• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    THE VALUE DISTRIBUTION OF GAUSS MAPS OF IMMERSED HARMONIC SURFACES WITH RAMIFICATION*

    2022-03-12 10:21:30ZhixueLIU劉志學(xué)YezhouLI李葉舟
    關(guān)鍵詞:志學(xué)

    Zhixue LIU (劉志學(xué)) Yezhou LI (李葉舟)

    School of Science,Beijing University of Posts and Telecommunications,Beijing 100876,China E-mail:zxliumath@bupt.edu.cn;yezhouli@bupt.edu.cn

    Xingdi CHEN (陳行堤)

    School of Mathematical Sciences,Huaqiao University,Quanzhou 362021,China E-mail:chxtt@hqu.edu.cn

    Abstract Motivated by the result of Chen-Liu-Ru[1],we investigate the value distribution properties for the generalized Gauss maps of weakly complete harmonic surfaces immersed in Rn with ramification,which can be seen as a generalization of the results in the case of the minimal surfaces.In addition,we give an estimate of the Gauss curvature for the K-quasiconfomal harmonic surfaces whose generalized Gauss map is ramified over a set of hyperplanes.

    Key words value distribution;harmonic surfaces;quasiconformal mappings;conformal metric,Gauss map

    1 Introduction

    In this paper,we study the value distribution properties for a Gauss map of the immersed harmonic surfaces in Rn.This study was initiated by R.Osserman and S.S.Chern[2-4],who gave attention to the case of complete minimal surfaces immersed in Rn.Over the last few decades,many important works have been carried out in this area (see[1,5-11]),including those by Chen-Liu-Ru[1],Xavier[5],Ru[7,8],F(xiàn)ujimoto[9]and Osserman-Ru[10].Osserman[12]showed that the Gauss map of a complete non-fl at minimal surface in R3cannot omit a set of positive logarithmic capacity in Q1(C).Subsequently,Chern and Osserman[3]showed that the Gauss map of a non-fl at complete minimal surface in Rnintersects a dense set of hyperplanes.In 1981,Xavier[5]showed that the Gauss map of a non-fl at complete minimal surface in R3cannot omit seven points of the sphere.In 1988,F(xiàn)ujimoto[13]proved Nirenberg’s conjecture that the Gauss map of a complete non-fl at minimal surface in R3,can omit at most 4 points,and the bound is sharp.

    Based on an earlier result of Fujimoto[14],Ru proved the following result (see also[14,Theorem 1.1]):

    Theorem 1.1([7,Corollary]) Let M be a complete minimal surface immersed in Rn.Then the generalized Gauss map Φ can omit at most n (n+1)/2 hyperplanes in Pn-1(C) located in general position.

    Ros[15]gave a simple and unified proof of the curvature estimates for stable minimal surfaces and for minimal surfaces whose Gauss map image omits five points.Later,Osserman and Ru[10]obtained a version of the curvature estimates for minimal surfaces in a higher dimension.

    Theorem 1.2([10,Theorem 1.1]) Let X:M→Rnbe a minimal surface immersed in Rn.Suppose that its generalized Gauss map Φ omits more thanhyperplanes in Pn-1(C),located in general position.Then there exists a constant C,depending on the set of omitted hyperplanes,but not the surface,such that

    where K (p) is the Gauss curvature of the surface at p,and d (p) is the geodesic distance from p to the boundary of M.

    As early as the late 60s,Milnor[16,17]started to consider whether this theory carries over in an interesting way to the larger class of harmonically immersed surfaces;some similar results to those above were obtained (see[1,18-20]).

    Let X:M→Rn(n≥3) be a regular and an immersion map,where M is a smooth oriented two-manifold without a boundary.The surface X (M) is called an immersed harmonic surface if X is harmonic.We may consider M as a Riemann surface by associating a holomorphic local coordinate z=u+iv with each local coordinate (u,v) of M.It is well-known that X is harmonic if and only if

    where φi=for i=1,···,n and φiare only locally defined.We know that X is harmonic if and only if φiare holomorphic for all i=1,···,n.Let Φi:=φidz be some holomorphic one-forms,obviously Φiare globally defined on M and so the holomorphic map Φ:=[Φ1:···:Φn]:M→Pn-1(C) is well-defined on M;here we call it the generalized Gauss map of the harmonic surface X (M).

    Milnor[20]observed that the generalized Gauss map Φ,instead of the Gauss map n,carries value distribution properties similar to the Gauss map n in the minimal surface case.We recall the following result,due to T.K.Milnor[20](see also Theorem 2.1 in[21]):

    Theorem 1.3([20,Theorem 3]) Let X=(X1,···,Xn):M→Rnbe a complete immersed harmonic surface with the induced metric,where M is a Riemann surface.Let Φ=[Φ1:···:Φn]:M→Pn-1(C),where Φi:=dz for i=1,···,n,be the generalized Gauss map.Then either X (M) is a 2-plane or else Φ(M) comes arbitrarily close to every hyperplane=0 in Pn-1(C).

    Chen et al.[1]investigated the value distribution properties for the generalized Gauss map Φ of an immersed harmonic surface;this obtained a result similar to that of Fujimoto and Ru in the minimal surfaces case.

    Theorem 1.4([1]) Let M be an open Riemann surface and X=(X1,···,Xn):M→Rnbe a harmonic immersion.Let Φ:M→Pn-1(C) be the generalized Gauss map.Assume that X is weakly complete with respect to the reduced metric.If Φ omits more thanhyperplanes in Pn-1(C) in general position,then X (M) lies in a 2-plane.

    Not all of these properties will have resonable counterparts;minimal surfaces are enormously special.In this paper we obtain some value distribution properties for the generalized Gauss map of the immersed harmonic surfaces in Rnwith ramification.

