• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Self-organized TiO2 Nanotube Arrays with Controllable Geometric Parameters for Highly Efficient PEC Water Splitting①

    2022-03-12 07:44:40WANGTianMingCHENYanXinTONGMeiHongLINShiWeiZHOUJingWenJIANGXiaLUCanZhong
    結(jié)構(gòu)化學(xué) 2022年2期

    WANG Tian-Ming CHEN Yan-Xin TONG Mei-Hong LIN Shi-Wei ZHOU Jing-Wen JIANG Xia LU Can-Zhong

    a (CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter,Chinese Academy of Sciences, Fuzhou 350002, China)

    b (College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, China)

    c (Xiamen Institute of Rare-earth Materials, Haixi Institutes,Chinese Academy of Sciences, Xiamen 361021, China)

    ABSTRACT In this report, a series of self-organized TiO2 nanotube arrays were prepared by anodization of titanium foil in mixed electrolytes composed of water, ethylene glycol, and NH4F. Their photoelectrochemical(PEC) performance as a photoanode was characterized by the PEC water-splitting hydrogen (H2) generation reaction. The internal relationship between the TiO2 nanotube arrays (TNTAs) morphology and their PEC performance was thoroughly investigated. Our results show that when the etching time is 10 hours, the length of the as-prepared TNTAs is about 20.78 μm and the measured photocurrent density is around 1.25 mA·cm-2 with applied bias voltage 0.6 V (vs. Ag/AgCl) under simulated sunlight irradiation, which is 976 times higher than that of the TiO2 substrate without nanotubes architecture (0.00128 mA·cm-2). More interestingly, the results of the IPCE measurement show that the band-gap of the as-prepared TNTAs is reduced from 3.20 to 2.83 eV. The corresponding optical response limit is also extended from 400 nm to TiO2 nanotube arrays is 510 nm, which indicates that the increasement of the TNTAs PEC performance benefits from the great improvement of its utilization of both the UV and visible light irradiation.

    Keywords: photoelectrochemistry, water-splitting, TiO2 nanotube arrays, H2;

    1 INTRODUCTION

    The photoelectrochemical (PEC) water-splitting has been considered as one of the most promising approaches for solar-to-hydrogen (STH) since it was discovered by Fujishima and Honda in 1972. Among a variety of the materials developed for PEC applications, titanium dioxide(TiO2) is the most promising one due to its high efficiency,low cost, chemical inert, and photostability[1-3]. The photoactivation of TiO2has been extensively investigated.However, the large band-gap and the fast recombination of photo-generated carriers of bulk TiO2lead to a decreased efficiency of its solar utilization. Great efforts have been made to enhance the absorption of visible light and the rapid transfer of photo-generated carriers to achieve high efficiency STH. It was found that a rational TiO2architecture with large internal surface area, good electrical transport, low charge carrier recombination losses and intimate contact between the semiconductor and the electrolyte can effectively improve the performance of TiO2in the solar assisted PEC water-splitting.TiO2nanotubes (TNT) and TiO2nanotube arrays (TNTAs)provide unique electronic properties, such as high surfacesurface-to-volume ratios and sizedependence properties,obvious quantum confinement effect and high electron mobility for PEC water splitting. The discovery of TNT with various interesting properties has stimulated the quest for the synthesis of TNT structures. Several recent studies indicate that titania nanotubes have improved properties compared to any other form of titania for the applications in photocatalysis[4-6], sensing[7-10], photoelectrolysis[9-11]and photovoltaics[12-14]. TNTA and TNTAs can be produced by a variety of methods, including deposition into a nanoporous alumina template[15-18], sol-gel transcription using organo-gelators as templates[19-20], seeded growth[21], hydrothermal processses[22-24]and electrochemical anodization. Among all the aforementioned nanotube fabrication methods, the method of highly ordered nanotube arrays made by the anodization of titanium in fluoride-based baths[25-31]has been demonstrated to have the most remarkable properties as the dimensions of TNTA and TNTAs can be precisely controlled. Uniform titania nanotube arrays with various pore sizes (22~110 nm),lengths (200~6000 nm), and wall thicknesses (7~34 nm)can be easily obtained by adjusting electrochemical conditions. Many literature reports[33-38]have given evidence of the unique properties and huge performance improvement of this material architecture method, which make it of considerable interests in both scientific researches and practical applications.

    In this work, a series of one-dimensional ordered TNTAs with different geometry parameters were prepared and their corresponding quantum efficiency and PEC performance as a photo-anode were characterized. Compared to the bulk TiO2substrate (0.00128 mA·cm-2at 0.6 Vvs.Ag/AgCl), the as-prepared TNTAs with 20.78μm tube length present about 1.25 mA·cm-2photocurrent density with applied bias voltage 0.6 V (vs. Ag/AgCl) under the simulated sunlight irradiation,showing a huge performance improvement. Our results imply that with the thickness of TNTAs lowing and the diameter of the TNT increasing, the absorption threshold of the TNTAs red-shifted to visible light.

