• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    OPTIMAL CONTROL OF A POPULATION DYNAMICS MODEL WITH HYSTERESIS*

    2022-03-12 10:21:58BinCHEN陳斌
    關(guān)鍵詞:陳斌

    Bin CHEN (陳斌)

    Fujian Province University Key Laboratory of Computational Science,School of Mathematical Sciences,Huaqiao University,Quanzhou 362021,China E-mail:chenbinmath@163.com

    Sergey A.TIMOSHIN?

    Fujian Province University Key Laboratory of Computational Science,School of Mathematical Sciences,Huaqiao University,Quanzhou 362021,China

    Matrosov Institute for System Dynamics and Control Theory,Russian Academy of Sciences,Lermontov str.134,664033 Irkutsk,Russia E-mail:sergey.timoshin@gmail.com

    Abstract This paper addresses a nonlinear partial differential control system arising in population dynamics.The system consist of three diffusion equations describing the evolutions of three biological species:prey,predator,and food for the prey or vegetation.The equation for the food density incorporates a hysteresis operator of generalized stop type accounting for underlying hysteresis effects occurring in the dynamical process.We study the problem of minimization of a given integral cost functional over solutions of the above system.The set-valued mapping de fining the control constraint is state-dependent and its values are nonconvex as is the cost integrand as a function of the control variable.Some relaxationtype results for the minimization problem are obtained and the existence of a nearly optimal solution is established.

    Key words optimal control problem;hysteresis;biological diffusion models;nonconvex integrands;nonconvex control constraints

    1 Introduction

    Given a final time T>0 and a bounded domain Ω?RN,N≤3,with smooth boundary?Ω,the primary concern of this paper is to consider the following optimal control problem:

    over the solution set of the dynamical control system:

    subject to the state-dependent control constraint:

    Here,Q (T):=[0,T]×Ω,κ is a given constant,σ0,v0,w0are given initial conditions,?/?n is the outward normal derivative on?Ω.The operator?Iv,w(·) is the subdifferential,in the sense of convex analysis,of the indicator function Iv,w(·) of the interval[f*(v,w),f*(v,w)],f*,f*:R2→R,q:Q (T)×R4→R,F(xiàn),h,g:R3→R,λ:R→R are prescribed functions,U:Q (T)×R3→R is a multivalued mapping with compact,but not necessarily convex values.

    We note that when w is fixed and F≡0,λ(v)=v in (1.1),inclusion (1.1) yields the differential representation of hysteresis operator of the generalized stop type (cf.[1]).During the last three decades,hysteresis operators have been extensively applied in modeling,analysis,and control of a variety of irreversible nonlinear phenomena in applied sciences including phase transitions[2-7],porous media flow [8-12],thermostat models[13-17],concrete carbonation[18-22]and many others.In the same vein,system (1.1)-(1.5)(without the control u) was introduced in[23](see also[24,25]) to model the evolution of populations in the vegetationprey-predator framework when diffusive effects in the dynamics of three species are taken into account and the food density for the prey exhibits hysteretic character.This latter means that the growth rate of the food for the prey depends not only on the current state of prey and predator populations,but it also depends on their immediately preceding density history.In[26],with the aim to achieve a possible optimization of the population dynamics process by way of controlling the food supply for the prey this uncontrolled system was subjected to a control action and the existence of solutions for the corresponding control system (1.1)-(1.6) was established.

    In our model,the unknown variables σ,v,and w represent the densities of vegetation,prey and predator,respectively,with eqs.(1.1),(1.2),and (1.3) characterizing the evolutions of the corresponding species.In this respect,the nonconvexity of values of U in the control constraint (1.6) is a biologically relevant assumption.

    Our aim in this paper is to consider along with (P) the following alternative problem:

    over solutions of (1.1)-(1.5) supplemented with the following alternative control constraint:

    and explore some properties and relationships between problems (P) and (RP).Here,(RP) stands for the relaxed problem,coU denotes the convex hull of the set U,which is the intersection of all convex sets containing U,and for the extended real-valued function qU:Q (T)×R3×R→R∪{+∞}:

    We remark that while our model has not been inspired by any particular applied problem,the results we obtain might find potential applications in analysis and control of real-world ecosystems such as spruce budworm population dynamics models.The latter describe interactions in the budworm-forest framework and include three species:boreal forest trees such as balsam fir,insect pests such as spruce budworm which feed on the foliage of trees and avian predators feeding in turn on the insects.These ecosystems are typical to Northern parts of Canada and Russia,including the lake Baikal region,where the defoliation of larches by insects and the subsequent dieback of the trees is a major problem in forest ecology.Available control actions towards preservation of forest reserve include spraying insecticides,removal of infected trees and other and affect the rate of change in the insects population.This prompted us to include the control function u into the first equation of our evolution system.On the other hand,the natural concern to avoid the total perishing of birds population caused by insufficient food supply should be reflected in optimization strategy towards minimization of forest loss.

    The outline of the paper is as follows.After introducing in the next section the notation and hypotheses on the data describing problem (P),in Section 3 we derive several continuity properties of the control-to-state solution operator associated with our control systems.These properties are instrumental in proving our main results in the last Section 4.The latter consist in establishing the existence of an optimal solution for problem (RP),the density,in an appropriate topology,of solutions of the original control system (1.1)-(1.6) among solutions of the convexi fied control system (1.1)-(1.5),(1.7),and the existence of a nearly optimal,in a suitable sense,solution for problem (P).

    At the end of Introduction,we mention that the existing literature on optimal control of systems exhibiting hysteretic character is sparse.It is worthwhile however to mention a seminal contribution of Brokate to this area (see[27,28]).Moreover,to the best of the authors’knowledge,there have been no contributions so far addressing optimal control problems for biological models with hysteresis.

    2 Preliminary Notions,Hypotheses on the Data,and Statement of the Main Results

    In this section,we fix the notation which we use throughout the paper,prove an auxiliary lemma,specify hypotheses which we posit on the data describing problem (P),give a precise meaning in which solutions to our control systems are understood and the corresponding minimization problems are treated,and state our main results.