    Here,we use some notations and results of the geometric orbifold as shown in[22].An orbifold consists of a compact irreducible complex space together with a Weil Q-divisor.Let (X,D) be an orbifold with D:=,where mj∈N∪{∞}are multiplicities and Hjare distinct hyperplanes.One also says that D is an orbifold structure on X.An orbifold can be regarded as a complex space endowed with an additional structure in the form of a certain Weil Q-divisor.A holomorphic map f from the unit disk Δ={z∈C:|z|<1}to an orbifold (X,D) is an orbifold morphism if f (Δ)/?supp (D) and multz(f*Hj)≥mjfor all j and z∈Δ with f (z)∈supp (Hj).

    2 Main Results

    Let ds2be the metric on M induced through X from the standard inner product on Rn.In terms of local coordinate (u,v),let z=u+,ds2be given in the following form:

    where

    In particular,if h≡0,then ds2=2||φ||2|dz|2.Here we say that (u,v) is an isothermal coordinate of the surface M.It is well-known that X is minimal if

    Let Γ:=2‖φ‖2|dz|2be the associated conformal metric of ds2defined in (2.1).Since|h|≤‖φ‖2,it follows from (2.1) that the associated conformal metric Γ is complete if ds2is complete (see also Lemma 1 in[23]).The metric ds2is said to be weakly complete if the associated conformal metric Γ is complete.If ds2is (weakly) complete,then we also say the surface M is (weakly) complete.

    Let Φ=[φ0:···:φn-1]:Δ→Pn-1(C) be a holomorphic map and let H:={[z0:···:zn-1]|a0z0+···+an-1zn-1=0}be a hyperplane in Pn-1(C).We say that Φ is ramified over H with multiplicities of at least m if all zeros of the holomorphic functionhave orders of at least m,whereis a reduced representation of Φ.Note that we always say that Φ is ramified over Hjwith multiplicity∞if Φ omits Hj.

    One of our main results is as follows:

    Theorem 2.1Let M be an open Riemann surface and X=(X1,···,Xn):M→Rnbe a harmonic immersion.Let Φ:M→Pn-1(C) be the generalized Gauss map.Assume that X (M) is weakly complete with respect to the reduced metric.If there are q hyperplanes H1,H2,···,Hq?Pn-1(C) located in general position such that the generalized Gauss map Φ of M is ramified over Hjwith a multiplicity of at least mjfor each j∈{1,2,···,q},and if

    then X (M) lies in a 2-plane.

    Remark 2.2Under the same assumptions as in Theorem 2.1,and as discussed in the proof of Theorem 2.1,one knows that the generalized Gauss map Φ is a constant map.Thus,Theorem 2.1 implies Theorem 1.1.

    In particular,we study the value distribution theory for quasiconformal harmonic surfaces immersed in R3,and an estimate of the Gauss curvature is established.We briefly introduce the definition of a K-quasiconformal harmonic surface given by Kalaj[24](see also[1,18]).

    Let M be an open Riemann surface and let X=(X1,X2,X3):M→R3be a harmonic immersion.Write

    ‖?X‖2=4‖φ‖2,

    where‖?X‖2is the Hilbert-Schmidt norm defined by‖?X‖2:=‖?X/?u‖2+‖?X/?v‖2.Also,the Jacobian of X is given by

    where φ is given by (1.1),and h and‖φ‖are defined by (2.2).

    An immersion X=(X1,X2,X3):M→R3is called K-quasiconformal if it satisfies the inequality

    which is equivalent to

    If K=1,then the above inequality yields the following results:

    |Xu|=|Xv|and Xu·Xv=0.

    Here we say that X is an isothermal parametrization (isothermal coordinate) of the surface M.If a Riemann surface M admits a K-quasiconformal harmonic immersion X into R3,X is a K-quasiconformal harmonic immersion,and we call such a surface a K-quasiconformal harmonic surface.

    By building a relation between Gauss curvature (intrinsic curvature) and curvature with respect to the associated conformal metric Γ,we prove the following result:

    Theorem 2.3Let M be an open Riemann surface and take a K-quasiconformal harmonic immersion X=(X1,X2,X3):M→R3satisfying that there exists a constant η(0≤η<1) such that

    Then there exists a constant C depending on the set of hyperplanes,but not the surface,such that

    where K (p) is the Gauss curvature of the surface at p,and d (p) is the geodesic distance from p to the boundary of M with respect to the induced metric.

    3 Basic Notions and Auxiliary Results

    In order to prove our main theorems,we need to introduce some basic notations and some auxiliary results (see also[1]).

    Let H={[z0:z1:···:zk]|a0z0+···+akzk=0}be a hyperplane in Pk(C);here a=(a0,···,ak)∈Ck+1{0}is called the normal vector associated to H.Hyperplanes H1,···,Hqare said to be in n-subgeneral position (with n≥k) if and only if,for every injective map μ:{0,1,···,n}→{1,···,q},the linear span of those corresponding normal vectors aμ(0),···,aμ(n)is Ck+1.When n=k,then we just say that H1,···,Hqare in general position in Pk(C).It is clear that if hyperplanes H1,···,Hqin Pn(C) are in general position,then,for k≤n,and regarding Pk(C)?Pn(C),the restricted hyperplanes H1∩Pk(C),···,Hq∩Pk(C) are in n-subgeneral position.

    For holomorphic functions f0,f1,···,fk,we say that

    is the Wronskian of f0,f1,···,fk.

    For a hyperplane Hjin Pk(C) with the normal vector aj=(aj0,···,ajk),we define,for 0≤s≤k,1≤j≤q,

    If F is linearly non-degenerate,then0 for all 0≤s≤k and 1≤j≤q.Indeed,if0 for some s and j,then

    for all i1,···,is.This implies thatare linearly dependent,which contradicts the linear non-degeneracy of F.

