• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    OPTIMAL CONTROL OF A POPULATION DYNAMICS MODEL WITH HYSTERESIS*

    2022-03-12 10:21:58BinCHEN陳斌
    關(guān)鍵詞:陳斌

    Bin CHEN (陳斌)

    Fujian Province University Key Laboratory of Computational Science,School of Mathematical Sciences,Huaqiao University,Quanzhou 362021,China E-mail:chenbinmath@163.com

    Sergey A.TIMOSHIN?

    Fujian Province University Key Laboratory of Computational Science,School of Mathematical Sciences,Huaqiao University,Quanzhou 362021,China

    Matrosov Institute for System Dynamics and Control Theory,Russian Academy of Sciences,Lermontov str.134,664033 Irkutsk,Russia E-mail:sergey.timoshin@gmail.com

    Abstract This paper addresses a nonlinear partial differential control system arising in population dynamics.The system consist of three diffusion equations describing the evolutions of three biological species:prey,predator,and food for the prey or vegetation.The equation for the food density incorporates a hysteresis operator of generalized stop type accounting for underlying hysteresis effects occurring in the dynamical process.We study the problem of minimization of a given integral cost functional over solutions of the above system.The set-valued mapping de fining the control constraint is state-dependent and its values are nonconvex as is the cost integrand as a function of the control variable.Some relaxationtype results for the minimization problem are obtained and the existence of a nearly optimal solution is established.

    Key words optimal control problem;hysteresis;biological diffusion models;nonconvex integrands;nonconvex control constraints

    1 Introduction

    Given a final time T>0 and a bounded domain Ω?RN,N≤3,with smooth boundary?Ω,the primary concern of this paper is to consider the following optimal control problem:

    over the solution set of the dynamical control system:

    subject to the state-dependent control constraint:

    Here,Q (T):=[0,T]×Ω,κ is a given constant,σ0,v0,w0are given initial conditions,?/?n is the outward normal derivative on?Ω.The operator?Iv,w(·) is the subdifferential,in the sense of convex analysis,of the indicator function Iv,w(·) of the interval[f*(v,w),f*(v,w)],f*,f*:R2→R,q:Q (T)×R4→R,F(xiàn),h,g:R3→R,λ:R→R are prescribed functions,U:Q (T)×R3→R is a multivalued mapping with compact,but not necessarily convex values.

    We note that when w is fixed and F≡0,λ(v)=v in (1.1),inclusion (1.1) yields the differential representation of hysteresis operator of the generalized stop type (cf.[1]).During the last three decades,hysteresis operators have been extensively applied in modeling,analysis,and control of a variety of irreversible nonlinear phenomena in applied sciences including phase transitions[2-7],porous media flow [8-12],thermostat models[13-17],concrete carbonation[18-22]and many others.In the same vein,system (1.1)-(1.5)(without the control u) was introduced in[23](see also[24,25]) to model the evolution of populations in the vegetationprey-predator framework when diffusive effects in the dynamics of three species are taken into account and the food density for the prey exhibits hysteretic character.This latter means that the growth rate of the food for the prey depends not only on the current state of prey and predator populations,but it also depends on their immediately preceding density history.In[26],with the aim to achieve a possible optimization of the population dynamics process by way of controlling the food supply for the prey this uncontrolled system was subjected to a control action and the existence of solutions for the corresponding control system (1.1)-(1.6) was established.

    In our model,the unknown variables σ,v,and w represent the densities of vegetation,prey and predator,respectively,with eqs.(1.1),(1.2),and (1.3) characterizing the evolutions of the corresponding species.In this respect,the nonconvexity of values of U in the control constraint (1.6) is a biologically relevant assumption.

    Our aim in this paper is to consider along with (P) the following alternative problem:

    over solutions of (1.1)-(1.5) supplemented with the following alternative control constraint:

    and explore some properties and relationships between problems (P) and (RP).Here,(RP) stands for the relaxed problem,coU denotes the convex hull of the set U,which is the intersection of all convex sets containing U,and for the extended real-valued function qU:Q (T)×R3×R→R∪{+∞}:

    We remark that while our model has not been inspired by any particular applied problem,the results we obtain might find potential applications in analysis and control of real-world ecosystems such as spruce budworm population dynamics models.The latter describe interactions in the budworm-forest framework and include three species:boreal forest trees such as balsam fir,insect pests such as spruce budworm which feed on the foliage of trees and avian predators feeding in turn on the insects.These ecosystems are typical to Northern parts of Canada and Russia,including the lake Baikal region,where the defoliation of larches by insects and the subsequent dieback of the trees is a major problem in forest ecology.Available control actions towards preservation of forest reserve include spraying insecticides,removal of infected trees and other and affect the rate of change in the insects population.This prompted us to include the control function u into the first equation of our evolution system.On the other hand,the natural concern to avoid the total perishing of birds population caused by insufficient food supply should be reflected in optimization strategy towards minimization of forest loss.

    The outline of the paper is as follows.After introducing in the next section the notation and hypotheses on the data describing problem (P),in Section 3 we derive several continuity properties of the control-to-state solution operator associated with our control systems.These properties are instrumental in proving our main results in the last Section 4.The latter consist in establishing the existence of an optimal solution for problem (RP),the density,in an appropriate topology,of solutions of the original control system (1.1)-(1.6) among solutions of the convexi fied control system (1.1)-(1.5),(1.7),and the existence of a nearly optimal,in a suitable sense,solution for problem (P).

    At the end of Introduction,we mention that the existing literature on optimal control of systems exhibiting hysteretic character is sparse.It is worthwhile however to mention a seminal contribution of Brokate to this area (see[27,28]).Moreover,to the best of the authors’knowledge,there have been no contributions so far addressing optimal control problems for biological models with hysteresis.

    2 Preliminary Notions,Hypotheses on the Data,and Statement of the Main Results

    In this section,we fix the notation which we use throughout the paper,prove an auxiliary lemma,specify hypotheses which we posit on the data describing problem (P),give a precise meaning in which solutions to our control systems are understood and the corresponding minimization problems are treated,and state our main results.