    Let X be a Hilbert space with the inner product (·,·)X.A function φ:X→R∪{+∞}is called proper if its effective domain domφ:={x∈X;φ(x)<+∞}is nonempty.By definition,the subdifferential?φ(x),x∈X,of a proper,convex,lower semicontinuous function φ is the set

    ?φ(x)={h∈X;(h,y-x)X≤φ(y)-φ(x),?y∈X},

    and its domain is the set dom?φ:={x∈X;?φ(x)?}.It is known[29]that dom?φ?domφ.

    We say that a sequence of proper,convex,lower semicontinuous functions φn:X→R,n≥1,Mosco-converges[30]to a proper,convex,lower semicontinuous function φ:X→R,denoted,if:

    1) for any x∈X and any sequence xn∈X,n≥1,weakly converging to x we have

    2) for any x∈X there exists a sequence xn→x such that φn(xn)→φ(x).

    Denote by dX(x,A) the distance from a point x∈X to a set A?X.Then,the Hausdorffmetric on the space of closed bounded subsets of X,denoted cb (X),is the function:

    If (E,A) is a measurable space,then a multivalued mapping F:E→cb (X) is called measurable if{τ∈E;F (τ)∩C?}∈A for any closed subset C of X.A set F of measurable functions from E to X is called decomposable if for any f1,f2∈F and any E∈A we have that f1·χE+f2·χEE∈F,where χEstands for the characteristic function of the set E.

    Let Y,Z be two Banach spaces.A multivalued mapping F:Y→Z is called lower semicontinuous if for any y∈Y,z∈F (y) and any sequence yk→y,k≥1,there exists a sequence zk∈F (yk),k≥1,which converges to z.

    Given two functions f*,f*:R2→R,recall that the indicator function Iv,w(·) of the set K (v,w):=[f*(v,w),f*(v,w)]is defined as follows

    Its subdifferential has the form:

    And,for μ>0,the Yosida regularization of?Iv,w(σ) is the function

    Let H be a Hilbert space with the norm|·|H.

    Lemma 2.1Let vn→v,wn→w,σn→σ in L2(0,T;H),fn→f weakly in L2(0,T;H).In addition,assume that a set-valued function K:H×H→cb (H) has convex values and

    vi,wi∈H,i=1,2,where R>0 is a constant.If

    then

    f (t)∈?IK (v (t),w (t))(σ(t)) for a.e.t∈[0,T],

    where IK (v (t),w (t))is the indicator function of the set K (v (t),w (t))?H,t∈[0,T].

    ProofFirst,we define on L2(0,T;H) the function

    It is easy to see that IK (v,w)is the indicator function of the set

    K (v,w)={σ∈L2(0,T;H);σ(t)∈K (v (t),w (t)) a.e.on[0,T]}

    and it is proper,convex,and lower semicontinuous.Moreover,[31,Proposition 0.3.3]implies that

    and for any z∈L2(0,T;H) there exists a sequence zn→z in L2(0,T;H) such that

    So,let zn→z weakly in L2(0,T;H).In the case when=+∞,(2.3) trivially holds.Hence,without loss of generality,we can assume that=0,n≥1,which implies that zn∈K (vn,wn).Invoking the Mazur lemma from this inclusion and (2.1) we infer that

    Therefore,IK (v,w)(z)=0 and (2.3) follows.

    Take now an arbitrary z∈L2(0,T;H).When IK (v,w)(z)=+∞,(2.3) implies that (2.4) holds for any sequence zn→z in L2(0,T;H).Consequently,we assume that IK (v,w)(z)=0,i.e.z∈K (v,w).From (2.1) it follows that we can find a sequence zn→z in L2(0,T;H),zn∈K (vn,wn).In this case,=0 and (2.4) holds again.

    From (2.2) we deduce that σn∈=K (vn,wn),i.e.=0.From the Mosco-convergence established above we obtain

    Hence,σ∈domIK (v,w).Furthermore,for any z∈domIK (v,w)there exists a sequence zn∈,zn→z in L2(0,T;H) such that→IK (v,w)(z).The definition of the subdifferential together with (2.2) imply that

    Passing to the limit in this inequality we obtain

    Since z∈domIK (v,w)is arbitrary,from this inequality it follows that

    f∈?IK (v,w)(σ).

    The claim of the lemma finally follows from[31,Proposition 0.3.3]. □

    In the rest of the paper,H denotes the Hilbert space L2(Ω) endowed with the standard inner product (·,·)Hand the associated norm|·|H,and V denotes the Sobolev space H1(Ω) equipped with the norm|v|V=,where (v,w)V=(v,w)H+a (v,w),

    H2(Ω) is the Sobolev space W2,2(Ω).Consider the linear continuous operator L:V→V′defined by

    〈Lv,w〉=a (v,w),v,w∈V,

    where V′is the dual space of V and〈·,·〉is the bilinear form establishing the duality between V and V′.Let-ΔN:D (-ΔN)?H→H denote the restriction of the operator L to the set of elements v∈V such that Lv∈H.Then,D (-ΔN)=and-ΔNv=-Δv for all v∈D (-ΔN).

    Problem (P) is considered under the following hypotheses:

    Hypotheses (H)The following assumptions hold throughout the paper:

    (H1)κ>0 is a given constant,λ∈C2(R) is a given function with λ′,λ′′bounded on R;

    (H2) f*,f*∈C2(R2)∩W2,∞(R2) with 0≤f*≤f*≤1 on R2,and h (σ,0,w)=0 for σ∈[0,1],w∈R,g (σ,v,0)=0 for σ∈[0,1],v∈R;

    (H3) F,h,g:R3→R are locally Lipschitz continuous functions;

    (H4)σ0,v0,w0∈L∞(Ω)∩V with v0≥0,w0≥0 and f*(v0,w0)≤σ0≤f*(v0,w0) a.e.on Ω.

    We note that the bounds for f*and f*in (H2) are justified from the biological point of view.Indeed,when the prey population v is zero,the vegetation σ in our three-species model stays constant,say it is one,after rescaling.And if v reaches some excessive number,then all the vegetation is devoured.So,we may assume that σ=0 in this case.