    We need the following lemmas:

    Lemma 3.1([25,26]) If a k-nondegenerate holomorphic map from C to Pn(C) is ramified over hyperplanes Hj(1≤j≤q) with a multiplicity of at least mj,where Hjare in general position,then

    Lemma 3.2([1,Lemma 3.1]) Let X=(X1,···,Xn):M→Rnbe an immersed harmonic surface with the induced metric,where M is a Riemann surface.Let Φ=[Φ1:···:Φn]:M→Pn-1(C),where Φi:=is the generalized Gauss map.If Φ is constant,then X (M) lies in a 2-plane.

    Lemma 3.3([27,Proposition 10]) Let ω be a Hermitian metric on X compact.Assuming that the orbifold (X,D) is hyperbolic and hyperbolically imbedded in X,then the set of all orbifold morphisms f:Δ→(X,D) is relatively compact in Hol (Δ,X),where Hol (Δ,X) denotes the set of all holomorphic maps of Δ into X.

    Lemma 3.4([22,Proposition 7]) Let fn:(X,Δ)→(X′,Δ′) be a sequence of orbifold morphisms.Assume that{fn},regarded as a sequence of holomorphic maps from X to X′,converges locally uniformly to a holomorphic map f:X→X′.Then either f (X)?Supp (Δ′),or f is an orbifold morphism from (X,Δ) to (X′,Δ′).

    Lemma 3.5([10,Lemma 2.2]) Letbe a sequence of conformal metrics on the unit disc Δ whose curvatures satisfy-1≤Kl≤0.Suppose that Δ is a geodesic disk of radius Rlwith respect to the metric,where Rl→∞,and that the metricconverges,uniformly on compact sets,to a metric ds2.Then all distances to the origin with respect to ds2are greater than or equal to the corresponding hyperbolic distances in Δ.In particular,ds2is complete.

    Lemma 3.6([28,29]) Letbe a set of hyperplanes in Pk(C) in n-subgeneral position.Then there exist some functions ?(j) and a number θ>0 such that

    Here ?(j) are called the Nochka weights associated to the hyperplanes Hj(1≤j≤q).

    Lemma 3.7([9,Lemma 1.6.7]) Let dσ2be a conformal flat metric on an open Riemann surface M.Then for each point p∈M,there exists a local diffeomorphism Ψ of a disk ΔR={w∈C||w|<R}(0<R≤∞) onto an open neighborhood of p with Ψ(0)=p such that Ψ is local isometry (i.e.,the pullback Ψ*(dσ2) is equal to the standard Euclidean metricon ΔR),and there exists a point a0with|a0|=1 and the Ψ-imageof the line={w=a0t:0<t<R}is divergent in M.

    The following result,obtained by Ru,plays a important role in the proof of Theorem 2.1:

    Lemma 3.8([8,Main Lemma]) Let F=[f0:···:fk]:ΔR→Pk(C) be a non-degenerate holomorphic map,let H1,H2,···,Hqbe hyperplanes in Pk(C) in n-subgeneral position,and let ?(j) be their Nochka weights.Take a reduced representation=(f0,f1,···,fk) of F.If F is ramified over Hjwith a multiplicity of at least mjfor each j∈{1,2,···,q}and

    then there exists a positive constant C such that

    4 Proofs of the Main Results

    4.1 The proof of Theorem 2.1

    Based on a similar argument as to that in[1,8],we start to prove Theorem 2.1.Here,the details for the proof will be shown for the convenience of the reader.

    By taking the universal cover of M if necessary,one can assume that M is simply connected.It follows from the uniformization theorem that M is conformally equivalent to the unit disc Δ or C.We claim that Φ is constant map.If not,a contradiction will be derived.

    For the case where M is the complex plane C,one can conclude from Lemma 3.1 that Φ is a constant map.For the other case where M is the unit disc Δ,if Φ is not a constant,then there exists k (1≤k≤n-1) such that the image of Φ is contained in Pk(C)?Pn-1(C),but not in any subspace whose dimension is lower than k.In other words,Φ can be regarded as a linearly nondegenerate map from Δ into Pk(C).Letting=(φ0,φ1,···,φk) be a reduced representation of Φ,by the assumption,the metricis complete.Let:=Hj∩Pk(C),1≤j≤q.Obviously,hyperplanesare in (n-1)-subgeneral position in Pk(C).Furthermore,one may assume thatare given by

    always holds for any 1≤k≤n-1,we get that

    holds for all 1≤k≤n-1.

    Choose some N such that

    which,together,imply that

    0<τ<1,0<NA (1-τ)<4.

    Since Φ:Δ→Pk(C) is linearly non-degenerate,none of the,0≤s≤k,1≤j≤q vanishes identically.Thus,by (3.1),for eachthere exist i1,i2,···,issuch that

    does not vanish identically.Here,let ξj0=.Note that every ξjsis a holomorphic function and has only isolated zeros.

    We define a new metric

    Notice that dσ2is a flat metric on M0.Fixing a point p0∈M0,by Lemma 3.7,there exists a local diffeomorphism Ψ of a disk ΔR={w∈C:|w|<R}(0<R≤∞) onto an open neighborhood of p0with Ψ(0)=p0such that Ψ is a local isometry.Furthermore,there exists a point a0with|a0|=1,such that the Ψ-imageof the line={w=a0t:0<t<R}is divergent in M0.

    By Lemma 3.1,one has that Φ is a constant for the case of R=∞,which is a contradiction.Hence,we know that R<∞.

    Define some functions on{w||w|<R}as

    fs(w):=φs(Ψ(w))(0≤s≤k),

    and F (w):=(f0(w),f1(w),···,fk(w)).For 1≤j≤q,0≤s≤k,we define

    (F,Hj):=aj0f0+···+ajkfk,F(xiàn)k:=W (f0,f1,···,fk)

    and

    where (i1,···,is) is the index in the definition of ξjsin (4.2).Noticing the fact that,for 0≤s≤k,

    we have,from (4.3),that

    Using the isometry property of Ψ,i.e.,|dw|=Ψ*dσ,we get that

    In the above inequality,we use the fact that|ζjs|≤for all 0≤s≤k,1≤j≤q.Noticing that 0<λ<1,we conclude from Lemma 3.8 that

    which contradicts the completeness of the metric.Thus,Φ is a constant map.