    Let X be a Hilbert space with the inner product (·,·)X.A function φ:X→R∪{+∞}is called proper if its effective domain domφ:={x∈X;φ(x)<+∞}is nonempty.By definition,the subdifferential?φ(x),x∈X,of a proper,convex,lower semicontinuous function φ is the set

    ?φ(x)={h∈X;(h,y-x)X≤φ(y)-φ(x),?y∈X},

    and its domain is the set dom?φ:={x∈X;?φ(x)?}.It is known[29]that dom?φ?domφ.

    We say that a sequence of proper,convex,lower semicontinuous functions φn:X→R,n≥1,Mosco-converges[30]to a proper,convex,lower semicontinuous function φ:X→R,denoted,if:

    1) for any x∈X and any sequence xn∈X,n≥1,weakly converging to x we have

    2) for any x∈X there exists a sequence xn→x such that φn(xn)→φ(x).

    Denote by dX(x,A) the distance from a point x∈X to a set A?X.Then,the Hausdorffmetric on the space of closed bounded subsets of X,denoted cb (X),is the function:

    If (E,A) is a measurable space,then a multivalued mapping F:E→cb (X) is called measurable if{τ∈E;F (τ)∩C?}∈A for any closed subset C of X.A set F of measurable functions from E to X is called decomposable if for any f1,f2∈F and any E∈A we have that f1·χE+f2·χEE∈F,where χEstands for the characteristic function of the set E.

    Let Y,Z be two Banach spaces.A multivalued mapping F:Y→Z is called lower semicontinuous if for any y∈Y,z∈F (y) and any sequence yk→y,k≥1,there exists a sequence zk∈F (yk),k≥1,which converges to z.

    Given two functions f*,f*:R2→R,recall that the indicator function Iv,w(·) of the set K (v,w):=[f*(v,w),f*(v,w)]is defined as follows

    Its subdifferential has the form:

    And,for μ>0,the Yosida regularization of?Iv,w(σ) is the function

    Let H be a Hilbert space with the norm|·|H.

    Lemma 2.1Let vn→v,wn→w,σn→σ in L2(0,T;H),fn→f weakly in L2(0,T;H).In addition,assume that a set-valued function K:H×H→cb (H) has convex values and

    vi,wi∈H,i=1,2,where R>0 is a constant.If

    then

    f (t)∈?IK (v (t),w (t))(σ(t)) for a.e.t∈[0,T],

    where IK (v (t),w (t))is the indicator function of the set K (v (t),w (t))?H,t∈[0,T].

    ProofFirst,we define on L2(0,T;H) the function

    It is easy to see that IK (v,w)is the indicator function of the set

    K (v,w)={σ∈L2(0,T;H);σ(t)∈K (v (t),w (t)) a.e.on[0,T]}

    and it is proper,convex,and lower semicontinuous.Moreover,[31,Proposition 0.3.3]implies that

    and for any z∈L2(0,T;H) there exists a sequence zn→z in L2(0,T;H) such that

    So,let zn→z weakly in L2(0,T;H).In the case when=+∞,(2.3) trivially holds.Hence,without loss of generality,we can assume that=0,n≥1,which implies that zn∈K (vn,wn).Invoking the Mazur lemma from this inclusion and (2.1) we infer that

    Therefore,IK (v,w)(z)=0 and (2.3) follows.

    Take now an arbitrary z∈L2(0,T;H).When IK (v,w)(z)=+∞,(2.3) implies that (2.4) holds for any sequence zn→z in L2(0,T;H).Consequently,we assume that IK (v,w)(z)=0,i.e.z∈K (v,w).From (2.1) it follows that we can find a sequence zn→z in L2(0,T;H),zn∈K (vn,wn).In this case,=0 and (2.4) holds again.

    From (2.2) we deduce that σn∈=K (vn,wn),i.e.=0.From the Mosco-convergence established above we obtain

    Hence,σ∈domIK (v,w).Furthermore,for any z∈domIK (v,w)there exists a sequence zn∈,zn→z in L2(0,T;H) such that→IK (v,w)(z).The definition of the subdifferential together with (2.2) imply that

    Passing to the limit in this inequality we obtain

    Since z∈domIK (v,w)is arbitrary,from this inequality it follows that

    f∈?IK (v,w)(σ).

    The claim of the lemma finally follows from[31,Proposition 0.3.3]. □

    In the rest of the paper,H denotes the Hilbert space L2(Ω) endowed with the standard inner product (·,·)Hand the associated norm|·|H,and V denotes the Sobolev space H1(Ω) equipped with the norm|v|V=,where (v,w)V=(v,w)H+a (v,w),

    H2(Ω) is the Sobolev space W2,2(Ω).Consider the linear continuous operator L:V→V′defined by

    〈Lv,w〉=a (v,w),v,w∈V,

    where V′is the dual space of V and〈·,·〉is the bilinear form establishing the duality between V and V′.Let-ΔN:D (-ΔN)?H→H denote the restriction of the operator L to the set of elements v∈V such that Lv∈H.Then,D (-ΔN)=and-ΔNv=-Δv for all v∈D (-ΔN).

    Problem (P) is considered under the following hypotheses:

    Hypotheses (H)The following assumptions hold throughout the paper:

    (H1)κ>0 is a given constant,λ∈C2(R) is a given function with λ′,λ′′bounded on R;

    (H2) f*,f*∈C2(R2)∩W2,∞(R2) with 0≤f*≤f*≤1 on R2,and h (σ,0,w)=0 for σ∈[0,1],w∈R,g (σ,v,0)=0 for σ∈[0,1],v∈R;

    (H3) F,h,g:R3→R are locally Lipschitz continuous functions;

    (H4)σ0,v0,w0∈L∞(Ω)∩V with v0≥0,w0≥0 and f*(v0,w0)≤σ0≤f*(v0,w0) a.e.on Ω.

    We note that the bounds for f*and f*in (H2) are justified from the biological point of view.Indeed,when the prey population v is zero,the vegetation σ in our three-species model stays constant,say it is one,after rescaling.And if v reaches some excessive number,then all the vegetation is devoured.So,we may assume that σ=0 in this case.