    Denote by R+:=[0,+∞).In connection with the constraint (1.6),we assume the following:

    Hypotheses (U)The multivalued mapping U:[0,T]×Ω×R3→cb (R) has the following properties:

    (U1) the mapping (t,x)→U (t,x,σ,v,w),σ,v,w∈R,is measurable;

    (U2) there exists k∈L2(0,T;R+) such that

    hausR(U (t,x,σ1,v1,w1),U (t,x,σ2,v2,w2))≤k (t)(|σ1-σ2|+|v1-v2|+|w1-w2|)

    a.e.on Q (T),σi,vi,wi∈R,i=1,2;

    (U3) there exists a constant m>0 such that

    |U (t,x,σ,v,w)|≤ma.e.on Q (T),σ,v,w∈R.

    The last set of hypotheses lists the assumptions we impose on the cost integrand:

    Hypotheses (q)The function q:ΩT×R3×R→R is such that

    (q2) there exist k0∈L2(Q (T);R+) such that

    a.e.on Q (T),σi,vi,wi∈R,|ui|≤m,i=1,2;

    (q3) there exist functions ki∈L1(Q (T);R+),i=1,2,k3∈L2(Q (T);R+) such that

    |q (t,x,σ,v,w,u)|≤k1(t,x)+k2(t,x)|u|+k3(t,x)(|σ|+|v|+|w|)

    a.e.on ΩT,σ,v,w∈R,|u|≤m.

    Next,we reformulate our problem (P) in a function spaces framework.To this end,define the multivalued mapping

    U (t,σ,v,w)={u∈H;u (x)∈U (t,x,σ(x),v (x),w (x)) a.e.on Ω},σ,v,w∈H,

    the function

    and the set

    K (v,w)={σ∈H;f*(v (x),w (x))≤σ(x)≤f*(v (x),w (x)) a.e.on Ω},v,w∈H,

    Theorem 1.5 in[32]implies that

    Given Hypotheses (U) and (q) it is a routine matter to verify (cf.,e.g.,[7,Lemmas 3.1 and 3.2]) that the mapping U:[0,T]×H3→cb (H) has the properties:

    (U2) hausH(U (t,σ1,v1,w1),U (t,σ2,v2,w2))≤k (t)(|σ1-σ2|H+|v1-v2|H+|w1-w2|H) a.e.on[0,T],σi,vi,wi∈H,i=1,2,for k∈L2(0,T;R+) as above;

    (U3)|U (t,σ,v,w)|H≤mμ(Ω)1/2a.e.on[0,T],σ,v,w∈H,where m>0 is as above and μ(Ω) is the Lebesgue measure of Ω,and the function q:[0,T]×H3×H→R has the properties:

    Let?IK (v,w)(σ) be the subdifferential of the indicator function of K (v,w) at a point σ∈H.Now we are in a position to define solutions for our control problems.

    Definition 2.2A quadruple{σ,v,w,u}is called a solution of control system (1.1)-(1.6) if

    (i)σ,v,w∈W1,2(0,T;H)∩L∞(0,T;V)∩L2(0,T;H2(Ω));

    (ii) u∈L2(0,T;H);

    (iii)σ′-(λ(v))′-κΔNσ+?IK (v,w)(σ)?F (σ,v,w) uin H a.e.on[0,T];

    (iv) v′-ΔNv=h (σ,v,w) in H a.e.on[0,T];

    (v) w′-ΔNw=g (σ,v,w) in H a.e.on[0,T];

    (vi)σ(0)=σ0,v (0)=v0,w (0)=w0in H;

    (vii) u (t)∈U (t,v (t),w (t),σ(t)) in H a.e.on[0,T],where the prime denotes derivative with respect to t.

    A solution of control system (1.1)-(1.5),(1.7) is defined similarly replacing the last inclusion with

    The sets of all solutions to control systems (1.1)-(1.6) and (1.1)-(1.5),(1.7) in the sense of Definition 2.1 we denote by RUand,respectively.

    Defining the function qU:[0,T]×H3×H→R∪{+∞}by the rule

    So,our optimal control problems (P) and (RP) can now be reformulated in the form:

    Given Hypotheses (H),(U),and (q),the main purpose of this work is to prove the following results.

    Theorem 2.3For any (σ*,v*,w*,u*)∈there exists a sequence (σn,vn,wn,un)∈RU,n≥1,such that

    Moreover,

    Theorem 2.4Problem (RP) has an optimal solution and

    Moreover,for any solution (σ*,v*,w*,u*) of (RP) there exists a minimizing sequence (σn,vn,wn,un)∈RU,n≥1,for problem (P) such that (2.5)-(2.7) hold.

    3 Properties of the Control-to-state Solution Operator

    In this section,we define the control-to-state solution operator for our control systems and explore some of its properties which are crucial for establishing our main results in the next section.To this aim,first we let

    Sm:={u∈L2(0,T;H);|u (t,x)|≤ma.e.on Q (T)}.

    Due to convexity,the bound for the control functions of problem (P) given in Hypothesis (U3) obviously extends to the control functions of the convexified problem (RP).In particular,the controls of both problems belong to the set Sm.Accordingly,let T:Sm→C ([0,T];H×H×H) be the operator which with each u∈Smassociates the unique solution of system (1.1)-(1.5):

    The existence and uniqueness of such a solution as well as uniform a priori estimates for all possible solutions independent of the control u are provided by the following theorem.

    Theorem 3.1For any fixed u∈Smsystem (1.1)-(1.5) has a unique solution.Moreover,for any solution (v,w,σ) of (1.1)-(1.5) with u∈Smthe following estimates

    hold for a constant M0>0 independent of u.

    ProofThe existence of a unique solution to (1.1)-(1.5) with a fixed u∈Smand the estimate (3.2) can be proved following the pattern of[23,Theorems 3.1,3.2,and 3.10].