    Fig. 1. Schematic illustration of the preparation process of TNTAs by secondary anodization

    2 EXPERIMENTAL

    2. 1 Materials synthesis

    TNTAs were fabricated by secondary anodization (Fig. 1).Firstly, the Ti foil (99.0%) substrates were polished by emery paper up to 2500 mesh and were sonicated in an acetone ultrasound bath (KUNSHAN ULTRASONIC INSTRUMENT CO., LTD) followed by washing in soap solution and deionized water (Millipore water, 18 MΩcm) for 2 mines each and drying under nitrogen stream to remove the stains and the slight scratches on their surface. The pretreated titanium foils were then anodized at a constant potential of 60 V in a fluorinated glycol organic solution, which is composed of 0.35 wt% NH4F and 1.6 vol% H2O at 20 ℃ and in dual parallel electrode configuration with a titanium mesh cathode for 1 hour as the first step anodization. Before the secondary anodization, the TNTAs template was removed by ultrasonic treatment of the electrode in water for 30 min. Ti substrate without secondary etching was named as TNT-B as a reference group. The secondary electrochemical anodization etching was set at room temperature with 60 V for 1 hour(TNT-1), 6 hours (TNT-6), and 10 hours (TNT-10), respecttively. The anodized electrodes were then annealed by heating to 400 ℃ (0.8 ℃·min-1) in the air for 2 hours. After completing the heating and temperature holding process,TNTAs samples were cooled to room temperature naturally in the air.

    In a typical electrochemical anodization process, the titanium metal foil was used as an etching anode, and the thickness of the surface oxide layer gradually increases during the oxidation process. A dense oxide film was formed on the surface of the titanium metal sheet, and the fluorinecontaining organic solution dissolved the oxide layer to form a fluoride ion metal complex ([TiF6]2-), which diffused along the etched pipe into the solution and finally formed an ordered array of TiO2nanotubes under an applied electric field.

    2. 2 Materials characterization

    The structure and morphology of the prepared TNTAs sample were characterized by a field emission scanning electron microscope (FE-SEM) operating at 2.0 kV equipped with field emission (Apreo SLoVac). The crystal phases and structures of as-prepared TNTAs was characterized by X-ray diffraction (XRD) on Rigaku Miniflex 600 X-ray diffratometer system, equipped with CuKα(λ= 0.15406 nm)radiation, which was scanned over the angular range of 20~80° (2θ) with a scanning speed of 5 °·min-1. Micro structural examinations were conducted on JEOL JEM-2100 transmission electron microscopy (TEM) operated at 120 kV.

    2. 3 Photoelectrochemical measurements

    The photocurrent density was measured with a CS350 electrochemical analyzer (Wuhan Corrtest Instrument Corp.,Ltd, China) in a standard quartz made three-electrode cell in a 0.1 M Na2SO4aqueous solution (pH = 7), in which the TNTAs is the working electrode, a Pt foil is a counter electrode and a Ag/AgCl (saturated KCl) is the reference electrode. A 300 W Xenon Lamp equipped with filter(AM1.5G) and power density 100 mW·cm-2(PLS-SXE300D,Beijing Perfectlight Technology. Co., Ltd.) was used as an illumination source. The measured potentialvs.Ag/AgCl was converted to the reversible hydrogen electrode (RHE)according to the Nernst equation (1):

    WhereE0(vs.RHE) = 0.1976 V at 25 ℃. The photocurrent reaction and incident photon to electron conversion efficiency(IPCE) spectra were obtained under the incident light with wavelength of 300~600 nm and intensity density of about 100 mW·cm-2using a monochromator. IPCE was calculated from chronoamperometry measurements recorded photocurrent density, using the following equation (2):

    It is calculated as a function of the output photocurrent density (Iph, A·cm-2) and incident light power density (Pin,W·cm-2) at each wavelengthλ(nm).

    Linear sweep voltammetry (LSV) was measured with a voltage scan speed of 0.005 V·s-1, and the light was chopped by a shutter of 5 s-1. LSV test conditions were consistent with IPCE. In general, the applied bias photo-to-current efficiency(?) can be determined by equation (3).?represents the photoelectric conversion efficiency of a photoelectrode under an applied bias from a potentiostat.

    whereJphis the photocurrent density of photoelectrode measured under applied voltage,Eappmeans the applied bias potential between the working electrode and counter electrode, andPlightis the incident simulate sunlight power input.

    The Mott-Schottky measurement results were used to illustrate the flat band potentials, which were usually equivalent to the position of the semiconductor conduction band. The frequency range of the electrochemical analyzer is 0.01~100000 Hz, the voltages increment is 0.005 V, and the AC amplitude is 10 mV. The working electrode was measured at 500, 1000, 1500, 2000, and 2500 Hz,respectively. The Schottky barrier can be used to express the position of the conduction band potential and calculate the flat band potential energy. The calculation expression of the Mott-Schottky model using parallel plate capacitors is as the following equation (4):

    In the parallel plate capacitor model,Cscrepresents the space charge layer capacitance,?means the inherent dielectric constant of semiconductors,?0is the dielectric constant in vacuum,NDstands for carrier concentration,Eapplis the applied bias voltage,EFBis the flat band potential, andkis the Boltzmann constant andTsignifythermodynamic temperature.