    Denote by R+:=[0,+∞).In connection with the constraint (1.6),we assume the following:

    Hypotheses (U)The multivalued mapping U:[0,T]×Ω×R3→cb (R) has the following properties:

    (U1) the mapping (t,x)→U (t,x,σ,v,w),σ,v,w∈R,is measurable;

    (U2) there exists k∈L2(0,T;R+) such that

    hausR(U (t,x,σ1,v1,w1),U (t,x,σ2,v2,w2))≤k (t)(|σ1-σ2|+|v1-v2|+|w1-w2|)

    a.e.on Q (T),σi,vi,wi∈R,i=1,2;

    (U3) there exists a constant m>0 such that

    |U (t,x,σ,v,w)|≤ma.e.on Q (T),σ,v,w∈R.

    The last set of hypotheses lists the assumptions we impose on the cost integrand:

    Hypotheses (q)The function q:ΩT×R3×R→R is such that

    (q2) there exist k0∈L2(Q (T);R+) such that

    a.e.on Q (T),σi,vi,wi∈R,|ui|≤m,i=1,2;

    (q3) there exist functions ki∈L1(Q (T);R+),i=1,2,k3∈L2(Q (T);R+) such that

    |q (t,x,σ,v,w,u)|≤k1(t,x)+k2(t,x)|u|+k3(t,x)(|σ|+|v|+|w|)

    a.e.on ΩT,σ,v,w∈R,|u|≤m.

    Next,we reformulate our problem (P) in a function spaces framework.To this end,define the multivalued mapping

    U (t,σ,v,w)={u∈H;u (x)∈U (t,x,σ(x),v (x),w (x)) a.e.on Ω},σ,v,w∈H,

    the function

    and the set

    K (v,w)={σ∈H;f*(v (x),w (x))≤σ(x)≤f*(v (x),w (x)) a.e.on Ω},v,w∈H,

    Theorem 1.5 in[32]implies that

    Given Hypotheses (U) and (q) it is a routine matter to verify (cf.,e.g.,[7,Lemmas 3.1 and 3.2]) that the mapping U:[0,T]×H3→cb (H) has the properties:

    (U2) hausH(U (t,σ1,v1,w1),U (t,σ2,v2,w2))≤k (t)(|σ1-σ2|H+|v1-v2|H+|w1-w2|H) a.e.on[0,T],σi,vi,wi∈H,i=1,2,for k∈L2(0,T;R+) as above;

    (U3)|U (t,σ,v,w)|H≤mμ(Ω)1/2a.e.on[0,T],σ,v,w∈H,where m>0 is as above and μ(Ω) is the Lebesgue measure of Ω,and the function q:[0,T]×H3×H→R has the properties:

    Let?IK (v,w)(σ) be the subdifferential of the indicator function of K (v,w) at a point σ∈H.Now we are in a position to define solutions for our control problems.

    Definition 2.2A quadruple{σ,v,w,u}is called a solution of control system (1.1)-(1.6) if

    (i)σ,v,w∈W1,2(0,T;H)∩L∞(0,T;V)∩L2(0,T;H2(Ω));

    (ii) u∈L2(0,T;H);

    (iii)σ′-(λ(v))′-κΔNσ+?IK (v,w)(σ)?F (σ,v,w) uin H a.e.on[0,T];

    (iv) v′-ΔNv=h (σ,v,w) in H a.e.on[0,T];

    (v) w′-ΔNw=g (σ,v,w) in H a.e.on[0,T];

    (vi)σ(0)=σ0,v (0)=v0,w (0)=w0in H;

    (vii) u (t)∈U (t,v (t),w (t),σ(t)) in H a.e.on[0,T],where the prime denotes derivative with respect to t.

    A solution of control system (1.1)-(1.5),(1.7) is defined similarly replacing the last inclusion with

    The sets of all solutions to control systems (1.1)-(1.6) and (1.1)-(1.5),(1.7) in the sense of Definition 2.1 we denote by RUand,respectively.

    Defining the function qU:[0,T]×H3×H→R∪{+∞}by the rule

    So,our optimal control problems (P) and (RP) can now be reformulated in the form:

    Given Hypotheses (H),(U),and (q),the main purpose of this work is to prove the following results.

    Theorem 2.3For any (σ*,v*,w*,u*)∈there exists a sequence (σn,vn,wn,un)∈RU,n≥1,such that

    Moreover,

    Theorem 2.4Problem (RP) has an optimal solution and

    Moreover,for any solution (σ*,v*,w*,u*) of (RP) there exists a minimizing sequence (σn,vn,wn,un)∈RU,n≥1,for problem (P) such that (2.5)-(2.7) hold.

    3 Properties of the Control-to-state Solution Operator

    In this section,we define the control-to-state solution operator for our control systems and explore some of its properties which are crucial for establishing our main results in the next section.To this aim,first we let

    Sm:={u∈L2(0,T;H);|u (t,x)|≤ma.e.on Q (T)}.

    Due to convexity,the bound for the control functions of problem (P) given in Hypothesis (U3) obviously extends to the control functions of the convexified problem (RP).In particular,the controls of both problems belong to the set Sm.Accordingly,let T:Sm→C ([0,T];H×H×H) be the operator which with each u∈Smassociates the unique solution of system (1.1)-(1.5):

    The existence and uniqueness of such a solution as well as uniform a priori estimates for all possible solutions independent of the control u are provided by the following theorem.

    Theorem 3.1For any fixed u∈Smsystem (1.1)-(1.5) has a unique solution.Moreover,for any solution (v,w,σ) of (1.1)-(1.5) with u∈Smthe following estimates

    hold for a constant M0>0 independent of u.

    ProofThe existence of a unique solution to (1.1)-(1.5) with a fixed u∈Smand the estimate (3.2) can be proved following the pattern of[23,Theorems 3.1,3.2,and 3.10].

    By virtue of the bound (3.2),we may now assume (cutting offoutside the set where σ,v,and w are bounded,if necessary) that the functions F,h,g are all bounded (with a common bound M>0) and globally Lipschitz continuous (with a common Lipschitz constant L>1).

    Below,we recap a part of the reasoning of[23]which will allow us to establish the uniform energy estimates (3.3).To this end,given μ>0 we introduce the following approximate system:

    Here,for μ>0 and σ,v,w∈R the functionis the Yosida regularization of the subdifferential?IK (v,w)(σ).