    By virtue of the bound (3.2),we may now assume (cutting offoutside the set where σ,v,and w are bounded,if necessary) that the functions F,h,g are all bounded (with a common bound M>0) and globally Lipschitz continuous (with a common Lipschitz constant L>1).

    Below,we recap a part of the reasoning of[23]which will allow us to establish the uniform energy estimates (3.3).To this end,given μ>0 we introduce the following approximate system:

    Here,for μ>0 and σ,v,w∈R the functionis the Yosida regularization of the subdifferential?IK (v,w)(σ).

    By[23],for any μ>0 there exists a unique triplet (σμ,vμ,wμ) solving the approximate system above and satisfying the initial conditions σμ(0)=σ0,vμ(0)=v0,wμ(0)=w0.Arguing similarly to[23,3.3.2.proof of Theorem 3.6]we obtain the following counterparts of the inequalities (21),(22),(23),(32) of this reference for such triplets (σμ,vμ,wμ),μ>0:

    where C4=C1+ε1C1+ε2C2.Integrating this inequality from 0 to t∈(0,T]and then estimating the term-ε3(λ′(vμ)?vμ,?σμ)Hin the resulting inequality as follows

    where C5is a positive constant which depends on|σ0|V,|v0|V,|w0|V,but is independent of μ.Now,all the coefficients in (3.11) will be positive provided we take

    and choose κ∈(0,κ0) with

    Therefore,invoking Gronwall’s inequality from (3.11) we obtain the following uniform energy estimates for the triplets (σμ,vμ,wμ),μ>0,solving the approximate problem (3.4)-(3.6):

    By the weak and weak-star compactness results,this bound allows us to conclude that there exists a null sequence μn,n≥1,and functions σ,v,w∈W1,2(0,T;H)∩L∞(0,T;V)∩L2(0,T;H2(Ω)) such that

    weakly in W1,2(0,T;H)∩L2(0,T;H2(Ω)) and weakly-star in L∞(0,T;V),and,thus,strongly in C ([0,T];H).

    With the convergences (3.13) at hand,we can now pass to the limit in eqs.(3.5),(3.6) to infer that the triplet (σ,v,w) satisfies eqs.(iv),(v) of Definition 2.1.Furthermore,denoting fn:=+(λ(vn))′+κΔNσn+F (σn,vn,wn) u we see that

    weakly in L2(0,T;H).Since[31,Proposition 0.3.5]

    strongly in C ([0,T];H).In view of (3.13)-(3.16),the application of Lemma 2.1 yields

    f∈?IK (v,w)(σ),

    so that the triplet (σ,v,w) satisfies eqs.(iii) of Definition 2.1 as well.We note that inequality (2.1) in this case follows from the Lipschitzness of f*and f*.Therefore,we conclude that(σ,v,w) is a solution of system (1.1)-(1.5) with a fixed u∈Sm.The estimate (3.3) now follows from (3.12) and (3.13). □

    Theorem 3.2The operator T:Sm→C ([0,T];H×H×H) is weak-strong continuous.

    ProofWe note that the set Smwhen endowed with the weak topology of the space L2(0,T;H) is metrizable.Consequently,to prove the theorem it is enough to show the sequential continuity of the operator T.Let,then,un,n≥1,be an arbitrary sequence from Smweakly converging to some u∈Sm.Denote by (σn,vn,wn):=(σ(un),v (un),w (un)),n≥1,the sequences of solutions to system (1.1)-(1.5) corresponding to the controls un,n≥1.Similarly as in the proof of Theorem 3.1,by the weak and weak-star compactness results,the uniform estimates (3.2) and (3.3) imply that there exists a subsequence (σk,vk,wk):=,k≥1,of the sequence (σn,vn,wn),n≥1,and some functions σ,v,w∈W1,2(0,T;H)∩L∞(0,T;V)∩L2(0,T;H2(Ω)) such that

    weakly in W1,2(0,T;H)∩L2(0,T;H2(Ω)) and weakly-star in L∞(0,T;V),and,thus,strongly in C ([0,T];H).

    From the Lipschitz continuity of the functions F,g,h and (3.17) we deduce that

    weakly in L2([0,T];H) and

    strongly in C ([0,T];H).The claim of the theorem now follows from the convergences (3.17)-(3.19) and Lemma 2.1. □

    Theorem 3.3([26,Theorem 3.2]) Let ui∈Smand{σi,vi,wi}=T (ui),i=1,2.Then,

    t∈[0,T],where Cm>0 is a positive constant depending only on m.

    4 Proofs of the Main Results

    In this section,we prove Theorems 2.1 and 2.2.To this end,first,on the basis of the control constraint multivalued mapping U and the cost integrand q we construct an auxiliary multivalued mapping Uq:[0,T]×H3→H×R as follows

    where the Banach space H×R is equipped with the norm

    Given the properties (U1)-(U3) and (q1)-(q3) we can easily show that the mapping Uqis measurable in t,continuous in the Hausdorffmetric on the space cb (H×R) in (σ,v,w) a.e.on[0,T]and

    Moreover,we have (cf.[33,Lemma 2.2])

    and for any ε>0,there is a closed set Tε?[0,T],μ([0,T]Tε)≤ε,such thatrestricted to Tε×H3×H is lower semicontinuous.This implies,in particular,that given an arbitrary (σ*,v*,w*,u*)∈,the function t→is measurable and

    a.e.on[0,T].Since the bound in (4.3) evidently extends to,invoking[34,Corollary 1.1],from the last inclusion we obtain the existence of a measurable function γn(t)∈U (t,σ*(t),v*(t),w*(t)) which,in view of (4.2),satisfies

    From Theorem 3.2 it follows that the set

    R:={(σ,v,w)∈C ([0,T];H3);(σ,v,w)=T (u),u∈Sm}

    is compact in C ([0,T];H3).Fix n≥1.The property (U2) implies that for any (σ,v,w)∈H3and a.e.t∈[0,T]there exists γ∈U (t,σ,v,w) such that

    Define the multivalued mapping

    and the associated Nemytskii multivalued operator Γn:R→L2(0,T;H):

    which is lower semicontinuous with nonempty closed decomposable values.According to[35,Theorem 3.1]there exists a continuous mapping αn:R→L1(0,T;H) such that

    In view of the property (U3) and the definition of Un,from this inclusion we deduce that αnis continuous from R to L2(0,T;H) as well and αn(σ,v,w)∈Sm,(σ,v,w)∈R.