    To prove that X (M) lies in a 2-plane,we denote by K (Γ) the Gauss curvature with respect to the associated conformal metric Γ:=.Then

    Since Φ is constant,a reduced representationof Φ can be assumed as=(φ0,b1φ0···,bkφ0),where bj(1≤j≤k) are some complex numbers.Thus,K (Γ)≡0 can be verified.By Lemma 3.2,X (M) lies in a 2-plane.We have thus completed the proof of Theorem 2.1.

    4.2 The proof of Theorem 2.3

    Inspired by Lemma 3.2 in[10],the following Proposition can be verified directly by the same argument as to that in[30],which plays a central role in the proof of Theorem 2.3(here we omit the details for the proof):

    Proposition 4.1Let M be an open simply connected Riemann surface and let Φ(l):M→P2(C) be a sequence of holomorphic maps.Fix a globally reduced representation=of Φ(l)(such a representation exists because M is simply connected) and let.Define a sequence of the conformal metricson M as follows:

    Denote by Klthe Gauss curvature of M with respect to the above metric.Assume that{Φ(l)}converges to a nonconstant holomorphic map φ uniformly on every compact subset of M and that{|Kl|}is uniformly bounded.Then

    (i) either there is a subsequenceof{Kl}which converges to zero or

    (ii) for each 0≤j≤2,there exists a subsequencewhich converges to a holomorphic function hjon M.Furthermore,h0,h1,h2have no common zeros.

    We start by proving Theorem 2.3.

    Let ds2be the metric on M induced through X from the standard inner product on R3.In terms of local coordinate (u,v),ds2is given by

    ds2=Edu2+2Fdudv+Gdv2,

    with

    E=Xu·Xu,F(xiàn)=Xu·Xv,G=Xv·Xv.

    The second fundamental form can be shown as

    II (n)=Ldu2+2Mdudv+Ndv2,

    with

    Furthermore,we have

    Denoting by K (p) the Gauss curvature of the surface at p with respect to the induced metric ds2above,one has the following expression for K (p):

    On the other hand,we denote by K (Γ) the Gauss curvature with respect to the associated conformal metric Γ:=and

    Combining (4.5) and (4.6),one has the estimation

    which is equivalent to

    Moreover,one has,by (2.2),that ds2≤;namely,d (p)≤.It thus remains to prove that there exists a positive number C0such that

    For the case that X (M) is weakly complete with respect to the induced metric,i.e.,dΓ(p)=∞holds for all p∈M,by Theorem 2.1 we know that the generalized Gauss map Φ is a constant and that|K (Γ)|1/2=0.Hence (4.2) is a trivial result.We may assume that the associate conformal metric Γ is not complete on M.

    To prove (4.2),we consider an open Riemann surface M endowed with a conformal metric Γ=.If (4.2) does not hold,one can construct a sequence of open Riemann surfaces Ml,points pl∈Ml,and a sequence of the holomorphic map Φ(l):Ml→P2(C) such that→∞,where Kldenotes the Gauss curvature of the surface Mlwith respect to the metricis a reduced representation of Φ(l),andis the geodesic distance from plto the boundary of Mlwith respect to the conformal metric Γl.Let H1,H2,···,Hq?P2(C) be hyperplanes given in Theorem 2.3.Assume that Φ(l)is ramified over Hjwith a multiplicity of at least mjfor each j∈{1,2,···,q}.Moreover,by using a method similar to that of[10,Main Theorem](see also[30]),one may assume that the surfaces Mland points plcan be chosen such that Kl(pl)=,-1≤Kl≤0 on Mlfor all l,and→∞when l→∞.

    For a conformal metric Γ on M,we have that

    which implies that the Gauss curvature for a conformal metric is independent of the universal cover of M.Thus,we may assume that Mlis simply connected by taking the universal cover of Mlif necessary.Furthermore,by the uniformization theorem,Mlis either conformally equivalent to C or to the unit disc Δ.

    For the case where M is the complex plane C,it follows from Lemma 3.1 that Φ(l)is constant map.Thus,Kl≡0 which is a contradiction to the fact that Kl(pl)=.

    For another case where M is conformally equivalent to the unit disc Δ,the holomorphic map Φ(l):Δ→P2(C) is ramified over Hjwith a multiplicity of at least mjfor each j.One further knows that if (Pn(C),D) is hyperbolically imbedded in Pn(C),then Lemma 3.3 implies that{Φ(l)}is normal;i.e.,there exists a subsequence of holomorphic mapsof{Φ(l)},still denoted by{Φ(l)},that converges to a holomorphic map φ uniformly on every compact subset of the unit disc Δ.

    If φ is a constant map,then φ maps Δ into a single point Q.Take a hyperplane H not containing the point Q,and let U and V be two disjoint neighborhoods of H and Q,respectively.Then,φ omits a neighborhood of H in P2(C).Since{Φ(l)}converges uniformly on every compact subset of the unit disc Δ,{Φ(l)}omits a neighborhood of H in P2(C) for l large enough.Without loss of generality,we may assume that H:={z2=0}?P2(C),and there exists a positive number ε>0,such that for all l,≥ε.As discussed in[4,Theorem 1.2],one gets the following result:

    Here C1is a constant,Klis the Gauss curvature of the surface at p,andis the geodesic distance from p to the boundary of M.By using again a method similar to that of[10,Main Theorem],one gets a contradiction.Thus,φ is not a constant.Since Kl(pl)=for all l,then by Proposition 4.1,there is a subsequence of,say itself,which converges to hjuniformly on every compact subset of the unit disc Δ for each j with 0≤j≤2.Furthermore,h0,h1,h2have no common zeros,so we get a holomorphic map[h0:h1:h2]:M→P2(C).Obviously,φ=[h0:h1:h2].Note that→∞when l→∞,and by Lemma 3.5,the conformal metric ds2:=is complete on the unit disc Δ.Note that Φ(l)are some orbifold morphisms of Δ into (P2(C),D),so by Lemma 3.4,φ is also an orbifold morphism of Δ into (P2(C),D) or φ(Δ)?Supp (D).