    By[23],for any μ>0 there exists a unique triplet (σμ,vμ,wμ) solving the approximate system above and satisfying the initial conditions σμ(0)=σ0,vμ(0)=v0,wμ(0)=w0.Arguing similarly to[23,3.3.2.proof of Theorem 3.6]we obtain the following counterparts of the inequalities (21),(22),(23),(32) of this reference for such triplets (σμ,vμ,wμ),μ>0:

    where C4=C1+ε1C1+ε2C2.Integrating this inequality from 0 to t∈(0,T]and then estimating the term-ε3(λ′(vμ)?vμ,?σμ)Hin the resulting inequality as follows

    where C5is a positive constant which depends on|σ0|V,|v0|V,|w0|V,but is independent of μ.Now,all the coefficients in (3.11) will be positive provided we take

    and choose κ∈(0,κ0) with

    Therefore,invoking Gronwall’s inequality from (3.11) we obtain the following uniform energy estimates for the triplets (σμ,vμ,wμ),μ>0,solving the approximate problem (3.4)-(3.6):

    By the weak and weak-star compactness results,this bound allows us to conclude that there exists a null sequence μn,n≥1,and functions σ,v,w∈W1,2(0,T;H)∩L∞(0,T;V)∩L2(0,T;H2(Ω)) such that

    weakly in W1,2(0,T;H)∩L2(0,T;H2(Ω)) and weakly-star in L∞(0,T;V),and,thus,strongly in C ([0,T];H).

    With the convergences (3.13) at hand,we can now pass to the limit in eqs.(3.5),(3.6) to infer that the triplet (σ,v,w) satisfies eqs.(iv),(v) of Definition 2.1.Furthermore,denoting fn:=+(λ(vn))′+κΔNσn+F (σn,vn,wn) u we see that

    weakly in L2(0,T;H).Since[31,Proposition 0.3.5]

    strongly in C ([0,T];H).In view of (3.13)-(3.16),the application of Lemma 2.1 yields

    f∈?IK (v,w)(σ),

    so that the triplet (σ,v,w) satisfies eqs.(iii) of Definition 2.1 as well.We note that inequality (2.1) in this case follows from the Lipschitzness of f*and f*.Therefore,we conclude that(σ,v,w) is a solution of system (1.1)-(1.5) with a fixed u∈Sm.The estimate (3.3) now follows from (3.12) and (3.13). □

    Theorem 3.2The operator T:Sm→C ([0,T];H×H×H) is weak-strong continuous.

    ProofWe note that the set Smwhen endowed with the weak topology of the space L2(0,T;H) is metrizable.Consequently,to prove the theorem it is enough to show the sequential continuity of the operator T.Let,then,un,n≥1,be an arbitrary sequence from Smweakly converging to some u∈Sm.Denote by (σn,vn,wn):=(σ(un),v (un),w (un)),n≥1,the sequences of solutions to system (1.1)-(1.5) corresponding to the controls un,n≥1.Similarly as in the proof of Theorem 3.1,by the weak and weak-star compactness results,the uniform estimates (3.2) and (3.3) imply that there exists a subsequence (σk,vk,wk):=,k≥1,of the sequence (σn,vn,wn),n≥1,and some functions σ,v,w∈W1,2(0,T;H)∩L∞(0,T;V)∩L2(0,T;H2(Ω)) such that

    weakly in W1,2(0,T;H)∩L2(0,T;H2(Ω)) and weakly-star in L∞(0,T;V),and,thus,strongly in C ([0,T];H).

    From the Lipschitz continuity of the functions F,g,h and (3.17) we deduce that

    weakly in L2([0,T];H) and

    strongly in C ([0,T];H).The claim of the theorem now follows from the convergences (3.17)-(3.19) and Lemma 2.1. □

    Theorem 3.3([26,Theorem 3.2]) Let ui∈Smand{σi,vi,wi}=T (ui),i=1,2.Then,

    t∈[0,T],where Cm>0 is a positive constant depending only on m.

    4 Proofs of the Main Results

    In this section,we prove Theorems 2.1 and 2.2.To this end,first,on the basis of the control constraint multivalued mapping U and the cost integrand q we construct an auxiliary multivalued mapping Uq:[0,T]×H3→H×R as follows

    where the Banach space H×R is equipped with the norm

    Given the properties (U1)-(U3) and (q1)-(q3) we can easily show that the mapping Uqis measurable in t,continuous in the Hausdorffmetric on the space cb (H×R) in (σ,v,w) a.e.on[0,T]and

    Moreover,we have (cf.[33,Lemma 2.2])

    and for any ε>0,there is a closed set Tε?[0,T],μ([0,T]Tε)≤ε,such thatrestricted to Tε×H3×H is lower semicontinuous.This implies,in particular,that given an arbitrary (σ*,v*,w*,u*)∈,the function t→is measurable and

    a.e.on[0,T].Since the bound in (4.3) evidently extends to,invoking[34,Corollary 1.1],from the last inclusion we obtain the existence of a measurable function γn(t)∈U (t,σ*(t),v*(t),w*(t)) which,in view of (4.2),satisfies

    From Theorem 3.2 it follows that the set

    R:={(σ,v,w)∈C ([0,T];H3);(σ,v,w)=T (u),u∈Sm}

    is compact in C ([0,T];H3).Fix n≥1.The property (U2) implies that for any (σ,v,w)∈H3and a.e.t∈[0,T]there exists γ∈U (t,σ,v,w) such that

    Define the multivalued mapping

    and the associated Nemytskii multivalued operator Γn:R→L2(0,T;H):

    which is lower semicontinuous with nonempty closed decomposable values.According to[35,Theorem 3.1]there exists a continuous mapping αn:R→L1(0,T;H) such that

    In view of the property (U3) and the definition of Un,from this inclusion we deduce that αnis continuous from R to L2(0,T;H) as well and αn(σ,v,w)∈Sm,(σ,v,w)∈R.