    3 RESULTS AND DISCUSSION

    FE-SEM and TEM were used to investigate the structure and morphology of the TNTAs. Fig. 2 shows the TNTAs samples with different tube lengths and pore diameters, as well as the Ti substrates with the surface arrays removed (Fig.2a). The top view and the side view of TNT-1, TNT-6 and TNT-10 are shown in Fig. 2b, 2c and 2d, respectively.Obviously, with the anodization time increasing, the length of the nanotube gradually increases from 3.422 to 20.78and the diameter increases from 52.35 to 102.35 nm. This effectively increases the effective reaction area between photocatalysis and water. Simultaneously increases the absorption efficiency of light, which greatly improves the light conversion efficiency of TiO2. Fig. 2e and 2f are the high resolution transmission electron microscope (HRTEM)of the TiO2nanotube (TNT-6). The lattice spacing of 0.36 nm observed in the TNTAs samples is consistent with the lattice spacing of TiO2(101).

    Fig. 2. SEM images of TNT-B (a), TNT-1 (b) , TNT-6 (c) and TNT-10 (d); TEM image (e) and HRTEM image (f) of TNT-6

    XRD patterns of the two TNTAs samples (TNT-10 and TNT-B) are shown in Fig. 3, which show that there are characteristic diffraction peaks of anatase TiO2at 2θ= 25.15°(101), 37.38° (004), and 47.78° (200). Obviously, the as-prepared ordered TNTAs are anatase, and the other appearing peaks come from the background of metallic titanium.

    Fig. 3. X-ray diffraction patterns of ordered TNTAs

    To better understand the synergistic effect of TNT architecture, systematic photoelectrochemical measurements were carried out on PEC anodes of TNT-B, TNT-1, TNT-6,and TNT-10, respectively. As shown in Fig. 4a, the measured photocurrent density of TNT-10 sample is around 1.25 mA cm-2with applied bias voltage 0.6 V (vs.Ag/AgCl) under simulated sunlight irradiation, which is 976 times higher than that of the TiO2bulk substrate (TNT-B: 0.00128 mA cm-2).Furthermore, with the increase of the length of the ordered TNT, its measured photocurrent density increases as well, for example, the photocurrent density of the TNT-6 array is about 0.38 mA cm-2, the photocurrent density of the TNT-1 nanotube is about 0.06 mA cm-2. Fig. 4b shows the total percent photoelectric conversion efficiency (η) of TNT-10,TNT-6, TNT-1 and TNT-B under simulated sunlight irradiation. A maximum photoconversion efficiency of 1.03 %was observed at an applied potential of 0.6 Vvs.Ag/AgCl for the TNT-10 nanotube array sample, while it was only 0.01 %for the TNT-B at 0.6 Vvs.Ag/AgCl.

    Fig. 4. Linear sweep voltammogram (LSV) curves (a) and their corresponding photoelectric conversion efficiencies (b) of different nanotube arrays

    As shown in Fig. 5, the photocurrent densities of different TNTAs PEC-anodes were measured under monochromatic light irradiation. In addition, the incident monochromatic photon to current conversion efficiency (IPCE) can be given as a function of wavelength (k) as shown in equation (2).

    Fig. 5. Comparisons of different TNTAs samples at electrochemical noise mode (top) and at 0.6V applied voltage (vs. Ag/AgCl)mode (bottom): photocurrent density (a, b), the derived IPCE (%) spectra (c, d), and the band gap determination extracted from IPCE spectra by a function of (IPCE% × h)1/2 vs. h (e, f)

    In particular, with the tube length of the as prepared TNTAs increases, the measured photocurrent density obtained with or without bias applied potential increases significantly, see Figs. 5a and 5d. The maximum photocurrent density of TNT-10 (19μA· cm-2at 365 nm) is around 1.5, 2 and 3.8 times higher than that of TNT-6 (12.6μA·cm-2at 360 nm), TNT-1(9.5μA·cm-2at 355 nm), and TNT-B (5μA·cm-2at 345 nm), respectively. Furthermore, with the increase of the length of the nanotube the TNTAs samples show a significant photo response red-shift in the wavelength range of 400~480 nm. All of these results give the insight that the TNTAs architecture highly enhances the PEC activity of the TiO2under both UV and visible light regions.

    In order to deeper understand the interplay between the photocatalysis and the light absorption of four types of different length TNTAs, IPCE measurements were performed under monochromatic light irradiation. As shown in Fig. 5b,the maximum IPCE of TNT-10 obtained in the electrochemical noise mode (without any applied voltage) is around 28.89% at 354 nm. That is higher than that of the TNT-6 (17.66% at 353 nm), TNT-1 (15.52% at 350 nm) and TNT-B (9.7% at 350 nm). In addition, as shown in Fig. 5e,when 0.6 V (vs. Ag/AgCl) bias potential was applied on the TNTAs PEC anode, the peak IPCE of TNT-10 shifts to 42.98%at 355 nm, which is higher than that of the TNT-6 (37.91% at 354 nm), TNT-1 (33.82% at 352 nm) and TNT-B (21.99% at 350 nm). Meanwhile, the wavelength response cut-off range of TNT-10 red-shifts to 500 nm, see the inset curve in Fig.5(e).