    If φ is ramified over hyperplanes Hjwith multiplicities of at least mjfor all j=1,2,···,q,then Remark 2.2 shows that φ is a constant,a contradiction.Therefore,there exist hyperplanes Hj,j∈J?{1,···,q}such that φ(Δ)?∩j∈IHj.Furthermore,φ is ramified over hyperplanes Hjwith multiplicities of at least mjfor all j∈{1,2,···,q}J.Assume that φ is k-nondegenerate,obviously,k≤1.Since φ is not a constant,k=1,and there exists only one hyperplane,so we may assume that j0=1 such that φ(Δ)?H1.We note that φ can be regarded as an orbifold morphism of Δ into.Furthermore,H2∩H1,···,Hq∩H1are still in general position in H1,since H1,···,Hqare in general position in P2(C).By the assumption that,Lemma 3.1 implies that φ is a constant,which is a contradiction.

    In conclusion,(4.2) holds.Thus,there exists a constant C,depending on the set of hyperplanes,but not the surface,such that|K (p)|1/2≤.We have thus completed the proof of Theorem 2.3.

    AcknowledgementsWe are grateful to Professor Min Ru for his useful advice and conversation.

    猜你喜歡
    志學(xué)
    羅少斌
    夏志學(xué)書(shū)法作品選
    九月 在秋天相聚
    神 秘
    修身 交友 志學(xué) 創(chuàng)班
    生死一托
    派出所工作(2018年6期)2018-09-10 17:18:39
    吃錯(cuò)婚宴隨錯(cuò)禮,犟老漢一波三折討回份子錢
    女性天地(2016年1期)2016-03-10 07:35:06
    王志學(xué):蒼巖山是我的良師益友
    吃錯(cuò)婚宴隨錯(cuò)禮,倔老漢鍥而不舍討回份子錢
    婦女生活(2015年7期)2015-07-20 05:42:36
    作家檔案:楊志學(xué)
    久9热在线精品视频| 超碰97精品在线观看| 啦啦啦视频在线资源免费观看| 久久久久国产精品人妻aⅴ院 | av超薄肉色丝袜交足视频| 国产区一区二久久| 亚洲av片天天在线观看| 黄色成人免费大全| 999精品在线视频| cao死你这个sao货| 最近最新免费中文字幕在线| 1024视频免费在线观看| 麻豆国产av国片精品| 欧美人与性动交α欧美精品济南到| 欧美日韩亚洲国产一区二区在线观看 | 黄片小视频在线播放| 亚洲片人在线观看| 老汉色∧v一级毛片| 18禁观看日本| 我的亚洲天堂| 伦理电影免费视频| 久久热在线av| 精品少妇久久久久久888优播| 亚洲午夜理论影院| a级毛片黄视频| 老汉色∧v一级毛片| 日韩成人在线观看一区二区三区| 久久精品国产亚洲av香蕉五月 | 制服人妻中文乱码| 99国产精品99久久久久| 女性被躁到高潮视频| 一边摸一边做爽爽视频免费| 欧美 日韩 精品 国产| 国产在线观看jvid| 亚洲av成人av| а√天堂www在线а√下载 | 亚洲精品成人av观看孕妇| 亚洲精品在线美女| 国产在线一区二区三区精| 欧美在线黄色| 亚洲精品一二三| 国产一区二区三区在线臀色熟女 | 国产精华一区二区三区| 在线观看日韩欧美| 亚洲精品乱久久久久久| 伦理电影免费视频| 亚洲中文日韩欧美视频| www日本在线高清视频| 久久99一区二区三区| 欧美日韩亚洲高清精品| 国产一区有黄有色的免费视频| 美女高潮喷水抽搐中文字幕| 亚洲精品国产精品久久久不卡| 欧美日韩乱码在线| 亚洲人成电影观看| 亚洲第一欧美日韩一区二区三区| 久久久久精品国产欧美久久久| 免费一级毛片在线播放高清视频 | 国产精品久久久久久人妻精品电影| av超薄肉色丝袜交足视频| 老司机午夜十八禁免费视频| 欧美最黄视频在线播放免费 | 最新美女视频免费是黄的| 一级黄色大片毛片| 男女床上黄色一级片免费看| 美女 人体艺术 gogo| 日日爽夜夜爽网站| 精品人妻1区二区| 俄罗斯特黄特色一大片| √禁漫天堂资源中文www| 99国产精品一区二区三区| 