    Consider now the superposition of T and αn.By virtue of Theorem 3.2 it follows that this superposition αn°T:Sm→Smis weak-weak continuous.Since Smis obviously convex and compact in the weak topology of the space L2(0,T;H),from the Schauder fixed point theorem it follows that there exists a fixed point un∈Smof the operator αn°T,i.e.,

    Setting (σn,vn,wn):=T (un),from (4.7)-(4.10) we see that (σn,vn,wn,un)∈RU,n≥1,and

    Since on the set Smthe topology induced by the“weak”norm in (4.5) coincides with the weak topology of the space L2(0,T;H),from (4.5) we obtain

    Theorem 3.2 implies then that

    From (4.11) and (3.20) it follows that

    Invoking Gronwall’s lemma,from the last inequality and (4.13) we obtain

    (σn,vn,wn)→(σ*,v*,w*) strongly in C ([0,T];H3).

    Finally,from (4.11),(4.12),and Lebesgue’s dominated convergence theorem we conclude that

    un→u*weakly in L2(0,T;H),

    and the claim of Theorem 2.1 follows.

    Set now R:={(σ(t),v (t),w (t));t∈[0,T],(σ,v,w)∈RU}.Theorem 3.2 together with Hypothesis (U3) imply that the set R is compact in H3.Define φ:[0,T]×H3×H→R∪{+∞}by

    -l (t)≤q (t,σ,v,w,u) for a.e.t∈[0,T],σ,v,w,u∈H,

    for some l∈L1([0,T],R+).

    De fining now the integral functional

    from[36,Theorem 2.1]we deduce that Jφis sequentially lower semicontinuous on the space C ([0,T],H3)×L2([0,T],H),when L2([0,T],H) is endowed with the weak topology.According to Theorem 3.2 the setis compact in this space.Since,obviously,Jφ(σ,v,w,u)=,we conclude that problem (RP) has a solution (σ*,v*,w*,u*)∈.Then,Theorem 2.1 implies that there exists a sequence (σn,vn,wn,un)∈RU,n≥1,such that (2.5)-(2.7) hold.In particular,

    which combined with

    proves Theorem 2.2.