    In comparison with the four samples, it indicates that the UV and visible lights are effectively used for STH, in which the absorption and transportation of photogenerated charge carriers were as efficient as the nanotube arrays, with the increase of the length and diameter. The band gaps of samples can be evaluated from the IPCE spectra by a Tauc plotting (IPCE% ×hυ)1/2versus photon energy (hυ)[39,40]as shown in Fig. 5c. The extracted band gaps of TNT-10, TNT-6,TNT-1 and TNT-B were found to be 3.04, 3.10, 3.15, and 3.20 eV at electrochemical noise measurement. Fig. 5f illustrates that the obtained band gaps were narrowed, which were 2.83, 2.88, 3.01, and 3.20 eV at 0.6 Vvs.Ag/AgCl.Interestingly, when the nanotube array exists, with the application of external voltage, the band gap gradually narrows. This phenomenon implies that the modification of TiO2nanotubes from both the morphology and the semiconductor band gap is very successful.

    The Mott-Schottky measurements were employed to evaluate the flat band potentialVfbof TNTA electrodes with different tube lengths, which as shown in Fig. 6.

    Fig. 6. Mott-Schottky plots of different TNTAs.

    The Mott-Schottky plots of the TNTAs and base exhibited a positive slope, which indicates that both electrodes aren-type semiconductors. Additionally, as the length of the nanotube increases, the flat-band potential of the nanotube array shifts negatively, which is conducive to hydrogen

    production. TheVfbof TNT-10, TNT-6, TNT-1 and TNT-B were observed at

    -0.81 V, -0.75 V, -0.65 V and -0.55 Vvs.Ag/AgCl,respectively. The flat potential (in the units of volts, V) can be referred to the position of the conduction band (in the units of electron volts, eV)[41,42]. Thus, as the length of the nanotube increases, theEfbshifts negatively, which is beneficial to the PEC water splitting.

    Based on the above results, we proposed the band structures of the as prepared TNTAs samples, TNT-B, TNT-1,TNT-6, and TNT-10 respectively, as shown in Fig. 7. As we can see, the length of TNT varies from 0 to 20.78μm, the band gaps gradually narrows from 3.24 eV to 3.04 eV, and the photo-response wavelength limits from 400 to 480 nm.

    Fig. 7. Proposed band structure of TNTAs samples with different tube lengths and redox potentials for water splitting.Black and green dotted lines represent valence band of TNT-10 and TNT-B respectively.

    4 CONCLUSION

    In summary, the one-dimensional ordered TNTAs show a greater improvement in the light absorption range, and with the length of the nanotube increases, its absorption threshold red-shifted to visible light. By carefully investigated the internal relationship between the TiO2nanotube arrays(TNTAs) morphology and their PEC performance, we proved that when the anodization time goes to 10 hours, the length of the as prepared TNTAs is about 20.78 μm. The measured photocurrent density is around 1.25 mA cm-2with applied bias voltage 0.6 V (vs. Ag/AgCl) under simulated sunlight irradiation, which is 976 times higher than that of the TiO2bulk substrate (0.00128 mA cm-2). More interestingly, the results of the IPCE measurement show that the band-gap of the as prepared TNTAs is reduced from 3.20 eV to 2.83 eV with applied bias voltage 0.6 V (vs. Ag/AgCl). The corresponding optical response limit is also extended from 400 nm to 510 nm, which implies that the increase of the PEC performance of the TNTAs is due to the great improvement of the utilization of both UV and visible light irradiation. Our findings show that the unique ordered nanotube array structure can further improve the response of TiO2to light under the action of a small applied bias, which is of great significance for electro-optic synergistic catalysis.