色在线成人网| 满18在线观看网站| 国产精品亚洲av一区麻豆| 91九色精品人成在线观看| 欧美日韩亚洲高清精品| 中文字幕人妻丝袜制服| 国产成人免费观看mmmm| 高清欧美精品videossex| 国产亚洲精品第一综合不卡| 免费人成视频x8x8入口观看| 国产激情久久老熟女| 亚洲一区中文字幕在线| 在线免费观看的www视频| 黄片大片在线免费观看| 久久人妻av系列| 国产精品99久久99久久久不卡| 久久国产精品男人的天堂亚洲| 满18在线观看网站| 淫妇啪啪啪对白视频| 超碰97精品在线观看| 人妻一区二区av| 天天影视国产精品| 中文字幕色久视频| 国内毛片毛片毛片毛片毛片| 久久精品aⅴ一区二区三区四区| 国产伦人伦偷精品视频| 久热这里只有精品99| 女人高潮潮喷娇喘18禁视频| 免费看a级黄色片| 一区二区日韩欧美中文字幕| 国产欧美亚洲国产| 国产精品二区激情视频| 久久香蕉国产精品| 一级,二级,三级黄色视频| 无人区码免费观看不卡| 精品久久蜜臀av无| 黑人操中国人逼视频| 亚洲精品国产区一区二| 精品国产超薄肉色丝袜足j| 人人妻,人人澡人人爽秒播| 91精品国产国语对白视频| 一级a爱视频在线免费观看| 亚洲av成人不卡在线观看播放网| avwww免费| 色94色欧美一区二区| 91精品三级在线观看| 99riav亚洲国产免费| 亚洲情色 制服丝袜| 国产99白浆流出| 久久久水蜜桃国产精品网| 69精品国产乱码久久久| 亚洲欧美一区二区三区久久| 午夜福利乱码中文字幕| 如日韩欧美国产精品一区二区三区| 91老司机精品| 国产男靠女视频免费网站| 亚洲九九香蕉| 国产男女内射视频| 亚洲中文字幕日韩| 露出奶头的视频| 人人妻人人澡人人看| 久久久久久久久免费视频了| 涩涩av久久男人的天堂| 黄色视频,在线免费观看| 极品人妻少妇av视频| 9色porny在线观看| 精品第一国产精品| 午夜久久久在线观看| 91在线观看av| 757午夜福利合集在线观看| 国产精品98久久久久久宅男小说| 侵犯人妻中文字幕一二三四区| 国产99白浆流出| 日韩精品免费视频一区二区三区| 国产三级黄色录像| 亚洲一区二区三区欧美精品| 黄片大片在线免费观看| 美女高潮到喷水免费观看| 亚洲欧美一区二区三区黑人| 国产麻豆69| 国产日韩一区二区三区精品不卡| 怎么达到女性高潮| 国产精品久久久久成人av| 黄色 视频免费看| 无遮挡黄片免费观看| 久久精品国产a三级三级三级| 国产精品影院久久| 国产精品香港三级国产av潘金莲| 一级a爱片免费观看的视频| 国产欧美日韩一区二区三| 一本综合久久免费| ponron亚洲| 久久亚洲精品不卡| 日韩欧美三级三区| 久久久国产精品麻豆| 深夜精品福利| 国产欧美亚洲国产| 久久午夜亚洲精品久久| 法律面前人人平等表现在哪些方面| 亚洲va日本ⅴa欧美va伊人久久| 亚洲av成人不卡在线观看播放网| 捣出白浆h1v1| 亚洲av欧美aⅴ国产| 后天国语完整版免费观看| 亚洲一区高清亚洲精品| 日日爽夜夜爽网站| 日本黄色视频三级网站网址 | 黄片大片在线免费观看| 亚洲欧洲精品一区二区精品久久久| 看片在线看免费视频| 天堂俺去俺来也www色官网| 国产又色又爽无遮挡免费看| 精品国产乱码久久久久久男人| 亚洲熟女精品中文字幕| 亚洲第一欧美日韩一区二区三区| 男男h啪啪无遮挡| 久久久精品区二区三区| 亚洲精品一二三| 免费人成视频x8x8入口观看| 成熟少妇高潮喷水视频| 久久99一区二区三区| av欧美777| av有码第一页| 国产欧美日韩综合在线一区二区| 国产精品 欧美亚洲| 国产精品98久久久久久宅男小说| 国产亚洲av高清不卡| 人人妻人人澡人人看| 国产精品 欧美亚洲| 一区二区三区国产精品乱码| 亚洲精品中文字幕在线视频| 国产免费av片在线观看野外av| 最近最新中文字幕大全免费视频| 99久久精品国产亚洲精品| 女警被强在线播放| 久久久久视频综合| 国产激情欧美一区二区| 精品一区二区三区视频在线观看免费 | 无人区码免费观看不卡| 窝窝影院91人妻| 国产欧美日韩一区二区三区在线| 国产三级黄色录像| 欧美丝袜亚洲另类 | av电影中文网址| av欧美777| 亚洲精华国产精华精| 人人妻人人澡人人看| 好看av亚洲va欧美ⅴa在| 精品一区二区三卡| 丝袜美腿诱惑在线| 国产精品亚洲av一区麻豆| 午夜91福利影院| 亚洲全国av大片| videosex国产| 日本撒尿小便嘘嘘汇集6| 国产精品电影一区二区三区 | 亚洲av欧美aⅴ国产| 国内久久婷婷六月综合欲色啪| 国产精品免费视频内射| 1024香蕉在线观看| 欧美人与性动交α欧美精品济南到| 亚洲欧美一区二区三区久久| 日韩成人在线观看一区二区三区| 90打野战视频偷拍视频| 国产色视频综合| av网站在线播放免费| 18禁裸乳无遮挡动漫免费视频| 国产激情欧美一区二区| 9热在线视频观看99| 国产一区有黄有色的免费视频| videosex国产| 亚洲一区二区三区欧美精品| 亚洲情色 制服丝袜| 国产精品免费视频内射| 免费在线观看完整版高清| 男人的好看免费观看在线视频 | 国产精品偷伦视频观看了| 成人影院久久| 国产精品1区2区在线观看. | 国产成人影院久久av| 久久草成人影院| 午夜91福利影院| 91麻豆精品激情在线观看国产 | 午夜精品久久久久久毛片777| √禁漫天堂资源中文www| 国产无遮挡羞羞视频在线观看| 人妻一区二区av| 熟女少妇亚洲综合色aaa.