    猜你喜歡
    陳斌
    永續(xù)債的資本弱化問題探析
    母親背出的清華博士
    母親背出的清華博士
    Holographic Entanglement Entropy: A Topical Review?
    誰是贏家?當(dāng)你愛上了“假結(jié)婚”的男人
    相親節(jié)目催生速食愛情:男嘉賓強(qiáng)奸女嘉賓
    情傷“男嘉賓”
    Experimental study of flow field in interference area between impeller and guide vane of axial flow pump*
    相親節(jié)目催生速食愛情:男嘉賓強(qiáng)暴女嘉賓
    伴侶(2014年2期)2014-04-29 00:44:03
    強(qiáng)奸女嘉賓,相親節(jié)目催生不了速食愛情
    女士(2014年3期)2014-03-18 15:30:04
    一区二区三区四区激情视频| 国产精品亚洲av一区麻豆| 国产成人一区二区三区免费视频网站 | 纵有疾风起免费观看全集完整版| 一区二区av电影网| av一本久久久久| 亚洲中文日韩欧美视频| 少妇 在线观看| 国产精品麻豆人妻色哟哟久久| 在线天堂中文资源库| 人成视频在线观看免费观看| 亚洲综合色网址| 免费一级毛片在线播放高清视频 | 国产成人免费观看mmmm| 黄色毛片三级朝国网站| 欧美日韩亚洲高清精品| 啦啦啦 在线观看视频| 永久免费av网站大全| 69精品国产乱码久久久| 大片电影免费在线观看免费| 国产男人的电影天堂91| 99久久99久久久精品蜜桃| 午夜福利影视在线免费观看| 少妇猛男粗大的猛烈进出视频| 国产亚洲欧美精品永久| 国产一区二区在线观看av| 午夜av观看不卡| 亚洲国产欧美一区二区综合| www.999成人在线观看| 午夜福利视频在线观看免费| 新久久久久国产一级毛片| a级毛片黄视频| 日韩 亚洲 欧美在线| 一二三四在线观看免费中文在| 久久久久视频综合| 操美女的视频在线观看| 性少妇av在线| 性少妇av在线| 日本vs欧美在线观看视频| 操美女的视频在线观看| 亚洲免费av在线视频| 日韩制服骚丝袜av| 男女下面插进去视频免费观看| 成在线人永久免费视频| 制服诱惑二区| 丰满人妻熟妇乱又伦精品不卡| 亚洲欧美一区二区三区久久| 亚洲国产欧美日韩在线播放| 一本一本久久a久久精品综合妖精| 免费观看av网站的网址| 日本vs欧美在线观看视频| 国产成人av激情在线播放| 久久国产亚洲av麻豆专区| 手机成人av网站| av在线app专区| 国产亚洲av片在线观看秒播厂| 久久久精品免费免费高清| 赤兔流量卡办理| 国产真人三级小视频在线观看| 宅男免费午夜| 十八禁人妻一区二区| 色综合欧美亚洲国产小说| 高清不卡的av网站| 黄色 视频免费看| 在线观看免费视频网站a站| 1024香蕉在线观看| 1024视频免费在线观看| 欧美国产精品一级二级三级| 日韩 亚洲 欧美在线| 国产在线观看jvid| 最近最新中文字幕大全免费视频 | 亚洲精品在线美女| 蜜桃在线观看..| 亚洲国产精品一区二区三区在线| 日韩一卡2卡3卡4卡2021年| 国产成人av激情在线播放| 国产精品免费视频内射| 无遮挡黄片免费观看| 国产一区二区激情短视频 | 蜜桃在线观看..| 亚洲av日韩在线播放| 国产一区二区在线观看av| 亚洲,一卡二卡三卡| 亚洲熟女毛片儿| 青春草视频在线免费观看| 高清视频免费观看一区二区| 国产精品偷伦视频观看了| 日韩中文字幕视频在线看片| av国产久精品久网站免费入址| 美女视频免费永久观看网站| 高清视频免费观看一区二区| 最新的欧美精品一区二区| 亚洲伊人久久精品综合| 精品国产乱码久久久久久小说| 精品欧美一区二区三区在线| 亚洲国产av影院在线观看| 只有这里有精品99| 丝袜人妻中文字幕| 一区在线观看完整版| 国产国语露脸激情在线看| 国产精品人妻久久久影院| 亚洲伊人久久精品综合| 亚洲欧美成人综合另类久久久| 日韩中文字幕视频在线看片| 又粗又硬又长又爽又黄的视频| 国产男人的电影天堂91| 汤姆久久久久久久影院中文字幕| 国产精品久久久久久人妻精品电影 | 中文字幕av电影在线播放| 老司机午夜十八禁免费视频| √禁漫天堂资源中文www| 亚洲 欧美一区二区三区| 国语对白做爰xxxⅹ性视频网站| 国产免费一区二区三区四区乱码| 韩国高清视频一区二区三区| 欧美在线黄色| 90打野战视频偷拍视频| 一区二区三区精品91| 欧美日韩亚洲国产一区二区在线观看 | 多毛熟女@视频| 日本wwww免费看| a级毛片在线看网站| 国产精品亚洲av一区麻豆| 午夜福利影视在线免费观看| 欧美+亚洲+日韩+国产| 亚洲久久久国产精品| 只有这里有精品99| 青青草视频在线视频观看| 亚洲精品一卡2卡三卡4卡5卡 | av不卡在线播放| 19禁男女啪啪无遮挡网站| 久久人妻熟女aⅴ| 中文欧美无线码| 亚洲国产中文字幕在线视频| 国产精品久久久久成人av| tube8黄色片| 久久人妻熟女aⅴ| 日韩一卡2卡3卡4卡2021年| 日日摸夜夜添夜夜爱| 国产一级毛片在线| 国产又爽黄色视频| 欧美激情高清一区二区三区| 亚洲av男天堂| 一本大道久久a久久精品| 中文字幕制服av| 欧美黑人欧美精品刺激| 成年美女黄网站色视频大全免费| 亚洲色图 男人天堂 中文字幕| 久久久久国产一级毛片高清牌| 亚洲精品国产一区二区精华液| 久久精品亚洲熟妇少妇任你| 天天操日日干夜夜撸| 最新在线观看一区二区三区 | 午夜福利影视在线免费观看| 国产精品熟女久久久久浪| 精品一品国产午夜福利视频| 岛国毛片在线播放| 两性夫妻黄色片| 大码成人一级视频| 国产精品久久久久成人av| 建设人人有责人人尽责人人享有的| 性少妇av在线| 色视频在线一区二区三区| 丰满少妇做爰视频| 天堂俺去俺来也www色官网| 男女无遮挡免费网站观看| videosex国产| 亚洲色图 男人天堂 中文字幕| 19禁男女啪啪无遮挡网站| 婷婷成人精品国产| 美女高潮到喷水免费观看| 国产熟女欧美一区二区| 久9热在线精品视频| 免费av中文字幕在线| 午夜福利视频精品| 久久久精品区二区三区| 午夜福利,免费看| 免费人妻精品一区二区三区视频| 少妇人妻久久综合中文| 50天的宝宝边吃奶边哭怎么回事| 亚洲五月色婷婷综合| 