    Consider now the superposition of T and αn.By virtue of Theorem 3.2 it follows that this superposition αn°T:Sm→Smis weak-weak continuous.Since Smis obviously convex and compact in the weak topology of the space L2(0,T;H),from the Schauder fixed point theorem it follows that there exists a fixed point un∈Smof the operator αn°T,i.e.,

    Setting (σn,vn,wn):=T (un),from (4.7)-(4.10) we see that (σn,vn,wn,un)∈RU,n≥1,and

    Since on the set Smthe topology induced by the“weak”norm in (4.5) coincides with the weak topology of the space L2(0,T;H),from (4.5) we obtain

    Theorem 3.2 implies then that

    From (4.11) and (3.20) it follows that

    Invoking Gronwall’s lemma,from the last inequality and (4.13) we obtain

    (σn,vn,wn)→(σ*,v*,w*) strongly in C ([0,T];H3).

    Finally,from (4.11),(4.12),and Lebesgue’s dominated convergence theorem we conclude that

    un→u*weakly in L2(0,T;H),

    and the claim of Theorem 2.1 follows.

    Set now R:={(σ(t),v (t),w (t));t∈[0,T],(σ,v,w)∈RU}.Theorem 3.2 together with Hypothesis (U3) imply that the set R is compact in H3.Define φ:[0,T]×H3×H→R∪{+∞}by

    -l (t)≤q (t,σ,v,w,u) for a.e.t∈[0,T],σ,v,w,u∈H,

    for some l∈L1([0,T],R+).

    De fining now the integral functional

    from[36,Theorem 2.1]we deduce that Jφis sequentially lower semicontinuous on the space C ([0,T],H3)×L2([0,T],H),when L2([0,T],H) is endowed with the weak topology.According to Theorem 3.2 the setis compact in this space.Since,obviously,Jφ(σ,v,w,u)=,we conclude that problem (RP) has a solution (σ*,v*,w*,u*)∈.Then,Theorem 2.1 implies that there exists a sequence (σn,vn,wn,un)∈RU,n≥1,such that (2.5)-(2.7) hold.In particular,

    which combined with

    proves Theorem 2.2.