| 国产国语露脸激情在线看| 国产激情欧美一区二区| 嫩草影视91久久| 国产亚洲欧美在线一区二区| 操美女的视频在线观看| 国产精品电影一区二区三区 | 在线av久久热| 激情在线观看视频在线高清 | 黄片播放在线免费| 老熟妇乱子伦视频在线观看| 久热这里只有精品99| 欧美日韩视频精品一区| 91精品国产国语对白视频| avwww免费| 丝袜人妻中文字幕| 9色porny在线观看| 亚洲第一av免费看| 国产精品 国内视频| 久久人人爽av亚洲精品天堂| 嫩草影视91久久| 免费观看人在逋| 成人影院久久| 在线观看www视频免费| 成人免费观看视频高清| 久久久久久亚洲精品国产蜜桃av| 又黄又爽又免费观看的视频| 亚洲精品一二三| 69精品国产乱码久久久| 亚洲专区字幕在线| 精品国产美女av久久久久小说| 久久香蕉激情| 一边摸一边抽搐一进一出视频| 欧美午夜高清在线| a在线观看视频网站| 我的亚洲天堂| 波多野结衣av一区二区av| 国产精品久久视频播放| 免费一级毛片在线播放高清视频 | 99精品在免费线老司机午夜| 三上悠亚av全集在线观看| 18禁美女被吸乳视频| 国产人伦9x9x在线观看| 热re99久久精品国产66热6| 1024香蕉在线观看| 国产亚洲欧美98| 亚洲va日本ⅴa欧美va伊人久久| 人妻一区二区av| 可以免费在线观看a视频的电影网站| 一二三四在线观看免费中文在| 成年人免费黄色播放视频| 久久久国产成人免费| 老司机福利观看| 九色亚洲精品在线播放| 在线永久观看黄色视频| 国产成人精品无人区| 美女扒开内裤让男人捅视频| 少妇 在线观看| 99re6热这里在线精品视频| 日韩有码中文字幕| 日日摸夜夜添夜夜添小说| 日韩免费av在线播放| 亚洲精品国产精品久久久不卡| 精品一区二区三区四区五区乱码| 国产精品一区二区精品视频观看| 国产欧美日韩一区二区三| 欧美色视频一区免费| 中文字幕高清在线视频| 日韩欧美国产一区二区入口| 亚洲av熟女| 久久精品国产综合久久久| 亚洲av成人av| xxxhd国产人妻xxx| 在线免费观看的www视频| 91麻豆av在线| 日韩精品免费视频一区二区三区| 一级片'在线观看视频| 亚洲av成人不卡在线观看播放网| 黄色片一级片一级黄色片| 国产高清视频在线播放一区| 两性夫妻黄色片| 又紧又爽又黄一区二区| 亚洲av欧美aⅴ国产| 国产亚洲精品一区二区www | 日日爽夜夜爽网站| 国产欧美亚洲国产| 日日夜夜操网爽| 18禁国产床啪视频网站| 一级片'在线观看视频| 十八禁高潮呻吟视频| 精品无人区乱码1区二区| 不卡一级毛片| 青草久久国产| 成人永久免费在线观看视频| 一进一出好大好爽视频| 亚洲国产中文字幕在线视频| 亚洲伊人色综图| 99热国产这里只有精品6| 成人特级黄色片久久久久久久| 久久久久久久久久久久大奶| 美女国产高潮福利片在线看| 99在线人妻在线中文字幕 | 宅男免费午夜| 久久久久国内视频| 亚洲欧美精品综合一区二区三区| 国产精品av久久久久免费| 亚洲精品久久午夜乱码| 一区二区日韩欧美中文字幕| 少妇的丰满在线观看| 热re99久久精品国产66热6| 一级,二级,三级黄色视频| 两性午夜刺激爽爽歪歪视频在线观看 | av欧美777| 老司机福利观看| 免费黄频网站在线观看国产| 免费在线观看亚洲国产| 黄色 视频免费看| 麻豆国产av国片精品| 9热在线视频观看99| 免费女性裸体啪啪无遮挡网站| 在线国产一区二区在线| 亚洲第一av免费看| 国产单亲对白刺激| 一边摸一边做爽爽视频免费| 亚洲中文av在线| 国产精品欧美亚洲77777| 好男人电影高清在线观看| 在线观看免费午夜福利视频| 精品人妻1区二区| 精品国产一区二区久久| 男女午夜视频在线观看| 一夜夜www| 在线观看免费高清a一片| 国产一区二区激情短视频| 人人妻人人添人人爽欧美一区卜| 黄片小视频在线播放| av一本久久久久| 美国免费a级毛片| 精品国产一区二区三区四区第35| 久久香蕉激情| 99国产精品一区二区三区| 999精品在线视频| 狠狠狠狠99中文字幕| 久久国产精品人妻蜜桃| 涩涩av久久男人的天堂| 满18在线观看网站| 丰满人妻熟妇乱又伦精品不卡| 黑人巨大精品欧美一区二区蜜桃| av电影中文网址| 人人妻,人人澡人人爽秒播| 一区二区三区精品91| 99久久99久久久精品蜜桃| 精品乱码久久久久久99久播| 国产成人av教育| 亚洲午夜精品一区,二区,三区| 美女高潮到喷水免费观看| av天堂久久9| 十八禁高潮呻吟视频| 久久久久久久精品吃奶| 丰满迷人的少妇在线观看| 国产在线观看jvid| 久久午夜亚洲精品久久| 99久久99久久久精品蜜桃| 日韩欧美一区视频在线观看| 国产麻豆69| av免费在线观看网站| 男女床上黄色一级片免费看| 91麻豆av在线| 久久精品国产a三级三级三级| 国产av又大| 又黄又爽又免费观看的视频| videosex国产| 在线播放国产精品三级| 极品少妇高潮喷水抽搐| 在线观看免费日韩欧美大片| 