| 天天添夜夜摸| 日本成人三级电影网站| 很黄的视频免费| 欧美黑人精品巨大| 中文字幕久久专区| 亚洲精品中文字幕一二三四区| 一区二区三区激情视频| 国产97色在线日韩免费| 欧美激情 高清一区二区三区| 看片在线看免费视频| 国产成人精品无人区| 身体一侧抽搐| 国产v大片淫在线免费观看| 岛国视频午夜一区免费看| 91九色精品人成在线观看| 视频在线观看一区二区三区| 国产精品影院久久| 亚洲欧洲精品一区二区精品久久久| 琪琪午夜伦伦电影理论片6080| 亚洲国产精品合色在线| 久9热在线精品视频| 18禁黄网站禁片免费观看直播| 欧美大码av| 国产精品精品国产色婷婷| av免费在线观看网站| 国产国语露脸激情在线看| 久久精品夜夜夜夜夜久久蜜豆 | 欧美 亚洲 国产 日韩一| 国产精华一区二区三区| 色在线成人网| 淫妇啪啪啪对白视频| 午夜亚洲福利在线播放| 动漫黄色视频在线观看| 可以免费在线观看a视频的电影网站| 欧美黄色片欧美黄色片| 91九色精品人成在线观看| 99riav亚洲国产免费| 国产男靠女视频免费网站| 亚洲天堂国产精品一区在线| 国产精品av久久久久免费| 亚洲熟女毛片儿| 精品一区二区三区四区五区乱码| 一进一出好大好爽视频| 中文资源天堂在线| 99riav亚洲国产免费| 最好的美女福利视频网| xxx96com| 日本a在线网址| 12—13女人毛片做爰片一| 成熟少妇高潮喷水视频| 国产三级黄色录像| 国产精品1区2区在线观看.| 亚洲人成电影免费在线| 人人妻人人澡欧美一区二区| 亚洲第一欧美日韩一区二区三区| 亚洲av五月六月丁香网| 久久婷婷人人爽人人干人人爱| 国产成人欧美在线观看| 波多野结衣av一区二区av| 成人国语在线视频| 香蕉av资源在线| 中文字幕最新亚洲高清| 久久国产精品男人的天堂亚洲| 免费看日本二区| 波多野结衣av一区二区av| 亚洲成a人片在线一区二区| 欧美+亚洲+日韩+国产| 国产真实乱freesex| 一边摸一边做爽爽视频免费| 一边摸一边抽搐一进一小说| 国产视频一区二区在线看| 久久久久国内视频| 在线观看免费视频日本深夜| 欧美成人一区二区免费高清观看 | 给我免费播放毛片高清在线观看| 成人av一区二区三区在线看| 久久草成人影院| 19禁男女啪啪无遮挡网站| 欧美不卡视频在线免费观看 | 香蕉久久夜色| 国产色视频综合| 国产不卡一卡二| 人人妻人人看人人澡| 男人的好看免费观看在线视频 | 啪啪无遮挡十八禁网站| 午夜福利在线在线| 在线播放国产精品三级| 欧美日韩亚洲综合一区二区三区_| 亚洲中文字幕一区二区三区有码在线看 | 嫩草影视91久久| 国产精品久久久久久亚洲av鲁大| 三级毛片av免费| 人人妻人人澡欧美一区二区| 国产v大片淫在线免费观看| 两个人免费观看高清视频| 黄色a级毛片大全视频| 国产一区二区在线av高清观看| 搡老熟女国产l中国老女人| 免费人成视频x8x8入口观看| 亚洲三区欧美一区| bbb黄色大片| 巨乳人妻的诱惑在线观看| 正在播放国产对白刺激| 男女之事视频高清在线观看| 天天躁夜夜躁狠狠躁躁| 九色国产91popny在线| 亚洲一码二码三码区别大吗| 欧美又色又爽又黄视频| 国产亚洲欧美精品永久| 色综合站精品国产| 在线观看www视频免费| 国产精品久久电影中文字幕| 久久中文字幕人妻熟女| 午夜视频精品福利| 亚洲天堂国产精品一区在线| 日日干狠狠操夜夜爽| 久久久久久九九精品二区国产 | 看片在线看免费视频| 亚洲五月婷婷丁香| 国内揄拍国产精品人妻在线 | 亚洲国产欧洲综合997久久, | 亚洲欧美一区二区三区黑人| 国产99久久九九免费精品|