    猜你喜歡
    陳斌
    永續(xù)債的資本弱化問題探析
    母親背出的清華博士
    母親背出的清華博士
    Holographic Entanglement Entropy: A Topical Review?
    誰是贏家?當(dāng)你愛上了“假結(jié)婚”的男人
    相親節(jié)目催生速食愛情:男嘉賓強(qiáng)奸女嘉賓
    情傷“男嘉賓”
    Experimental study of flow field in interference area between impeller and guide vane of axial flow pump*
    相親節(jié)目催生速食愛情:男嘉賓強(qiáng)暴女嘉賓
    伴侶(2014年2期)2014-04-29 00:44:03
    強(qiáng)奸女嘉賓,相親節(jié)目催生不了速食愛情
    女士(2014年3期)2014-03-18 15:30:04
    亚洲va在线va天堂va国产| 亚洲国产最新在线播放| 日韩视频在线欧美| 亚洲第一区二区三区不卡| 日本av免费视频播放| 一级片'在线观看视频| 亚洲国产最新在线播放| 乱码一卡2卡4卡精品| 亚洲,欧美,日韩| 成人毛片60女人毛片免费| 色婷婷av一区二区三区视频| 日本av手机在线免费观看| 少妇人妻精品综合一区二区| 国产精品人妻久久久久久| 制服丝袜香蕉在线| 中国三级夫妇交换| 99久国产av精品国产电影| 乱人伦中国视频| 久久久久国产网址| 欧美日韩精品成人综合77777| 国产精品一区二区在线不卡| 麻豆精品久久久久久蜜桃| 秋霞伦理黄片| av网站免费在线观看视频| 国产欧美另类精品又又久久亚洲欧美| 美女内射精品一级片tv| 精品亚洲乱码少妇综合久久| 国产av精品麻豆| 26uuu在线亚洲综合色| 少妇裸体淫交视频免费看高清| 97精品久久久久久久久久精品| 秋霞伦理黄片| 欧美亚洲 丝袜 人妻 在线| 有码 亚洲区| 国产精品熟女久久久久浪| av黄色大香蕉| 中文字幕人妻丝袜制服| 国产精品人妻久久久影院| 最后的刺客免费高清国语| 国产爽快片一区二区三区| 日本黄色日本黄色录像| av福利片在线| 国产成人a∨麻豆精品| 国产一级毛片在线| 精品酒店卫生间| 观看av在线不卡| 色视频在线一区二区三区| 久久人人爽人人片av| 成人午夜精彩视频在线观看| 成人毛片60女人毛片免费| 欧美精品国产亚洲| 99久久精品国产国产毛片| 久久精品国产鲁丝片午夜精品| 国产在线免费精品| 亚洲伊人久久精品综合| 好男人视频免费观看在线| 国产爽快片一区二区三区| 黄色一级大片看看| 精华霜和精华液先用哪个| 观看美女的网站| 欧美丝袜亚洲另类| 日韩熟女老妇一区二区性免费视频| 欧美日韩精品成人综合77777| av在线播放精品| 久热久热在线精品观看| 女性生殖器流出的白浆| 亚洲国产精品专区欧美| 美女cb高潮喷水在线观看| videos熟女内射| 九九在线视频观看精品| 日韩三级伦理在线观看| 国产精品嫩草影院av在线观看| av在线老鸭窝| av网站免费在线观看视频| 黑人猛操日本美女一级片| 水蜜桃什么品种好| 久久av网站| 街头女战士在线观看网站| 9色porny在线观看| 在线亚洲精品国产二区图片欧美 | 国产欧美亚洲国产| 免费播放大片免费观看视频在线观看| 国产免费一区二区三区四区乱码| 国产色爽女视频免费观看| 男女免费视频国产| 欧美少妇被猛烈插入视频| 国产日韩欧美视频二区| 国产精品99久久久久久久久| 亚洲美女视频黄频| 亚洲精品日本国产第一区| 成人综合一区亚洲| 亚洲激情五月婷婷啪啪| 日本爱情动作片www.在线观看| 国产精品久久久久久久久免| 国产男女超爽视频在线观看| 少妇的逼好多水| 精品一区二区三区视频在线| 中国美白少妇内射xxxbb| 国产精品福利在线免费观看| 久久6这里有精品| 精品99又大又爽又粗少妇毛片| 国产黄片美女视频| 日韩三级伦理在线观看| 三级国产精品片| 欧美+日韩+精品| 69精品国产乱码久久久| 亚洲高清免费不卡视频| 久久久a久久爽久久v久久| 天堂中文最新版在线下载| 少妇人妻久久综合中文| 国产老妇伦熟女老妇高清| 日韩精品免费视频一区二区三区 | 国产成人精品一,二区| 美女脱内裤让男人舔精品视频| 色吧在线观看| 亚洲国产色片| 中文资源天堂在线| 欧美日韩精品成人综合77777| 18禁在线无遮挡免费观看视频| av在线app专区| 欧美xxⅹ黑人| 9色porny在线观看| 国产色爽女视频免费观看| 日韩欧美 国产精品| 成人特级av手机在线观看| 久久99热6这里只有精品| 十八禁网站网址无遮挡 | 久热这里只有精品99| 国产精品国产三级专区第一集| 天堂8中文在线网| 午夜精品国产一区二区电影| 国产有黄有色有爽视频| av一本久久久久| 少妇人妻精品综合一区二区| .国产精品久久| 男男h啪啪无遮挡| 亚洲不卡免费看| 精品国产露脸久久av麻豆| 国产精品免费大片| 国产视频内射| 欧美激情极品国产一区二区三区 | 婷婷色综合大香蕉| 最近手机中文字幕大全| 免费看不卡的av| 美女主播在线视频| 在现免费观看毛片| 色5月婷婷丁香| 少妇丰满av| 午夜福利影视在线免费观看| 另类亚洲欧美激情| 亚洲国产av新网站| 精品人妻熟女av久视频| 国产在线视频一区二区| 国产欧美另类精品又又久久亚洲欧美| 啦啦啦啦在线视频资源| 亚洲欧美精品自产自拍| 欧美性感艳星| av在线老鸭窝| av免费观看日本| 婷婷色综合www| 国产又色又爽无遮挡免| 亚洲怡红院男人天堂| 男人爽女人下面视频在线观看| 亚洲精华国产精华液的使用体验| 国产精品秋霞免费鲁丝片| 大香蕉97超碰在线| 久久久久久久久久成人| 亚洲精品乱久久久久久| 久热久热在线精品观看| 男的添女的下面高潮视频| 久久人人爽av亚洲精品天堂| 乱人伦中国视频| 精品人妻偷拍中文字幕| 毛片一级片免费看久久久久| 99久久精品一区二区三区| 午夜av观看不卡| 王馨瑶露胸无遮挡在线观看| 国产成人午夜福利电影在线观看| 亚洲av男天堂| 国产亚洲一区二区精品| 