    午夜福利在线观看免费完整高清在| 九色成人免费人妻av| 人人妻人人添人人爽欧美一区卜| 少妇 在线观看| 国产精品麻豆人妻色哟哟久久| 国产成人freesex在线| 国产精品一区二区性色av| www.色视频.com| 卡戴珊不雅视频在线播放| 日韩一区二区三区影片| 久久av网站| 99视频精品全部免费 在线| 又大又黄又爽视频免费| 美女内射精品一级片tv| videos熟女内射| h日本视频在线播放| 一区在线观看完整版| 日韩av免费高清视频| 中文字幕精品免费在线观看视频 | 日韩 亚洲 欧美在线| 欧美97在线视频| 熟女电影av网| 中文精品一卡2卡3卡4更新| 一本久久精品| 日本欧美视频一区| 中文天堂在线官网| 中国国产av一级| a 毛片基地| 成人综合一区亚洲| 国产永久视频网站| 精品久久久久久久久av| 午夜激情福利司机影院| 人妻一区二区av| 男人舔奶头视频| 精品久久国产蜜桃| 国产日韩欧美视频二区| 精品少妇黑人巨大在线播放| 国产极品粉嫩免费观看在线 | 一本大道久久a久久精品| 熟妇人妻不卡中文字幕| 久久久国产精品麻豆| 精品久久久久久久久亚洲| 青青草视频在线视频观看| 99热这里只有是精品在线观看| 日韩欧美一区视频在线观看 | 国产精品久久久久久精品古装| 日韩在线高清观看一区二区三区| 亚洲一区二区三区欧美精品| 9色porny在线观看| 成人二区视频| 看十八女毛片水多多多| 一级毛片 在线播放| 18禁在线无遮挡免费观看视频| 亚洲精品国产av蜜桃| 日韩,欧美,国产一区二区三区| 欧美日韩视频精品一区| 大片免费播放器 马上看| 亚洲精品乱码久久久v下载方式| 伊人久久精品亚洲午夜| 欧美日韩视频精品一区| 精品国产国语对白av| 亚洲精品乱码久久久v下载方式| 少妇高潮的动态图| 亚洲综合色惰| 国语对白做爰xxxⅹ性视频网站| 乱码一卡2卡4卡精品| 大陆偷拍与自拍| 日日撸夜夜添| 国语对白做爰xxxⅹ性视频网站| 久久精品国产a三级三级三级| 亚洲第一av免费看| 久久av网站| 蜜桃在线观看..| 欧美激情国产日韩精品一区| 久久国产精品大桥未久av | 久久精品国产鲁丝片午夜精品| 日本欧美视频一区| 精品少妇黑人巨大在线播放| 亚洲电影在线观看av| 亚洲精品视频女| 极品人妻少妇av视频| 伦理电影免费视频| 99久久综合免费| 最近2019中文字幕mv第一页| 亚洲精品国产av蜜桃| 99国产精品免费福利视频| 国产真实伦视频高清在线观看| 国产黄片视频在线免费观看| av黄色大香蕉| 亚洲精品自拍成人| 日韩成人av中文字幕在线观看| 亚洲国产欧美日韩在线播放 | 日韩欧美精品免费久久| 精品一品国产午夜福利视频| 欧美精品一区二区免费开放| 国产高清有码在线观看视频| videos熟女内射| 三级国产精品欧美在线观看| 9色porny在线观看| 十八禁高潮呻吟视频 | 三级国产精品片| 欧美+日韩+精品| 免费观看a级毛片全部| 国产成人a∨麻豆精品| 乱人伦中国视频| 精品国产露脸久久av麻豆| 精品午夜福利在线看| 男人爽女人下面视频在线观看| 美女中出高潮动态图| 久久热精品热| 偷拍熟女少妇极品色| 欧美 日韩 精品 国产| 精品酒店卫生间| 精品一区二区免费观看| 精品人妻熟女av久视频| 亚洲欧美日韩东京热| 少妇人妻 视频| 精品久久久精品久久久| 亚洲三级黄色毛片| 亚洲熟女精品中文字幕| 最近手机中文字幕大全| 久久久久久久亚洲中文字幕| 国产黄频视频在线观看| 能在线免费看毛片的网站| 国产精品麻豆人妻色哟哟久久| 日韩欧美 国产精品| 狂野欧美激情性xxxx在线观看| 性色av一级| 女人久久www免费人成看片| 国产成人91sexporn| 色婷婷久久久亚洲欧美| 免费看光身美女| 精品国产一区二区久久| 国产黄色视频一区二区在线观看| 亚洲无线观看免费| 一级毛片 在线播放| 曰老女人黄片| 黄色配什么色好看| 日韩av免费高清视频| 建设人人有责人人尽责人人享有的| 国产在线视频一区二区| 国产成人91sexporn| 一本一本综合久久| 国产在线视频一区二区| 中文精品一卡2卡3卡4更新| 国产乱来视频区| 国产伦理片在线播放av一区| 美女国产视频在线观看| 99热6这里只有精品| 免费看光身美女| 一级毛片 在线播放| 黄色视频在线播放观看不卡| 国产成人精品福利久久| 精品午夜福利在线看| 国产精品国产三级国产专区5o| 