国产av一区二区精品久久| 亚洲中文av在线| 亚洲一卡2卡3卡4卡5卡精品中文| 国产视频首页在线观看| 一边摸一边抽搐一进一出视频| 亚洲精品久久成人aⅴ小说| 嫁个100分男人电影在线观看 | 欧美 日韩 精品 国产| 国产91精品成人一区二区三区 | 国产成人免费无遮挡视频| 国产精品免费视频内射| 免费少妇av软件| cao死你这个sao货| 日韩制服骚丝袜av| av不卡在线播放| 超碰97精品在线观看| 久久久久精品人妻al黑| 天堂中文最新版在线下载| 99国产精品一区二区蜜桃av | 天天影视国产精品| 人人妻人人爽人人添夜夜欢视频| 国产亚洲欧美在线一区二区| 欧美精品人与动牲交sv欧美| 在线av久久热| 婷婷色综合www| 日本91视频免费播放| 91九色精品人成在线观看| 在线 av 中文字幕| 一二三四在线观看免费中文在| 国产无遮挡羞羞视频在线观看| 久久精品aⅴ一区二区三区四区| 国产熟女欧美一区二区| 国产成人免费观看mmmm| 我要看黄色一级片免费的| 新久久久久国产一级毛片| 美女脱内裤让男人舔精品视频| 女警被强在线播放| av国产久精品久网站免费入址| 亚洲精品国产av蜜桃| avwww免费| 永久免费av网站大全| 亚洲伊人久久精品综合| 国产高清国产精品国产三级| 99国产精品一区二区三区| 伊人久久大香线蕉亚洲五| 日韩,欧美,国产一区二区三区| 欧美亚洲 丝袜 人妻 在线| 中文字幕人妻熟女乱码| 国产精品欧美亚洲77777| 欧美国产精品va在线观看不卡| 国产欧美日韩一区二区三| 满18在线观看网站| svipshipincom国产片| 一区二区三区激情视频| 久久久久久久午夜电影| 女人被狂操c到高潮| 成人国产综合亚洲| 亚洲 欧美 日韩 在线 免费| avwww免费| 国产成人精品无人区| 黄色丝袜av网址大全| 国产精品98久久久久久宅男小说| 精品国产一区二区三区四区第35| 亚洲国产精品成人综合色| 老司机福利观看| 精品福利观看| 国产一区在线观看成人免费| 日韩av在线大香蕉| 欧美成人免费av一区二区三区| 看免费av毛片| 国产一级毛片七仙女欲春2 | 欧美丝袜亚洲另类 | 欧美又色又爽又黄视频| 欧美午夜高清在线| 欧美在线一区亚洲| 久久精品国产99精品国产亚洲性色| 国产熟女xx| 男女下面进入的视频免费午夜 | 国产私拍福利视频在线观看| 久久久久久久精品吃奶| 中文字幕最新亚洲高清| 亚洲中文字幕日韩| 99热只有精品国产| 性色av乱码一区二区三区2| 午夜激情福利司机影院| 一区二区三区国产精品乱码| 色在线成人网| 最近最新中文字幕大全免费视频| 午夜成年电影在线免费观看| 熟妇人妻久久中文字幕3abv| 国产精品久久久久久亚洲av鲁大| 国产一区二区激情短视频| 男人操女人黄网站| 久久久久久久久中文| 久久亚洲精品不卡| 给我免费播放毛片高清在线观看| 淫妇啪啪啪对白视频| 一进一出抽搐gif免费好疼| 国产精品精品国产色婷婷| 国产极品粉嫩免费观看在线| 久久精品国产综合久久久| 国产av一区二区精品久久| 嫁个100分男人电影在线观看| 夜夜躁狠狠躁天天躁| 女人高潮潮喷娇喘18禁视频| 大型av网站在线播放| 50天的宝宝边吃奶边哭怎么回事| 精品不卡国产一区二区三区| 国产午夜精品久久久久久| 国产视频内射| 韩国av一区二区三区四区| 国产欧美日韩一区二区三| a在线观看视频网站| 午夜免费鲁丝| 国产野战对白在线观看| 长腿黑丝高跟| 免费在线观看黄色视频的| 欧美另类亚洲清纯唯美| 中文字幕最新亚洲高清| 国产99白浆流出| 久久久久久久久久黄片| 精品一区二区三区四区五区乱码| 在线观看舔阴道视频| 久久国产乱子伦精品免费另类| 叶爱在线成人免费视频播放| 精品午夜福利视频在线观看一区| 久久国产精品影院| 天堂√8在线中文| 人妻久久中文字幕网| 好男人电影高清在线观看| 91av网站免费观看| 精品久久久久久成人av| 午夜视频精品福利| 黄频高清免费视频| 在线播放国产精品三级| 老司机靠b影院| 中文字幕另类日韩欧美亚洲嫩草| 午夜成年电影在线免费观看| 免费在线观看影片大全网站| 日韩欧美免费精品| 伦理电影免费视频| 午夜福利高清视频| 日本a在线网址| 男女那种视频在线观看| 韩国精品一区二区三区| 一个人观看的视频www高清免费观看 | 欧美最黄视频在线播放免费| 亚洲自拍偷在线| 久久九九热精品免费| 成人永久免费在线观看视频| 亚洲国产精品sss在线观看| 一本一本综合久久| 中文字幕精品免费在线观看视频| 午夜福利一区二区在线看| 好男人在线观看高清免费视频 | 久久天堂一区二区三区四区| 久久性视频一级片| 波多野结衣巨乳人妻| 久热这里只有精品99| 在线观看免费午夜福利视频| 757午夜福利合集在线观看| 午夜免费观看网址| 精品一区二区三区四区五区乱码| 女同久久另类99精品国产91| 听说在线观看完整版免费高清| svipshipincom国产片| 欧美日韩黄片免| 久久人妻福利社区极品人妻图片| 国产高清videossex| 亚洲精品在线美女| 久久久久久国产a免费观看| aaaaa片日本免费| 亚洲国产精品合色在线| 国产免费av片在线观看野外av| 99精品久久久久人妻精品| 国产伦一二天堂av在线观看| avwww免费| 俺也久久电影网| 国产熟女xx| 黄色女人牲交| 可以在线观看的亚洲视频| 欧美国产精品va在线观看不卡| 18禁国产床啪视频网站| 久久久久久亚洲精品国产蜜桃av| 成人特级黄色片久久久久久久| 久久中文字幕人妻熟女| xxx96com| 午夜免费成人在线视频| 夜夜爽天天搞| 久久 成人 亚洲| 午夜免费观看网址| 两人在一起打扑克的视频| 精品国产超薄肉色丝袜足j| 欧美日韩亚洲综合一区二区三区_| 黄色丝袜av网址大全| 91成人精品电影| 欧美zozozo另类| 高清在线国产一区| 18禁观看日本| 亚洲aⅴ乱码一区二区在线播放 | 脱女人内裤的视频| 日韩欧美一区二区三区在线观看| 亚洲免费av在线视频| 亚洲国产欧美日韩在线播放| 国产高清有码在线观看视频 | 欧美日韩一级在线毛片| 美女国产高潮福利片在线看| 国产私拍福利视频在线观看| 嫁个100分男人电影在线观看| 精品久久久久久久久久免费视频| 18禁黄网站禁片免费观看直播| 欧美日韩福利视频一区二区| 亚洲国产精品合色在线| 国产精品爽爽va在线观看网站 | 好看av亚洲va欧美ⅴa在| 99久久精品国产亚洲精品| 