两个人的视频大全免费| 国精品久久久久久国模美| 丝袜喷水一区| 国产亚洲5aaaaa淫片| 美女福利国产在线| 成人午夜精彩视频在线观看| 女人精品久久久久毛片| 天堂俺去俺来也www色官网| h日本视频在线播放| 在线观看三级黄色| 女的被弄到高潮叫床怎么办| 22中文网久久字幕| 啦啦啦视频在线资源免费观看| 精品亚洲成国产av| 久久国产乱子免费精品| 男人和女人高潮做爰伦理| 亚洲欧美成人精品一区二区| 日韩大片免费观看网站| 国产精品伦人一区二区| 成人毛片a级毛片在线播放| 少妇裸体淫交视频免费看高清| 老女人水多毛片| 在线观看免费日韩欧美大片 | 精品亚洲成a人片在线观看| a级毛片在线看网站| 毛片一级片免费看久久久久| 亚洲性久久影院| 七月丁香在线播放| 如何舔出高潮| 日韩一本色道免费dvd| av卡一久久| 久久婷婷青草| 日韩制服骚丝袜av| 婷婷色av中文字幕| 天天操日日干夜夜撸| 免费观看性生交大片5| 欧美精品高潮呻吟av久久| 亚洲精品,欧美精品| 夜夜骑夜夜射夜夜干| 日日摸夜夜添夜夜添av毛片| 我的女老师完整版在线观看| 国产精品一二三区在线看| 成人亚洲欧美一区二区av| 久久久精品94久久精品| 在线观看人妻少妇| 免费观看a级毛片全部| 日本欧美国产在线视频| 国产精品.久久久| 免费久久久久久久精品成人欧美视频 | 日韩在线高清观看一区二区三区| 午夜激情久久久久久久| 乱人伦中国视频| 免费人妻精品一区二区三区视频| 五月天丁香电影| 国产成人精品福利久久| 国产精品一区二区在线不卡| 精品久久久噜噜| 少妇丰满av| 最近的中文字幕免费完整| 亚洲av二区三区四区| 国产男女内射视频| tube8黄色片| 国产午夜精品久久久久久一区二区三区| 午夜福利影视在线免费观看| 女性生殖器流出的白浆| 免费观看性生交大片5| 日韩一区二区视频免费看| 精品国产乱码久久久久久小说| 男人和女人高潮做爰伦理| 少妇高潮的动态图| 久久影院123| 丝袜喷水一区| www.色视频.com| 亚洲av综合色区一区| 成年美女黄网站色视频大全免费 | 亚洲国产欧美日韩在线播放 | 丝袜在线中文字幕| 伊人亚洲综合成人网| 热re99久久国产66热| 另类亚洲欧美激情| 午夜久久久在线观看| 亚洲不卡免费看| 国产精品福利在线免费观看| 精品人妻熟女av久视频| 免费观看av网站的网址| 人妻人人澡人人爽人人| 久久国产精品大桥未久av | 老司机影院毛片| 国产高清国产精品国产三级| 日韩电影二区| 免费不卡的大黄色大毛片视频在线观看| 丰满饥渴人妻一区二区三| 国产精品久久久久久久电影| av卡一久久| 亚洲久久久国产精品| 国产国拍精品亚洲av在线观看| 丝瓜视频免费看黄片| 日产精品乱码卡一卡2卡三| 免费观看的影片在线观看| 国产成人freesex在线| 伦理电影免费视频| 欧美97在线视频| 一区二区av电影网| 亚洲av不卡在线观看| 亚洲精品自拍成人| 久久精品夜色国产| 亚洲av欧美aⅴ国产| 国产免费一区二区三区四区乱码| 女性生殖器流出的白浆| 久久 成人 亚洲| 在线播放无遮挡| 女人精品久久久久毛片| 国产乱人偷精品视频| 只有这里有精品99| 午夜激情福利司机影院| 日韩欧美 国产精品| 亚洲精品国产av成人精品| 久久鲁丝午夜福利片| 久久ye,这里只有精品| 午夜影院在线不卡| 亚洲自偷自拍三级| 国产成人精品一,二区| 菩萨蛮人人尽说江南好唐韦庄| 香蕉精品网在线| 欧美亚洲 丝袜 人妻 在线| 简卡轻食公司| 伊人亚洲综合成人网| 国产亚洲精品久久久com| 亚洲中文av在线| 丰满迷人的少妇在线观看| 午夜免费观看性视频| 精品午夜福利在线看| 精品亚洲成a人片在线观看| 久久久久精品久久久久真实原创| 欧美成人精品欧美一级黄| 久久免费观看电影| 色婷婷久久久亚洲欧美| 亚洲电影在线观看av| av国产久精品久网站免费入址| 不卡视频在线观看欧美| 在线观看美女被高潮喷水网站| 国产精品人妻久久久久久| 男女边吃奶边做爰视频| 成人午夜精彩视频在线观看| av一本久久久久| 亚洲丝袜综合中文字幕| 一级片'在线观看视频| 国产一区有黄有色的免费视频| 视频区图区小说| 婷婷色av中文字幕| 五月伊人婷婷丁香| 丝袜在线中文字幕| 最黄视频免费看| 久热久热在线精品观看| 精品国产乱码久久久久久小说| 婷婷色av中文字幕| 欧美日韩精品成人综合77777| 免费看av在线观看网站| av免费观看日本| 一级av片app| 国产精品国产三级专区第一集| 狂野欧美白嫩少妇大欣赏| 国产免费福利视频在线观看| 中文乱码字字幕精品一区二区三区| 亚洲第一区二区三区不卡| 日韩免费高清中文字幕av| 色网站视频免费| 18禁在线无遮挡免费观看视频| 日韩熟女老妇一区二区性免费视频| 亚洲欧美日韩卡通动漫| 黄色配什么色好看| 亚洲,一卡二卡三卡| 亚洲,欧美,日韩| 久久综合国产亚洲精品| 日本黄色日本黄色录像| 日日摸夜夜添夜夜爱| 国产伦在线观看视频一区| 丰满乱子伦码专区| 久久毛片免费看一区二区三区| 97在线视频观看| 日韩视频在线欧美| 97在线视频观看| 成人午夜精彩视频在线观看| 在线观看国产h片| 亚洲精品一二三| 我要看日韩黄色一级片| 尾随美女入室| 嫩草影院新地址| 麻豆成人av视频| 观看美女的网站| 精品少妇黑人巨大在线播放| 最近中文字幕高清免费大全6| 人妻一区二区av| 亚洲av电影在线观看一区二区三区| 另类亚洲欧美激情| 欧美日韩视频高清一区二区三区二| 久久av网站| 国产综合精华液| 国产探花极品一区二区| 91在线精品国自产拍蜜月| 99国产精品免费福利视频| 人人澡人人妻人| 人妻一区二区av| 观看美女的网站| 国产在线视频一区二区| 六月丁香七月| 午夜福利在线观看免费完整高清在| 日韩免费高清中文字幕av| 免费观看av网站的网址| 乱系列少妇在线播放| 国内少妇人妻偷人精品xxx网站| 国产精品99久久99久久久不卡 | 国产亚洲最大av| 欧美变态另类bdsm刘玥| 成人18禁高潮啪啪吃奶动态图 | 久久久久久久久久人人人人人人| 成人无遮挡网站| 黑丝袜美女国产一区| 最近手机中文字幕大全| 欧美精品一区二区大全| 免费黄色在线免费观看| 