黄色一级大片看看| 成人特级av手机在线观看| 亚洲av综合色区一区| h日本视频在线播放| 在线观看三级黄色| 亚洲精品中文字幕在线视频 | 国产黄片视频在线免费观看| 国产日韩欧美亚洲二区| 免费高清在线观看视频在线观看| 91精品伊人久久大香线蕉| tube8黄色片| 亚洲精品亚洲一区二区| 高清不卡的av网站| 成年女人在线观看亚洲视频| 国产欧美日韩综合在线一区二区 | 看十八女毛片水多多多| 久久ye,这里只有精品| 18禁动态无遮挡网站| 中文字幕人妻丝袜制服| 91在线精品国自产拍蜜月| 97在线人人人人妻| 国产黄频视频在线观看| 亚洲av免费高清在线观看| 国产成人午夜福利电影在线观看| 女人精品久久久久毛片| 嘟嘟电影网在线观看| 最近中文字幕2019免费版| 国产精品免费大片| 亚洲美女搞黄在线观看| 男人舔奶头视频| 热re99久久国产66热| 免费人成在线观看视频色| 国产真实伦视频高清在线观看| 插阴视频在线观看视频| 国产探花极品一区二区| 黑人高潮一二区| 国产69精品久久久久777片| av福利片在线观看| 18禁在线播放成人免费| 日韩电影二区| 亚洲欧美成人综合另类久久久| 色婷婷久久久亚洲欧美| 免费看光身美女| 在线观看三级黄色| 国产深夜福利视频在线观看| av在线观看视频网站免费| 丰满少妇做爰视频| 在线精品无人区一区二区三| 国产男女内射视频| 又爽又黄a免费视频| 天天躁夜夜躁狠狠久久av| 少妇裸体淫交视频免费看高清| 中文字幕人妻熟人妻熟丝袜美| 男女边摸边吃奶| 久久午夜福利片| 国产av一区二区精品久久| 久久精品国产自在天天线| 日韩免费高清中文字幕av| 丝袜喷水一区| a级片在线免费高清观看视频| av福利片在线观看| 久久久久久久久久久久大奶| 成人国产麻豆网| 日本爱情动作片www.在线观看| 婷婷色av中文字幕| 爱豆传媒免费全集在线观看| 国模一区二区三区四区视频| 国产乱人偷精品视频| 高清午夜精品一区二区三区| 99热网站在线观看| 99久久综合免费| 亚洲图色成人| 少妇高潮的动态图| 一区二区av电影网| 一级毛片我不卡| 十八禁高潮呻吟视频 | av女优亚洲男人天堂| 黄色一级大片看看| 青春草亚洲视频在线观看| 18禁动态无遮挡网站| 国产精品一区二区三区四区免费观看| 亚洲精品日韩在线中文字幕| 精品人妻熟女毛片av久久网站| 久久av网站| 观看av在线不卡| 久久久久久久精品精品| 午夜免费鲁丝| 极品少妇高潮喷水抽搐| 欧美三级亚洲精品| 少妇的逼好多水| 精品一区二区三区视频在线| 两个人免费观看高清视频 | 黄色怎么调成土黄色| 国产精品久久久久久久久免| 国产成人精品福利久久| 99久久中文字幕三级久久日本| 大香蕉97超碰在线| 熟女av电影| 国产一区二区在线观看av| 亚洲综合精品二区| 一级毛片aaaaaa免费看小| 欧美区成人在线视频| 人人妻人人爽人人添夜夜欢视频 | 日本免费在线观看一区| 爱豆传媒免费全集在线观看| 18禁在线播放成人免费| 亚洲国产成人一精品久久久| 国产欧美亚洲国产| 免费不卡的大黄色大毛片视频在线观看| 在线 av 中文字幕| 久久久精品免费免费高清| 国产成人精品无人区| 有码 亚洲区| 国产无遮挡羞羞视频在线观看| 欧美3d第一页| 内射极品少妇av片p| 少妇人妻一区二区三区视频| 免费观看无遮挡的男女| 99热这里只有精品一区| 免费av不卡在线播放| 99久久中文字幕三级久久日本| 日韩 亚洲 欧美在线| 伦精品一区二区三区| 一区二区av电影网| 亚洲国产色片| 亚洲精品乱码久久久v下载方式| 国产有黄有色有爽视频| 夫妻午夜视频| 狂野欧美激情性bbbbbb| 国产成人午夜福利电影在线观看| 亚洲精品久久久久久婷婷小说| 久久综合国产亚洲精品| 精品99又大又爽又粗少妇毛片| 女人久久www免费人成看片| 中国三级夫妇交换| 国产无遮挡羞羞视频在线观看| 精品国产一区二区三区久久久樱花| 国产一区二区在线观看日韩| 91精品伊人久久大香线蕉| 狂野欧美激情性bbbbbb| 亚洲精品一二三| 这个男人来自地球电影免费观看 | 国产欧美亚洲国产| 久久热精品热| 六月丁香七月| 在线观看一区二区三区激情| 日韩av不卡免费在线播放| 欧美另类一区| 亚洲av不卡在线观看| 在线看a的网站| 9色porny在线观看| 极品少妇高潮喷水抽搐| 国产精品国产三级专区第一集| 