中文字幕精品免费在线观看视频| 国产欧美日韩精品亚洲av| 免费久久久久久久精品成人欧美视频| 免费看a级黄色片| 在线观看日韩欧美| 老司机在亚洲福利影院| 亚洲第一青青草原| 欧美成人免费av一区二区三区 | 精品人妻在线不人妻| 日韩有码中文字幕| 一区二区三区激情视频| 久久99一区二区三区| 91九色精品人成在线观看| 99精品欧美一区二区三区四区| 午夜久久久在线观看| 自线自在国产av| 黄片大片在线免费观看| 国产亚洲精品一区二区www | 国产成人啪精品午夜网站| 国产高清视频在线播放一区| 午夜91福利影院| 99国产极品粉嫩在线观看| 一边摸一边抽搐一进一小说 | 日本黄色日本黄色录像| 国产激情久久老熟女| 午夜影院日韩av| 亚洲色图 男人天堂 中文字幕| 久久香蕉精品热| 亚洲av欧美aⅴ国产| 国产亚洲精品一区二区www | 王馨瑶露胸无遮挡在线观看| 亚洲国产精品一区二区三区在线| 亚洲欧美精品综合一区二区三区| 中文字幕人妻熟女乱码| 午夜福利视频在线观看免费| 大片电影免费在线观看免费| 99热只有精品国产| 一级毛片高清免费大全| 亚洲九九香蕉| 亚洲精品成人av观看孕妇| 久久久久久久精品吃奶| 99国产精品99久久久久| 国产精品久久久人人做人人爽| 亚洲精品乱久久久久久| 免费看a级黄色片| 精品国产一区二区久久| 每晚都被弄得嗷嗷叫到高潮| 日韩大码丰满熟妇| 侵犯人妻中文字幕一二三四区| 久久久久久久精品吃奶| 欧美乱码精品一区二区三区| 每晚都被弄得嗷嗷叫到高潮| 99riav亚洲国产免费| 久热爱精品视频在线9| 亚洲国产欧美一区二区综合| 在线国产一区二区在线| 国产午夜精品久久久久久| 一本综合久久免费| 1024视频免费在线观看| 天堂俺去俺来也www色官网| 99热国产这里只有精品6| 亚洲第一av免费看| 成人18禁高潮啪啪吃奶动态图| 久久中文看片网| 高清在线国产一区| 国产av一区二区精品久久| 欧美日韩亚洲国产一区二区在线观看 | 精品国产美女av久久久久小说| 亚洲欧美激情综合另类| 大型黄色视频在线免费观看| 男人操女人黄网站| 久热爱精品视频在线9| 69av精品久久久久久| av电影中文网址| 亚洲人成77777在线视频| 丝袜美足系列| 伊人久久大香线蕉亚洲五| 国产91精品成人一区二区三区| 亚洲熟女精品中文字幕| 热re99久久精品国产66热6| 一级,二级,三级黄色视频| 精品福利观看| 村上凉子中文字幕在线| 亚洲一区高清亚洲精品| 久久青草综合色| 十八禁网站免费在线| 黄色怎么调成土黄色| 亚洲精品美女久久久久99蜜臀| www.熟女人妻精品国产| 午夜福利一区二区在线看| svipshipincom国产片| 久久精品熟女亚洲av麻豆精品| 热99re8久久精品国产| 不卡一级毛片| 欧美色视频一区免费| 纯流量卡能插随身wifi吗| 如日韩欧美国产精品一区二区三区| 日韩中文字幕欧美一区二区| 一边摸一边抽搐一进一小说 | 岛国毛片在线播放| 99精品在免费线老司机午夜| 欧美日本中文国产一区发布| 国产高清videossex| 久久亚洲精品不卡| 大码成人一级视频| 狠狠狠狠99中文字幕| 丰满人妻熟妇乱又伦精品不卡| 村上凉子中文字幕在线| 成人国语在线视频| 村上凉子中文字幕在线| 欧美丝袜亚洲另类 | 黑丝袜美女国产一区| 国产精品1区2区在线观看. | 亚洲精品国产区一区二| 久久久久视频综合| 国产一区二区三区综合在线观看| 老司机深夜福利视频在线观看| 亚洲五月婷婷丁香| 国产成人系列免费观看| 我的亚洲天堂| 狠狠狠狠99中文字幕| 国产精品综合久久久久久久免费 | 一级,二级,三级黄色视频| 久久人人97超碰香蕉20202| 午夜久久久在线观看| 国产一区二区激情短视频| 欧美精品亚洲一区二区| 午夜老司机福利片| 国产av一区二区精品久久| 看黄色毛片网站| 69av精品久久久久久| ponron亚洲| 男女高潮啪啪啪动态图| 亚洲精品一二三| xxxhd国产人妻xxx| videosex国产| 欧美日韩亚洲国产一区二区在线观看 | 大香蕉久久成人网| 国产一区二区三区视频了| 两性夫妻黄色片| 久久精品国产a三级三级三级| 精品久久久久久电影网| 美女午夜性视频免费| av一本久久久久| 日本黄色日本黄色录像| 国产成人精品久久二区二区免费| 亚洲人成77777在线视频| 亚洲国产精品合色在线| 亚洲五月天丁香| 丰满饥渴人妻一区二区三| 精品国产一区二区久久| 精品一区二区三卡| 成人影院久久| www.999成人在线观看| 国产在线精品亚洲第一网站| 久久香蕉国产精品| 国产亚洲精品一区二区www | 水蜜桃什么品种好| 国产精品成人在线| 丝袜在线中文字幕| 视频区图区小说| 国产一区有黄有色的免费视频| 婷婷丁香在线五月| 搡老岳熟女国产| 99久久综合精品五月天人人| 少妇被粗大的猛进出69影院| 91老司机精品| videosex国产| 曰老女人黄片| 中国美女看黄片| 亚洲精品国产区一区二| 国产亚洲欧美98| 深夜精品福利| 亚洲午夜精品一区,二区,三区| 亚洲欧美激情综合另类| 人人妻人人爽人人添夜夜欢视频| 女性被躁到高潮视频| 国产麻豆69| 深夜精品福利| 欧美日韩av久久| 首页视频小说图片口味搜索| 亚洲视频免费观看视频|