91在线观看av| 在线免费观看的www视频| 欧美丝袜亚洲另类 | 无遮挡黄片免费观看| 国产av又大| 免费在线观看视频国产中文字幕亚洲| 国产又色又爽无遮挡免费看| 日本 欧美在线| 夜夜躁狠狠躁天天躁| 日韩欧美 国产精品| 亚洲人成77777在线视频| 久久久久精品国产欧美久久久| 久久久久久免费高清国产稀缺| 亚洲国产欧美一区二区综合| 久久国产亚洲av麻豆专区| 久久99热这里只有精品18| 免费在线观看成人毛片| 亚洲五月色婷婷综合| 欧美黑人巨大hd| 窝窝影院91人妻| 亚洲中文字幕一区二区三区有码在线看 | 亚洲欧美精品综合久久99| 天天躁夜夜躁狠狠躁躁| 亚洲精品中文字幕一二三四区| 高潮久久久久久久久久久不卡| 男女午夜视频在线观看| 亚洲成av人片免费观看| 欧美性长视频在线观看| 啦啦啦 在线观看视频| 亚洲成国产人片在线观看| 悠悠久久av| 男人操女人黄网站| 欧美成人午夜精品| 亚洲七黄色美女视频| 精品卡一卡二卡四卡免费| 亚洲中文av在线| 亚洲在线自拍视频| 一a级毛片在线观看| 桃色一区二区三区在线观看| 一进一出抽搐gif免费好疼| 一边摸一边抽搐一进一小说| 99久久国产精品久久久| 国语自产精品视频在线第100页| 老汉色av国产亚洲站长工具| 特大巨黑吊av在线直播 | 啪啪无遮挡十八禁网站| 人人妻人人看人人澡| 国产欧美日韩一区二区三| 亚洲av电影不卡..在线观看| 999久久久国产精品视频| 亚洲五月婷婷丁香| 老熟妇乱子伦视频在线观看| 黄色视频,在线免费观看| 久久久久久久久免费视频了| 男女下面进入的视频免费午夜 | 波多野结衣巨乳人妻| 91麻豆精品激情在线观看国产| 久久久久久亚洲精品国产蜜桃av| 国产精品综合久久久久久久免费| 啪啪无遮挡十八禁网站| 在线观看舔阴道视频| 亚洲成av片中文字幕在线观看| 亚洲国产精品久久男人天堂| 波多野结衣av一区二区av| 久久九九热精品免费| 白带黄色成豆腐渣| 国产黄色小视频在线观看| 男男h啪啪无遮挡| 男女下面进入的视频免费午夜 | 久久伊人香网站| www.自偷自拍.com| 日韩欧美免费精品| 久久 成人 亚洲| 亚洲男人天堂网一区| 国产精品永久免费网站| 亚洲第一av免费看| 非洲黑人性xxxx精品又粗又长| 每晚都被弄得嗷嗷叫到高潮| 99riav亚洲国产免费| 又紧又爽又黄一区二区| 亚洲成人久久爱视频| 亚洲自拍偷在线| 黄色丝袜av网址大全| 国产午夜精品久久久久久| 搞女人的毛片| 大香蕉久久成人网| 女人高潮潮喷娇喘18禁视频| 精品日产1卡2卡| 亚洲av美国av| 一本综合久久免费| www.www免费av| 成人国产一区最新在线观看| 成人国语在线视频| 久久精品国产清高在天天线| 国产1区2区3区精品| 香蕉丝袜av| 亚洲专区国产一区二区| 中文字幕人妻熟女乱码| 精华霜和精华液先用哪个| 中文在线观看免费www的网站 | 成人手机av| 亚洲精品一区av在线观看| 亚洲精品国产一区二区精华液| 亚洲国产欧洲综合997久久, | 18美女黄网站色大片免费观看| 色哟哟哟哟哟哟| 女人被狂操c到高潮| 香蕉av资源在线| 人人妻人人看人人澡| 男女视频在线观看网站免费 | 国产亚洲欧美在线一区二区| 亚洲国产精品合色在线| 久久久国产成人免费| 一级a爱片免费观看的视频| 黑人欧美特级aaaaaa片| 黄色视频,在线免费观看| 日韩精品中文字幕看吧| 午夜精品久久久久久毛片777| 国产三级在线视频| 日本在线视频免费播放| 久久久国产精品麻豆| 欧美激情久久久久久爽电影| 99久久无色码亚洲精品果冻| 曰老女人黄片| 免费av毛片视频| 性色av乱码一区二区三区2| 亚洲国产日韩欧美精品在线观看 | 淫秽高清视频在线观看| 一级毛片高清免费大全| 国产精品爽爽va在线观看网站 | 啦啦啦观看免费观看视频高清| 丝袜美腿诱惑在线| 国产精品1区2区在线观看.| bbb黄色大片| av在线播放免费不卡| 日日爽夜夜爽网站| 久久亚洲真实| 神马国产精品三级电影在线观看 | 久久香蕉精品热| av片东京热男人的天堂| 国产一卡二卡三卡精品| 韩国av一区二区三区四区| 日韩高清综合在线| 夜夜夜夜夜久久久久| 一本精品99久久精品77| 日韩 欧美 亚洲 中文字幕| 午夜成年电影在线免费观看| 丁香欧美五月| 亚洲欧洲精品一区二区精品久久久| 国产精品一区二区三区四区久久 | 国产亚洲av高清不卡| 青草久久国产| 日韩欧美 国产精品| 十分钟在线观看高清视频www| 久久精品夜夜夜夜夜久久蜜豆 | 丰满人妻熟妇乱又伦精品不卡| 十八禁网站免费在线| 中文资源天堂在线| 成人午夜高清在线视频 | 1024视频免费在线观看| 日韩中文字幕欧美一区二区| 99精品久久久久人妻精品| 久久久久亚洲av毛片大全| 欧美中文日本在线观看视频| 久久国产精品男人的天堂亚洲| 欧美另类亚洲清纯唯美| 日韩欧美一区二区三区在线观看| 成人18禁高潮啪啪吃奶动态图| 亚洲熟妇中文字幕五十中出| 精品久久久久久久人妻蜜臀av| 丝袜美腿诱惑在线| 手机成人av网站| 男人的好看免费观看在线视频 | 免费电影在线观看免费观看| 国产亚洲精品一区二区www| 欧美成狂野欧美在线观看| 日韩 欧美 亚洲 中文字幕| 波多野结衣巨乳人妻| 日韩大码丰满熟妇| 亚洲成人精品中文字幕电影| 久久青草综合色| 亚洲国产精品成人综合色| 此物有八面人人有两片| 最新美女视频免费是黄的| 精品免费久久久久久久清纯| ponron亚洲| 亚洲欧洲精品一区二区精品久久久| 免费看美女性在线毛片视频| 色哟哟哟哟哟哟| 日韩欧美在线二视频| 国产精品精品国产色婷婷| 老汉色∧v一级毛片| 法律面前人人平等表现在哪些方面| 90打野战视频偷拍视频| 欧美三级亚洲精品| 熟女少妇亚洲综合色aaa.| 亚洲人成77777在线视频| 国产午夜福利久久久久久| 美女扒开内裤让男人捅视频| 亚洲av电影在线进入| 欧美三级亚洲精品| 美女扒开内裤让男人捅视频| 嫩草影院精品99| 999精品在线视频| 99热这里只有精品一区 | 欧美日本亚洲视频在线播放| 一级毛片女人18水好多| 久久精品91无色码中文字幕| 亚洲欧美日韩无卡精品| 国产1区2区3区精品| 亚洲五月婷婷丁香| 在线观看一区二区三区| 国产亚洲精品综合一区在线观看 | 免费在线观看日本一区| 色精品久久人妻99蜜桃| 亚洲欧美日韩无卡精品| 99国产精品99久久久久| 成人手机av|