我要看黄色一级片免费的| 97超碰精品成人国产| 日韩av在线免费看完整版不卡| 欧美另类一区| 国产高清三级在线| 人妻夜夜爽99麻豆av| 久久久精品94久久精品| 99热这里只有是精品在线观看| 波野结衣二区三区在线| 免费播放大片免费观看视频在线观看| 王馨瑶露胸无遮挡在线观看| 亚洲三级黄色毛片| 永久网站在线| a级毛片免费高清观看在线播放| 中文字幕免费在线视频6| 日本黄色日本黄色录像| 久久久久久久久大av| 老司机亚洲免费影院| 国产av一区二区精品久久| 亚洲国产精品专区欧美| 五月天丁香电影| 日韩在线高清观看一区二区三区| 亚洲美女视频黄频| 久久国内精品自在自线图片| a级一级毛片免费在线观看| 日本色播在线视频| 一本一本综合久久| 尾随美女入室| 亚洲美女视频黄频| 在线免费观看不下载黄p国产| 欧美日本中文国产一区发布| 99热国产这里只有精品6| 久久韩国三级中文字幕| 高清毛片免费看| 永久网站在线| 亚洲av福利一区| 久久精品久久久久久久性| 色94色欧美一区二区| 99热网站在线观看| 国产精品久久久久久精品古装| 九草在线视频观看| 亚洲精品色激情综合| 韩国av在线不卡| 国产成人精品福利久久| 亚洲国产欧美在线一区| 免费观看的影片在线观看| tube8黄色片| 在线天堂最新版资源| 国产男女内射视频| 在线观看www视频免费| 久久久久国产网址| 中文精品一卡2卡3卡4更新| 日日啪夜夜爽| 国产亚洲5aaaaa淫片| 国产精品久久久久久av不卡| av在线app专区| 高清午夜精品一区二区三区| 色婷婷av一区二区三区视频| 亚洲精品第二区| h日本视频在线播放| 亚洲av男天堂| 亚洲av不卡在线观看| 亚洲精品视频女| 久久6这里有精品| 国产高清三级在线| 亚洲真实伦在线观看| 亚洲欧美清纯卡通| 精品人妻熟女毛片av久久网站| 日韩强制内射视频| 又黄又爽又刺激的免费视频.| 三级国产精品欧美在线观看| 精品久久久久久久久av| 天堂俺去俺来也www色官网| 亚洲成色77777| 亚洲内射少妇av| av线在线观看网站| 自拍偷自拍亚洲精品老妇| 国产免费一区二区三区四区乱码| 亚洲性久久影院| 欧美国产精品一级二级三级 | 久久久久精品久久久久真实原创| 国产视频内射| 国产精品一区二区性色av| av国产久精品久网站免费入址| 精品少妇黑人巨大在线播放| 97在线视频观看| 国产色爽女视频免费观看| 中文欧美无线码| 久久精品夜色国产| 午夜免费男女啪啪视频观看| 亚洲国产欧美在线一区| 高清在线视频一区二区三区| 久久99蜜桃精品久久| 人妻少妇偷人精品九色| 肉色欧美久久久久久久蜜桃| 大片免费播放器 马上看| 十八禁网站网址无遮挡 | 人人妻人人爽人人添夜夜欢视频 | 91精品国产国语对白视频| 久久毛片免费看一区二区三区| 久久久久视频综合| 久久久久久久久久久丰满| 自拍偷自拍亚洲精品老妇| 国产乱来视频区| 国产av码专区亚洲av| 久久韩国三级中文字幕| 日韩,欧美,国产一区二区三区| 丰满迷人的少妇在线观看| 国产日韩欧美亚洲二区| av.在线天堂| 伦理电影免费视频| 夜夜爽夜夜爽视频| 成人国产麻豆网| 一级黄片播放器| 老司机影院毛片| 综合色丁香网| 尾随美女入室| 噜噜噜噜噜久久久久久91| 在线观看一区二区三区激情| 国产欧美日韩综合在线一区二区 | 精品人妻熟女毛片av久久网站| 在线观看国产h片| 亚洲国产毛片av蜜桃av| 精华霜和精华液先用哪个| 少妇熟女欧美另类| 亚洲欧美精品自产自拍| 国产免费一区二区三区四区乱码| 大香蕉久久网| 国产亚洲最大av| 久久精品熟女亚洲av麻豆精品| www.色视频.com| 精品99又大又爽又粗少妇毛片| 日韩人妻高清精品专区| 色婷婷久久久亚洲欧美| 黄色日韩在线| 校园人妻丝袜中文字幕| 国产成人午夜福利电影在线观看| 亚洲自偷自拍三级| 美女视频免费永久观看网站| 在线观看免费日韩欧美大片 | 简卡轻食公司| 国产欧美亚洲国产| 精品一区在线观看国产| 免费看不卡的av| 欧美性感艳星| 亚洲三级黄色毛片| 观看av在线不卡| 国产中年淑女户外野战色| 人体艺术视频欧美日本| 亚洲欧美日韩卡通动漫| 国产av一区二区精品久久| 啦啦啦在线观看免费高清www| 蜜桃久久精品国产亚洲av| 国产真实伦视频高清在线观看| 欧美丝袜亚洲另类| 91aial.com中文字幕在线观看| 日韩一区二区三区影片| 午夜福利网站1000一区二区三区| 亚洲婷婷狠狠爱综合网| 人妻制服诱惑在线中文字幕| 黄色毛片三级朝国网站 | 男男h啪啪无遮挡| 波野结衣二区三区在线| 亚洲av成人精品一二三区| 亚洲精品久久久久久婷婷小说| 国产精品久久久久久av不卡| 国产毛片在线视频| 男女边吃奶边做爰视频| 一个人免费看片子| 亚洲国产精品专区欧美| 九九爱精品视频在线观看| 在线看a的网站| 我要看黄色一级片免费的| 国产精品.