成人黄色视频免费在线看| 嘟嘟电影网在线观看| 一区在线观看完整版| 91精品国产九色| 视频区图区小说| 十八禁高潮呻吟视频 | 久久亚洲国产成人精品v| 免费大片18禁| 欧美激情极品国产一区二区三区 | 日本av手机在线免费观看| 黄色一级大片看看| 午夜福利影视在线免费观看| 伊人亚洲综合成人网| 久久人人爽人人片av| 国产一区二区三区av在线| 中文字幕亚洲精品专区| 十分钟在线观看高清视频www | 3wmmmm亚洲av在线观看| 中文字幕人妻熟人妻熟丝袜美| 女人精品久久久久毛片| av专区在线播放| 黑人猛操日本美女一级片| 精品视频人人做人人爽| 九九久久精品国产亚洲av麻豆| 久久午夜福利片| 狂野欧美激情性xxxx在线观看| 欧美xxxx性猛交bbbb| 成年人免费黄色播放视频 | 亚洲欧洲日产国产| 内地一区二区视频在线| 午夜福利在线观看免费完整高清在| 久久6这里有精品| 日韩在线高清观看一区二区三区| 欧美精品国产亚洲| 内地一区二区视频在线| 一级,二级,三级黄色视频| 国产成人a∨麻豆精品| 美女中出高潮动态图| 国产成人91sexporn| 热re99久久精品国产66热6| 22中文网久久字幕| 好男人视频免费观看在线| 成年人免费黄色播放视频 | 久久99热6这里只有精品| 久久久久久久久久久久大奶| 久久韩国三级中文字幕| 国产在线免费精品| av不卡在线播放| 22中文网久久字幕| 亚洲国产欧美日韩在线播放 | 国产精品国产av在线观看| 国产精品一区二区在线不卡| 三级经典国产精品| 在线 av 中文字幕| 汤姆久久久久久久影院中文字幕| 久久久久久人妻| av免费在线看不卡| 中文字幕久久专区| 我要看日韩黄色一级片| h日本视频在线播放| 男人和女人高潮做爰伦理| 2022亚洲国产成人精品| 三上悠亚av全集在线观看 | 国产伦理片在线播放av一区| 成年人免费黄色播放视频 | av视频免费观看在线观看| 美女xxoo啪啪120秒动态图| 久久鲁丝午夜福利片| 日韩免费高清中文字幕av| 精品人妻偷拍中文字幕| 特大巨黑吊av在线直播| 国产精品人妻久久久影院| 欧美高清成人免费视频www| 国产精品女同一区二区软件| 国产白丝娇喘喷水9色精品| 夜夜骑夜夜射夜夜干| 男人舔奶头视频| 美女视频免费永久观看网站| 亚洲av.av天堂| 免费人成在线观看视频色| 在线观看美女被高潮喷水网站| av福利片在线观看| av女优亚洲男人天堂| 深夜a级毛片| 中文字幕人妻熟人妻熟丝袜美| 各种免费的搞黄视频| 国产在线男女| 男男h啪啪无遮挡| 永久免费av网站大全| 99热这里只有是精品在线观看| 久久精品国产自在天天线| 丝袜喷水一区| 亚洲情色 制服丝袜| 国产黄片美女视频| 国产成人aa在线观看| 美女主播在线视频| 中文字幕久久专区| 免费观看性生交大片5| 日本-黄色视频高清免费观看| 久久久久国产精品人妻一区二区| 午夜日本视频在线| 久久99热6这里只有精品| 街头女战士在线观看网站| 精品国产乱码久久久久久小说| 国产精品伦人一区二区| 少妇被粗大猛烈的视频| 日本黄色片子视频| 午夜av观看不卡| 老熟女久久久| 精品午夜福利在线看| 少妇被粗大的猛进出69影院 | 熟妇人妻不卡中文字幕| 亚洲欧美成人综合另类久久久| 新久久久久国产一级毛片| 国内揄拍国产精品人妻在线| 在线亚洲精品国产二区图片欧美 | √禁漫天堂资源中文www| av专区在线播放| 一级毛片久久久久久久久女| 亚洲国产精品999| 国产综合精华液| 女性生殖器流出的白浆| 好男人视频免费观看在线| 天堂中文最新版在线下载| 最近2019中文字幕mv第一页| 日韩一本色道免费dvd| 秋霞在线观看毛片| av播播在线观看一区| 国产精品蜜桃在线观看| 又大又黄又爽视频免费| 涩涩av久久男人的天堂| 97超视频在线观看视频| 中文在线观看免费www的网站| 免费不卡的大黄色大毛片视频在线观看| 中文字幕制服av| 久久久久精品久久久久真实原创| 久久精品国产a三级三级三级| 国产精品国产三级国产av玫瑰| 久热这里只有精品99| 国产亚洲最大av| 99国产精品免费福利视频| 国精品久久久久久国模美| 日韩熟女老妇一区二区性免费视频| 99久久综合免费| h日本视频在线播放| 日韩欧美精品免费久久| 日本-黄色视频高清免费观看| 国产精品熟女久久久久浪| 两个人的视频大全免费| 国产美女午夜福利| 亚洲激情五月婷婷啪啪| 啦啦啦啦在线视频资源| 最新中文字幕久久久久| 精品人妻一区二区三区麻豆| 亚洲av.av天堂| 男女无遮挡免费网站观看| 午夜久久久在线观看| 日韩在线高清观看一区二区三区| 天堂8中文在线网| 国产欧美亚洲国产| 成人无遮挡网站| 国产免费一级a男人的天堂| 午夜激情福利司机影院| 亚洲天堂av无毛| 久久久久久人妻| 一本色道久久久久久精品综合| 久久精品熟女亚洲av麻豆精品| 欧美国产精品一级二级三级 | 91久久精品国产一区二区三区| 日韩成人伦理影院| 亚洲精品久久午夜乱码| 欧美最新免费一区二区三区| 色婷婷久久久亚洲欧美| 亚洲欧洲国产日韩| 久久久欧美国产精品| 亚洲欧美清纯卡通| 欧美日韩精品成人综合77777| 日韩欧美一区视频在线观看 | 国产永久视频网站| 十八禁高潮呻吟视频 | 一级毛片黄色毛片免费观看视频| 免费看日本二区| 大片电影免费在线观看免费| 少妇高潮的动态图| 国产日韩欧美视频二区| xxx大片免费视频| 女性生殖器流出的白浆| a级毛色黄片| 亚洲精品色激情综合| 五月开心婷婷网| 免费黄色在线免费观看| 亚洲精品色激情综合| 性高湖久久久久久久久免费观看| 国产乱来视频区| 欧美精品国产亚洲| 黄色日韩在线| 成人二区视频| 欧美另类一区| 久久人妻熟女aⅴ| 18禁动态无遮挡网站| 多毛熟女@视频| 肉色欧美久久久久久久蜜桃| 久热久热在线精品观看| a级毛片免费高清观看在线播放| 日本免费在线观看一区| 纯流量卡能插随身wifi吗| 久久久久人妻精品一区果冻| 久久99一区二区三区| 伊人久久国产一区二区| 日本爱情动作片www.在线观看| 男女啪啪激烈高潮av片| 精品人妻一区二区三区麻豆| 啦啦啦中文免费视频观看日本| 国产永久视频网站|