久久久| 亚洲,一卡二卡三卡| 亚洲av二区三区四区| 亚洲欧美清纯卡通| 制服丝袜香蕉在线| 亚洲精品国产av成人精品| 看十八女毛片水多多多| 亚洲国产精品一区三区| 亚洲人成网站在线观看播放| 狂野欧美激情性xxxx在线观看| 成人午夜精彩视频在线观看| 亚洲内射少妇av| 99久久精品一区二区三区| 免费久久久久久久精品成人欧美视频 | 久久ye,这里只有精品| a级一级毛片免费在线观看| 国产国拍精品亚洲av在线观看| 免费黄频网站在线观看国产| 亚洲欧美成人综合另类久久久| 久久99热6这里只有精品| 男女啪啪激烈高潮av片| 免费在线观看成人毛片| 日韩一本色道免费dvd| 亚洲精品日本国产第一区| 精品人妻偷拍中文字幕| 欧美日韩av久久| av.在线天堂| 99久久综合免费| 亚洲在久久综合| 综合色丁香网| 中文资源天堂在线| 国国产精品蜜臀av免费| 国产伦精品一区二区三区四那| av又黄又爽大尺度在线免费看| 国产爽快片一区二区三区| 女人精品久久久久毛片| 少妇精品久久久久久久| 国产欧美日韩综合在线一区二区 | 成人亚洲精品一区在线观看| 精品少妇内射三级| 国产av精品麻豆| 亚洲国产精品成人久久小说| 久久久久久久久久久久大奶| 狂野欧美白嫩少妇大欣赏| 亚洲av国产av综合av卡| 国产精品嫩草影院av在线观看| 夜夜看夜夜爽夜夜摸| 精品国产国语对白av| 欧美区成人在线视频| 一本大道久久a久久精品| 中文天堂在线官网| 少妇熟女欧美另类| 日韩av不卡免费在线播放| 人妻少妇偷人精品九色| 伊人亚洲综合成人网| 亚洲国产色片| 永久网站在线| 国产精品久久久久成人av| 性高湖久久久久久久久免费观看| 午夜免费鲁丝| 欧美日本中文国产一区发布| 18禁在线无遮挡免费观看视频| 精品熟女少妇av免费看| 国产精品一区www在线观看| 亚洲精品日韩在线中文字幕| 亚洲av综合色区一区| 欧美精品一区二区免费开放| 韩国高清视频一区二区三区| 日产精品乱码卡一卡2卡三| 亚洲av综合色区一区| 亚洲综合色惰| 亚洲三级黄色毛片| 久久人人爽av亚洲精品天堂| 九草在线视频观看| 99久国产av精品国产电影| 免费高清在线观看视频在线观看| 色视频www国产| 久久国产乱子免费精品| 狠狠精品人妻久久久久久综合| 少妇人妻一区二区三区视频| 一级av片app| 亚洲伊人久久精品综合| 成人综合一区亚洲| 有码 亚洲区| 成人午夜精彩视频在线观看| 亚洲精品国产成人久久av| 久久久欧美国产精品| 久久综合国产亚洲精品| 十八禁网站网址无遮挡 | 国产精品一区二区三区四区免费观看| 99久久精品国产国产毛片| 日日啪夜夜撸| 晚上一个人看的免费电影| 亚洲av成人精品一二三区| av在线老鸭窝| 日韩av免费高清视频| 赤兔流量卡办理| 校园人妻丝袜中文字幕| 黄色日韩在线| 国产精品嫩草影院av在线观看| 亚洲精品自拍成人| 亚洲成人一二三区av| 国产精品秋霞免费鲁丝片| 在线观看一区二区三区激情| av一本久久久久| 国产探花极品一区二区| av国产久精品久网站免费入址| 高清黄色对白视频在线免费看 | 蜜臀久久99精品久久宅男| 18禁动态无遮挡网站| 国产成人免费观看mmmm| 精品一品国产午夜福利视频| 国产精品女同一区二区软件| .国产精品久久| 精品一区二区三区视频在线| 久久99精品国语久久久| 特大巨黑吊av在线直播| 十分钟在线观看高清视频www | 国产女主播在线喷水免费视频网站| 在线免费观看不下载黄p国产| 18禁裸乳无遮挡动漫免费视频| 久久精品国产亚洲av涩爱| a 毛片基地| 国产成人91sexporn| 精品人妻熟女毛片av久久网站| 亚洲欧美一区二区三区国产| 一本—道久久a久久精品蜜桃钙片| 免费大片黄手机在线观看| 秋霞在线观看毛片| 精品午夜福利在线看| 国产精品一区二区在线观看99| 另类精品久久| 97在线视频观看| 日本-黄色视频高清免费观看|